p-books.com
More Letters of Charles Darwin Volume II - Volume II (of II)
by Charles Darwin
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14     Next Part
Home - Random Browse

I remember as a boy that it was said that the floods of the Severn were more muddy when the floods were caused by melting snow than from the heaviest rains; but why this should be I cannot see.

Another subject has interested me much—viz. the sliding and travelling of angular debris. Ever since seeing the "streams of stones" at the Falkland Islands (514/5. "Geological Observations on South America" (1846), page 19 et seq.), I have felt uneasy in my mind on this subject. I wish Mr. Kerr's notion could be fully elucidated about frozen snow. Some one ought to observe the movements of the fields of snow which supply the glaciers in Switzerland.

Yours is a grand book, and I thank you heartily for the instruction and pleasure which it has given me.

For heaven's sake forgive the untidiness of this whole note.

LETTER 515. TO JOHN LUBBOCK [Lord Avebury]. Down, November 6th, 1881.

If I had written your Address (515/1. Address delivered by Lord Avebury as President of the British Association at York in 1881. Dr. Hicks is mentioned as having classed the pre-Cambrian strata in "four great groups of immense thickness and implying a great lapse of time" and giving no evidence of life. Hicks' third formation was named by him the Arvonian ("Quart. Journ. Geol. Soc." Volume XXXVII., 1881, Proc., page 55.) (but this requires a fearful stretch of imagination on my part) I should not alter what I had said about Hicks. You have the support of the President [of the] Geological Society (515/2. Robert Etheridge.), and I think that Hicks is more likely to be right than X. The latter seems to me to belong to the class of objectors general. If Hicks should be hereafter proved to be wrong about this third formation, it would signify very little to you.

I forget whether you go as far as to support Ramsay about lakes as large as the Italian ones: if so, I would myself modify the passage a little, for these great lakes have always made me tremble for Ramsay, yet some of the American geologists support him about the still larger N. American lakes. I have always believed in the main in Ramsay's views from the date of publication, and argued the point with Lyell, and am convinced that it is a very interesting step in Geology, and that you were quite right to allude to it. (515/3. "Glacial Origin of Lakes in Switzerland, Black Forest, etc." ("Quart. Journ. Geol. Soc." Volume XVIII., pages 185-204, 1862). Sir John Lubbock (Lord Avebury) gives a brief statement of Ramsay's views concerning the origin of lakes (Presidential Address, Brit. Assoc. 1881, page 22): "Prof. Ramsay divides lakes into three classes: (1) Those which are due to irregular accumulations of drift, and which are generally quite shallow; (2) those which are formed by moraines; and (3) those which occupy true basins scooped by glaciers out of the solid rocks. To the latter class belong, in his opinion, most of the great Swiss and Italian lakes...Professor Ramsay's theory seems, therefore, to account for a large number of interesting facts." Sir Archibald Geikie has given a good summary of Ramsay's theory in his "Memoir of Sir Andrew Crombie Ramsay," page 361, London, 1895.)

LETTER 516. TO D. MACKINTOSH. Down, February 28th, 1882.

I have read professor Geikie's essay, and it certainly appears to me that he underrated the importance of floating ice. (516/1. "The Intercrossing of Erratics in Glacial Deposits," by James Geikie, "Scottish Naturalist," 1881.) Memory extending back for half a century is worth a little, but I can remember nothing in Shropshire like till or ground moraine, yet I can distinctly remember the appearance of many sand and gravel beds—in some of which I found marine shells. I think it would be well worth your while to insist (but perhaps you have done so) on the absence of till, if absent in the Western Counties, where you find many erratic boulders.

I was pleased to read the last sentence in Geikie's essay about the value of your work. (516/2. The concluding paragraph reads as follows: "I cannot conclude this paper without expressing my admiration for the long-continued and successful labours of the well-known geologist whose views I have been controverting. Although I entered my protest against his iceberg hypothesis, and have freely criticised his theoretical opinions, I most willingly admit that the results of his unwearied devotion to the study of those interesting phenomena with which he is so familiar have laid all his fellow-workers under a debt of gratitude." Mr. Darwin used to speak with admiration of Mackintosh's work, carried on as it was under considerable difficulties.)

With respect to the main purport of your note, I hardly know what to say. Though no evidence worth anything has as yet, in my opinion, been advanced in favour of a living being, being developed from inorganic matter, yet I cannot avoid believing the possibility of this will be proved some day in accordance with the law of continuity. I remember the time, above fifty years ago, when it was said that no substance found in a living plant or animal could be produced without the aid of vital forces. As far as external form is concerned, Eozoon shows how difficult it is to distinguish between organised and inorganised bodies. If it is ever found that life can originate on this world, the vital phenomena will come under some general law of nature. Whether the existence of a conscious God can be proved from the existence of the so-called laws of nature (i.e., fixed sequence of events) is a perplexing subject, on which I have often thought, but cannot see my way clearly. If you have not read W. Graham's "Creed of Science," (516/3. "The Creed of Science: Religious, Moral, and Social," London, 1881.), it would, I think, interest you, and he supports the view which you are inclined to uphold.

2.IX.III. THE PARALLEL ROADS OF GLEN ROY, 1841-1880.

(517/1. In the bare hilly country of Lochaber, in the Scotch Highlands, the slopes of the mountains overlooking the vale of Glen Roy are marked by narrow terraces or parallel roads, which sweep round the shoulders of the hills with "undeviating horizontality." These roads are described by Sir Archibald Geikie as having long been "a subject of wonderment and legendary story among the Highlanders, and for so many years a source of sore perplexity among men of science." (517/2. "The Scenery of Scotland," 1887, page 266.) In Glen Roy itself there are three distinct shelves or terraces, and the mountain sides of the valley of the Spean and other glens bear traces of these horizontal "roads."

The first important papers dealing with the origin of this striking physical feature were those of MacCulloch (517/3. "Trans. Geol. Soc." Volume IV., page 314, 1817.) and Sir Thomas Lauder Dick (517/4. "Trans. R. Soc. Edinb." Volume IX., page 1, 1823.), in which the writers concluded that the roads were the shore-lines of lakes which once filled the Lochaber valleys. Towards the end of June 1838 Mr. Darwin devoted "eight good days" (517/5. "Life and Letters," I., page 290.) to the examination of the Lochaber district, and in the following year he communicated a paper to the Royal Society of London, in which he attributed their origin to the action of the sea, and regarded them as old sea beaches which had been raised to their present level by a gradual elevation of the Lochaber district.

In 1840 Louis Agassiz and Buckland (517/6. "Edinb. New Phil. Journal," Volume XXXIII., page 236, 1842.) proposed the glacier-ice theory; they described the valleys as having been filled with lakes dammed back by glaciers which formed bars across the valleys of Glen Roy, Glen Spean, and the other glens in which the hill-sides bear traces of old lake-margins. Agassiz wrote in 1842: "When I visited the parallel roads of Glen Roy with Dr. Buckland we were convinced that the glacial theory alone satisfied all the exigencies of the phenomenon." (517/7. Ibid., page 236.)

Mr. David Milne (afterwards Milne-Home) (517/8. "Trans. R. Soc. Edinb." Volume XVI., page 395, 1847.) in 1847 upheld the view that the ledges represent the shore-lines of lakes which were imprisoned in the valleys by dams of detrital material left in the glens during a submergence of 3,000 feet, at the close of the Glacial period. Chambers, in his "Ancient Sea Margins" (1848), expressed himself in agreement with Mr. Darwin's marine theory. The Agassiz-Buckland theory was supported by Mr. Jamieson (517/9. "Quart. Journ. Geol. Soc." Volume XIX., page 235, 1863.), who brought forward additional evidence in favour of the glacial barriers. Sir Charles Lyell at first (517/10. "Elements of Geology," Edition II., 1841.) accepted the explanation given by Mr. Darwin, but afterwards (517/11. "Antiquity of Man," 1863, pages 252 et seq.) came to the conclusion that the terrace-lines represent the beaches of glacial lakes. In a paper published in 1878 (517/12. "Phil. Trans. R. Soc." 1879, page 663.), Prof. Prestwich stated his acceptance of the lake theory of MacCulloch and Sir T. Lauder Dick and of the glacial theory of Agassiz, but differed from these authors in respect of the age of the lakes and the manner of formation of the roads.

The view that has now gained general acceptance is that the parallel roads of Glen Roy represent the shores of a lake "that came into being with the growth of the glaciers and vanished as these melted away." (517/13. Sir Archibald Geikie, loc. cit., page 269.)

Mr. Darwin became a convert to the glacier theory after the publication of Mr. Jamieson's paper. He speaks of his own paper as "a great failure"; he argued in favour of sea action as the cause of the terraces "because no other explanation was possible under our then state of knowledge." Convinced of his mistake, Darwin looked upon his error as "a good lesson never to trust in science to the principle of exclusion." (517/14. "Life and Letters," I., page 69.)

LETTER 517. TO C. LYELL. [March 9th, 1841.]

I have just received your note. It is the greatest pleasure to me to write or talk Geology with you...

I think I have thought over the whole case without prejudice, and remain firmly convinced they [the parallel roads] are marine beaches. My principal reason for doing so is what I have urged in my paper (517/15. "Observations on the Parallel Roads of Glen Roy, and of other parts of Lochaber in Scotland, with an attempt to prove that they are of Marine Origin." "Phil. Trans. R. Soc." 1839, page 39.), the buttress-like accumulations of stratified shingle on sides of valley, especially those just below the lowest shelf in Spean Valley.

2nd. I can hardly conceive the extension of the glaciers in front of the valley of Kilfinnin, where I found a new road—where the sides of Great Glen are not very lofty.

3rd. The flat watersheds which I describe in places where there are no roads, as well as those connected with "roads." These remain unexplained.

I might continue to add many other such reasons, all of which, however, I daresay would appear trifling to any one who had not visited the district. With respect to equable elevation, it cannot be a valid objection to any one who thinks of Scandinavia or the Pampas. With respect to the glacier theory, the greatest objection appears to me the following, though possibly not a sound one. The water has beyond doubt remained very long at the levels of each shelf—this is unequivocally shown by the depth of the notch or beach formed in many places in the hard mica-slate, and the large accumulations or buttresses of well-rounded pebbles at certain spots on the level of old beaches. (The time must have been immense, if formed by lakes without tides.) During the existence of the lakes their drainage must have been at the head of the valleys, and has given the flat appearance of the watersheds. All this is very clear for four of the shelves (viz., upper and lower in Glen Roy, the 800-foot one in Glen Spean, and the one in Kilfinnin), and explains the coincidence of "roads" with the watersheds more simply than my view, and as simply as the common lake theory. But how was the Glen Roy lake drained when the water stood at level of the middle "road"? It must (for there is no other exit whatever) have been drained over the glacier. Now this shelf is full as narrow in a vertical line and as deeply worn horizontally into the mountain side and with a large accumulation of shingle (I can give cases) as the other shelves. We must, therefore, on the glacier theory, suppose that the surface of the ice remained at exactly the same level, not being worn down by the running water, or the glacier moved by its own movement during the very long period absolutely necessary for a quiet lake to form such a beach as this shelf presents in its whole course. I do not know whether I have explained myself clearly. I should like to know what you think of this difficulty. I shall much like to talk over the Jura case with you. I am tired, so goodbye.

LETTER 518. TO L. HORNER. Down [1846].

(518/1. It was agreed at the British Association meeting held at Southampton in 1846 "That application be made to Her Majesty's Government to direct that during the progress of the Ordnance Trigonometrical Surveys in the North of Scotland, the so-called Parallel Roads of Glen Roy and the adjoining country be accurately surveyed, with the view of determining whether they are truly parallel and horizontal, the intervening distances, and their elevations above the present sea-level" ("British Association Report," 1846, page xix). The survey was undertaken by the Government Ordnance Survey Office under Col. Sir Henry James, who published the results in 1874 ("Notes on the Parallel Roads of Glen Roy"); the map on which the details are given is sheet 63 (one-inch scale).)

In following your suggestion in drawing out something about Glen Roy for the Geological Committee, I have been completely puzzled how to do it. I have written down what I should say if I had to meet the head of the Survey and wished to persuade him to undertake the task; but as I have written it, it is too long, ill expressed, seems as if it came from nobody and was going to nobody, and therefore I send it to you in despair, and beg you to turn the subject in your mind. I feel a conviction if it goes through the Geological part of Ordnance Survey it will be swamped, and as it is a case for mere accurate measurements it might, I think without offence, go to the head of the real Surveyors.

If Agassiz or Buckland are on the Committee they will sneer at the whole thing and declare the beaches are those of a glacier-lake, than which I am sure I could convince you that there never was a more futile theory.

I look forward to Southampton (518/2. The British Association meeting (1846).) with much interest, and hope to hear to-morrow that the lodgings are secured to us. You cannot think how thoroughly I enjoyed our geological talks, and the pleasure of seeing Mrs. Horner and yourself here. (518/3. This letter is published in the privately printed "Memoir of Leonard Horner," II., page 103.)

[Here follows Darwin's Memorandum.]

The Parallel Roads of Glen Roy, in Scotland, have been the object of repeated examination, but they have never hitherto been levelled with sufficient accuracy. Sir T. Lauder Dick (518/4. "On the Parallel Roads of Lochaber" (with map and plates), by Sir Thomas Lauder Dick, "Trans. R. Soc. Edinb." Volume IX., page 1, 1823.) procured the assistance of an engineer for this purpose, but owing to the want of a true ground-plan it was impossible to ascertain their exact curvature, which, as far as could be estimated, appeared equal to that of the surface of the sea. Considering how very rarely the sea has left narrow and well-defined marks of its action at any considerable height on the land, and more especially considering the remarkable observations by M. Bravais (518/5. "On the Lines of Ancient Level of the Sea in Finmark," by M. A. Bravais, translated from "Voyages de la Commission Scientifique du Nord, etc."; "Quart. Journ. Geol. Soc." Volume I., page 534, 1845.) on the ancient sea-beaches of Scandinavia, showing the they are not strictly parallel to each other, and that the movement has been greater nearer the mountains than on the coast, it appears highly desirable that the roads of Glen Roy should be examined with the utmost care during the execution of the Ordnance Survey of Scotland. The best instruments and the most accurate measurements being necessary for this end almost precludes the hope of its being ever undertaken by private individuals; but by the means at the disposal of the Ordnance, measurements would be easily made even more accurate than those of M. Bravais. It would be desirable to take two lines of the greatest possible length in the district, and at nearly right angles to each other, and to level from the beach at one extremity to that at the other, so that it might be ascertained whether the curvature does exactly correspond with that of the globe, or, if not, what is the direction of the line of greatest elevation. Much attention would be requisite in fixing on either the upper or lower edge of the ancient beaches as the standard of measurement, and in rendering this line conspicuous. The heights of the three roads, one above the other and above the level of the sea, ought to be accurately ascertained. Mr. Darwin observed one short beach-line north of Glen Roy, and he has indicated, on the authority of Sir David Brewster, others in the valley of the Spey. If these could be accurately connected, by careful measurements of their absolute heights or by levelling, with those of Glen Roy, it would make a most valuable addition to our knowledge on this subject. Although the observations here specified would probably be laborious, yet, considering how rarely such evidence is afforded in any quarter of the world, it cannot be doubted that one of the most important problems in Geology—namely, the exact manner in which the crust of the earth rises in mass—would be much elucidated, and a great service done to geological science.

LETTER 519. R. CHAMBERS TO D. MILNE-HOME. St. Andrews, September 7th, 1847.

I have had a letter to-day from Mr. Charles Darwin, beseeching me to obtain for him a copy of your paper on Glen Roy. (519/1. No doubt Mr. Milne's paper "On the Parallel Roads of Lochaber," "Trans. R. Soc. Edinb." Volume XVI., page 395, 1849. [Read March 1st and April 5th, 1847.]) I am sure you will have pleasure in sending him one; his address is "Down, Farnborough, Kent." I have again read over your paper carefully, and feel assured that the careful collection and statement of facts which are found in it must redound to your credit with all candid persons. The suspicions, however, which I obtained some time ago as to land-straits and heights of country being connected with sea-margins and their ordinary memorials still possesses me, and I am looking forward to some means of further testing the Glen Roy mystery. If my suspicion turn out true, I shall at once be regretful on your account, and shall feel it as a great check and admonition to myself not to be too confident about anything in science till it has been proved over and over again. The ground hereabouts is now getting clear of the crops; perhaps when I am in town a few days hence we may be able to make some appointment for an examination of the beaches of the district, my list of which has been greatly enlarged during the last two months.

LETTER 520. TO R. CHAMBERS. September 11th, 1847.

I hope you will read the first part of my paper before you go [to Glen Roy], and attend to the manner in which the lines end in Glen Collarig. I wish Mr. Milne had read it more carefully. He misunderstands me in several respects, but [I] suppose it is my own fault, for my paper is most tediously written. Mr. Milne fights me very pleasantly, and I plead guilty to his rebuke about "demonstration." (520/1. See Letter 521, note.) I do not know what you think; but Mr. Milne will think me as obstinate as a pig when I say that I think any barriers of detritus at the mouth of Glen Roy, Collarig and Glaster more utterly impossible than words can express. I abide by all that I have written on that head. Conceive such a mass of detritus having been removed, without great projections being left on each side, in the very close proximity to every little delta preserved on the lines of the shelves, even on the shelf 4, which now crosses with uniform breadth the spot where the barrier stood, with the shelves dying gradually out, etc. To my mind it is monstrous. Oddly enough, Mr. Milne's description of the mouth of Loch Treig (I do not believe that valley has been well examined in its upper end) leaves hardly a doubt that a glacier descended from it, and, if the roads were formed by a lake of any kind, I believe it must have been an ice-lake. I have given in detail to Lyell my several reasons for not thinking ice-lakes probable (520/2. Mr. Darwin gives some arguments against the glacier theory in the letter (517) to Sir Charles Lyell; but the letter alluded to is no doubt the one written to Lyell on "Wednesday, 8th" (Letter 522), in which the reasons are fully stated.); but to my mind they are incomparably more probable than detritus of rock-barriers. Have you ever attended to glacier action? After having seen N. Wales, I can no more doubt the former existence of gigantic glaciers than I can the sun in the heaven. I could distinguish in N. Wales to a certain extent icebergs from glacier action (Lyell has shown that icebergs at the present day score rocks), and I suspect that in Lochaber the two actions are united, and that the scored rock on the watersheds, when tideways, were rubbed and bumped by half-stranded icebergs. You will, no doubt, attend to Glen Glaster. Mr. Milne, I think, does not mention whether shelf 4 enters it, which I should like to know, and especially he does not state whether rocks worn on their upper faces are found on the whole 212 [feet] vertical course of this Glen down to near L. Loggan, or whether only in the upper part; nor does he state whether these rocks are scored, or polished, or moutonnees, or whether there are any "perched" boulders there or elsewhere. I suspect it would be difficult to distinguish between a river-bed and tidal channel. Mr. Milne's description of the Pass of Mukkul, expanding to a width of several hundred yards 21 feet deep in the shoalest part, and with a worn islet in the middle, sounds to me much more like a tidal channel than a river-bed. There must have been, on the latter view, plenty of fresh water in those days. With respect to the coincidence of the shelves with the now watersheds, Mr. Milne only gives half of my explanation. Please read page 65 of my paper. (520/3. "Observations on the Parallel Roads of Glen Roy, and of other Parts of Lochaber in Scotland, with an Attempt to Prove that they are of Marine Origin." "Phil. Trans. R. Soc." 1839, page 39. [Read February 7th, 1839.]) I allude only to the head of Glen Roy and Kilfinnin as silted up. I did not know Mukkul Pass; and Glen Roy was so much covered up that I did not search it well, as I was not able to walk very well. It has been an old conjectural belief of mine that a rising surface becomes stationary, not suddenly, but by the movement becoming very slow. Now, this would greatly aid the tidal currents cutting down the passes between the mountains just before, and to the level of, the stationary periods. The currents in the fiords in T. del Fuego in a narrow crooked part are often most violent; in other parts they seem to silt up.

Shall you do any levelling? I believe all the levelling has been [done] in Glen Roy, nearly parallel to the Great Glen of Scotland. For inequalities of elevation, the valley of the Spean, at right angles to the apparent axes of elevation, would be the one to examine. If you go to the head of Glen Roy, attend to the apparent shelf above the highest one in Glen Roy, lying on the south side of Loch Spey, and therefore beyond the watershed of Glen Roy. It would be a crucial case. I was too unwell on that day to examine it carefully, and I had no levelling instruments. Do these fragments coincide in level with Glen Gluoy shelf?

MacCulloch talks of one in Glen Turret above the shelf. I could not see it. These would be important discoveries. But I will write no more, and pray your forgiveness for this long, ill-written outpouring. I am very glad you keep to your subject of the terraces. I have lately observed that you have one great authority (C. Prevost), [not] that authority signifies a [farthing?] on your side respecting your heretical and damnable doctrine of the ocean falling. You see I am orthodox to the burning pitch.

LETTER 521. TO D. MILNE-HOME. Down, [September] 20th, [1847].

I am much obliged by your note. I returned from London on Saturday, and I found then your memoir (521/1. "On the Parallel Roads of Lochaber, with Remarks on the Change of Relative Levels of Sea and Land in Scotland, and on the Detrital Deposits in that Country," "Trans. R. Soc. Edinb." Volume XVI., page 395, 1849. [Read March 1st and April 5th, 1847.]), which I had not then received, owing to the porter having been out when I last sent to the Geological Society. I have read your paper with the greatest interest, and have been much struck with the novelty and importance of many of your facts. I beg to thank you for the courteous manner in which you combat me, and I plead quite guilty to your rebuke about demonstration. (521/2. Mr. Milne quotes a passage from Mr. Darwin's paper ("Phil. Trans. R. Soc." 1839, page 56), in which the latter speaks of the marine origin of the parallel roads of Lochaber as appearing to him as having been demonstrated. Mr. Milne adds: "I regret that Mr. Darwin should have expressed himself in these very decided and confident terms, especially as his survey was incomplete; for I venture to think that it can be satisfactorily established that the parallel roads of Lochaber were formed by fresh-water lakes" (Milne, loc. cit., page 400).) You have misunderstood my paper on a few points, but I do not doubt that is owing to its being badly and tediously written. You will, I fear, think me very obstinate when I say that I am not in the least convinced about the barriers (521/3. Mr. Milne believed that the lower parts of the valleys were filled with detritus, which constituted barriers and thus dammed up the waters into lakes.): they remain to me as improbable as ever. But the oddest result of your paper on me (and I assure you, as far as I know myself, it is not perversity) is that I am very much staggered in favour of the ice-lake theory of Agassiz and Buckland (521/4. Agassiz and Buckland believed that the lakes which formed the "roads" were confined by glaciers or moraines. See "The Glacial Theory and its Recent Progress," by Louis Agassiz, "Edinb. New Phil. Journ." Volume XXXIII., page 217, 1842 (with map).): until I read your important discovery of the outlet in Glen Glaster I never thought this theory at all tenable. (521/5. Mr. Milne discovered that the middle shelf of Glen Roy, which Mr. Darwin stated was "not on a level with any watershed" (Darwin, loc. cit., page 43), exactly coincided with a watershed at the head of Glen Glaster (Milne, loc. cit., page 398).) Now it appears to me that a very good case can be made in its favour. I am not, however, as yet a believer in the ice-lake theory, but I tremble for the result. I have had a good deal of talk with Mr. Lyell on the subject, and from his advice I am going to send a letter to the "Scotsman," in which I give briefly my present impression (though there is not space to argue with you on such points as I think I could argue), and indicate what points strike me as requiring further investigation with respect, chiefly, to the ice-lake theory, so that you will not care about it...

P.S.—Some facts mentioned in my "Geology of S. America," page 24 (521/6. The creeks which penetrate the western shores of Tierra del Fuego are described as "almost invariably much shallower close to the open sea at their mouths than inland...This shoalness of the sea-channels near their entrances probably results from the quantity of sediment formed by the wear and tear of the outer rocks exposed to the full force of the open sea. I have no doubt that many lakes—for instance, in Scotland—which are very deep within, and are separated from the sea apparently only by a tract of detritus, were originally sea-channels, with banks of this nature near their mouths, which have since been upheaved" ("Geol. Obs. S. America," page 24, footnote.), with regard to the shoaling of the deep fiords of T. del Fuego near their mouths, and which I have remarked would tend, with a little elevation, to convert such fiords into lakes with a great mound-like barrier of detritus at their mouths, might, possibly, have been of use to you with regard to the lakes of Glen Roy.

LETTER 522. TO C. LYELL. Down, Wednesday, 8th.

Many thanks for your paper. (522/1. "On the Ancient Glaciers of Forfarshire." "Proc. Geol. Soc." Volume III., page 337, 1840.) I do admire your zeal on a subject on which you are not immediately at work. I will give my opinion as briefly as I can, and I have endeavoured my best to be honest. Poor Mrs. Lyell will have, I foresee, a long letter to read aloud, but I will try to write better than usual. Imprimis, it is provoking that Mr. Milne (522/2. "On the Parallel Roads of Lochaber, etc." "Trans. R. Soc. Edinb." Volume XVI., page 395, 1849. [Read March 1st and April 5th, 1847.]) has read my paper (522/3. "Observations on the Parallel Roads of Glen Roy, etc." "Phil. Trans. R. Soc." 1839, page 39. [Read February 7th, 1839.].) with little attention, for he makes me say several things which I do not believe—as, that the water sunk suddenly! (page 10), that the Valley of Glen Roy, page 13, and Spean was filled up with detritus to level of the lower shelf, against which there is, I conceive, good evidence, etc., but I suppose it is the consequence of my paper being most tediously written. He gives me a just snub for talking of demonstration, and he fights me in a very pleasant manner. Now for business. I utterly disbelieve in the barriers (522/4. See note, Letter 521.) for his lakes, and think he has left that point exactly where it was in the time of MacCulloch (522/5. "On the Parallel Roads of Glen Roy." "Geol. Trans." Volume IV., page 314, 1817 (with several maps and sections).) and Dick. (522/6. "On the Parallel Roads of Lochaber." "Trans. R. Soc. Edinb." Volume IX., page 1, 1823.) Indeed, in showing that there is a passage at Glen Glaster at the level of the intermediate shelf, he makes the difficulty to my mind greater. (522/7. See Letter 521, note.) When I think of the gradual manner in which the two upper terraces die out at Glen Collarig and at the mouth of Glen Roy, the smooth rounded form of the hills there, and the lower shelf retaining its usual width where the immense barrier stood, I can deliberately repeat "that more convincing proofs of the non-existence of the imaginary Loch Roy could scarcely have been invented with full play given to the imagination," etc.: but I do not adhere to this remark with such strength when applied to the glacier-lake theory. Oddly, I was never at all staggered by this theory until now, having read Mr. Milne's argument against it. I now can hardly doubt that a great glacier did emerge from Loch Treig, and this by the ice itself (not moraine) might have blocked up the three outlets from Glen Roy. I do not, however, yet believe in the glacier theory, for reasons which I will presently give.

There are three chief hostile considerations in Mr. Milne's paper. First, the Glen [shelf?], not coinciding in height with the upper one [outlet?], from observations giving 12 feet, 15 feet, 29 feet, 23 feet: if the latter are correct the terrace must be quite independent, and the case is hostile; but Mr. Milne shows that there is one in Glen Roy 14 feet below the upper one, and a second one again (which I observed) beneath this, and then we come to the proper second shelf. Hence there is no great improbability in an independent shelf having been found in Glen Gluoy.

This leads me to Mr. Milne's second class of facts (obvious to every one), namely the non-extension of the three shelves beyond Glen Roy; but I abide by what I have written on that point, and repeat that if in Glen Roy, where circumstances have been so favourable for the preservation or formation of the terraces, a terrace could be formed quite plain for three-quarters of a mile with hardly a trace elsewhere, we cannot argue, from the non-existence of shelves, that water did not stand at the same levels in other valleys. Feeling absolutely convinced that there was no barrier of detritus at the mouth of Glen Roy, and pretty well convinced that there was none of ice, the manner in which the terraces die out when entering Glen Spean, which must have been a tideway, shows on what small circumstances the formation of these shelves depended. With respect to the non-existence of shelves in other parts of Scotland, Mr. Milne shows that many others do exist, and their heights above the sea have not yet been carefully measured, nor have even those of Glen Roy, which I suspect are all 100 feet too high. Moreover, according to Bravais (522/8. "On the Lines of Ancient Level of the Sea in Finmark." By A. Bravais, Member of the Scientific Commission of the North. "Quart. Journ. Geol. Soc." Volume I., page 534, 1845 (a translation).), we must not feel sure that either the absolute height or the intermediate heights between the terraces would be at all the same at distant points. In levelling the terraces in Lochaber, all, I believe, have been taken in Glen Roy, nearly N. and S. There should be levels taken at right angles to this line and to the Great Glen of Scotland or chief line of elevation.

Thirdly, the nature of the outlets from the supposed lakes. This appears to me the best and newest part of the paper. If Sir James Clark would like to attend to any particular points, direct his attention to this: especially to follow Glen Glaster from Glen Roy to L. Laggan. Mr. Milne describes this as an old and great river-course with a fall of 212 feet. He states that the rocks are smooth on upper face and rough on lower, but he does not mention whether this character prevails throughout the whole 212 vertical feet—a most important consideration; nor does he state whether these rocks are polished or scratched, as might have happened even to a considerable depth beneath the water (Mem. great icebergs in narrow fiords of T. del Fuego (522/9. In the "Voyage of the 'Beagle'" a description is given of the falling of great masses of ice from the icy cliffs of the glaciers with a crash that "reverberates like the broadside of a man-of-war, through the lonely channels" which intersect the coast-line of Tierra del Fuego. Loc. cit., page 246.)) by the action of icebergs, for that icebergs transported boulders on to terraces, I have no doubt. Mr. Milne's description of the outlets of his lake sound to me more like tidal channels, nor does he give any arguments how such are to be distinguished from old river-courses. I cannot believe in the body of fresh water which must, on the lake theory, have flowed out of them. At the Pass of Mukkul he states that the outlet is 70 feet wide and the rocky bottom 21 feet below the level of the shelf, and that the gorge expands to the eastwards into a broad channel of several hundred yards in width, divided in the middle by what has formerly been a rocky islet, against which the waters of this large river had chafed in issuing from the pass. We know the size of the river at the present day which would flow out through this pass, and it seems to me (and in the other given cases) to be as inadequate; the whole seems to me far easier explained by a tideway than by a formerly more humid climate.

With respect to the very remarkable coincidence between the shelves and the outlets (rendered more remarkable by Mr. Milne's discovery of the outlet to the intermediate shelf at Glen Glaster (522/10. See Letter 521, note.)), Mr. Milne gives only half of my explanation; he alludes to (and disputes) the smoothing and silting-up action, which I still believe in. I state: If we consider what must take place during the gradual rise of a group of islands, we shall have the currents endeavouring to cut down and deepen some shallow parts in the channels as they are successively brought near the surface, but tending from the opposition of tides to choke up others with littoral deposits. During a long interval of rest, from the length of time allowed to the above processes, the tendency would often prove effective, both in forming, by accumulation of matter, isthmuses, and in keeping open channels. Hence such isthmuses and channels just kept open would oftener be formed at the level which the waters held at the interval of rest, than at any other (page 65). I look at the Pass of Mukkul (21 feet deep, Milne) as a channel just kept open, and the head of Glen Roy (where there is a great bay silted up) and of Kilfinnin (at both which places there are level-topped mounds of detritus above the level of the terraces) as instances of channels filled up at the stationary levels. I have long thought it a probable conjecture that when a rising surface becomes stationary it becomes so, not at once, but by the movements first becoming very slow; this would greatly favour the cutting down many gaps in the mountains to the level of the stationary periods.

GLACIER THEORY.

If a glacialist admitted that the sea, before the formation of the terraces, covered the country (which would account for land-straits above level of terraces), and that the land gradually emerged, and if he supposed his lakes were banked by ice alone, he would make out, in my opinion, the best case against the marine origin of the terraces. From the scattered boulders and till, you and I must look at it as certain that the sea did cover the whole country, and I abide quite by my arguments from the buttresses, etc., that water of some kind receded slowly from the valleys of Lochaber (I presume Mr. Milne admits this). Now, I do not believe in the ice-lake theory, from the following weak but accumulating reasons: because, 1st, the receding water must have been that of a lake in Glen Spean, and of the sea in the other valleys of Scotland, where I saw similar buttresses at many levels; 2nd, because the outlets of the supposed lakes as already stated seem, from Mr. Milne's statements, too much worn and too large; 3rd, when the lake stood at the three-quarters of a mile shelf the water from it must have flowed over ice itself for a very long time, and kept at the same exact level: certainly this shelf required a long time for its formation; 4th, I cannot believe a glacier would have blocked up the short, very wide valley of Kilfinnin, the Great Glen of Scotland also being very low there; 5th, the country at some places where Mr. Milne has described terraces is not mountainous, and the number of ice-lakes appears to me very improbable; 6th, I do not believe any lake could scoop the rocks so much as they are at the entrance to Loch Treig or cut them off at the head of Upper Glen Roy; 7th, the very gradual dying away of the terraces at the mouth of Glen Roy does not look like a barrier of any kind; 8th, I should have expected great terminal moraines across the mouth of Glen Roy, Glen Collarig, and Glaster, at least at the bottom of the valleys. Such, I feel pretty sure, do not exist.

I fear I must have wearied you with the length of this letter, which I have not had time to arrange properly. I could argue at great length against Mr. Milne's theory of barriers of detritus, though I could help him in one way—viz., by the soundings which occur at the entrances of the deepest fiords in T. del Fuego. I do not think he gives the smallest satisfaction with respect to the successive and comparatively sudden breakage of his many lakes.

Well, I enjoyed my trip to Glen Roy very much, but it was time thrown away. I heartily wish you would go there; it should be some one who knows glacier and iceberg action, and sea action well. I wish the Queen would command you. I had intended being in London to-morrow, but one of my principal plagues will, I believe, stop me; if I do I will assuredly call on you. I have not yet read Mr. Milne on Elevation (522/11. "On a Remarkable Oscillation of the Sea, observed at Various Places on the Coasts of Great Britain in the First Week of July, 1843." "Trans. R. Soc. Edinb." Volume XV., page 609, 1844.), so will keep his paper for a day or two.

P.S.—As you cannot want this letter, I wish you would return it to me, as it will serve as a memorandum for me. Possibly I shall write to Mr. Chambers, though I do not know whether he will care about what I think on the subject. This letter is too long and ill-written for Sir J. Clark.

LETTER 523. TO LADY LYELL. [October 4th, 1847.]

I enclose a letter from Chambers, which has pleased me very much (which please return), but I cannot feel quite so sure as he does. If the Lochaber and Tweed roads really turn out exactly on a level, the sea theory is proved. What a magnificent proof of equality of elevation, which does not surprise me much; but I fear I see cause of doubt, for as far as I remember there are numerous terraces, near Galashiels, with small intervals of height, so that the coincidence of height might be cooked. Chambers does not seem aware of one very striking coincidence, viz., that I made by careful measurement my Kilfinnin terrace 1202 feet above sea, and now Glen Gluoy is 1203 feet, according to the recent more careful measurements. Even Agassiz (523/1. "On the Glacial Theory," by Louis Agassiz, "Edinb. New Phil. Journ." Volume XXXIII., page 217, 1842. The parallel terraces are dealt with by Agassiz, pages 236 et seq.) would be puzzled to block up Glen Gluoy and Kilfinnin by the same glacier, and then, moreover, the lake would have two outlets. With respect to the middle terrace of Glen Roy—seen by Chambers in the Spean (figured by Agassiz, and seen by myself but not noticed, as I thought it might have been a sheep track)—it might yet have been formed on the ice-lake theory by two independent glaciers going across the Spean, but it is very improbable that two such immense ones should not have been united into one. Chambers, unfortunately, does not seem to have visited the head of the Spey, and I have written to propose joining funds and sending some young surveyor there. If my letter is published in the "Scotsman," how Buckland (523/2. Professor Buckland may be described as joint author, with Agassiz, of the Glacier theory.), as I have foreseen, will crow over me: he will tell me he always knew that I was wrong, but now I shall have rather ridiculously to say, "but I am all right again."

I have been a good deal interested in Miller (523/3. Hugh Miller's "First Impressions of England and its People," London, 1847.), but I find it not quick reading, and Emma has hardly begun it yet. I rather wish the scenic descriptions were shorter, and that there was a little less geologic eloquence.

Lyell's picture now hangs over my chimneypiece, and uncommonly glad I am to have it, and thank you for it.

LETTER 524. TO C. LYELL. Down, September 6th [1861].

I think the enclosed is worth your reading. I am smashed to atoms about Glen Roy. My paper was one long gigantic blunder from beginning to end. Eheu! Eheu! (524/1. See "Life and Letters," I., pages 68, 69, also pages 290, 291.)

LETTER 525. TO C. LYELL. Down, September 22nd [1861].

I have read Mr. Jamieson's last letter, like the former ones, with very great interest. (525/1. Mr. Jamieson visited Glen Roy in August 1861 and in July 1862. His paper "On the Parallel Roads of Glen Roy, and their Place in the History of the Glacial Period," was published in the "Quarterly Journal of the Geological Society" in 1863, Volume XIX., page 235. His latest contribution to this subject was published in the "Quarterly Journal," Volume XLVIII., page 5, 1892.) What a problem you have in hand! It beats manufacturing new species all to bits. It would be a great personal consolation to me if Mr. J. can admit the sloping Spean terrace to be marine, and would remove one of my greatest difficulties—viz. the vast contrast of Welsh and Lochaber valleys. But then, as far as I dare trust my observations, the sloping terraces ran far up the Roy valley, so as to reach not far below the lower shelf. If the sloping fringes are marine and the shelves lacustrine, all I can say is that nature has laid a shameful trap to catch an unwary wretch. I suppose that I have underrated the power of lakes in producing pebbles; this, I think, ought to be well looked to. I was much struck in Wales on carefully comparing the glacial scratches under a lake (formed by a moraine and which must have existed since the Glacial epoch) and above water, and I could perceive NO difference. I believe I saw many such beds of good pebbles on level of lower shelf, which at the time I could not believe could have been found on shores of lake. The land-straits and little cliffs above them, to which I referred, were quite above the highest shelf; they may be of much more ancient date than the shelves. Some terrace-like fringes at head of the Spey strike me as very suspicious. Mr. J. refers to absence of pebbles at considerable heights: he must remember that every storm, every deer, every hare which runs tends to roll pebbles down hill, and not one ever goes up again. I may mention that I particularly alluded to this on S. Ventanao (525/2. "Geolog. Obs. on South America," page 79. "On the flanks of the mountains, at a height of 300 or 400 feet above the plain, there were a few small patches of conglomerate and breccia, firmly cemented by ferruginous matter to the abrupt and battered face of the quartz—traces being thus exhibited of ancient sea-action.") in N. Patagonia, a great isolated rugged quartz-mountain 3,000 feet high, and I could find not one pebble except on one very small spot, where a ferruginous spring had firmly cemented a few to the face of mountain. If the Lochaber lakes had been formed by an ice-period posterior to the (marine?) sloping terraces in the Spean, would not Mr. J. have noticed gigantic moraines across the valley opposite the opening of Lake Treig? I go so far as not to like making the elevation of the land in Wales and Scotland considerably different with respect to the ice-period, and still more do I dislike it with respect to E. and W. Scotland. But I may be prejudiced by having been so long accustomed to the plains of Patagonia. But the equality of level (barring denudation) of even the Secondary formations in Britain, after so many ups and downs, always impresses my mind, that, except when the crust-cracks and mountains are formed, movements of elevation and subsidence are generally very equable.

But it is folly my scribbling thus. You have a grand problem, and heaven help you and Mr. Jamieson through it. It is out of my line nowadays, and above and beyond me.

LETTER 526. TO J.D. HOOKER. Down, September 28th [1861].

It is, I believe, true that Glen Roy shelves (I remember your Indian letter) were formed by glacial lakes. I persuaded Mr. Jamieson, an excellent observer, to go and observe them; and this is his result. There are some great difficulties to be explained, but I presume this will ultimately be proved the truth...

LETTER 527. TO C. LYELL. Down, October 1st [1861].

Thank you for the most interesting correspondence. What a wonderful case that of Bedford. (527/1. No doubt this refers to the discovery of flint implements in the Valley of the Ouse, near Bedford, in 1861 (see Lyell's "Antiquity of Man," pages 163 et seq., 1863.) I thought the problem sufficiently perplexing before, but now it beats anything I ever heard of. Far from being able to give any hypothesis for any part, I cannot get the facts into my mind. What a capital observer and reasoner Mr. Jamieson is. The only way that I can reconcile my memory of Lochaber with the state of the Welsh valleys is by imagining a great barrier, formed by a terminal moraine, at the mouth of the Spean, which the river had to cut slowly through, as it drained the lowest lake after the Glacial period. This would, I can suppose, account for the sloping terraces along the Spean. I further presume that sharp transverse moraines would not be formed under the waters of the lake, where the glacier came out of L. Treig and abutted against the opposite side of the valley. A nice mess I made of Glen Roy! I have no spare copy of my Welsh paper (527/2. "Notes on the Effects produced by the Ancient Glaciers of Caernarvonshire, and on the Boulders transported by Floating Ice," "Edinb. New Phil. Journ." Volume XXXIII., page 352, 1842.); it would do you no good to lend it. I suppose I thought that there must have been floating ice on Moel Tryfan. I think it cannot be disputed that the last event in N. Wales was land-glaciers. I could not decide where the action of land-glaciers ceased and marine glacial action commenced at the mouths of the valleys.

What a wonderful case the Bedford case. Does not the N. American view of warmer or more equable period, after great Glacial period, become much more probable in Europe?

But I am very poorly to-day, and very stupid, and hate everybody and everything. One lives only to make blunders. I am going to write a little book for Murray on Orchids (527/3. "On the Various Contrivances by which Orchids are Fertilised by Insects," London, 1862.), and to-day I hate them worse than everything. So farewell, in a sweet frame of mind.

LETTER 528. TO C. LYELL. Down, October 14th [1861].

I return Jamieson's capital letter. I have no comments, except to say that he has removed all my difficulties, and that now and for evermore I give up and abominate Glen Roy and all its belongings. It certainly is a splendid case, and wonderful monument of the old Ice-period. You ought to give a woodcut. How many have blundered over those horrid shelves!

That was a capital paper by Jamieson in the last "Geol. Journal." (528/1. "On the Drift and Rolled Gravel of the North of Scotland," "Quart. Journ. Geol. Soc." Volume XVI., page 347, 1860.) I was never before fully convinced of the land glacialisation of Scotland before, though Chambers tried hard to convince me.

I must say I differ rather about Ramsay's paper; perhaps he pushes it too far. (528/2. "On the Glacial Origin of Certain Lakes, etc." "Quart. Journ. Geol. Soc." Volume XVIII., page 185. See Letter 503.) It struck me the more from remembering some years ago marvelling what could be the meaning of such a multitude of lakes in Friesland and other northern districts. Ramsay wrote to me, and I suggested that he ought to compare mountainous tropical regions with northern regions. I could not remember many lakes in any mountainous tropical country. When Tyndall talks of every valley in Switzerland being formed by glaciers, he seems to forget there are valleys in the tropics; and it is monstrous, in my opinion, the accounting for the Glacial period in the Alps by greater height of mountains, and their lessened height, if I understand, by glacial erosion. "Ne sutor ultra crepidam," I think, applies in this case to him. I am hard at work on "Variation under Domestication." (528/3. Published 1868.)

P.S.—I am rather overwhelmed with letters at present, and it has just occurred to me that perhaps you will forward my note to Mr. Jamieson; as it will show that I entirely yield. I do believe every word in my Glen Roy paper is false.

LETTER 529. TO C. LYELL. Down, October 20th [1861].

Notwithstanding the orchids, I have been very glad to see Jamieson's letter; no doubt, as he says, certainty will soon be reached.

With respect to the minor points of Glen Roy, I cannot feel easy with a mere barrier of ice; there is so much sloping, stratified detritus in the valleys. I remember that you somewhere have stated that a running stream soon cuts deeply into a glacier. I have been hunting up all old references and pamphlets, etc., on shelves in Scotland, and will send them off to Mr. J., as they possibly may be of use to him if he continues the subject. The Eildon Hills ought to be specially examined. Amongst MS. I came across a very old letter from me to you, in which I say: "If a glacialist admitted that the sea, before the formation of the shelves, covered the country (which would account for the land-straits above the level of the shelves), and if he admitted that the land gradually emerged, and if he supposed that his lakes were banked up by ice alone, he would make out, in my opinion, the best case against the marine origin of the shelves." (529/1. See Letter 522.) This seems very much what you and Mr. J. have come to.

The whole glacial theory is really a magnificent subject.

LETTER 530. TO C. LYELL. Down, April 1st [1862].

I am not quite sure that I understand your difficulty, so I must give what seems to me the explanation of the glacial lake theory at some little length. You know that there is a rocky outlet at the level of all the shelves. Please look at my map. (530/1. The map accompanying Mr. Darwin's paper in the "Phil. Trans. R. Soc." 1839.) I suppose whole valley of Glen Spean filled with ice; then water would escape from an outlet at Loch Spey, and the highest shelf would be first formed. Secondly, ice began to retreat, and water will flow for short time over its surface; but as soon as it retreated from behind the hill marked Craig Dhu, where the outlet on level of second shelf was discovered by Milne (530/2. See note, Letter 521.), the water would flow from it and the second shelf would be formed. This supposes that a vast barrier of ice still remains under Ben Nevis, along all the lower part of the Spean. Lastly, I suppose the ice disappeared everywhere along L. Loggan, L. Treig, and Glen Spean, except close under Ben Nevis, where it still formed a barrier, the water flowing out at level of lowest shelf by the Pass of Mukkul at head of L. Loggan. This seems to me to account for everything. It presupposes that the shelves were formed towards the close of the Glacial period. I come up to London to read on Thursday a short paper at the Linnean Society. Shall I call on Friday morning at 9.30 and sit half an hour with you? Pray have no scruple to send a line to Queen Anne Street to say "No" if it will take anything out of you. If I do not hear, I will come.

LETTER 531. TO J. PRESTWICH. Down, January 3rd, 1880.

You are perfectly right. (531/1. Prof. Prestwich's paper on Glen Roy was published in the "Phil. Trans. R. Soc." for 1879, page 663.) As soon as I read Mr. Jamieson's article on the parallel roads, I gave up the ghost with more sighs and groans than on almost any other occasion in my life.



2.IX.IV. CORAL REEFS, FOSSIL AND RECENT, 1841-1881.

LETTER 532. TO C. LYELL. Shrewsbury, Tuesday, 6th [July, 1841].

Your letter was forwarded me here. I was the more glad to receive it, as I never dreamed of your being able to find time to write, now that you must be so very busy; and I had nothing to tell you about myself, else I should have written. I am pleased to hear how extensive and successful a trip you appear to have made. You must have worked hard, and got your Silurian subject well in your head, to have profited by so short an excursion. How I should have enjoyed to have followed you about the coral-limestone. I once was close to Wenlock (532/1. The Wenlock limestone (Silurian) contains an abundance of corals. "The rock seems indeed to have been formed in part by massive sheets and bunches of coral" (Geikie, "Text-book of Geology," 1882, page 678.), something such as you describe, and made a rough drawing, I remember, of the masses of coral. But the degree in which the whole mass was regularly stratified, and the quantity of mud, made me think that the reefs could never have been like those in the Pacific, but that they most resembled those on the east coast of Africa, which seem (from charts and descriptions) to confine extensive flats and mangrove swamps with mud, or like some imperfect ones about the West India Islands, within the reefs of which there are large swamps. All the reefs I have myself seen could be associated only with nearly pure calcareous rocks. I have received a description of a reef lying some way off the coast near Belize (terra firma), where a thick bed of mud seems to have invaded and covered a coral reef, leaving but very few islets yet free from it. But I can give you no precise information without my notes (even if then) on these heads...

Bermuda differs much from any other island I am acquainted with. At first sight of a chart it resembles an atoll; but it differs from this structure essentially in the gently shelving bottom of the sea all round to some distance; in the absence of the defined circular reefs, and, as a consequence, of the defined central pool or lagoon; and lastly, in the height of the land. Bermuda seems to be an irregular, circular, flat bank, encrusted with knolls and reefs of coral, with land formed on one side. This land seems once to have been more extensive, as on some parts of the bank farthest removed from the island there are little pinnacles of rock of the same nature as that of the high larger islands. I cannot pretend to form any precise notion how the foundation of so anomalous an island has been produced, but its whole history must be very different from that of the atolls of the Indian and Pacific oceans—though, as I have said, at first glance of the charts there is a considerable resemblance.

LETTER 533. TO C. LYELL. [1842.]

Considering the probability of subsidence in the middle of the great oceans being very slow; considering in how many spaces, both large ones and small ones (within areas favourable to the growth of corals), reefs are absent, which shows that their presence is determined by peculiar conditions; considering the possible chance of subsidence being more rapid than the upward growth of the reefs; considering that reefs not very rarely perish (as I cannot doubt) on part, or round the whole, of some encircled islands and atolls: considering these things, I admit as very improbable that the polypifers should continue living on and above the same reef during a subsidence of very many thousand feet; and therefore that they should form masses of enormous thickness, say at most above 5,000 feet. (533/1. "...As we know that some inorganic causes are highly injurious to the growth of coral, it cannot be expected that during the round of change to which earth, air, and water are exposed, the reef-building polypifers should keep alive for perpetuity in any one place; and still less can this be expected during the progressive subsidences...to which by our theory these reefs and islands have been subjected, and are liable" ("The Structure and Distribution of Coral Reefs," page 107: London, 1842).) This admission, I believe, is in no way fatal to the theory, though it is so to certain few passages in my book.

In the areas where the large groups of atolls stand, and where likewise a few scattered atolls stand between such groups, I always imagined that there must have been great tracts of land, and that on such large tracts there must have been mountains of immense altitudes. But not, it appears to me, that one is only justified in supposing that groups of islands stood there. There are (as I believe) many considerable islands and groups of islands (Galapagos Islands, Great Britain, Falkland Islands, Marianas, and, I believe, Viti groups), and likewise the majority of single scattered islands, all of which a subsidence between 4,000 and 5,000 feet would entirely submerge or would leave only one or two summits above water, and hence they would produce either groups of nothing but atolls, or of atolls with one or two encircled islands. I am far from wishing to say that the islands of the great oceans have not subsided, or may not continue to subside, any number of feet, but if the average duration (from all causes of destruction) of reefs on the same spot is limited, then after this limit has elapsed the reefs would perish, and if the subsidence continued they would be carried down; and if the group consisted only of atolls, only open ocean would be left; if it consisted partly or wholly of encircled islands, these would be left naked and reefless, but should the area again become favourable for growth of reefs, new barrier-reefs might be formed round them. As an illustration of this notion of a certain average duration of reefs on the same spot, compared with the average rate of subsidence, we may take the case of Tahiti, an island of 7,000 feet high. Now here the present barrier-reefs would never be continued upwards into an atoll, although, should the subsidence continue at a period long after the death of the present reefs, new ones might be formed high up round its sides and ultimately over it. The case resolves itself into: what is the ordinary height of groups of islands, of the size of existing groups of atolls (excepting as many of the highest islands as there now ordinarily occur encircling barrier-reefs in the existing groups of atolls)? and likewise what is the height of the single scattered islands standing between such groups of islands? Subsidence sufficient to bury all these islands (with the exception of as many of the highest as there are encircled islands in the present groups of atolls) my theory absolutely requires, but no more. To say what amount of subsidence would be required for this end, one ought to know the height of all existing islands, both single ones and those in groups, on the face of the globe—and, indeed, of half a dozen worlds like ours. The reefs may be of much greater [thickness] than that just sufficient on an average to bury groups of islands; and the probability of the thickness being greater seems to resolve itself into the average rate of subsidence allowing upward growth, and average duration of reefs on the same spot. Who will say what this rate and what this duration is? but till both are known, we cannot, I think, tell whether we ought to look for upraised coral formations (putting on one side denudation) above the unknown limit, say between 3,000 and 5,000 feet, necessary to submerge groups of common islands. How wretchedly involved do these speculations become.

LETTER 534. TO E. VON MOJSISOVICS. Down, January 29th, 1879.

I thank you cordially for the continuation of your fine work on the Tyrolese Dolomites (534/1. "Dolomitriffe Sudtirols und Venetiens": Wien, 1878.), with its striking engravings and the maps, which are quite wonderful from the amount of labour which they exhibit, and its extreme difficulty. I well remember more than forty years ago examining a section of Silurian limestone containing many corals, and thinking to myself that it would be for ever impossible to discover whether the ancient corals had formed atolls or barrier reefs; so you may well believe that your work will interest me greatly as soon as I can find time to read it. I am much obliged for your photograph, and from its appearance rejoice to see that much more good work may be expected from you.

I enclose my own photograph, in case you should like to possess a copy.

LETTER 535. TO A. AGASSIZ.

(535/1. Part of this letter is published in "Life and Letters," III., pages 183, 184.)

Down, May 5th, 1881.

It was very good of you to write to me from Tortugas, as I always feel much interested in hearing what you are about, and in reading your many discoveries. It is a surprising fact that the peninsula of Florida should have remained at the same level for the immense period requisite for the accumulation of so vast a pile of debris. (535/2. Alexander Agassiz published a paper on "The Tortugas and Florida Reefs" in the "Mem. Amer. Acad. Arts and Sci." XI., page 107, 1885. See also his "Three Cruises of the 'Blake,'" Volume I., 1888.)

You will have seen Mr. Murray's views on the formation of atolls and barrier reefs. (535/3. "On the Structure and Origin of Coral Reefs and Islands," "Proc. R. Soc. Edin." Volume X., page 505, 1880. Prof. Bonney has given a summary of Sir John Murray's views in Appendix II. of the third edition of Darwin's "Coral Reefs," 1889.) Before publishing my book, I thought long over the same view, but only as far as ordinary marine organisms are concerned, for at that time little was known of the multitude of minute oceanic organisms. I rejected this view, as from the few dredgings made in the 'Beagle' in the S. Temperate regions, I concluded that shells, the smaller corals, etc., etc., decayed and were dissolved when not protected by the deposition of sediment; and sediment could not accumulate in the open ocean. Certainly shells, etc., were in several cases completely rotten, and crumbled into mud between my fingers; but you will know well whether this is in any degree common. I have expressly said that a bank at the proper depth would give rise to an atoll, which could not be distinguished from one formed during subsidence. I can, however, hardly believe, in the former presence of as many banks (there having been no subsidence) as there are atolls in the great oceans, within a reasonable depth, on which minute oceanic organisms could have accumulated to the thickness of many hundred feet. I think that it has been shown that the oscillations from great waves extend down to a considerable depth, and if so the oscillating water would tend to lift up (according to an old doctrine propounded by Playfair) minute particles lying at the bottom, and allow them to be slowly drifted away from the submarine bank by the slightest current. Lastly, I cannot understand Mr. Murray, who admits that small calcareous organisms are dissolved by the carbonic acid in the water at great depths, and that coral reefs, etc., etc., are likewise dissolved near the surface, but that this does not occur at intermediate depths, where he believes that the minute oceanic calcareous organisms accumulate until the bank reaches within the reef-building depth. But I suppose that I must have misunderstood him.

Pray forgive me for troubling you at such a length, but it has occurred to me that you might be disposed to give, after your wide experience, your judgment. If I am wrong, the sooner I am knocked on the head and annihilated so much the better. It still seems to me a marvellous thing that there should not have been much and long-continued subsidence in the beds of the great oceans. I wish that some doubly rich millionaire would take it into his head to have borings made in some of the Pacific and Indian atolls, and bring home cores for slicing from a depth of 500 or 600 feet. (535/4. In 1891 a Committee of the British Association was formed for the investigation of an atoll by means of boring. The Royal Society took up the scheme, and an expedition was sent to Funafuti, with Prof. Sollas as leader. Another expedition left Sydney in 1897 under the direction of Prof. Edgeworth David, and a deeper boring was made. The Reports will be published in the "Philosophical Transactions," and will contain Prof. David's notes upon the boring and the island generally, Dr. Hinde's description of the microscopic structure of the cores and other examinations of them, carried on at the Royal College of Science, South Kensington. The boring reached a depth of 1114 feet; the cores were found to consist entirely of reef-forming corals in situ and in fragments, with foraminifera and calcareous algae; at the bottom there were no traces of any other kind of rock. It seems, therefore, to us, that unless it can be proved that reef-building corals began their work at depths of at least 180 fathoms—far below that hitherto assigned—the result gives the strongest support to Darwin's theory of subsidence; the test which Darwin wished to be applied has been fairly tried, and the verdict is entirely in his favour.)

2.IX.V. CLEAVAGE AND FOLIATION, 1846-1856.

LETTER 536. TO D. SHARPE.

(536/1. The following eight letters were written at a time when the subjects of cleavage and foliation were already occupying the minds of several geologists, including Sharpe, Sorby, Rogers, Haughton, Phillips, and Tyndall. The paper by Sharpe referred to was published in 1847 ("Quart. Journ. Geol. Soc." Volume III.), and his ideas were amplified in two later papers (ibid., Volume V., 1849, and "Phil. Trans." 1852). Darwin's own views, based on his observations during the "Beagle" expedition, had appeared in Chapter XIII. of "South America" (1846) and in the "Manual of Scientific Enquiry" (1849), but are perhaps nowhere so clearly expressed as in this correspondence. His most important contribution to the question was in establishing the fact that foliation is often a part of the same process as cleavage, and is in nowise necessarily connected with planes of stratification. Herein he was opposed to Lyell and the other geologists of the day, but time has made good his position. The postscript to Letter 542 is especially interesting. We are indebted to Mr. Harker, of St. John's College, for this note.)

Down, August 23rd [1846?].

I must just send one line to thank you for your note, and to say how heartily glad I am that you stick to the cleavage and foliation question. Nothing will ever convince me that it is not a noble subject of investigation, which will lead some day to great views. I think it quite extraordinary how little the subject seems to interest British geologists. You will, I think live to see the importance of your paper recognised. (536/2. Probably the paper "On Slaty Cleavage." "Quart. Journ. Geol. Soc." Volume III., page 74, 1847.) I had always thought that Studer was one of the few geologists who had taken a correct and enlarged view on the subject.

LETTER 537. TO D. SHARPE. Down [November 1846].

I have been much interested with your letter, and am delighted that you have thought my few remarks worth attention. My observations on foliation are more deserving confidence than those on cleavage; for during my first year in clay-slate countries, I was quite unaware of there being any marked difference between cleavage and stratification; I well remember my astonishment at coming to the conclusion that they were totally different actions, and my delight at subsequently reading Sedgwick's views (537/1. "Remarks on the Structure of Large Mineral Masses, and especially on the Chemical Changes produced in the Aggregation of Stratified Rocks during different periods after their Deposition." "Trans. Geol. Soc." Volume III., page 461, 1835. In the section of this paper dealing with cleavage (page 469) Prof. Sedgwick lays stress on the fact that "the cleavage is in no instance parallel to the true beds."); hence at that time I was only just getting out of a mist with respect to cleavage-laminae dipping inwards on mountain flanks. I have certainly often observed it—so often that I thought myself justified in propounding it as usual. I might perhaps have been in some degree prejudiced by Von Buch's remarks, for which in those days I had a somewhat greater deference than I now have. The Mount at M. Video (page 146 of my book (537/2. "Geol. Obs. S. America." page 146. The mount is described as consisting of hornblendic slate; "the laminae of the slate on the north and south side near the summit dip inwards.")) is certainly an instance of the cleavage-laminae of a hornblendic schist dipping inwards on both sides, for I examined this hill carefully with compass in hand and notebook. I entirely admit, however, that a conclusion drawn from striking a rough balance in one's mind is worth nothing compared with the evidence drawn from one continuous line of section. I read Studer's paper carefully, and drew the conclusion stated from it; but I may very likely be in an error. I only state that I have frequently seen cleavage-laminae dipping inwards on mountain sides; that I cannot give up, but I daresay a general extension of the rule (as might justly be inferred from the manner of my statement) would be quite erroneous. Von Buch's statement is in his "Travels in Norway" (537/3. "Travels through Norway and Lapland during the years 1806-8": London, 1813.); I have unfortunately lost the reference, and it is a high crime, I confess, even to refer to an opinion without a precise reference. If you never read these travels they might be worth skimming, chiefly as an amusement; and if you like and will send me a line by the general post of Monday or Tuesday, I will either send it up with Hopkins on Wednesday, or bring it myself to the Geological Society. I am very glad you are going to read Hopkins (537/4. "Researches in Physical Geology," by W. Hopkins. "Phil. Trans. R. Soc." 1839, page 381; ibid, 1842, page 43, etc.); his views appear to me eminently worth well comprehending; false views and language appear to me to be almost universally held by geologists on the formation of fissures, dikes and mountain chains. If you would have the patience, I should be glad if you would read in my "Volcanic Islands" from page 65, or even pages 54 to 72—viz., on the lamination of volcanic rocks; I may add that I sent the series of specimens there described to Professor Forbes of Edinburgh, and he thought they bore out my views.

There is a short extract from Prof. Rogers (537/5. "On Cleavage of Slate-strata." "Edinburgh New Phil. Journ." Volume XLI., page 422, 1846.) in the last "Edinburgh New Phil. Journal," well worth your attention, on the cleavage of the Appalachian chain, and which seems far more uniform in the direction of dip than in any case which I have met with; the Rogers doctrine of the ridge being thrown up by great waves I believe is monstrous; but the manner in which the ridges have been thrown over (as if by a lateral force acting on one side on a higher level than on the other) is very curious, and he now states that the cleavage is parallel to the axis-planes of these thrown-over ridges. Your case of the limestone beds to my mind is the greatest difficulty on any mechanical doctrine; though I did not expect ever to find actual displacement, as seems to be proved by your shell evidence. I am extremely glad you have taken up this most interesting subject in such a philosophical spirit; I have no doubt you will do much in it; Sedgwick let a fine opportunity slip away. I hope you will get out another section like that in your letter; these are the real things wanted.

LETTER 538. TO D. SHARPE. Down, [January 1847].

I am very much obliged for the MS., which I return. I do not quite understand from your note whether you have struck out all on this point in your paper: I much hope not; if you have, allow me to urge on you to append a note, briefly stating the facts, and that you omitted them in your paper from the observations not being finished.

I am strongly tempted to suspect that the cleavage planes will be proved by you to have slided a little over each other, and to have been planes of incipient tearing, to use Forbes' expression in ice; it will in that case be beautifully analogical with my laminated lavas, and these in composition are intimately connected with the metamorphic schists.

The beds without cleavage between those with cleavage do not weigh quite so heavily on me as on you. You remember, of course, Sedgwick's facts of limestone, and mine of sandstone, breaking in the line of cleavage, transversely to the planes of deposition. If you look at cleavage as I do, as the result of chemical action or crystalline forces, super-induced in certain places by their mechanical state of tension, then it is not surprising that some rocks should yield more or less readily to the crystalline forces.

I think I shall write to Prof. Forbes (538/1. Prof. D. Forbes.) of Edinburgh, with whom I corresponded on my laminated volcanic rocks, to call his early attention to your paper.

LETTER 539. TO D. SHARPE. Down, October 16th [1851].

I am very much obliged to you for telling me the results of your foliaceous tour, and I am glad you are drawing up an account for the Royal Society. (539/1. "On the Arrangement of the Foliation and Cleavage of the Rocks of the North of Scotland." "Phil. Trans. R. Soc." 1852, page 445, with Plates XXIII. and XXIV.) I hope you will have a good illustration or map of the waving line of junction of the slate and schist with uniformly directed cleavage and foliation. It strikes me as crucial. I remember longing for an opportunity to observe this point. All that I say is that when slate and the metamorphic schists occur in the same neighbourhood, the cleavage and foliation are uniform: of this I have seen many cases, but I have never observed slate overlying mica-slate. I have, however, observed many cases of glossy clay-slate included within mica-schist and gneiss. All your other observations on the order, etc., seem very interesting. From conversations with Lyell, etc., I recommend you to describe in a little detail the nature of the metamorphic schists; especially whether there are quasi-substrata of different varieties of mica-slate or gneiss, etc.; and whether you traced such quasi beds into the cleavage slate. I have not the least doubt of such facts occurring, from what I have seen (and described at M. Video) of portions of fine chloritic schists being entangled in the midst of a gneiss district. Have you had any opportunity of tracing a bed of marble? This, I think, from reasons given at page 166 of my "S. America," would be very interesting. (539/2. "I have never had an opportunity of tracing, for any distance, along the line both of strike and dip, the so-called beds in the metamorphic schists, but I strongly suspect that they would not be found to extend, with the same character, very far in the line either of their dip or strike. Hence I am led to believe that most of the so-called beds are of the nature of complex folia, and have not been separately deposited. Of course, this view cannot be extended to THICK masses included in the metamorphic series, which are of totally different composition from the adjoining schists, and which are far-extended, as is sometimes the case with quartz and marble; these must generally be of the nature of true strata" ("Geological Observations," page 166).) A suspicion has sometimes occurred to me (I remember more especially when tracing the clay-slate at the Cape of Good Hope turning into true gneiss) that possibly all the metamorphic schists necessarily once existed as clay-slate, and that the foliation did not arise or take its direction in the metamorphic schists, but resulted simply from the pre-existing cleavage. The so-called beds in the metamorphic schists, so unlike common cleavage laminae, seems the best, or at least one argument against such a suspicion. Yet I think it is a point deserving your notice. Have you thought at all over Rogers' Law, as he reiterates it, of cleavage being parallel to his axes-planes of elevation?

If you know beforehand, will you tell me when your paper is read, for the chance of my being able to attend? I very seldom leave home, as I find perfect quietude suits my health best.

(PLATE: CHARLES DARWIN, Cir. 1854. Maull & Fox, photo. Walker & Cockerell, ph. sc.)

LETTER 540. TO C. LYELL. Down, January 10th, 1855.

I received your letter yesterday, but was unable to answer it, as I had to go out at once on business of importance. I am very glad that you are reconsidering the subject of foliation; I have just read over what I have written on the subject, and admire it very much, and abide by it all. (540/1. "Geological Observations on South America," Chapter VI., 1846.) You will not readily believe how closely I attended to the subject, and in how many and wide areas I verified my remarks. I see I have put pretty strongly the mechanical view of origin; but I might even then, but was afraid, have put my belief stronger. Unfortunately I have not D. Sharpe's paper here to look over, but I think his chief points [are] (1) the foliation forming great symmetrical curves, and (2) the proof from effects of form of shell (540/2. This refers to the distortion of shells in cleaved rocks.) of the mechanical action in cleaved rocks. The great curvature would be, I think, a grand discovery of Sharpe's, but I confess there is some want of minuteness in the statement of Sharpe which makes me wish to see his facts confirmed. That the foliation and cleavage are parts of curves I am quite prepared, from what I have seen, to believe; but the simplicity and grandeur of Sharpe's curves rather stagger me. I feel deeply convinced that when (and I and Sharpe have seen several most striking and obvious examples) great neighbouring or alternating regions of true metamorphic schists and clay-slate have their foliations and cleavage parallel, there is no way of escaping the conclusion, that the layers of pure quartz, feldspar, mica, chlorite, etc., etc., are due not to original deposition, but to segregation; and this is I consider the point which I have established. This is very odd, but I suspect that great metamorphic areas are generally derived from the metamorphosis of clay-slate, and not from alternating layers of ordinary sedimentary matter. I think you have exactly put the chief difficulty in its strongest light—viz. what would be the result of pure or nearly pure layers of very different mineralogical composition being metamorphosed? I believe even such might be converted into an ordinary varying mass of metamorphic schists. I am certain of the correctness of my account of patches of chlorite schists enclosed in other schist, and of enormous quartzose veins of segregation being absolutely continuous and contemporaneous with the folia of quartz, and such, I think, might be the result of the folia crossing a true stratum of quartz. I think my description of the wonderful and beautiful laminated volcanic rocks at Ascension would be worth your looking at. (540/3. "Geological Observations on S. America," pages 166, 167; also "Geological Observations on the Volcanic Islands," Chapter III. (Ascension), 1844.)

LETTER 541. TO C. LYELL. Down, January 14th [1855].

We were yesterday and the day before house-hunting, so I could not answer your letter. I hope we have succeeded in a house, after infinite trouble, but am not sure, in York Place, Baker Street.

I do not doubt that I either read or heard from Sharpe about the Grampians; otherwise from my own old suspicion I should not have inserted the passage in the manual.

The laminated rocks at Ascension are described at page 54. (541/1. "Volcanic Islands," page 54. "Singular laminated beds alternating with and passing into obsidian.")

As far as my experience has gone, I should speak only of clay-slate being associated with mica-slate, for when near the metamorphic schists I have found stratification so gone that I should not dare to speak of them as overlying them. With respect to the difficulty of beds of quartz and marble, this has for years startled me, and I have longed (since I have felt its force) to have some opportunity of testing this point, for without you are sure that the beds of quartz dip, as well as strike, parallel to the foliation, the case is only just like true strata of sandstone included in clay-slate and striking parallel to the cleavage of the clay-slate, but of course with different dip (excepting in those rare cases when cleavage and stratification are parallel). Having this difficulty before my eyes, I was much struck with MacCulloch's statement (page 166 of my "S. America") about marble in the metamorphic series not forming true strata.

(FIGURE 6.)

Your expectation of the metamorphic schists sending veins into neighbouring rocks is quite new to me; but I much doubt whether you have any right to assume fluidity from almost any amount of molecular change. I have seen in fine volcanic sandstone clear evidence of all the calcareous matter travelling at least 4 1/2 feet in distance to concretions on either hand (page 113 of "S. America") (541/2. "Some of these concretions (flattened spherical concretions composed of hard calcareous sandstone, containing a few shells, occurring in a bed of sandstone) were 4 feet in diameter, and in a horizontal line 9 feet apart, showing that the calcareous matter must have been drawn to the centres of attraction from a distance of four feet and a half on both sides" ("Geological Observations on S. America," page 113).) I have not examined carefully, from not soon enough seeing all the difficulties; but I believe, from what I have seen, that the folia in the metamorphic schists (I do not here refer to the so-called beds) are not of great length, but thin out, and are succeeded by others; and the notion I have of the molecular movements is shown in the indistinct sketch herewith sent [Figure 6]. The quartz of the strata might here move into the position of the folia without much more movement of molecules than in the formation of concretions. I further suspect in such cases as this, when there is a great original abundance of quartz, that great branching contemporaneous veins of segregation (as sometimes called) of quartz would be formed. I can only thus understand the relation which exists between the distorted foliation (not appearing due to injection) and the presence of such great veins.

I believe some gneiss, as the gneiss-granite of Humboldt, has been as fluid as granite, but I do not believe that this is usually the case, from the frequent alternations of glossy clay and chlorite slates, which we cannot suppose to have been melted.

I am far from wishing to doubt that true sedimentary strata have been converted into metamorphic schists: all I can say is, that in the three or four great regions, where I could ascertain the relations of the metamorphic schists to the neighbouring cleaved rocks, it was impossible (as it appeared to me) to admit that the foliation was due to aqueous deposition. Now that you intend agitating the subject, it will soon be cleared up.

LETTER 542. TO C. LYELL. 27, York Place, Baker Street [1855].

I have received your letter from Down, and I have been studying my S. American book.

I ought to have stated [it] more clearly, but undoubtedly in W. Tierra del Fuego, where clay-slate passes by alternation into a grand district of mica-schist, and in the Chonos Islands and La Plata, where glossy slates occur within the metamorphic schists, the foliation is parallel to the cleavage—i.e. parallel in strike and dip; but here comes, I am sorry and ashamed to say, a great hiatus in my reasoning. I have assumed that the cleavage in these neighbouring or intercalated beds was (as in more distant parts) distinct from stratification. If you choose to say that here the cleavage was or might be parallel to true bedding, I cannot gainsay it, but can only appeal to apparent similarity to the great areas of uniformity of strike and high angle—all certainly unlike, as far as my experience goes, to true stratification. I have long known how easily I overlook flaws in my own reasoning, and this is a flagrant case. I have been amused to find, for I had quite forgotten, how distinctly I give a suspicion (top of page 155) to the idea, before Sharpe, of cleavage (not foliation) being due to the laminae forming parts of great curves. (542/1. "I suspect that the varying and opposite dips (of the cleavage-planes) may possibly be accounted for by the cleavage-laminae...being parts of large abrupt curves, with their summits cut off and worn down" ("Geological Observations on S. America," page 155). I well remember the fine section at the end of a region where the cleavage (certainly cleavage) had been most uniform in strike and most variable in dip.

I made with really great care (and in MS. in detail) observations on a case which I believe is new, and bears on your view of metamorphosis (page 149, at bottom). (Ibid., page 149.)

(FIGURE 7.)

In a clay-slate porphyry region, where certain thin sedimentary layers of tuff had by self-attraction shortened themselves into little curling pieces, and then again into crystals of feldspar of large size, and which consequently were all strictly parallel, the series was perfect and beautiful. Apparently also the rounded grains of quartz had in other parts aggregated themselves into crystalline nodules of quartz. [Figure 7.]

I have not been able to get Sorby yet, but shall not probably have anything to write on it. I am delighted you have taken up the subject, even if I am utterly floored.

P.S.—I have a presentiment it will turn out that when clay-slate has been metamorphosed the foliation in the resultant schist has been due generally (if not, as I think, always) to the cleavage, and this to a certain degree will "save my bacon" (please look at my saving clause, page 167) (542/2. "As in some cases it appears that where a fissile rock has been exposed to partial metamorphic action (for instance, from the irruption of granite) the foliation has supervened on the already existing cleavage-planes; so, perhaps in some instances, the foliation of a rock may have been determined by the original planes of deposition or of oblique current laminae. I have, however, myself never seen such a case, and I must maintain that in most extensive metamorphic areas the foliation is the extreme result of that process, of which cleavage is the first effect" (Ibid., page 167).), but [with] other rocks than that, stratification has been the ruling agent, the strike, but not the dip, being in such cases parallel to any adjoining clay-slate. If this be so, pre-existing planes of division, we must suppose on my view of the cause, determining the lines of crystallisation and segregation, and not planes of division produced for the first time during the act of crystallisation, as in volcanic rocks. If this should ever be proved, I shall not look back with utter shame at my work.

LETTER 543. TO J.D. HOOKER. Down, September 8th [1856].

I got your letter of the 1st this morning, and a real good man you have been to write. Of all the things I ever heard, Mrs. Hooker's pedestrian feats beat them. My brother is quite right in his comparison of "as strong as a woman," as a type of strength. Your letter, after what you have seen in the Himalayas, etc., gives me a wonderful idea of the beauty of the Alps. How I wish I was one-half or one-quarter as strong as Mrs. Hooker: but that is a vain hope. You must have had some very interesting work with glaciers, etc. When will the glacier structure and motion ever be settled! When reading Tyndall's paper it seemed to me that movement in the particles must come into play in his own doctrine of pressure; for he expressly states that if there be pressure on all sides, there is no lamination. I suppose I cannot have understood him, for I should have inferred from this that there must have been movement parallel to planes of pressure. (543/1. Prof. Tyndall had published papers "On Glaciers," and "On some Physical Properties of Ice" ("Proc. R. Inst." 1854-58) before the date of this letter. In 1856 he wrote a paper entitled "Observations on 'The Theory of the Origin of Slaty Cleavage,' by H.C. Sorby." "Phil. Mag." XII., 1856, page 129.)

Sorby read a paper to the Brit. Assoc., and he comes to the conclusion that gneiss, etc., may be metamorphosed cleavage or strata; and I think he admits much chemical segregation along the planes of division. (543/2. "On the Microscopical Structure of Mica-schist:" "Brit. Ass. Rep." 1856, page 78. See also Letters 540-542.) I quite subscribe to this view, and should have been sorry to have been so utterly wrong, as I should have been if foliation was identical with stratification.

I have been nowhere and seen no one, and really have no news of any kind to tell you. I have been working away as usual, floating plants in salt water inter alia, and confound them, they all sink pretty soon, but at very different rates. Working hard at pigeons, etc., etc. By the way, I have been astonished at the differences in the skeletons of domestic rabbits. I showed some of the points to Waterhouse, and asked him whether he could pretend that they were not as great as between species, and he answered, "They are a great deal more." How very odd that no zoologist should ever have thought it worth while to look to the real structure of varieties...

2.IX.VI. AGE OF THE WORLD, 1868-1877.

LETTER 544. TO J. CROLL. Down, September 19th, 1868.

I hope that you will allow me to thank you for sending me your papers in the "Phil. Magazine." (544/1. Croll published several papers in the "Philosophical Magazine" between 1864 and the date of this letter (1868).) I have never, I think, in my life been so deeply interested by any geological discussion. I now first begin to see what a million means, and I feel quite ashamed of myself at the silly way in which I have spoken of millions of years. I was formerly a great believer in the power of the sea in denudation, and this was perhaps natural, as most of my geological work was done near sea-coasts and on islands. But it is a consolation to me to reflect that as soon as I read Mr. Whitaker's paper (544/2. "On Subaerial Denudation," and "On Cliffs and Escarpments of the Chalk and Lower Tertiary Beds," "Geol. Mag." Volume IV., page 447, 1867.) on the escarpments of England, and Ramsay (544/3. "Quart. Journ. Geol. Soc." Volume XVIII., page 185, 1862. "On the Glacial Origin of certain Lakes in Switzerland, the Black Forest, Great Britain, Sweden, North America, and elsewhere.') and Jukes' papers (544/4. "Quart. Journ. Geol. Soc." Volume XVIII., page 378, 1862. "On the Mode of Formation of some River-Valleys in the South of Ireland."), I gave up in my own mind the case; but I never fully realised the truth until reading your papers just received. How often I have speculated in vain on the origin of the valleys in the chalk platform round this place, but now all is clear. I thank you cordially for having cleared so much mist from before my eyes.

LETTER 545. TO T. MELLARD READE. Down, February 9th, 1877.

I am much obliged for your kind note, and the present of your essay. I have read it with great interest, and the results are certainly most surprising. (545/1. Presidential Address delivered by T. Mellard Reade before the Liverpool Geological Society ("Proc. Liverpool Geol. Soc." Volume III., pt. iii., page 211, 1877). See also "Examination of a Calculation of the Age of the Earth, based upon the hypothesis of the Permanence of Oceans and Continents." "Geol. Mag." Volume X., page 309, 1883.) It appears to me almost monstrous that Professor Tait should say that the duration of the world has not exceeded ten million years. (545/2. "Lecture on Some Recent Advances in Physical Science," by P.G. Tait, London, 1876.) The argument which seems the most weighty in favour of the belief that no great number of millions of years have elapsed since the world was inhabited by living creatures is the rate at which the temperature of the crust increases, and I wish that I could see this argument answered.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14     Next Part
Home - Random Browse