p-books.com
Logic - Deductive and Inductive
by Carveth Read
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

Sec. 4. To regard the Effect of certain antecedents in a narrow selective way, is another common mistake. In the full scientific conception of an Effect it is the sum of the unconditional consequences of a given state and process of things: the consequences immediately flowing from that situation without further conditions. Always to take account of all the consequences of any cause would no doubt be impracticable; still the practical, as well as the scientific interest, often requires that we should enlarge our views of them; and there is no commoner error in private effort or in legislation than to aim at some obvious good, whilst overlooking other consequences of our action, the evil of which may far outweigh that good. An important consequence of eating is to satisfy hunger, and this is the ordinary motive to eat; but it is a poor account of the physiological consequences. An important consequence of firing a gun is the propulsion of the bullet or shell; but there are many other consequences in the whole effect, and one of them is the heating of the barrel, which, accumulating with rapid firing, may at last put the gun out of action. The tides have consequences to shipping and in the wear and tear of the coast that draw every one's attention; but we are told that they also retard the rotation of the earth, and at last may cause it to present always the same face to the sun, and, therefore, to be uninhabitable. Such concurrent consequences of any cause may be called its Co-effects: the Effect being the sum of them.

The neglect to take account of the whole effect (that is, of all the co-effects) in any case of causation is perhaps the reason why many philosophers have maintained the doctrine of a "Plurality of Causes": meaning not that more than one condition is operative in the antecedent of every event (which is true), but that the same event may be due at different times to different antecedents, that in fact there may be vicarious causes. If, however, we take any effect as a whole, this does not seem to be true. A fire may certainly be lit in many ways: with a match or a flint and steel, or by rubbing sticks together, or by a flash of lightning: have we not here a plurality of causes? Not if we take account of the whole effect; for then we shall find it modified in each case according to the difference of the cause. In one case there will be a burnt match, in another a warm flint, in the last a changed state of electrical tension. And similar differences are found in cases of death under different conditions, as stabbing, hanging, cholera; or of shipwreck from explosion, scuttling, tempest. Hence a Coroner's Court expects to find, by examining a corpse, the precise cause of death. In short, if we knew the facts minutely enough, it would be found that there is only one Cause (sum of conditions) for each Effect (sum of co-effects), and that the order of events is as uniform backwards as forwards.

Still, as we are far from knowing events minutely, it is necessary in practical affairs, and even in the more complex and unmanageable scientific investigations, especially those that deal with human life, to acknowledge a possible plurality of causes for any effect. Indeed, forgetfulness of this leads to many rash generalisations; as that 'revolutions always begin in hunger'; or that 'myths are a disease of language.' Then there is great waste of ingenuity in reconciling such propositions with the recalcitrant facts. A scientific method recognises that there may be other causes of effects thus vaguely conceived, and then proceeds to distinguish in each class of effects the peculiarities due to different causes.

Sec. 5. The understanding of the complex nature of Causes and Effects helps us to overcome some other difficulties that perplex the use of these words. We have seen that the true cause is an immediate antecedent; but if the cause is confounded with one of its constituent conditions, it may seem to have long preceded the event which is regarded as its effect. Thus, if one man's death is ascribed to another's desire of revenge, this desire may have been entertained for years before the assassination occurred: similarly, if a shipwreck is ascribed to a sunken reef, the rock was waiting for ages before the ship sailed that way. But, of course, neither the desire of revenge nor the sunken rock was 'the sum of the conditions' on which the one or the other event depended: as soon as this is complete the effect appears.

We have also seen the true effect of any state and process of things is the immediate consequence; but if the effect be confounded with one of its constituent factors, it may seem to long outlive the cessation of the cause. Thus, in nearly every process of human industry and art, one factor of the effect—a road, a house, a tool, a picture—may, and generally does, remain long after the work has ceased: but such a result is not the whole effect of the operations that produce it. The other factors may be, and some always are, evanescent. In most of such works some heat is produced by hammering or friction, and the labourers are fatigued; but these consequences soon pass off. Hence the effect as a whole only momentarily survives the cause. Consider a pendulum which, having been once set agoing, swings to and fro in an arc, under the joint control of the shaft, gravitation and its own inertia: at every moment its speed and direction change; and each change may be considered as an effect, of which the antecedent change was one condition. In such a case as this, which, though a very simple, is a perfectly fair example of all causation, the duration of either cause or effect is quite insensible: so that, as Dr. Venn says, an Effect, rigorously conceived, is only "the initial tendency" of its Cause.

Sec. 6. Mill contrasted two forms under which causation appears to us: that is to say, the conditions constituting a cause may be modified, or 'intermixed' in the effect, in two ways, which are typified respectively by Mechanical and Chemical action. In mechanical causation, which is found in Astronomy and all branches of Physics, the effects are all reducible to modes of energy, and are therefore commensurable with their causes. They are either directly commensurable, as in the cases treated of in the consideration of the mechanical powers; or, if different forms of energy enter into cause and effect, such as mechanical energy, electrical energy, heat, these different forms are severally reducible to units, between which equivalents have been established. Hence Mill calls this the "homogeneous intermixture of effects," because the antecedents and consequents are fundamentally of the same kind.

In chemical causation, on the other hand, cause and effect (at least, as they present themselves to us) differ in almost every way: in the act of combination the properties of elements (except weight) disappear, and are superseded by others in the compound. If, for example, mercury (a heavy, silvery liquid) be heated in contact with oxygen (a colourless gas), oxide of mercury is formed (red precipitate, which is a powder). This compound presents very different phenomena from those of its elements; and hence Mill called this class of cases "the heteropathic intermixture of effects." Still, in chemical action, the effect is not (in Nature) heterogeneous with the cause: for the weight of a compound is equal to the sum of the weights of the elements that are merged in it; and an equivalence has been ascertained between the energy of chemical combination and the heat, light, etc., produced in the act of combination.

The heteropathic intermixture of effects is also found in organic processes (which, indeed, are partly chemical): as when a man eats bread and milk, and by digestion and assimilation converts them into nerve, muscle and bone. Such phenomena may make us wonder that people should ever have believed that 'effects resemble their causes,' or that 'like produces like.' A dim recognition of the equivalence of cause and effect in respect of matter and motion may have aided the belief; and the resemblance of offspring to parents may have helped: but it is probably a residuum of magical rites; in which to whistle may be regarded as a means of raising the wind, because the wind whistles; and rain-wizards may make a victim shed tears that the clouds also may weep.

Sec. 7. Another consideration arises out of the complex character of causes and effects. When a cause consists of two or more conditions or forces, we may consider what effect any one of them would have if it operated alone, that is to say, its Tendency. This is best illustrated by the Parallelogram of Forces: if two forces acting upon a point, but not in the same direction, be represented by straight lines drawn in the direction of the forces, and in length proportional to their magnitudes, these lines, meeting in an angle, represent severally the tendencies of the forces; whilst if the parallelogram be completed on these lines, the diagonal drawn from the point in which they meet represents their Resultant or effect.

Again, considering the tendency of any force if it operated alone, we may say that, when combined with another force (not in the same direction) in any resultant, its tendency is counteracted: either partially, when the direction of the resultant is different; or wholly when, the other force being equal and opposite, the resultant is equilibrium. If the two forces be in the same direction, they are merely added together. Counteraction is only one mode of combination; in no case is any force destroyed.

Sometimes the separate tendencies of combined forces can only be theoretically distinguished: as when the motion of a projectile is analysed into a tendency to travel in the straight line of its discharge, and a tendency to fall straight to the ground. But sometimes a tendency can be isolated: as when,—after dropping a feather in some place sheltered from the wind, and watching it drift to and fro, as the air, offering unequal resistances to its uneven surface, counteracts its weight with varying success, until it slowly settles upon the ground,—we take it up and drop it again in a vacuum, when it falls like lead. Here we have the tendency of a certain cause (namely, the relation between the feather and the earth) free from counteraction: and this is called the Elimination of the counteracting circumstances. In this case indeed there is physical elimination; whereas, in the case of a projectile, when we say that its actual motion is resolvable (neglecting the resistance of the air) into two tendencies, one in the line of discharge, the other earthwards, there is only theoretical elimination of either tendency, considered as counteracting the other; and this is more specifically called the Resolution or Analysis of the total effect into its component conditions. Now, Elimination and Resolution may be said to be the essential process of Induction in the widest sense of the term, as including the combination of Induction with Deduction.

The several conditions constituting any cause, then, by aiding or counteracting one another's tendencies, jointly determine the total effect. Hence, viewed in relation one to another, they may be said to stand in Reciprocity or mutual influence. This relation at any moment is itself one of co-existence, though it is conceived with reference to a possible effect. As Kant says, all substances, as perceived in space at the same time, are in reciprocal activity. And what is true of the world of things at any moment (as connected, say, by gravity), is true of any selected group of circumstances which we regard as the particular cause of any event to come. The use of the concept of reciprocity, then, lies in the analysis of a cause: we must not think of reciprocity as obtaining in the succession of cause and effect, as if the effect could turn back upon its cause; for as the effect arises its cause disappears, and is irrecoverable by Nature or Magic. There are many cases of rhythmic change and of moving equilibria, in which one movement or process produces another, and this produces something closely resembling the former, and so on in long series; as with the swing of a pendulum or the orbit of a planet: but these are series of cause and effect, not of reciprocity.



CHAPTER XV

INDUCTIVE METHOD

Sec. 1. It is necessary to describe briefly the process of investigating laws of causation, not with the notion of teaching any one the Art of Discovery, which each man pursues for himself according to his natural gifts and his experience in the methods of his own science, but merely to cast some light upon the contents of the next few chapters. Logic is here treated as a process of proof; proof supposes that some general proposition or hypothesis has been suggested as requiring proof; and the search for such propositions may spring from scientific curiosity or from practical interests.

We may, as Bain observes (Logic: B. iii. ch. 5), desire to detect a process of causation either (1) amidst circumstances that have no influence upon the process but only obscure it; as when, being pleased with a certain scent in a garden, we wish to know from what flower it rises; or, being attracted by the sound of some instrument in an orchestra, we desire to know which it is: or (2) amidst circumstances that alter the effect from what it would have been by the sole operation of some cause; as when the air deflects a falling feather; or in some more complex case, such as a rise or fall of prices that may extend over many years.

To begin with, we must form definite ideas as to what the phenomenon is that we are about to investigate; and in a case of any complexity this is best done by writing a detailed description of it: e.g., to investigate the cause of a recent fall of prices, we must describe exactly the course of the phenomenon, dating the period over which it extends, recording the successive fluctuations of prices, with their maxima and minima, and noting the classes of goods or securities that were more or less affected, etc.

Then the first step of elimination (as Bain further observes) is "to analyse the situation mentally," in the light of analogies suggested by our experience or previous knowledge. Dew, for example, is moisture formed upon the surface of bodies from no apparent source. But two possible sources are easily suggested by common experience: is it deposited from the air, like the moisture upon a mirror when we breathe upon it; or does it exude from the bodies themselves, like gum or turpentine? Or, again, as to a fall of prices, a little experience in business, or knowledge of Economics, readily suggests two possible explanations: either cheaper production in making goods or carrying them; or a scarcity of that in which the purchasing power of the chief commercial nations is directly expressed, namely, gold.

Having thus analysed the situation and considered the possibility of one, two, three, or more possible causes, we fix upon one of them for further investigation; that is to say, we frame an hypothesis that this is the cause. When an effect is given to find its cause, an inquirer nearly always begins his investigations by thus framing an hypothesis as to the cause.

The next step is to try to verify this Hypothesis. This we may sometimes do by varying the circumstances of the phenomenon, according to the Canons of direct Inductive Proof to be discussed in the next chapter; that is to say, by observing or experimenting in such a way as to get rid of or eliminate the obscuring or disturbing conditions. Thus, to find out which flower in a garden gives a certain scent, it is usually enough to rely on observation, going up to the likely flowers one after the other and smelling them: at close quarters, the greater relative intensity of the scent is sufficiently decisive. Or we may resort to a sort of experiment, plucking a likely flower, as to which we frame the hypothesis (this is the cause), and carrying it to some place where the air is free from conflicting odours. Should observation or experiment disprove our first hypothesis we try a second; and so on until we succeed, or exhaust the known possibilities.

But if the phenomenon is so complex and extensive as a continuous fall of prices, direct observation or experiment is a useless or impossible method; and we must then resort to Deduction; that is, to indirect Induction. If, for example, we take the hypothesis that the fall is due to a scarcity of gold, we must show that there is a scarcity; what effect such a scarcity may be expected to have upon prices from the acknowledged laws of prices, and from the analogy of other cases of an expanded or restricted currency; that this expectation agrees with the statistics of recent commerce: and finally, that the alternative hypothesis that the fall is due to cheaper production is not true; either because there has not been a sufficient cheapening of general production; or because, if there has been, the results to be rationally expected from it are not such as to agree with the statistics of recent commerce. (Ch. xviii.)

But now suppose that, a phenomenon having been suggested for explanation, we are unable at the time to think of any cause—to frame any hypothesis about it; we must then wait for the phenomenon to occur again, and, once more observing its course and accompaniments and trying to recall its antecedents, do our best to conceive an hypothesis, and proceed as before. Thus, in the first great epidemic of influenza, some doctors traced it to a deluge in China, others to a volcanic eruption near Java; some thought it a mild form of Asiatic plague, and others caught a specific microbe. As the disease often recurred, there were fresh opportunities of framing hypotheses; and the microbe was identified.

Again, the investigation may take a different form: given a supposed Cause to find its Effect; e.g., a new chemical element, to find what compounds it forms with other elements; or, the spots on the sun—have they any influence upon our weather?

Here, if the given cause be under control, as a new element may be, it is possible to try experiments with it according to the Canons of Inductive Proof. The inquirer may form some hypothesis or expectation as to the effects, to guide his observation of them, but will be careful not to hold his expectation so confidently as to falsify his observation of what actually happens.

But if the cause be, like the sun-spots, not under control, the inquirer will watch on all sides what events follow their appearance and development; he must watch for consequences of the new cause he is studying in many different circumstances, that his observations may satisfy the canons of proof. But he will also resort for guidance to deduction; arguing from the nature of the cause, if anything is known of its nature, what consequences may be expected, and comparing the results of this deduction with any consequent which he suspects to be connected with the cause. And if the results of deduction and observation agree, he will still consider whether the facts observed may not be due to some other cause.

A cause, however, may be under control and yet be too dangerous to experiment with; such as the effects of a poison—though, if too dangerous to experiment with upon man, it may be tried upon animals; or such as a proposed change of the constitution by legislation; or even some minor Act of Parliament, for altering the Poor Law, or regulating the hours of labour. Here the first step must be deductive. We must ask what consequences are to be expected from the nature of the change (comparing it with similar changes), and from the laws of the special circumstances in which it is to operate? And sometimes we may partially verify our deduction by trying experiments upon a small scale or in a mild form. There are conflicting deductions as to the probable effect of giving Home Rule to Ireland; and experiments have been made in more or less similar cases, as in the Colonies and in some foreign countries. As to the proposal to make eight hours the legal limit of a day's labour in all trades, we have all tried to forecast the consequences of this; and by way of verification we might begin with nine hours; or we might induce some other country to try the experiment first. Still, no verification by experiments on a small scale, or in a mild form, or in somewhat similar yet different circumstances, can be considered logically conclusive. What proofs are conclusive we shall see in the following chapters.

Sec. 2. To begin with the conditions of direct Induction.—An Induction is an universal real proposition, based on observation, in reliance on the uniformity of Nature: when well ascertained, it is called a Law. Thus, that all life depends on the presence of oxygen is (1) an universal proposition; (2) a real one, since the 'presence of oxygen' is not connoted by 'life'; (3) it is based on observation; (4) it relies on the uniformity of Nature, since all cases of life have not been examined.

Such a proposition is here called 'an induction,' when it is inductively proved; that is, proved by facts, not merely deduced from more general premises (except the premise of Nature's uniformity): and by the 'process of induction' is meant the method of inductive proof. The phrase 'process of induction' is often used in another sense, namely for the inference or judgment by which such propositions are arrived at. But it is better to call this 'the process of hypothesis,' and to regard it as a preliminary to the process of induction (that is, proof), as furnishing the hypothesis which, if it can stand the proper tests, becomes an induction or law.

Sec. 3. Inductive proofs are usually classed as Perfect and Imperfect. They are said to be perfect when all the instances within the scope of the given proposition have been severally examined, and the proposition has been found true in each case. But we have seen (chap. xiii. Sec. 2) that the instances included in universal propositions concerning Causes and Kinds cannot be exhaustively examined: we do not know all planets, all heat, all liquids, all life, etc.; and we never can, since a man's life is never long enough. It is only where the conditions of time, place, etc., are arbitrarily limited that examination can be exhaustive. Perfect induction might show (say) that every member of the present House of Commons has two Christian names. Such an argument is sometimes exhibited as a Syllogism in Darapti with a Minor premise in U., which legitimates a Conclusion in A., thus:

A.B. to Z have two Christian names; A.B. to Z are all the present M.P.'s: .'. All the present M.P.'s have two Christian names.

But in such an investigation there is no need of logical method to find the major premise; it is mere counting: and to carry out the syllogism is a hollow formality. Accordingly, our definition of Induction excludes the kind unfortunately called Perfect, by including in the notion of Induction a reliance on the uniformity of Nature; for this would be superfluous if every instance in question had been severally examined. Imperfect Induction, then, is what we have to deal with: the method of showing the credibility of an universal real proposition by an examination of some of the instances it includes, generally a small fraction of them.

Sec. 4. Imperfect Induction is either Methodical or Immethodical. Now, Method is procedure upon a principle; and if the method is to be precise and conclusive, the principle must be clear and definite.

There is a Geometrical Method, because the axioms of Geometry are clear and definite, and by their means, with the aid of definitions, laws are deduced of the equality of lines and angles and other relations of position and magnitude in space. The process of proof is purely Deductive (the axioms and definitions being granted). Diagrams are used not as facts for observation, but merely to fix our attention in following the general argument; so that it matters little how badly they are drawn, as long as their divergence from the conditions of the proposition to be proved is not distracting. Even the appeal to "superposition" to prove the equality of magnitudes (as in Euclid I. 4), is not an appeal to observation, but to our judgment of what is implied in the foregoing conditions. Hence no inference is required from the special case to all similar ones; for they are all proved at once.

There is also, as we have seen, a method of Deductive Logic resting on the Principles of Consistency and the Dictum de omni et nullo. And we shall find that there is a method of Inductive Logic, resting on the principle of Causation.

But there are a good many general propositions, more or less trustworthy within a certain range of conditions, which cannot be methodically proved for want of a precise principle by which they may be tested; and they, therefore, depend upon Immethodical Induction, that is, upon the examination of as many instances as can be found, relying for the rest upon the undefinable principle of the Uniformity of Nature, since we are not able to connect them with any of its definite modes enumerated in chap. xiii. Sec. 7. To this subject we shall return in chap. xix., after treating of Methodical Induction, or the means of determining that a relation of events is of the nature of cause and effect, because the relation can be shown to have the marks of causation, or some of them.

Sec. 5. Observations and Experiments are the material grounds of Induction. An experiment is an observation made under prepared, and therefore known, conditions; and, when obtainable, it is much to be preferred. Simple observation shows that the burning of the fire depends, for one thing, on the supply of air; but it cannot show us that it depends on oxygen. To prove this we must make experiments as by obtaining pure oxygen and pure nitrogen (which, mixed in the proportion of one to four, form the air) in separate vessels, and then plunging a burning taper into the oxygen—when it will blaze fiercely; and again plunging it into the nitrogen—when it will be extinguished. This shows that the greater part of the air does nothing to keep the fire alight, except by diminishing its intensity and so making it last longer. Experiments are more perfect the more carefully they are prepared, and the more completely the conditions are known under which the given phenomenon is to be observed. Therefore, they become possible only when some knowledge has already been gained by observation; for else the preparation which they require could not be made.

Observation, then, was the first material ground of Induction, and in some sciences it remains the chief ground. The heavenly bodies, the winds and tides, the strata of the earth, and the movements of history, are beyond our power to experiment with. Experiments upon the living body or mind are indeed resorted to when practicable, even in the case of man, as now in all departments of Psychology; but, if of a grave nature, they are usually thought unjustifiable. And in political affairs experiments are hindered by the reflection, that those whose interests are affected must bear the consequences and may resent them. Hence, it is in physical and chemical inquiries and in the physiology of plants and animals (under certain conditions) that direct experiment is most constantly practised.

Where direct experiment is possible, however, it has many advantages over unaided observation. If one experiment does not enable us to observe the phenomenon satisfactorily, we may try again and again; whereas the mere observer, who wishes to study the bright spots on Mars, or a commercial crisis, must wait for a favourable opportunity. Again, in making experiments we can vary the conditions of the phenomenon, so as to observe its different behaviour in each case; whereas he who depends solely on observation must trust the bounty of nature to supply him with a suitable diversity of instances. It is a particular advantage of experiment that a phenomenon may sometimes be 'isolated,' that is, removed from the influence of all agents except that whose operation we desire to observe, or except those whose operation is already known: whereas a simple observer, who has no control over the conditions of the subject he studies, can never be quite sure that its movements or changes are not due to causes that have never been conspicuous enough to draw his attention. Finally, experiment enables us to observe coolly and circumspectly and to be precise as to what happens, the time of its occurrence, the order of successive events, their duration, intensity and extent.

But whether we proceed by observation or experiment, the utmost attainable exactness of measurements and calculation is requisite; and these presuppose some Unit, in multiples or divisions of which the result may be expressed. This unit cannot be an abstract number as in Arithmetic, but must be one something—an hour, or a yard, or a pound—according to the nature of the phenomenon to be measured. But what is an hour, or a yard or a pound? There must in each case be some constant Standard of reference to give assurance that the unit may always have the same value. "The English pound is defined by a certain lump of platinum preserved at Westminster." The unit may be identical with the standard or some division or multiple of it; and, in measuring the same kind of phenomena, different units may be used for different purposes as long as each bears a constant relation to the standard. Thus, taking the rotation of the earth as the standard of Time, the convenient unit for long periods is a year (which is a multiple); for shorter periods, a day (which is identical); for shorter still, an hour (which is a division), or a second, or a thousandth of a second. (See Jevons' Principles of Science, ch. 14.)

Sec. 6. The principle of Causation is the formal ground of Induction; and the Inductive Canons derived from it are means of testing the formal sufficiency of observations to justify the statement of a Law. If we can observe the process of cause and effect in nature we may generalise our observation into a law, because that process is invariable. First, then, can we observe the course of cause and effect? Our power to do so is limited by the refinement of our senses aided by instruments, such as lenses, thermometers, balances, etc. If the causal process is essentially molecular change, as in the maintenance of combustion by oxygen, we cannot directly observe it; if the process is partly cerebral or mental, as in social movements which depend on feeling and opinion, it can but remotely be inferred; even if the process is a collision of moving masses (billiard-balls), we cannot really observe what happens, the elastic yielding, and recoil and the internal changes that result; though no doubt photography will throw some light upon this, as it has done upon the galloping of horses and the impact of projectiles. Direct observation is limited to the effect which any change in a phenomenon (or its index) produces upon our senses; and what we believe to be the causal process is a matter of inference and calculation. The meagre and abstract outlines of Inductive Logic are apt to foster the notion, that the evidence on which Science rests is simple; but it is amazingly intricate and cumulative.

Secondly, so far as we can observe the process of nature, how shall we judge whether a true causal instance, a relation of cause and effect, is before us? By looking for the five marks of Causation. Thus, in the experiment above described, showing that oxygen supports combustion, we find—(1) that the taper which only glowed before being plunged into the oxygen, bursts into flame when there—Sequence; (2) that this begins to happen at once without perceptible interval—Immediacy; (3) that no other agent or disturbing circumstance was present (the preparation of the experiment having excluded any such thing)—Unconditionalness; (4) the experiment may be repeated as often as we like with the same result—Invariableness. Invariableness, indeed, I do not regard as formally necessary to be shown, supposing the other marks to be clear; for it can only be proved within our experience; and the very object of Induction is to find grounds of belief beyond actual experience. However, for material assurance, to guard against his own liability to error, the inquirer will of course repeat his experiments.

The above four are the qualitative marks of Causation: the fifth and quantitative mark is the Equality of Cause and Effect; and this, in the above example, the Chemist determines by showing that, instead of the oxygen and wax that have disappeared during combustion, an equivalent weight of carbon dioxide, water, etc., has been formed.

Here, then, we have all the marks of causation; but in the ordinary judgments of life, in history, politics, criticism, business, we must not expect such clear and direct proofs; in subsequent chapters it will appear how different kinds of evidence are combined in different departments of investigation.

Sec. 7. The Inductive Canons, to be explained in the next chapter, describe the character of observations and experiments that justify us in drawing conclusions about causation; and, as we have mentioned, they are derived from the principle of Causation itself. According to that principle, cause and effect are invariably, immediately and unconditionally antecedent and consequent, and are equal as to the matter and energy embodied.

Invariability can only be observed, in any of the methods of induction, by collecting more and more instances, or repeating experiments. Of course it can never be exhaustively observed.

Immediacy, too, in direct Induction, is a matter for observation the most exact that is possible.

Succession, or the relation itself of antecedent and consequent, must either be directly observed (or some index of it); or else ascertained by showing that energy gained by one phenomenon has been lost by another, for this implies succession.

But to determine the unconditionality of causation, or the indispensability of some condition, is the great object of the methods, and for that purpose the meaning of unconditionality may be further explicated by the following rules for the determination of a Cause.

A. QUALITATIVE DETERMINATION

I.—For Positive Instances.

To prove a supposed Cause: (a) Any agent whose introduction among certain conditions (without further change) is followed by a given phenomenon; or, (b) whose removal is followed by the cessation (or modification) of that phenomenon, is (so far) the cause or an indispensable condition of it.

To find the Effect: (c) Any event that follows a given phenomenon, when there is no further change; or, (d) that does not occur when the conditions of a former occurrence are exactly the same, except for the absence of that phenomenon, is the effect of it (or is dependent on it).

II.—For Negative Instances.

To exclude a supposed Cause: (a) Any agent that can be introduced among certain conditions without being followed by a given phenomenon (or that is found without that phenomenon); or (b) that can be removed when that phenomenon is present without impairing it (or that is absent when that phenomenon is present), is not the cause, or does not complete the cause, of that phenomenon in those circumstances.

To exclude a supposed Effect: (c) Any event that occurs without the introduction (or presence) of a given phenomenon; or (d) that does not occur when that phenomenon is introduced (or is present), is not the effect of that phenomenon.

* * * * *

Subject to the conditions thus stated, the rules may be briefly put as follows:

I. (a) That which (without further change) is followed by a given event is its cause.

II. (a) That which is not so followed is not the cause.

I. (b) That which cannot be left out without impairing a phenomenon is a condition of it.

II. (b) That which can be left out is not a condition of it.

B. QUANTITATIVE DETERMINATION

The Equality of Cause and Effect may be further explained by these rules:

III. (a) When a cause (or effect) increases or decreases, so does its effect (or cause).

III. (b) If two phenomena, having the other marks of cause and effect, seem unequal, the less contains an unexplored factor.

III. (c) If an antecedent and consequent do not increase or decrease correspondingly, they are not cause and effect, so far as they vary.

It will next be shown that these propositions are variously combined in Mill's five Canons of Induction: Agreement, the Joint Method, Difference, Variations, Residues. The first three are sometimes called Qualitative Methods, and the two last Quantitative; and although this grouping is not quite accurate, seeing that Difference is often used quantitatively, yet it draws attention to an important distinction between a mere description of conditions and determination by exact measurement.

To avoid certain misunderstandings, some slight alterations have been made in the wording of the Canons. It may seem questionable whether the Canons add anything to the above propositions: I think they do. They are not discussed in the ensuing chapter merely out of reverence for Mill, or regard for a nascent tradition; but because, as describing the character of observations and experiments that justify us in drawing conclusions about causation, they are guides to the analysis of observations and to the preparation of experiments. To many eminent investigators the Canons (as such) have been unknown; but they prepared their work effectively so far only as they had definite ideas to the same purport. A definite conception of the conditions of proof is the necessary antecedent of whatever preparations may be made for proving anything.



CHAPTER XVI

THE CANONS OF DIRECT INDUCTION

Sec. 1. Let me begin by borrowing an example from Bain (Logic: B. III. c. 6). The North-East wind is generally detested in this country: as long as it blows few people feel at their best. Occasional well-known causes of a wind being injurious are violence, excessive heat or cold, excessive dryness or moisture, electrical condition, the being laden with dust or exhalations. Let the hypothesis be that the last is the cause of the North-East wind's unwholesome quality; since we know it is a ground current setting from the pole toward the equator and bent westward by the rotation of the earth; so that, reaching us over thousands of miles of land, it may well be fraught with dust, effluvia, and microbes. Now, examining many cases of North-East wind, we find that this is the only circumstance in which all the instances agree: for it is sometimes cold, sometimes hot; generally dry, but sometimes wet; sometimes light, sometimes violent, and of all electrical conditions. Each of the other circumstances, then, can be omitted without the N.E. wind ceasing to be noxious; but one circumstance is never absent, namely, that it is a ground current. That circumstance, therefore, is probably the cause of its injuriousness. This case illustrates:—

(I) THE CANON OF AGREEMENT.

If two or more instances of a phenomenon under investigation have only one other circumstance (antecedent or consequent) in common, that circumstance is probably the cause (or an indispensable condition) or the effect of the phenomenon, or is connected with it by causation.

This rule of proof (so far as it is used to establish direct causation) depends, first, upon observation of an invariable connection between the given phenomenon and one other circumstance; and, secondly, upon I. (a) and II. (b) among the propositions obtained from the unconditionality of causation at the close of the last chapter.

To prove that A is causally related to p, suppose two instances of the occurrence of A, an antecedent, and p, a consequent, with concomitant facts or events—and let us represent them thus:

Antecedents: A B C A D E Consequents: p q r p s t;

and suppose further that, in this case, the immediate succession of events can be observed. Then A is probably the cause, or an indispensable condition, of p. For, as far as our instances go, A is the invariable antecedent of p; and p is the invariable consequent of A. But the two instances of A or p agree in no other circumstance. Therefore A is (or completes) the unconditional antecedent of p. For B and C are not indispensable conditions of p, being absent in the second instance (Rule II. (b)); nor are D and E, being absent in the first instance. Moreover, q and r are not effects of A, being absent in the second instance (Rule II. (d)); nor are s and t, being absent in the first instance.

It should be observed that the cogency of the proof depends entirely upon its tending to show the unconditionality of the sequence A-p, or the indispensability of A as a condition of p. That p follows A, even immediately, is nothing by itself: if a man sits down to study and, on the instant, a hand-organ begins under his window, he must not infer malice in the musician: thousands of things follow one another every moment without traceable connection; and this we call 'accidental.' Even invariable sequence is not enough to prove direct causation; for, in our experience does not night invariable follow day? The proof requires that the instances be such as to show not merely what events are in invariable sequence, but also what are not. From among the occasional antecedents of p (or consequents of A) we have to eliminate the accidental ones. And this is done by finding or making 'negative instances' in respect of each of them. Thus the instance

A D E p s t

is a negative instance of B and C considered as supposable causes of p (and of q and r as supposable effects of A); for it shows that they are absent when p (or A) is present.

To insist upon the cogency of 'negative instances' was Bacon's great contribution to Inductive Logic. If we neglect them, and merely collect examples of the sequence A-p, this is 'simple enumeration'; and although simple enumeration, when the instances of agreement are numerous enough, may give rise to a strong belief in the connection of phenomena, yet it can never be a methodical or logical proof of causation, since it does not indicate the unconditionalness of the sequence. For simple enumeration of the sequence A-p leaves open the possibility that, besides A, there is always some other antecedent of p, say X; and then X may be the cause of p. To disprove it, we must find, or make, a negative instance of X—where p occurs, but X is absent.

So far as we recognise the possibility of a plurality of causes, this method of Agreement cannot be quite satisfactory. For then, in such instances as the above, although D is absent in the first, and B in the second, it does not follow that they are not the causes of p; for they may be alternative causes: B may have produced p in the first instance, and D in the second; A being in both cases an accidental circumstance in relation to p. To remedy this shortcoming by the method of Agreement itself, the only course is to find more instances of p. We may never find a negative instance of A; and, if not, the probability that A is the cause of p increases with the number of instances. But if there be no antecedent that we cannot sometimes exclude, yet the collection of instances will probably give at last all the causes of p; and by finding the proportion of instances in which A, B, or X precedes p, we may estimate the probability of any one of them being the cause of p in any given case of its occurrence.

But this is not enough. Since there cannot really be vicarious causes, we must define the effect (p) more strictly, and examine the cases to find whether there may not be varieties of p, with each of which one of the apparent causes is correlated: A with p^{1} B with p^{11}, X with p^{111}. Or, again, it may be that none of the recognised antecedents is effective: as we here depend solely on observation, the true conditions may be so recondite and disguised by other phenomena as to have escaped our scrutiny. This may happen even when we suppose that the chief condition has been isolated: the drinking of foul water was long believed to cause dysentery, because it was a frequent antecedent; whilst observation had overlooked the bacillus, which was the indispensable condition.

Again, though we have assumed that, in the instances supposed above, immediate sequence is observable, yet in many cases it may not be so, if we rely only on the canon of Agreement; if instances cannot be obtained by experiment, and we have to depend on observation. The phenomena may then be so mixed together that A and p seem to be merely concomitant; so that, though connection of some sort may be rendered highly probable, we may not be able to say which is cause and which is effect. We must then try (as Bain says) to trace the expenditure of energy: if p gains when A loses, the course of events if from A to p.

Moreover, where succession cannot be traced, the method of Agreement may point to a connection between two or more facts (perhaps as co-effects of a remote cause) where direct causation seems to be out of the question: e.g., that Negroes, though of different tribes, different localities, customs, etc., are prognathous, woolly-haired and dolichocephalic.

The Method of Agreement, then, cannot by itself prove causation. Its chief use (as Mill says) is to suggest hypotheses as to the cause; which must then be used (if possible) experimentally to try if it produces the given effect. A bacillus, for example, being always found with a certain disease, is probably the chief condition of it: give it to a guinea-pig, and observe whether the disease appears in that animal.

Men often use arguments which, if they knew it, might be shown to conform more or less to this canon; for they collect many instances to show that two events are connected; but usually neglect to bring out the negative side of the proof; so that their arguments only amount to simple enumeration. Thus Ascham in his Toxophilus, insisting on the national importance of archery, argues that victory has always depended on superiority in shooting; and, to prove it, he shows how the Parthians checked the Romans, Sesostris conquered a great part of the known world, Tiberius overcame Arminius, the Turks established their empire, and the English defeated the French (with many like examples)—all by superior archery. But having cited these cases to his purpose, he is content; whereas he might have greatly strengthened his proof by showing how one or the other instance excludes other possible causes of success. Thus: the cause was not discipline, for the Romans were better disciplined than the Parthians; nor yet the boasted superiority of a northern habitat, for Sesostris issued from the south; nor better manhood, for here the Germans probably had the advantage of the Romans; nor superior civilisation, for the Turks were less civilised than most of those they conquered; nor numbers, nor even a good cause, for the French were more numerous than the English, and were shamefully attacked by Henry V. on their own soil. Many an argument from simple enumeration may thus be turned into an induction of greater plausibility according to the Canon of Agreement.

Still, in the above case, the effect (victory) is so vaguely conceived, that a plurality of causes must be allowed for: although, e.g., discipline did not enable the Romans to conquer the Parthians, it may have been their chief advantage over the Germans; and it was certainly important to the English under Henry V. in their war with the French.

Here is another argument, somewhat similar to the above, put forward by H. Spencer with a full consciousness of its logical character. States that make war their chief object, he says, assume a certain type of organisation, involving the growth of the warrior class and the treatment of labourers as existing solely to sustain the warriors; the complete subordination of individuals to the will of the despotic soldier-king, their property, liberty and life being at the service of the State; the regimentation of society not only for military but also for civil purposes; the suppression of all private associations, etc. This is the case in Dahomey and in Russia, and it was so at Sparta, in Egypt, and in the empire of the Yncas. But the similarity of organisation in these States cannot have been due to race, for they are all of different races; nor to size, for some are small, some large; nor to climate or other circumstances of habitat, for here again they differ widely: the one thing they have in common is the military purpose; and this, therefore, must be the cause of their similar organisation. (Political Institutions.)

By this method, then, to prove that one thing is causally connected with another, say A with p, we show, first, that in all instances of p, A is present; and, secondly, that any other supposable cause of p may be absent without disturbing p. We next come to a method the use of which greatly strengthens the foregoing, by showing that where p is absent A is also absent, and (if possible) that A is the only supposable cause that is always absent along with p.

Sec. 2. THE CANON OF THE JOINT METHOD OF AGREEMENT IN PRESENCE AND IN ABSENCE.

If (1) two or more instances in which a phenomenon occurs have only one other circumstance (antecedent or consequent) in common, while (2) two or more instances in which it does not occur (though in important points they resemble the former set of instances) have nothing else in common save the absence of that circumstance—the circumstance in which alone the two sets of instances differ throughout (being present in the first set and absent in the second) is probably the effect, or the cause, or an indispensable condition of the phenomenon.

The first clause of this Canon is the same as that of the method of Agreement, and its significance depends upon the same propositions concerning causation. The second clause, relating to instances in which the phenomenon is absent, depends for its probative force upon Prop. II. (a), and I. (b): its function is to exclude certain circumstances (whose nature or manner of occurrence gives them some claim to consideration) from the list of possible causes (or effects) of the phenomenon investigated. It might have been better to state this second clause separately as the Canon of the Method of Exclusions.

To prove that A is causally related to p, let the two sets of instances be represented as follows:

Instances of Presence. Instances of Absence. A B C C H F p q r r x v A D E B D K p s t q y s A F G E G M p u v t f u

Then A is probably the cause or a condition of p, or p is dependent upon A: first, by the Canon of Agreement in Presence, as represented by the first set of instances; and, secondly, by Agreement in Absence in the second set of instances. For there we see that C, H, F, B, D, K, E, G, M occur without the phenomenon p, and therefore (by Prop. II. (a)) are not its cause, or not the whole cause, unless they have been counteracted (which is a point for further investigation). We also see that r, v, q, s, t, u occur without A, and therefore are not the effects of A. And, further, if the negative instances represent all possible cases, we see that (according to Prop. I. (b)) A is the cause of p, because it cannot be omitted without the cessation of p. The inference that A and p are cause and effect, suggested by their being present throughout the first set of instances, is therefore strengthened by their being both absent throughout the second set.

So far as this Double Method, like the Single Method of Agreement, relies on observation, sequence may not be perceptible in the instances observed, and then, direct causation cannot be proved by it, but only the probability of causal connection; and, again, the real cause, though present, may be so obscure as to evade observation. It has, however, one peculiar advantage, namely, that if the second list of instances (in which the phenomenon and its supposed antecedent are both absent) can be made exhaustive, it precludes any hypothesis of a plurality of causes; since all possible antecedents will have been included in this list without producing the phenomenon. Thus, in the above symbolic example, taking the first set of instances, the supposition is left open that B, C, D, E, F, G may, at one time or another, have been a condition of p; but, in the second list, these antecedents all occur, here or there, without producing p, and therefore (unless counteracted somehow) cannot be a condition of p. A, then, stands out as the one thing that is present whenever p is present, and absent whenever p is absent.

Stated in this abstract way, the Double Method may seem very elaborate and difficult; yet, in fact, its use may be very simple. Tyndall, to prove that dispersed light in the air is due to motes, showed by a number of cases (1) that any gas containing motes is luminous; (2) that air in which the motes had been destroyed by heat, and any gas so prepared as to exclude motes, are not luminous. All the instances are of gases, and the result is: motes—luminosity; no motes—no luminosity. Darwin, to show that cross-fertilisation is favourable to flowers, placed a net about 100 flower-heads, and left 100 others of the same varieties exposed to the bees: the former bore no seed, the latter nearly 3,000. We must assume that, in Darwin's judgment, the net did not screen the flowers from light and heat sufficiently to affect the result.

There are instructive applications of this Double Method in Wallace's Darwinism. In chap. viii., on Colour in Animals, he observes, that the usefulness of their coloration to animals is shown by the fact that, "as a rule, colour and marking are constant in each species of wild animal, while, in almost every domesticated animal, there arises great variability. We see this in our horses and cattle, our dogs and cats, our pigeons and poultry. Now the essential difference between the conditions of life of domesticated and wild animals is, that the former are protected by man, while the latter have to protect themselves." Wild animals protect themselves by acquiring qualities adapted to their mode of life; and coloration is a very important one, its chief, though not its only use, being concealment. Hence a useful coloration having been established in any species, individuals that occasionally may vary from it, will generally, perish; whilst, among domestic animals, variation of colour or marking is subject to no check except the taste of owners. We have, then, two lists of instances; first, innumerable species of wild animals in which the coloration is constant and which depend upon their own qualities for existence; secondly, several species of domestic animals in which the coloration is not constant, and which do not depend upon their own qualities for existence. In the former list two circumstances are present together (under all sorts of conditions); in the latter they are absent together. The argument may be further strengthened by adding a third list, parallel to the first, comprising domestic animals in which coloration is approximately constant, but where (as we know) it is made a condition of existence by owners, who only breed from those specimens that come up to a certain standard of coloration.

Wallace goes on to discuss the colouring of arctic animals. In the arctic regions, he says, some animals are wholly white all the year round, such as the polar bear, the American polar hare, the snowy owl and the Greenland falcon: these live amidst almost perpetual snow. Others, that live where the snow melts in summer, only turn white in winter, such as the arctic hare, the arctic fox, the ermine and the ptarmigan. In all these cases the white colouring is useful, concealing the herbivores from their enemies, and also the carnivores in approaching their prey; this usefulness, therefore, is a condition of the white colouring. Two other explanations have, however, been suggested: first, that the prevalent white of the arctic regions directly colours the animals, either by some photographic or chemical action on the skin, or by a reflex action through vision (as in the chameleon); secondly, that a white skin checks radiation and keeps the animals warm. But there are some exceptions to the rule of white colouring in arctic animals which refute these hypotheses, and confirm the author's. The sable remains brown throughout the winter; but it frequents trees, with whose bark its colour assimilates. The musk-sheep is brown and conspicuous; but it is gregarious, and its safety depends upon its ability to recognise its kind and keep with the herd. The raven is always black; but it fears no enemy and feeds on carrion, and therefore does not need concealment for either defence or attack. The colour of the sable, then, though not white, serves for concealment; the colour of the musk-sheep serves a purpose more important than concealment; the raven needs no concealment. There are thus two sets of instances:—in one set the animals are white (a) all the year, (b) in winter; and white conceals them (a) all the year, (b) in winter; in the other set, the animals are not white, and to them either whiteness would not give concealment, or concealment would not be advantageous. And this second list refutes the rival hypotheses: for the sable, the musk-sheep and the raven are as much exposed to the glare of the snow, and to the cold, as the other animals are.

Sec. 3. THE CANON OF DIFFERENCE.

If an instance in which a phenomenon occurs, and an instance in which it does not occur, have every other circumstance in common save one, that one (whether consequent or antecedent) occurring only in the former; the circumstance in which alone the two instances differ is the effect, or the cause, or an indispensable condition of the phenomenon.

This follows from Props. I (a) and (b), in chapter xv. Sec. 7. To prove that A is a condition of p, let two instances, such as the Canon requires, be represented thus:

A B C B C p q r q r

Then A is the cause or a condition of p. For, in the first instance, A being introduced (without further change), p arises (Prop. I. (a)); and, in the second instance, A having been removed (without other change), p disappears (Prop. I. (b)). Similarly we may prove, by the same instances, that p is the effect of A.

The order of the phenomena and the immediacy of their connection is a matter for observation, aided by whatever instruments and methods of inspection and measurement may be available.

As to the invariability of the connection, it may of course be tested by collecting more instances or making more experiments; but it has been maintained, that a single perfect experiment according to this method is sufficient to prove causation, and therefore implies invariability (since causation is uniform), though no other instances should ever be obtainable; because it establishes once for all the unconditionality of the connection

A B C p q r.

Now, formally this is true; but in any actual investigation how shall we decide what is a satisfactory or perfect experiment? Such an experiment requires that in the negative instance

B C q r,

BC shall be the least assemblage of conditions necessary to co-operate with A in producing p; and that it is so cannot be ascertained without either general prior knowledge of the nature of the case or special experiments for the purpose. So that invariability will not really be inferred from a single experiment; besides that every prudent inquirer repeats his experiments, if only to guard against his own liability to error.

The supposed plurality of causes does not affect the method of Difference. In the above symbolic case, A is clearly one cause (or condition) of p, whatever other causes may be possible; whereas with the Single Method of Agreement, it remained doubtful (admitting a plurality of causes) whether A, in spite of being always present with p, was ever a cause or condition of it.

This method of Difference without our being distinctly aware of it, is oftener than any other the basis of ordinary judgments. That the sun gives light and heat, that food nourishes and fire burns, that a stone breaks a window or kills a bird, that the turning of a tap permits or checks the flow of water or of gas, and thousands of other propositions are known to be true by rough but often emphatic applications of this method in common experience.

The method of Difference may be applied either (1) by observation, on finding two instances (distinct assemblages of conditions) differing only in one phenomenon together with its antecedent or consequent; or (2) by experiment, and then, either (a) by preparing two instances that may be compared side by side, or (b) by taking certain conditions, and then introducing (or subtracting) some agent, supposed to be the cause, to see what happens: in the latter case the "two instances" are the same assemblage of conditions considered before and, again, after, the introduction of the agent. As an example of (a) there is an experiment to show that radium gives off heat: take two glass tubes, in one put some chloride of radium, in both thermometers, and close them with cotton-wool. Soon the thermometer in the tube along with radium reads 54 deg. F. higher than the other one. The tube without the radium, whose temperature remains unaltered, is called the "control" experiment. Most experiments are of the type (b); and since the Canon, which describes two co-existing instances, does not readily apply to this type, an alternative version may be offered: Any agent whose introduction into known circumstances (without further change) is immediately followed by a definite phenomenon is a condition of the occurrence of that phenomenon.

The words into known circumstances are necessary to emphasise what is required by this Method, namely, that the two instances differ in only one thing; for this cannot be ascertained unless all the other conditions are known; and this further implies that they have been prepared. It is, therefore, not true (as Sigwart asserts) that this method determines only one condition of a phenomenon, and that it is then necessary to inquire into the other conditions. If they were not known they must be investigated; but then the experiment would not have been made upon this method. Practically, experiments have to be made in all degrees of imperfection, and the less perfect they are, that is, the less the circumstances are known beforehand, the more remains to be done. A common imperfection is delay, or the occurrence of a latent period between the introduction of an agent and the manifestation of its effects; it cannot then be the unconditional cause; though it may be an indispensable remote condition of whatever change occurs. If, feeling out of sorts, you take a drug and some time afterwards feel better, it is not clear on this ground alone that the drug was the cause of recovery, for other curative processes may have been active meanwhile—food, or sleep, or exercise.

Any book of Physics or of Chemistry will furnish scores of examples of the method of Difference: such as Galileo's experiment to show that air has weight, by first weighing a vessel filled with ordinary air, and then filling it with condensed air and weighing it again; when the increased weight can only be due to the greater quantity of air contained. The melting-point of solids is determined by heating them until they do melt (as silver at 1000 deg. C., gold at 1250 deg., platinum at 2000 deg.); for the only difference between bodies at the time of melting and just before is the addition of so much heat. Similarly with the boiling point of liquids. That the transmission of sound depends upon the continuity of an elastic ponderable medium, is proved by letting a clock strike in a vacuum (under a glass from which the air has been withdrawn by an air pump), and standing upon a non-elastic pedestal: when the clock be seen to strike, but makes only such a faint sound as may be due to the imperfections of the vacuum and the pedestal.

The experiments by which the chemical analysis or synthesis of various forms of matter is demonstrated are simple or compound applications of this method of Difference, together with the quantitative mark of causation (that cause and effect are equal); since the bodies resulting from an analysis are equal in weight to the body analysed, and the body resulting from a synthesis is equal in weight to the bodies synthesised. That an electric current resolves water into oxygen and hydrogen may be proved by inserting the poles of a galvanic battery in a vessel of water; when this one change is followed by another, the rise of bubbles from each pole and the very gradual decrease of the water. If the bubbles are caught in receivers placed over them, it can be shown that the joint weight of the two bodies of gas thus formed is equal to the weight of the water that has disappeared; and that the gases are respectively oxygen and hydrogen may then be shown by proving that they have the properties of those gases according to further experiments by the method of Difference; as (e.g.) that one of them is oxygen because it supports combustion, etc.

When water was first decomposed by the electric current, there appeared not only oxygen and hydrogen, but also an acid and an alkali. These products were afterwards traced to impurities of the water and of the operator's hands. Mill observes that in any experiment the effect, or part of it, may be due, not to the supposed agent, but to the means employed in introducing it. We should know not only the other conditions of an experiment, but that the agent or change introduced is nothing else than what it is supposed to be.

In the more complex sciences the method of Difference is less easily applicable, because of the greater difficulty of being sure that only one circumstance at a time has altered; still, it is frequently used. Thus, if by dividing a certain nerve certain muscles are paralysed, it is shown that normally that nerve controls those muscles. That the sense of smell in flies and cockroaches is connected with the antennae has been shown by cutting them off: whereupon the insects can no longer find carrion. In his work on Earthworms, Darwin shows that, though sensitive to mechanical tremors, they are deaf (or, at least, not sensitive to sonorous vibrations transmitted through the air), by the following experiment. He placed a pot containing a worm that had come to the surface, as usual at night, upon a table, whilst close by a piano was violently played; but the worm took no notice of the noise. He then placed the pot upon the piano, whilst it was being played, when the worm, probably feeling mechanical vibrations, hastily slid back into its burrow.

When, instead of altering one circumstance in an instance (which we have done our best not otherwise to disturb) and then watching what follows, we try to find two ready-made instances of a phenomenon, which only differ in one other circumstance, it is, of course, still more difficult to be sure that there is only one other circumstance in which they differ. It may be worth while, however, to look for such instances. Thus, that the temperature of ocean currents influences the climate of the shores they wash, seems to be shown by the fact that the average temperature of Newfoundland is lower than that of the Norwegian coast some 15 deg. farther north. Both regions have great continents at their back; and as the mountains of Norway are higher and capped with perennial snow, we might expect a colder climate there: but the shore of Norway is visited by the Gulf Stream, whilst the shore of Newfoundland is traversed by a cold current from Greenland. Again, when in 1841 the railway from Rouen to Paris was being built, gangs of English and gangs of French workmen were employed upon it, and the English got through about one-third more work per man than the French. It was suspected that this difference was due to one other difference, namely, that the English fed better, preferring beef to thin soup. Now, logically, it might have been objected that the evidence was unsatisfactory, seeing that the men differed in other things besides diet—in 'race' (say), which explains so much and so easily. But the Frenchmen, having been induced to try the same diet as the English, were, in a few days, able to do as much work: so that the "two instances" were better than they looked. It often happens that evidence, though logically questionable, is good when used by experts, whose familiarity with the subject makes it good.

Sec. 4. THE CANON OF CONCOMITANT VARIATIONS.

Whatever phenomenon varies in any manner whenever another phenomenon (consequent or antecedent) varies in some particular manner [no other change having concurred] is either the cause or effect of that phenomenon [or is connected with it through some fact of causation].

This is not an entirely fresh method, but may be regarded as a special case either of Agreement or of Difference, to prove the cause or effect, not of a phenomenon as a whole, but of some increment of it (positive or negative). There are certain forces, such as gravitation, heat, friction, that can never be eliminated altogether, and therefore can only be studied in their degrees. To such phenomena the method of Difference cannot be applied, because there are no negative instances. But we may obtain negative instances of a given quantity of such a phenomenon (say, heat), and may apply the method of Difference to that quantity. Thus, if the heat of a body increases 10 degrees, from 60 to 70, the former temperature of 60 was a negative instance in respect of those 10 degrees; and if only one other circumstance (say, friction) has altered at the same time, that circumstance (if an antecedent) is the cause. Accordingly, if in the above Canon we insert, after 'particular manner,' "[no other change having concurred,]" it is a statement of the method of Difference as applicable to the increment of a phenomenon, instead of to the phenomenon as a whole; and we may then omit the last clause—"[or is connected, etc.]." For these words are inserted to provide for the case of co-effects of a common cause (such as the flash and report of a gun); but if no other change (such as the discharge of a gun) has concurred with the variations of two phenomena, there cannot have been a common cause, and they are therefore cause and effect.

If, on the other hand, we omit the clause "[no other change having concurred,]" the Canon is a statement of the method of Agreement as applicable to the increment of a phenomenon instead of to the phenomenon as a whole; and it is then subject to the imperfections of that method: that is to say, it leaves open the possibilities, that an inquirer may overlook a plurality of causes; or may mistake a connection of two phenomena, which (like the flash and report of a gun) are co-effects of a common cause, for a direct relation of cause and effect.

It may occur to the reader that we ought also to distinguish Qualitative and Quantitative Variations as two orders of phenomena to which the present method is applicable. But, in fact, Qualitative Variations may be adequately dealt with by the foregoing methods of Agreement, Double Agreement, and Difference; because a change of quality or property entirely gets rid of the former phase of that quality, or substitutes one for another; as when the ptarmigan changes from brown to white in winter, or as when a stag grows and sheds its antlers with the course of the seasons. The peculiar use of the method of Variations, however, is to formulate the conditions of proof in respect of those causes or effects which cannot be entirely got rid of, but can be obtained only in greater or less amount; and such phenomena are or course, quantitative.

Even when there are two parallel series of phenomena the one quantitative and the other qualitative—like the rate of air-vibration and the pitch of sound, or the rate of ether-vibration and the colour-series of the spectrum—the method of Variations is not applicable. For (1) two such series cannot be said to vary together, since the qualitative variations are heterogeneous: 512: 576 is a definite ratio; but the corresponding notes, C, D, in the treble clef, present only a difference. Hence (2) the correspondence of each note with each number is a distinct fact. Each octave even is a distinct fact; there is a difference between C 64 and C 128 that could never have been anticipated without the appropriate experience. There is, therefore, no such law of these parallel series as there is for temperature and change of volume (say) in mercury. Similar remarks apply to the physical and sensitive light-series.

We may illustrate the two cases of the method thus (putting a dash against any letter, A' or p', to signify an increase or decrease of the phenomenon the letter stands for): Agreement in Variations (other changes being admissible)—

A B C A' D E A'' F G p q r p' s t p'' u v

Here the accompanying phenomena (B C q r, D E s t, F G u v) change from time to time, and the one thing in which the instances agree throughout is that any increase of A (A' or A'') is followed or accompanied by an increase of p (p' or p''): whence it is argued that A is the cause of p, according to Prop. III. (a) (ch. xv. Sec. 7). Still, it is supposable that, in the second instance, D or E may be the cause of the increment of p; and that, in the third instance, F or G may be its cause: though the probability of such vicarious causation decreases rapidly with the increase of instances in which A and p vary together. And, since an actual investigation of this type must rely on observation, it is further possible that some undiscovered cause, X, is the real determinant of both A and p and of their concomitant variations.

Professor Ferri, in his Criminal Sociology, observes: "I have shown that in France there is a manifest correspondence of increase and decrease between the number of homicides, assaults and malicious wounding, and the more or less abundant vintage, especially in the years of extraordinary variations, whether of failure of the vintage (1853-5, 1859, 1867, 1873, 1878-80), attended by a remarkable diminution of crime (assaults and wounding), or of abundant vintages (1850, 1856-8, 1862-3, 1865, 1868, 1874-5), attended by an increase of crime" (p. 117, Eng. trans.). And earlier he had remarked that such crimes also "in their oscillations from month to month display a characteristic increase during the vintage periods, from June to December, notwithstanding the constant diminution of other offences" (p. 77). This is necessarily an appeal to the canon of Concomitant Variations, because France is never without her annual vintage, nor yet without her annual statistics of crime. Still, it is an argument whose cogency is only that of Agreement, showing that probably the abuse of the vintage is a cause of crimes of violence, but leaving open the supposition, that some other circumstance or circumstances, arising or varying from year to year, may determine the increase or decrease of crime; or that there is some unconsidered agent which affects both the vintage and crimes of violence. French sunshine, it might be urged, whilst it matures the generous grape, also excites a morbid fermentation in the human mind.

Difference in Variations may be symbolically represented thus (no other change having concurred):

A B A' B A'' B p q, p' q, p'' q.

Here the accompanying phenomena are always the same B/q; and the only point in which the successive instances differ is in the increments of A (A', A'') followed by corresponding increments of p (p', p''): hence the increment of A is the cause of the increment of p.

For examples of the application of this method, the reader should refer to some work of exact science. He will find in Deschanel's Natural Philosophy, c. 32, an account of some experiments by which the connection between heat and mechanical work has been established. It is there shown that "whenever work is performed by the agency of heat" [as in driving an engine], "an amount of heat disappears equivalent to the work performed; and whenever mechanical work is spent in generating heat" [as in rubbing two sticks together], "the heat generated is equivalent to the work thus spent." And an experiment of Joule's is described, which consisted in fixing a rod with paddles in a vessel of water, and making it revolve and agitate the water by means of a string wound round the rod, passed over a pulley and attached to a weight that was allowed to fall. The descent of the weight was measured by a graduated rule, and the rise of the water's temperature by a thermometer. "It was found that the heat communicated to the water by the agitation amounted to one pound-degree Fahrenheit for every 772 foot-pounds of work" expended by the falling weight. As no other material change seems to take place during such an experiment, it shows that the progressive expenditure of mechanical energy is the cause of the progressive heating of the water.

The thermometer itself illustrates this method. It has been found that the application of heat to mercury expands it according to a law; and hence the volume of the mercury, measured by a graduated index, is used to indicate the temperature of the air, water, animal body, etc., in which the thermometer is immersed, or with which it is brought into contact. In such cases, if no other change has taken place, the heat of the air, water, or body is the cause of the rise of the mercury in its tube. If some other substance (say spirit) be substituted for mercury in constructing a thermometer, it serves the same purpose, provided the index be graduated according to the law of the expansion of that substance by heat, as experimentally determined.

Instances of phenomena that do not vary together indicate the exclusion of a supposed cause (by Prop. III (c)). The stature of the human race has been supposed to depend on temperature; but there is no correspondence. The "not varying together," however, must not be confused with "varying inversely," which when regular indicates a true concomitance. It is often a matter of convenience whether we regard concomitant phenomena as varying directly or inversely. It is usual to say—'the greater the friction the less the speed'; but it is really more intelligible to say—'the greater the friction the more rapidly molar is converted into molecular motion.'

The Graphic Method exhibits Concomitant Variations to the eye, and is extensively used in physical and statistical inquiries. Along a horizontal line (the abscissa) is measured one of the conditions (or agents) with which the inquiry is concerned, called the Variable; and along perpendiculars (ordinates) is measured some phenomenon to be compared with it, called the Variant.

Thus, the expansion of a liquid by heat may be represented by measuring degrees of temperature along the horizontal, and the expansion of a column of the liquids in units of length along the perpendicular.



In the next diagram (Fig. 10), reduced from one given by Mr. C.H. Denyer in an article on the Price of Tea (Economic Journal, No. 9), the condition measured horizontally is Time; and, vertically, three variants are measured simultaneously, so that their relations to one another from time to time may be seen at a glance. From this it is evident that, as the duty on tea falls, the price of tea falls, whilst the consumption of tea rises; and, in spite of some irregularity of correspondence in the courses of the three phenomena, their general causal connection can hardly be mistaken. However, the causal connection may also be inferred by general reasoning; the statistical Induction can be confirmed by a Deduction; thus illustrating the combined method of proof to be discussed in the next chapter. Without such confirmation the proof by Concomitant Variations would not be complete; because, from the complexity of the circumstances, social statistics can only yield evidence according to the method of Agreement in Variations. For, besides the agents that are measured, there may always be some other important influence at work. During the last fifty years, for example, crime has decreased whilst education has increased: true, but at the same time wages have risen and many other things have happened.



It will be noticed that in the diagram the three lines, especially those of Price and Consumption (which may be considered natural resultants, in contrast with the arbitrary fixation of a Tax), do not depart widely from regular curves; and accordingly, assuming the causes at work to vary continuously during the intervals between points of measurement, curves may be substituted. In fact, a curve often represents the course of a phenomenon more truthfully than can be done by a line that zigzags along the exact measurements; because it is less influenced by temporary and extraordinary causes that may obscure the operation of those that are being investigated. On the other hand, the abrupt deviations of a punctilious zigzag may have their own logical value, as will appear in the next section.

In working with the Method of Variations one must allow for the occurrence in a series of 'critical points,' at which sudden and sometimes heterogeneous changes may take place. Every substance exists at different temperatures in three states, gaseous, liquid, solid; and when the change takes place, from one state to another, the series of variations is broken. Water, e.g., follows the general law that cooling is accompanied by decrease of volume between 212 deg. and 39 deg. F.: but above 212 deg., undergoes a sudden expansion in becoming a gas; and below 39 deg. begins to expand, until at 32 deg. the expansion is considerable on its becoming solid. This illustrates a common experience that concomitant variations are most regular in the 'median range,' and are apt to become irregular at the extremities of the series, where new conditions begin to operate.

The Canon of Variations, again, deals not with sudden irruptions of a cause, force or agent, but with some increase or decrease of an agent already present, and a corresponding increase or decrease of some other phenomenon—say an increase of tax and a rise of price. But there are cases in which the energy of a cause is not immediately discharged and dissipated. Whilst a tax of 6d. per lb. on tea raises the price per lb. by about 6d., however long it lasts, the continuous application of friction to a body may gradually raise its temperature to the point of combustion; because heat is received faster than it is radiated, and therefore accumulates. Such cases are treated by Mill under the title of 'progressive effects' (Logic: B. III., c. 15): he gives as an example of it the acceleration of falling bodies. The storage of effects is a fact of the utmost importance in all departments of nature, and is especially interesting in Biology and Sociology, where it is met with as heredity, experience, tradition. Evolution of species of plants and animals would (so far as we know) be impossible, if the changes (however caused) that adapt some individuals better than others to the conditions of life were not inherited by, and accumulated in, their posterity. The eyes in the peacock's tail are supposed to have reached their present perfection gradually, through various stages that may be illustrated by the ocelli in the wings of the Argus pheasant and other genera of Phasianidae. Similarly the progress of societies would be impossible without tradition, whereby the improvements made in any generation may be passed on to the next, and the experience of mankind may be gradually accumulated in various forms of culture. The earliest remains of culture are flint implements and weapons; in which we can trace the effect of tradition in the lives of our remote forefathers, as they slowly through thousands of years learnt to improve the chipping of flints, until the first rudely shaped lumps gave place to works of unmistakable design, and these to the beautiful weapons contemporary with the Bronze Age.

The Method of Gradations, the arranging of any phenomena to be studied in series, according to the degree in which some character is exhibited, is, perhaps, the most definite device in the Art of Discovery. (Bain: Induction, c. 6, and App. II.) If the causes are unknown it is likely to suggest hypotheses: and if the causes are partly known, variation in the character of the series is likely to indicate a corresponding variation of the conditions.

Sec. 5. THE CANON OF RESIDUES.

Subduct from any phenomenon such part as previous inductions have shown to be the effect of certain antecedents, and the residue of the phenomenon is the effect of the remaining antecedents.

The phenomenon is here assumed to be an effect: a similar Canon may be framed for residuary causes.

This also is not a fresh method, but a special case of the method of Difference. For if we suppose the phenomenon to be p q r, and the antecedent to be A B C, and that we already know B and C to have (either severally or together) the consequents q r, in which their efficacy is exhausted; we may regard

B C q r

as an instance of the absence of p obtained deductively from the whole phenomenon

A B C p q r

by our knowledge of the laws of B and C; so that

A B C p q r

is an instance of the presence of p, differing otherwise from

B C q r

in nothing except that A is also present. By the Canon of Difference, therefore A is the cause of p. Or, again, when phenomena thus treated are strictly quantitative, the method may be based on Prop. III. (b), ch. xv. Sec. 7.

Of course, if A can be obtained apart from B C and directly experimented with so as to produce p, so much the better; and this may often be done; but the special value of the method of Residues appears, when some complex phenomenon has been for the most part accounted for by known causes, whilst there remains some excess, or shortcoming, or deviation from the result which those causes alone would lead us to expect, and this residuary fact has to be explained in relation to the whole. Here the negative instance is constituted by deduction, showing what would happen but for the interference of some unknown cause which is to be investigated; and this prominence of the deductive process has led some writers to class the method as deductive. But we have seen that all the Canons involve deduction; and, considering how much in every experiment is assumed as already known (what circumstances are 'material,' and when conditions may be called 'the same'), the wonder is that no one has insisted upon regarding every method as concerned with residues. In fact, as scientific explanation progresses, the phenomena that may be considered as residuary become more numerous and the importance of this method increases.

Examples: The recorded dates of ancient eclipses having been found to differ from those assigned by calculation, it appears that the average length of a day has in the meanwhile increased. This is a residuary phenomenon not accounted for by the causes formerly recognised as determining the rotation of the earth on its axis; and it may be explained by the consideration that the friction of the tides reduces the rate of the earth's rotation, and thereby lengthens the day. Astronomy abounds in examples of the method of Residues, of which the discovery of Neptune is the most famous.

Capillarity seems to be a striking exception to the principle that water (or any liquid) 'finds its level,' that being the condition of equilibrium; yet capillarity proves to be only a refined case of equilibrium when account is taken of the forces of adhesion exerted by different kinds of bodies in contact.

"Many of the new elements of Chemistry," says Herschel, "have been detected in the investigation of residual phenomena." Thus, Lord Rayleigh and Sir W. Ramsay found that nitrogen from the atmosphere was slightly heavier than nitrogen got from chemical sources; and, seeking the cause of this difference, discovered argon.

The Economist shows that when a country imports goods the chief means of paying for them is to export other goods. If this were all, imports and exports would be of equal value: yet the United Kingdom imports about L400,000,000 annually, and exports about L300,000,000. Here, then, is a residuary phenomenon of L100,000,000 to be accounted for. But foreign countries owe us about L50,000,000 for the use of shipping, and L70,000,000 as interest on the capital we have lent them, and L15,000,000 in commissions upon business transacted for them. These sums added together amount to L135,000,000; and that is L35,000,000 too much. Thus another residuary phenomenon emerges; for whilst foreigners seem to owe us L435,000,000 they only send us L400,000,000 of imports. These L35,000,000 are accounted for by the annual investment of our capital abroad, in return for which no immediate payment is due; and, these being omitted, exports and imports balance. Since this was written the figures of our foreign trade have greatly risen; but the character of the explanation remains the same.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse