p-books.com
Lectures and Essays
by T.H. Huxley
Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse

Obviously, if the earliest fossiliferous rocks now known are coeval with the commencement of life, and if their contents give us any just conception of the nature and the extent of the earliest fauna and flora, the insignificant amount of modification which can be demonstrated to have taken place in any one group of animals, or plants, is quite incompatible with the hypothesis that all living forms are the results of a necessary process of progressive development, entirely comprised within the time represented by the fossiliferous rocks.

Contrariwise, any admissible hypothesis of progressive modification must be compatible with persistence without progression, through indefinite periods. And should such an hypothesis eventually be proved to be true, in the only way in which it can be demonstrated, viz. by observation and experiment upon the existing forms of life, the conclusion will inevitably present itself, that the Paleozoic, Mesozoic, and Cainozoic faunae and florae, taken together, bear somewhat the same proportion to the whole series of living beings which have occupied this globe, as the existing fauna and flora do to them.

Such are the results of paleontology as they appear, and have for some years appeared, to the mind of an inquirer who regards that study simply as one of the applications of the great biological sciences, and who desires to see it placed upon the same sound basis as other branches of physical inquiry. If the arguments which have been brought forward are valid, probably no one, in view of the present state of opinion, will be inclined to think the time wasted which has been spent upon their elaboration.

End of Geological Contemporaneity and Persistent Types of Life.



CORAL AND CORAL REEFS.*

([Footnote] *A Lecture delivered in Manchester, November 4th, 1870.)

The subject upon which I wish to address you to-night is the structure and origin of Coral and Coral Reefs. Under the head of "coral" there are included two very different things; one of them is that substance which I imagine a great number of us have champed when we were very much younger than we are now,—the common red coral, which is used so much, as you know, for the edification and the delectation of children of tender years, and is also employed for the purposes of ornament for those who are much older, and as some think might know better. The other kind of coral is a very different substance; it may for distinction's sake be called the white coral; it is a material which most assuredly not the hardest-hearted of baby farmers would give to a baby to chew, and it is a substance which is to be seen only in the cabinets of curious persons, or in museums, or, may be, over the mantelpieces of sea-faring men. But although the red coral, as I have mentioned to you, has access to the very best society; and although the white coral is comparatively a despised product, yet in this, as in many other cases, the humbler thing is in reality the greater; the amount of work which is done in the world by the white coral being absolutely infinite compared with that effected by its delicate and pampered namesake. Each of these substances, the white coral and the red, however, has a relationship to the other. They are, in a zoological sense, cousins, each of them being formed by the same kind of animals in what is substantially the same way. Each of these bodies is, in fact, the hard skeleton of a very curious and a very simple animal, more comparable to the bones of such animals as ourselves than to the shells of oysters or creatures of that kind; for it is the hardening of the internal tissue of the creature, of its internal substance, by the deposit in the body of a material which is exceedingly common, not only in fresh but in sea water, and which is specially abundant in those waters which we know as "hard," those waters, for example, which leave a "fur" upon the bottom of a tea-kettle. This "fur" is carbonate of lime, the same sort of substance as limestone and chalk. That material is contained in solution in sea water, and it is out of the sea water in which these coral creatures live that they get the lime which is needed for the forming of their hard skeleton.

But now what manner of creatures are these which form these hard skeletons? I dare say that in these days of keeping aquaria, of locomotion to the sea-side, most of those whom I am addressing may have seen one of those creatures which used to be known as the "sea anemone," receiving that name on account of its general resemblance, in a rough sort of way, to the flower which is known as the "anemone"; but being a thing which lives in the sea, it was qualified as the "sea anemone." Well, then, you must suppose a body shaped like a short cylinder, the top cut off, and in the top a hole rather oval than round. All round this aperture, which is the mouth, imagine that there are placed a number of feelers forming a circle. The cavity of the mouth leads into a sort of stomach, which is very unlike those of the higher animals, in the circumstance that it opens at the lower end into a cavity of the body, and all the digested matter, converted into nourishment, is thus distributed through the rest of the body. That is the general structure of one of these sea anemones. If you touch it it contracts immediately into a heap. It looks at first quite like a flower in the sea, but if you touch it you find that it exhibits all the peculiarities of a living animal; and if anything which can serve as its prey comes near its tentacles, it closes them round it and sucks the material into its stomach and there digests it and turns it to the account of its own body.

These creatures are very voracious, and not at all particular what they seize; and sometimes it may be that they lay hold of a shellfish which is far too big to be packed into that interior cavity, and, of course, in any ordinary animal a proceeding of this kind would give rise to a very severe fit of indigestion. But this is by no means the case in the sea anemone, because when digestive difficulties of this kind arise he gets out of them by splitting himself in two; and then each half builds itself up into a fresh creature, and you have two polypes where there was previously one, and the bone which stuck in the way lying between them! Not only can these creatures multiply in this fashion, but they can multiply by buds. A bud will grow out of the side of the body (I am not speaking of the common sea anemone, but of allied creatures) just like the bud of a plant, and that will fashion itself into a creature just like the parent. There are some of them in which these buds remain connected together, and you will soon see what would be the result of that. If I make a bud grow out here, and another on the opposite side, and each fashions itself into a new polype, the practical effect will be that before long you will see a single polype converted into a sort of tree or bush of polypes. And these will all remain associated together, like a kind of co-operative store, which is a thing I believe you understand very well here,—each mouth will help to feed the body and each part of the body help to support the multifarious mouths. I think that is as good an example of a zoological co-operative store as you can well have. Such are these wonderful creatures. But they are capable not only of multiplying in this way, but in other ways, by having a more ordinary and regular kind of offspring. Little eggs are hatched and the young are passed out by the way of the mouth, and they go swimming about as little oval bodies covered with a very curious kind of hairlike processes. Each of these processes is capable of striking water like an oar; and the consequence is that the young creature is propelled through the water. So that you have the young polype floating about in this fashion, covered by its 'vibratile cilia', as these long filaments, which are capable of vibration are termed. And thus, although the polype itself may be a fixed creature unable to move about, it is able to spread its offspring over great areas. For these creatures not only propel themselves, but while swimming about in the sea for many hours, or perhaps days, it will be obvious that they must be carried hither and thither by the currents of the sea, which not unfrequently move at the rate of one or two miles an hour. Thus, in the course of a few days, the offspring of this stationary creature may be carried to a very great distance from its parent; and having been so carried it loses these organs by which it is propelled, and settles down upon the bottom of the sea and grows up again into the form and condition of its parents. So that if you suppose a single polype of this kind settled upon the bottom of the sea, it may by these various methods—that is to say, by cutting itself in two, which we call "fission," or by budding; or by sending out these swimming embryos,—multiply itself to an enormous extent, and give rise to thousands, or millions, of progeny in a comparatively short time; and these thousands, or millions, of progeny may cover a very large surface of the sea bottom; in fact, you will readily perceive that, give them time, and there is no limit to the surface which they may cover.

Having understood thus far the general nature of these polypes, which are the fabricators both of the red and white coral, let us consider a little more particularly how the skeletons of the red coral and of the white coral are formed. The red coral polype perches upon the sea bottom, it then grows up into a sort of stem, and out of that stem there grow branches, each of which has its own polypes; and thus you have a kind of tree formed, every branch of the tree terminated by its polype. It is a tree, but at the end of the branches there are open mouths of polypes instead of flowers. Thus there is a common soft body connecting the whole, and as it grows up the soft body deposits in its interior a quantity of carbonate of lime, which acquires a beautiful red or flesh colour, and forms a kind of stem running through the whole, and it is that stem which is the red coral. The red coral grows principally at the bottom of the Mediterranean Sea, at very great depths, and the coral fishers, who are very adventurous seamen, take their drag nets, of a peculiar kind, roughly made, but efficient for their purpose, and drag them along the bottom of the sea to catch the branches of the red coral, which become entangled and are thus brought up to the surface. They are then allowed to putrefy, in order to get rid of the animal matter, and the red coral is the skeleton that is left.

In the case of the white coral, the skeleton is more complete. In the red coral, the skeleton belongs to the whole; in the white coral there is a special skeleton for every one of these polypes in addition to that for the whole body. There is a skeleton formed in the body of each of them, like a cup divided by a number of radiating partitions towards the outside; and that cup is formed of carbonate of lime, only not stained red, as in the case of the red coral. And all these cups are joined together into a common branch, the result of which is the formation of a beautiful coral tree. This is a great mass of madrepore, and in the living state every one of the ends of these branches was terminated by a beautiful little polype, like a sea anemone, and all the skeleton was covered by a soft body which united the polypes together. You must understand that all this skeleton has been formed in the interior of the body, to suit the branched body of the polype mass, and that it is as much its skeleton as our own bones are our skeleton. In this next coral the creature which has formed the skeleton has divided itself as it grew, and consequently has formed a great expansion; but scattered all over this surface there were polype bodies like those I previously described. Again, when this great cup was alive, the whole surface was covered with a beautiful body upon which were set innumerable small polype flowers, if we may so call them, often brilliantly coloured; and the whole cup was built up in the same fashion by the deposit of carbonate of lime in the interior of the combined polype body, formed by budding and by fission in the way I described. You will perceive that there is no necessary limit to this process. There is no reason why we should not have coral three or four times as big; and there are certain creatures of this kind that do fabricate very large masses, or half spheres several feet in diameter. Thus the activity of these animals in separating carbonate of lime from the sea and building it up into definite shapes is very considerable indeed.

Now I think I have said sufficient—as much as I can without taking you into technical details, of the general nature of these creatures which form coral. The animals which form coral are scattered over the seas of all countries in the world. The red coral is comparatively limited, but the polypes which form the white coral are widely scattered. There are some of them which remain single, or which give rise to only small accumulations; and the skeletons of these, as they die, accumulate upon the bottom of the sea, but they do not come to much; they are washed about and do not adhere together, but become mixed up with the mud of the sea. But there are certain parts of the world in which the coral polypes which live and grow are of a kind which remain, adhere together, and form great masses. They differ from the ordinary polypes just in the same way as those plants which form a peat-bog or meadow-turf differ from ordinary plants. They have a habit of growing together in masses in the same place; they are what we call "gregarious" things; and the consequence of this is, that as they die and leave their skeletons, those skeletons form a considerable solid aggregation at the bottom of the sea, and other polypes perch upon them, and begin building upon them, and so by degrees a great mass is formed. And just as we know there are some ancient cities in which you have a British city, and over that the foundations of a Roman city; and over that a Saxon city, and over that again a modern city, so in these localities of which I am speaking, you have the accumulations of the foundations of the houses, if I may use the term, of nation after nation of these coral polypes; and these accumulations may cover a very considerable space, and may rise in the course of time from the bottom to the surface of the sea.

Mariners have a name which they apply to all sorts of obstacles consisting of hard and rocky matter which comes in their way in the course of their navigation; they call such obstacles "reefs," and they have long been in the habit of calling the particular kind of reef, which is formed by the accumulation of the skeletons of dead corals, by the name of "coral reefs," therefore, those parts of the world in which these accumulations occur have been termed by them "coral reef areas," or regions in which coral reefs are found. There is a very notable example of a simple coral reef about the island of Mauritius, which I dare say you all know, lies in the middle of the Indian Ocean. It is a very considerable and beautiful island, and is surrounded on all sides by a mass of coral, which has been formed in the way I have described; so that if you could get upon the top of one of the peaks of the island, and look down upon the Indian Ocean, you would see that the beach round the Island was continued outward by a kind of shallow terrace, which is covered by the sea, and where the sea is quite shallow; and at a distance varying from three-quarters of a mile to a mile and a half from the proper beach, you would see a line of foam or surf which looks most beautiful in contrast with the bright green water in the inside, and the deep blue of the sea beyond. That line of surf indicates the point at which the waters of the ocean are breaking upon the coral reef which surrounds the island. You see it sweep round the island upon all sides, except where a river may chance to come down, and that always makes a gap in the shore.

There are two or three points which I wish to bring clearly before your notice about such a reef as this. In the first place, you perceive it forms a kind of fringe round the island, and is therefore called a "fringing reef." In the next place, if you go out in a boat, and take soundings at the edge of the reef, you find that the depth of the water is not more than from 20 to 25 fathoms—that is about 120 to 150 feet. Outside that point you come to the natural sea bottom; but all inside that depth is coral, built up from the bottom by the accumulation of the skeletons of innumerable generations of coral polypes. So that you see the coral forms a very considerable rampart round the island. What the exact circumference may be I do not remember, but it cannot be less than 100 miles, and the outward height of this wall of coral rock nowhere amounts to less than about 100 or 150 feet.

When the outward face of the reef is examined, you find that the upper edge, which is exposed to the wash of the sea, and all the seaward face, is covered with those living plant-like flowers which I have described to you. They are the coral polypes which grow, flourish, and add to the mass of calcareous matter which already forms the reef. But towards the lower part of the reef, at a depth of about 120 feet, these creatures are less active, and fewer of them at work; and at greater depths than that you find no living coral polype at all; and it may be laid down as a rule, derived from very extensive observation, that these reef-building corals cannot live in a greater depth of water than about 120 to 150 feet. I beg you to recollect that fact, because it is one I shall have to come back to by and by, and to show to what very curious consequences that rule leads. Well then, coming back to the margin of the reef, you find that part of it which lies just within the surf to be coated by a very curious plant, a sort of seaweed, which contains in its substance a very great deal of carbonate of lime, and looks almost like rock; this is what is called the nullipore. More towards the land, we come to the shallow water upon the inside of the reef, which has a particular name, derived from the Spanish or the Portuguese—it is called a "lagoon," or lake. In this lagoon there is comparatively little living coral; the bottom of it is formed of coral mud. If we pounded this coral in water, it would be converted into calcareous mud, and the waves during storms do for the coral skeletons exactly what we might do for this coral in a mortar; the waves tear off great fragments and crush them with prodigious force, until they are ground into the merest powder, and that powder is washed into the interior of the lagoon, and forms a muddy coating at the bottom. Beside that there are a great many animals that prey upon the coral—fishes, worms, and creatures of that kind, and all these, by their digestive processes, reduce the coral to the same state, and contribute a very important element to this fine mud. The living coral found in the lagoon, is not the reef building coral; it does not give rise to the same massive skeletons. As you go in a boat over these shallow pools, you see these beautiful things, coloured red, blue, green, and all colours, building their houses; but these are mere tenements, and not to be compared in magnitude and importance to the masses which are built by the reef-builders themselves. Now such a structure as this is what is termed a "fringing reef." You meet with fringing reefs of this kind not only in the Mauritius, but in a number of other parts of the world. If these were the only reefs to be seen anywhere, the problem of the formation of coral reefs would never have been a difficult one. Nothing can be easier than to understand how there must have been a time when the coral polypes came and settled on the shores of this island, everywhere within the 20 to 25 fathom line, and how, having perched there, they gradually grew until they built up the reef.

But these are by no means the only sort of coral reefs in the world; on the contrary, there are very large areas, not only of the Indian ocean, but of the Pacific, in which many many thousands of square miles are covered either with a peculiar kind of reef, which is called the "encircling reef," or by a still more curious reef which goes by the name of the "atoll." There is a very good picture, which Professor Roscoe has been kind enough to prepare for me, of one of these atolls, which will enable you to form a notion of it as a landscape. You have in the foreground the waters of the Pacific. You must fancy yourself in the middle of the great ocean, and you will perceive that there is an almost circular island, with a low beach, which is formed entirely of coral sand; growing upon that beach you have vegetation, which takes, of course, the shape of the circular land; and then, in the interior of the circle, there is a pool of water, which is not very deep—probably in this case not more than eight or nine fathoms—and which forms a strange and beautiful contrast to the deep blue water outside. This circular island, or atoll, with a lagoon in the middle, is not a complete circle; upon one side of it there is a break, exactly like the entrance into a dock; and, as a matter of course, these circular islets, or atolls, form most efficient break-waters, for if you can only get inside your ship is in perfect safety, with admirable anchorage in the interior. If the ship were lying within a mile of that beach, the water would be one or two thousand feet deep; therefore, a section of that atoll, with the soundings as deep as this all round, would give you the notion of a great cone, cut off at the top, and with a shallow cup in the middle of it. Now, what a very singular fact this is, that we should have rising from the bottom of the deep ocean a great pyramid, beside which all human pyramids sink into the most utter insignificance! These singular coral limestone structures are very beautiful, especially when crowned with cocoa-nut trees. There you see the long line of land, covered with vegetation—cocoa-nut trees—and you have the sea upon the inner and outer sides, with a vessel very comfortably riding at anchor. That is one of the remarkable forms of reef in the Pacific. Another is a sort of half-way house, between the atoll and the fringing reef; it is what is called an "encircling reef." In this case you see an Island rising out of the sea, and at two or three miles distance, or more, and separated by a deep channel, which may be eight to twelve fathoms deep, there is a reef, which encircles it like a great girdle; and outside that again the water is one or two thousand feet deep. I spent three or four years of my life in cruising about a modification of one of these encircling reefs, called a "barrier reef," upon the east coast of Australia—one of the most wonderful accumulations of coral rock in the world. It is about 1,100 miles long, and varies in width from one or two to many miles. It is separated from the coast of Australia by a channel of about 25 fathoms deep; while outside, looking toward America, the water is two or three thousand feet deep at a mile from the edge of the reef. This is an accumulation of limestone rock, built up by corals, to which we have no parallel anywhere else. Imagine to yourself a heap of this material more than one thousand miles long, and several miles wide. That is a barrier reef; but a barrier reef is merely as it were a fragment of an encircling reef running parallel to the coast of a great continent.

I told you that the polypes which built these reefs were not able to live at a greater depth than 20 to 25 fathoms of water; and that is the reason why the fringing reef goes no farther from the land than it does. And for the same reason, if the Pacific could be laid bare we should have a most singular spectacle. There would be a number of mountains with truncated tops scattered over it, and those mountains would have an appearance just the very reverse of that presented by the mountains we see on shore. You know that the mountains on shore are covered with vegetation at their bases, while their tops are barren or covered with snow; but these mountains would be perfectly bare at their bases, and all round their tops they would be covered with a beautiful vegetation of coral polypes. And not only would this be the case, but we should find that for a considerable distance down, all the material of these atoll and encircling reefs was built up of precisely the same coral rock as the fringing reef. That is to say, you have an enormous mass of coral rock at a depth below the surface of the water where we know perfectly well that the coral animals could not have lived to form it. When those two facts were first put together, naturalists were quite as much puzzled as I daresay you are, at present, to understand how these two seeming contradictions could be reconciled; and all sorts of odd hypotheses were resorted to. It was supposed that the coral did not extend so far down, but that there was a great chain of submarine mountains stretching through the Pacific, and that the coral had grown upon them. But only fancy what supposition that was, for you would have to imagine that there was a chain of mountains a thousand miles or more long, and that the top of every mountain came within 20 fathoms of the surface of the sea, and neither rose above nor sunk beneath that level. That is highly improbable: such a chain of mountains was never known. Then how can you possibly account for the curious circular form of the atolls by any supposition of this kind? I believe there was some one who imagined that all these mountains were volcanoes, and that the reefs had grown round the tops of the craters, so we all stuck fast. I may say "we," though it was rather before my time. And when we all stick fast, it is just the use of a man of genius that he comes and shows us the meaning of the thing. He generally gives an explanation which is so ridiculously simple that everybody is ashamed that he did not find it out before; and the way such a discoverer is often rewarded is by finding out that some one had made the discovery before him! I do not mean to say that it was so in this particular instance, because the great man who played the part of Columbus and the egg on this occasion had, I believe, always had the full credit which he so well deserves. The discoverer of the key to these problems was a man whose name you know very well in connection with other matters, and I should not wonder if some of you have heard it said that he was a superficial kind of person who did not know much about the subject on which he writes. He was Mr. Darwin, and this brilliant discovery of his was made public thirty years ago, long before he became the celebrated man he now is; and it was one of the most singular instances of that astonishing sagacity which he possesses of drawing consequences by way of deduction from simple principles of natural science—a power which has served him in good stead on other occasions. Well, Mr. Darwin, looking at these curious difficulties and having that sort of knowledge of natural phenomena in general, without which he could not have made a step towards the solution of the problem, said to himself—"It is perfectly clear that the coral which forms the base of the atolls and fringing reefs could not possibly have been formed there if the level of the sea has always been exactly where it is now, for we know for certain that these polypes cannot build at a greater depth than 20 to 25 fathoms, and here we find them at 50 to 100 fathoms."

That was the first point to make clear. The second point to deal with was—if the polypes cannot have built there while the level of the sea has remained stationary, then one of two things must have happened—either the sea has gone up, or the land has gone down.

There is no escape from one of these two alternatives. Now the objections to the notion of the sea having gone up are very considerable indeed; for you will readily perceive that the sea could not possibly have risen a thousand feet in the Pacific without rising pretty much the same distance everywhere else; and if it had risen that height everywhere else since the reefs began to be formed, the geography of the world in general must have been very different indeed, at that time, from what it is now. And we have very good means of knowing that any such rise as this certainly has not taken place in the level of the sea since the time that the corals have been building their houses. And so the only other alternative was to suppose that the land had gone down, and at so slow a rate that the corals were able to grow upward as fast as it went downward. You will see at once that this is the solution of the mystery, and nothing can be simpler or more obvious when you come to think about it. Suppose we start with a coral sea and put in the middle of it an island such as the Mauritius. Now let the coral polypes come and perch on the shore and build a fringing reef, which will stop when they come to 20 or 25 fathoms, and you will have a fringing reef like that round the island in the illustration. So long as the land remains stationary, so long as it does not descend so long will that reef be unable to get any further out, because the moment the polype embryos try to get below they die. But now suppose that the land sinks very gradually indeed. Let it subside by slow degrees, until the mountain peak, which we have in the middle of it, alone projects beyond the sea level. The fringing reef would be carried down also; but we suppose that the sinking is so slow that the coral polypes are able to grow up as fast as the land is carried down; consequently they will add layer upon layer until they form a deep cup, because the inner part of the reef grows much more slowly than the outer part. Thus you have the reef forming a bed thicker upon the flanks of the island; but the edge of the reef will be very much further out from the land, and the lagoon will be many times deeper; in short, your fringing reef will be converted into an encircling reef. And if, instead of this being an island, it were a great continent like Australia, then you will have the phenomenon of a barrier reef which I have described. The barrier reef of Australia was originally a fringing reef; the land has gone slowly down; the consequence is the lagoon has deepened until its depth is now 25 fathoms and the corals have grown up at the outer edge until you have that prodigious accumulation which forms the barrier reef at present. Now let this process go on further still; let us take the land a further step down, so as to submerge even the peak. The coral, still growing up, will cover the surface of the land, and you will have an atoll reef; that is to say, a more or less circular or oval ring of coral rock with a lagoon in the middle. Thus you see that every peculiarity and phenomenon of these different forms of coral reef was explained at once by the simplest of all possible suppositions, namely, by supposing that the land has gone down at a rate not greater than that at which the coral polypes have grown up. You explain a Fringing Reef as a reef which is formed round land comparatively stationary; an Encircling Reef as one which is formed round land going down; and an Atoll as a reef formed upon land gone down; and the thing is so simple that a child may understand it when it is once explained.

But this would by no means satisfy the conditions of a scientific hypothesis. No man who is cautious would dream of trusting to an explanation of this kind simply because it explained one particular set of facts. Before you can possibly be safe in dealing with Nature—who is very properly made of the feminine gender, on account of the astonishing tricks which she plays upon her admirers!—I say before you can be safe in dealing with Nature, you must get two or three kinds of cross proofs, so as to make sure not only that your hypothesis fits that particular set of facts, but that it is not contradicted by some other set of facts which is just as clear and certain. And it so happens, that in this case Mr. Darwin supplied the cross proofs as well as the immediate evidence. You have all heard of volcanoes, those wonderful vents in the surface of the earth out of which pour masses of lava, cinders and ashes, and the like. Now, it is a matter of observation and experience that all volcanoes are placed in areas in which the surface of the earth is undergoing elevation, or at any rate is stationary; they are not placed in parts of the world in which the level of the land is being lowered. They are all indications of a great subterranean activity, of a something being pushed up, and therefore naturally the land either gives way and lets it come through, or else is raised up by its violence. And so Mr. Darwin, being desirous not to merely put out a flashy hypothesis, but to get at the truth of the matter, said to himself, "If my notion of this matter is right, then atolls and encircling reefs, inasmuch as they are dependent upon subsidence, ought not to be found in company with volcanoes; and, 'vice versa', volcanoes ought not to be found in company with atolls, but they ought to be found in company with fringing reefs." And if you turn to Mr. Darwin's great work upon the coral reefs, you will see a very beautiful chart of the world, which he prepared with great pains and labour, showing the distribution on the one hand of the reefs, and on the other of the volcanoes; you will find that in no case does the atoll accompany the volcano, or the volcano burst up among the atolls. It is most instructive to look at the great area of the Pacific on the map, and see the great masses of atolls forming in one region of it a most enormous belt, running from north-west to south-east; while the volcanoes, which are very numerous in that region, go round the margin, so that we can picture the Pacific to ourselves a section of a kind of very shallow basin—shallow in proportion to its width, with the atolls rising from the bottom of it, and at the margins the volcanoes. It is exactly as if you had taken a flat mass and lifted up the edges of it; the subterranean force which lifted up the edges shows itself in volcanoes, and as the edges have been raised, the middle part of the mass has gone down. In other words, the facts of physical geography precisely and exactly correspond with the hypothesis which accounts for the infinite varieties of coral reefs.

One other point, before I conclude, about this matter. These reefs, as you have just perceived, are in a most singular and unexpected manner indications of physical changes of elevations and depressions going on upon the surface of the globe. I dare say it may have surprised you to hear me talk in this familiar sort of way of land going up and down; but it is one of the universal lessons of geology that the land is going down and going up, and has been going up and down, in all sorts of places and to all sorts of distances, through all recorded time. Geologists would be quite right in maintaining the seeming paradox that the stable thing in the world is the fluid sea and the shifting thing is the solid land. That may sound a very hard saying at first, but the more you look into geology, the more you will see ground for believing that it is not a mere paradox.

In an unexpected manner, again, these reefs afford us not only an indication of change of place, but they afford an indication of lapse of time. The reef is a timekeeper of a very curious character; and you can easily understand why. The coral polype, like everything else, takes a certain time to grow to its full size; it does not do it in a minute; just as a child takes a certain time to grow into a man so does the embryo polype take time to grow into a perfect polype and form its skeleton. Consequently every particle of coral limestone is an expression of time. It must have taken a certain time to separate the lime from the sea water. It is not possible to arrive at an accurate computation of the time it must have taken to form these coral islands, because we lack the necessary data; but we can form a rough calculation, which leads to very curious and striking results. The computations of the rate at which corals grow are so exceedingly variable, that we must allow the widest possible margin for error; and it is better in this case to make the allowance upon the side of excess. I think that anybody who knows anything about the matter will tell you that I am making a computation far in excess of what is probable, if I say that an inch of coral limestone may be added to one of these reefs in the course of a year. I think most naturalists would be inclined to laugh at me for making such an assumption, and would put the growth at certainly not more than half that amount. But supposing it is so, what a very curious notion of the antiquity of some of these great living pyramids comes out by a very simple calculation. There is no doubt whatever that the sea faces of some of them are fully a thousand feet high, and if you take the reckoning of an inch a year, that will give you 12,000 years for the age of that particular pyramid or cone of coral limestone; 12,000 long years have these creatures been labouring in conditions which must have been substantially the same as they are now, otherwise the polypes could not have continued their work. But I believe I very much understate both the height of some of these masses, and overstate the amount which these animals can form in the course of a year; so that you might very safely double the period as the time during which the Pacific Ocean, the general state of the climate, and the sea, and the temperature has been substantially what it is now; and yet that state of things which now obtains in the Pacific Ocean is the yesterday of the history of the life of the globe. Those pyramids of coral rock are built upon a foundation which is itself formed by the deposits which the geologist has to deal with. If we go back in time and search through the series of the rocks, we find at every age of the world's history which has yet been examined, accumulations of limestone, many of which have certainly been built up in just the same way as those coral reefs which are now forming the bottom of the Pacific Ocean. And even if we turn to the oldest periods of geologic history, although the nature of the materials is changed, although we cannot apply to them the same reasonings that we can to the existing corals, yet still there are vast masses of limestone formed of nothing else than the accumulations of the skeletons of similar animals, and testifying that even in those remote periods of the world's history, as now, the order of things implies that the earth had already endured for a period of which our ordinary standards of chronology give us not the slightest conception. In other words, the history of these coral reefs, traced out honestly and carefully, and with the same sort of reasoning that you would use in the ordinary affairs of life, testifies, like every fact that I know of, to the prodigious antiquity of the earth since it existed in a condition in the main similar to that in which it now is.

End of Coral and Coral Reefs.



YEAST.

I have selected to-night the particular subject of Yeast for two reasons—or, rather, I should say for three. In the first place, because it is one of the simplest and the most familiar objects with which we are acquainted. In the second place, because the facts and phenomena which I have to describe are so simple that it is possible to put them before you without the help of any of those pictures or diagrams which are needed when matters are more complicated, and which, if I had to refer to them here, would involve the necessity of my turning away from you now and then, and thereby increasing very largely my difficulty (already sufficiently great) in making myself heard. And thirdly, I have chosen this subject because I know of no familiar substance forming part of our every-day knowledge and experience, the examination of which, with a little care, tends to open up such very considerable issues as does this substance—yeast.

In the first place, I should like to call your attention to a fact with which the whole of you are, to begin with, perfectly acquainted, I mean the fact that any liquid containing sugar, any liquid which is formed by pressing out the succulent parts of the fruits of plants, or a mixture of honey and water, if left to itself for a short time, begins to undergo a peculiar change. No matter how clear it might be at starting, yet after a few hours, or at most a few days, if the temperature is high, this liquid begins to be turbid, and by-and-by bubbles make their appearance in it, and a sort of dirty-looking yellowish foam or scum collects at the surface; while at the same time, by degrees, a similar kind of matter, which we call the "lees," sinks to the bottom.

The quantity of this dirty-looking stuff, that we call the scum and the lees, goes on increasing until it reaches a certain amount, and then it stops; and by the time it stops, you find the liquid in which this matter has been formed has become altered in its quality. To begin with it was a mere sweetish substance, having the flavour of whatever might be the plant from which it was expressed, or having merely the taste and the absence of smell of a solution of sugar; but by the time that this change that I have been briefly describing to you is accomplished the liquid has become completely altered, it has acquired a peculiar smell, and, what is still more remarkable, it has gained the property of intoxicating the person who drinks it. Nothing can be more innocent than a solution of sugar; nothing can be less innocent, if taken in excess, as you all know, than those fermented matters which are produced from sugar. Well, again, if you notice that bubbling, or, as it were, seething of the liquid, which has accompanied the whole of this process, you will find that it is produced by the evolution of little bubbles of air-like substance out of the liquid; and I dare say you all know this air-like substance is not like common air; it is not a substance which a man can breathe with impunity. You often hear of accidents which take place in brewers' vats when men go in carelessly, and get suffocated there without knowing that there was anything evil awaiting them. And if you tried the experiment with this liquid I am telling of while it was fermenting, you would find that any small animal let down into the vessel would be similarly stifled; and you would discover that a light lowered down into it would go out. Well, then, lastly, if after this liquid has been thus altered you expose it to that process which is called distillation; that is to say, if you put it into a still, and collect the matters which are sent over, you obtain, when you first heat it, a clear transparent liquid, which, however, is something totally different from water; it is much lighter; it has a strong smell, and it has an acrid taste; and it possesses the same intoxicating power as the original liquid, but in a much more intense degree. If you put a light to it, it burns with a bright flame, and it is that substance which we know as spirits of wine.

Now these facts which I have just put before you—all but the last—have been known from extremely remote antiquity. It is, I hope one of the best evidences of the antiquity of the human race, that among the earliest records of all kinds of men, you find a time recorded when they got drunk. We may hope that that must have been a very late period in their history. Not only have we the record of what happened to Noah, but if we turn to the traditions of a different people, those forefathers of ours who lived in the high lands of Northern India, we find that they were not less addicted to intoxicating liquids; and I have no doubt that the knowledge of this process extends far beyond the limits of historically recorded time. And it is a very curious thing to observe that all the names we have of this process, and all that belongs to it, are names that have their roots not in our present language, but in those older languages which go back to the times at which this country was peopled. That word "fermentation" for example, which is the title we apply to the whole process, is a Latin term; and a term which is evidently based upon the fact of the effervescence of the liquid. Then the French, who are very fond of calling themselves a Latin race, have a particular word for ferment, which is 'levure'. And, in the same way, we have the word "leaven," those two words having reference to the heaving up, or to the raising of the substance which is fermented. Now those are words which we get from what I may call the Latin side of our parentage; but if we turn to the Saxon side, there are a number of names connected with this process of fermentation. For example, the Germans call fermentation—and the old Germans did so—"gahren;" and they call anything which is used as a ferment by such names, such as "gheist" and "geest," and finally in low German, "yest"; and that word you know is the word our Saxon forefathers used, and is almost the same as the word which is commonly employed in this country to denote the common ferment of which I have been speaking. So they have another name, the word "hefe," which is derived from their verb "heben," which signifies to raise up; and they have yet a third name, which is also one common in this country (I do not know whether it is common in Lancashire, but it is certainly very common in the Midland countries), the word "barm," which is derived from a root which signifies to raise or to bear up. Barm is a something borne up; and thus there is much more real relation than is commonly supposed by those who make puns, between the beer which a man takes down his throat and the bier upon which that process, if carried to excess, generally lands him, for they are both derived from the root signifying bearing up; the one thing is borne upon men's shoulders, and the other is the fermented liquid which was borne up by the fermentation taking place in itself.

Again, I spoke of the produce of fermentation as "spirit of wine." Now what a very curious phrase that is, if you come to think of it. The old alchemists talked of the finest essence of anything as if it had the same sort of relation to the thing itself as a man's spirit is supposed to have to his body; and so they spoke of this fine essence of the fermented liquid as being the spirit of the liquid. Thus came about that extraordinary ambiguity of language, in virtue of which you apply precisely the same substantive name to the soul of man and to a glass of gin! And then there is still yet one other most curious piece of nomenclature connected with this matter, and that is the word "alcohol" itself, which is now so familiar to everybody. Alcohol originally meant a very fine powder. The women of the Arabs and other Eastern people are in the habit of tingeing their eyelashes with a very fine black powder which is made of antimony, and they call that "kohol;" and the "al" is simply the article put in front of it, so as to say "the kohol." And up to the 17th century in this country the word alcohol was employed to signify any very fine powder; you find it in Robert Boyle's works that he uses "alcohol" for a very fine subtle powder. But then this name of anything very fine and very subtle came to be specially connected with the fine and subtle spirit obtained from the fermentation of sugar; and I believe that the first person who fairly fixed it as the proper name of what we now commonly call spirits of wine, was the great French chemist Lavoisier, so comparatively recent is the use of the word alcohol in this specialised sense.

So much by way of general introduction to the subject on which I have to speak to-night. What I have hitherto stated is simply what we may call common knowledge, which everybody may acquaint himself with. And you know that what we call scientific knowledge is not any kind of conjuration, as people sometimes suppose, but it is simply the application of the same principles of common sense that we apply to common knowledge, carried out, if I may so speak, to knowledge which is uncommon. And all that we know now of this substance, yeast, and all the very strange issues to which that knowledge has led us, have simply come out of the inveterate habit, and a very fortunate habit for the human race it is, which scientific men have of not being content until they have routed out all the different chains and connections of apparently simple phenomena, until they have taken them to pieces and understood the conditions upon which they depend. I will try to point out to you now what has happened in consequence of endeavouring to apply this process of "analysis," as we call it, this teazing out of an apparently simple fact into all the little facts of which it is made up, to the ascertained facts relating to the barm or the yeast; secondly, what has come of the attempt to ascertain distinctly what is the nature of the products which are produced by fermentation; then what has come of the attempt to understand the relation between the yeast and the products; and lastly, what very curious side issues if I may so call them—have branched out in the course of this inquiry, which has now occupied somewhere about two centuries.

The first thing was to make out precisely and clearly what was the nature of this substance, this apparently mere scum and mud that we call yeast. And that was first commenced seriously by a wonderful old Dutchman of the name of Leeuwenhoek, who lived some two hundred years ago, and who was the first person to invent thoroughly trustworthy microscopes of high powers. Now, Leeuwenhoek went to work upon this yeast mud, and by applying to it high powers of the microscope, he discovered that it was no mere mud such as you might at first suppose, but that it was a substance made up of an enormous multitude of minute grains, each of which had just as definite a form as if it were a grain of corn, although it was vastly smaller, the largest of these not being more than the two-thousandth of an inch in diameter; while, as you know, a grain of corn is a large thing, and the very smallest of these particles were not more than the seven-thousandth of an inch in diameter. Leeuwenhoek saw that this muddy stuff was in reality a liquid, in which there were floating this immense number of definitely shaped particles, all aggregated in heaps and lumps and some of them separate. That discovery remained, so to speak, dormant for fully a century, and then the question was taken up by a French discoverer, who, paying great attention and having the advantage of better instruments than Leeuwenhoek had, watched these things and made the astounding discovery that they were bodies which were constantly being reproduced and growing; than when one of these rounded bodies was once formed and had grown to its full size, it immediately began to give off a little bud from one side, and then that bud grew out until it had attained the full size of the first, and that, in this way, the yeast particle was undergoing a process of multiplication by budding, just as effectual and just as complete as the process of multiplication of a plant by budding; and thus this Frenchman, Cagniard de la Tour, arrived at the conclusion—very creditable to his sagacity, and which has been confirmed by every observation and reasoning since—that this apparently muddy refuse was neither more nor less than a mass of plants, of minute living plants, growing and multiplying in the sugary fluid in which the yeast is formed. And from that time forth we have known this substance which forms the scum and the lees as the yeast plant; and it has received a scientific name—which I may use without thinking of it, and which I will therefore give you—namely, "Torula." Well, this was a capital discovery. The next thing to do was to make out how this torula was related to the other plants. I won't weary you with the whole course of investigation, but I may sum up its results, and they are these—that the torula is a particular kind of a fungus, a particular state rather, of a fungus or mould. There are many moulds which under certain conditions give rise to this torula condition, to a substance which is not distinguishable from yeast, and which has the same properties as yeast—that is to say, which is able to decompose sugar in the curious way that we shall consider by-and-by. So that the yeast plant is a plant belonging to a group of the Fungi, multiplying and growing and living in this very remarkable manner in the sugary fluid which is, so to speak, the nidus or home of the yeast.

That, in a few words, is, as far as investigation—by the help of one's eye and by the help of the microscope—has taken us. But now there is an observer whose methods of observation are more refined than those of men who use their eye, even though it be aided by the microscope; a man who sees indirectly further than we can see directly—that is, the chemist; and the chemist took up this question, and his discovery was not less remarkable than that of the microscopist. The chemist discovered that the yeast plant being composed of a sort of bag, like a bladder, inside which is a peculiar soft, semifluid material—the chemist found that this outer bladder has the same composition as the substance of wood, that material which is called "cellulose," and which consists of the elements carbon and hydrogen and oxygen, without any nitrogen. But then he also found (the first person to discover it was an Italian chemist, named Fabroni, in the end of the last century) that this inner matter which was contained in the bag, which constitutes the yeast plant, was a substance containing the elements carbon and hydrogen and oxygen and nitrogen; that it was what Fabroni called a vegeto-animal substance, and that it had the peculiarities of what are commonly called "animal products."

This again was an exceedingly remarkable discovery. It lay neglected for a time, until it was subsequently taken up by the great chemists of modern times, and they, with their delicate methods of analysis, have finally decided that, in all essential respects, the substance which forms the chief part of the contents of the yeast plant is identical with the material which forms the chief part of our own muscles, which forms the chief part of our own blood, which forms the chief part of the white of the egg; that, in fact, although this little organism is a plant, and nothing but a plant, yet that its active living contents contain a substance which is called "protein," which is of the same nature as the substance which forms the foundation of every animal organism whatever.

Now we come next to the question of the analysis of the products, of that which is produced during the process of fermentation. So far back as the beginning of the 16th century, in the times of transition between the old alchemy and the modern chemistry, there was a remarkable man, Von Helmont, a Dutchman, who saw the difference between the air which comes out of a vat where something is fermenting and common air. He was the man who invented the term "gas," and he called this kind of gas "gas silvestre"—so to speak gas that is wild, and lives in out of the way places—having in his mind the identity of this particular kind of air with that which is found in some caves and cellars. Then, the gradual process of investigation going on, it was discovered that this substance, then called "fixed air," was a poisonous gas, and it was finally identified with that kind of gas which is obtained by burning charcoal in the air, which is called "carbonic acid." Then the substance alcohol was subjected to examination, and it was found to be a combination of carbon, and hydrogen, and oxygen. Then the sugar which was contained in the fermenting liquid was examined and that was found to contain the three elements carbon, hydrogen, and oxygen. So that it was clear there were in sugar the fundamental elements which are contained in the carbonic acid, and in the alcohol. And then came that great chemist Lavoisier, and he examined into the subject carefully, and possessed with that brilliant thought of his which happens to be propounded exactly apropos to this matter of fermentation—that no matter is ever lost, but that matter only changes its form and changes its combinations—he endeavoured to make out what became of the sugar which was subjected to fermentation. He thought he discovered that the whole weight of the sugar was represented by the carbonic acid produced; that in other words, supposing this tumbler to represent the sugar, that the action of fermentation was as it were the splitting of it, the one half going away in the shape of carbonic acid, and the other half going away in the shape of alcohol. Subsequent inquiry, careful research with the refinements of modern chemistry, have been applied to this problem, and they have shown that Lavoisier was not quite correct; that what he says is quite true for about 95 per cent. of the sugar, but that the other 5 per cent., or nearly so, is converted into two other things; one of them, matter which is called succinic acid, and the other matter which is called glycerine, which you all know now as one of the commonest of household matters. It may be that we have not got to the end of this refined analysis yet, but at any rate, I suppose I may say—and I speak with some little hesitation for fear my friend Professor Roscoe here may pick me up for trespassing upon his province—but I believe I may say that now we can account for 99 per cent. at least of the sugar, and that 99 per cent. is split up into these four things, carbonic acid, alcohol, succinic acid, and glycerine. So that it may be that none of the sugar whatever disappears, and that only its parts, so to speak, are re-arranged, and if any of it disappears, certainly it is a very small portion.

Now these are the facts of the case. There is the fact of the growth of the yeast plant; and there is the fact of the splitting up of the sugar. What relation have these two facts to one another?

For a very long time that was a great matter of dispute. The early French observers, to do them justice, discerned the real state of the case, namely, that there was a very close connection between the actual life of the yeast plant and this operation of the splitting up of the sugar; and that one was in some way or other connected with the other. All investigation subsequently has confirmed this original idea. It has been shown that if you take any measures by which other plants of like kind to the torula would be killed, and by which the yeast plant is killed, then the yeast loses its efficiency. But a capital experiment upon this subject was made by a very distinguished man, Helmholz, who performed an experiment of this kind. He had two vessels—one of them we will suppose full of yeast, but over the bottom of it, as this might be, was tied a thin film of bladder; consequently, through that thin film of bladder all the liquid parts of the yeast would go, but the solid parts would be stopped behind; the torula would be stopped, the liquid parts of the yeast would go. And then he took another vessel containing a fermentable solution of sugar, and he put one inside the other; and in this way you see the fluid parts of the yeast were able to pass through with the utmost ease into the sugar, but the solid parts could not get through at all. And he judged thus: if the fluid parts are those which excite fermentation, then, inasmuch as these are stopped, the sugar will not ferment; and the sugar did not ferment, showing quite clearly, that an immediate contact with the solid, living torula was absolutely necessary to excite this process of splitting up of the sugar. This experiment was quite conclusive as to this particular point, and has had very great fruits in other directions.

Well, then, the yeast plant being essential to the production of fermentation, where does the yeast plant come from? Here, again, was another great problem opened up, for, as I said at starting, you have, under ordinary circumstances in warm weather, merely to expose some fluid containing a solution of sugar, or any form of syrup or vegetable juice to the air, in order, after a comparatively short time, to see all these phenomena of fermentation. Of course the first obvious suggestion is, that the torula has been generated within the fluid. In fact, it seems at first quite absurd to entertain any other conviction; but that belief would most assuredly be an erroneous one.

Towards the beginning of this century, in the vigorous times of the old French wars, there was a Monsieur Appert, who had his attention directed to the preservation of things that ordinarily perish, such as meats and vegetables, and in fact he laid the foundation of our modern method of preserving meats; and he found that if he boiled any of these substances and then tied them so as to exclude the air, that they would be preserved for any time. He tried these experiments, particularly with the must of wine and with the wort of beer; and he found that if the wort of beer had been carefully boiled and was stopped in such a way that the air could not get at it, it would never ferment. What was the reason of this? That, again, became the subject of a long string of experiments, with this ultimate result, that if you take precautions to prevent any solid matters from getting into the must of wine or the wort of beer, under these circumstances—that is to say, if the fluid has been boiled and placed in a bottle, and if you stuff the neck of the bottle full of cotton wool, which allows the air to go through and stops anything of a solid character however fine, then you may let it be for ten years and it will not ferment. But if you take that plug out and give the air free access, then, sooner or later fermentation will set up. And there is no doubt whatever that fermentation is excited only by the presence of some torula or other, and that that torula proceeds in our present experience, from pre-existing torulae. These little bodies are excessively light. You can easily imagine what must be the weight of little particles, but slightly heavier than water, and not more than the two-thousandth or perhaps seven-thousandth of an inch in diameter. They are capable of floating about and dancing like motes in the sunbeam; they are carried about by all sorts of currents of air; the great majority of them perish; but one or two, which may chance to enter into a sugary solution, immediately enter into active life, find there the conditions of their nourishment, increase and multiply, and may give rise to any quantity whatever of this substance yeast. And, whatever may be true or not be true about this "spontaneous generation," as it is called in regard to all other kinds of living things, it is perfectly certain, as regards yeast, that it always owes its origin to this process of transportation or inoculation, if you like so to call it, from some other living yeast organism; and so far as yeast is concerned, the doctrine of spontaneous generation is absolutely out of court. And not only so, but the yeast must be alive in order to exert these peculiar properties. If it be crushed, if it be heated so far that its life is destroyed, that peculiar power of fermentation is not excited. Thus we have come to this conclusion, as the result of our inquiry, that the fermentation of sugar, the splitting of the sugar into alcohol and carbonic acid, glycerine, and succinic acid, is the result of nothing but the vital activity of this little fungus, the torula.

And now comes the further exceedingly difficult inquiry—how is it that this plant, the torula, produces this singular operation of the splitting up of the sugar? Fabroni, to whom I referred some time ago, imagined that the effervescence of fermentation was produced in just the same way as the effervescence of a sedlitz powder, that the yeast was a kind of acid, and that the sugar was a combination of carbonic acid and some base to form the alcohol, and that the yeast combined with this substance, and set free the carbonic acid; just as when you add carbonate of soda to acid you turn out the carbonic acid. But of course the discovery of Lavoisier that the carbonic acid and the alcohol taken together are very nearly equal in weight to the sugar, completely upset this hypothesis. Another view was therefore taken by the French chemist, Thenard, and it is still held by a very eminent chemist, M. Pasteur, and their view is this, that the yeast, so to speak, eats a little of the sugar, turns a little of it to its own purposes, and by so doing gives such a shape to the sugar that the rest of it breaks up into carbonic acid and alcohol.

Well, then, there is a third hypothesis, which is maintained by another very distinguished chemist, Liebig, which denies either of the other two, and which declares that the particles of the sugar are, as it were, shaken asunder by the forces at work in the yeast plant. Now I am not going to take you into these refinements of chemical theory, I cannot for a moment pretend to do so, but I may put the case before you by an analogy. Suppose you compare the sugar to a card house, and suppose you compare the yeast to a child coming near the card house, then Fabroni's hypothesis was that the child took half the cards away; Thenard's and Pasteur's hypothesis is that the child pulls out the bottom card and thus makes it tumble to pieces; and Liebig's hypothesis is that the child comes by and shakes the table and tumbles the house down. I appeal to my friend here (Professor Roscoe) whether that is not a fair statement of the case.

Having thus, as far as I can, discussed the general state of the question, it remains only that I should speak of some of those collateral results which have come in a very remarkable way out of the investigation of yeast. I told you that it was very early observed that the yeast plant consisted of a bag made up of the same material as that which composes wood, and of an interior semifluid mass which contains a substance, identical in its composition, in a broad sense, with that which constitutes the flesh of animals. Subsequently, after the structure of the yeast plant had been carefully observed, it was discovered that all plants, high and low, are made up of separate bags or "cells," as they are called; these bags or cells having the composition of the pure matter of wood; having the same composition, broadly speaking, as the sac of the yeast plant, and having in their interior a more or less fluid substance containing a matter of the same nature as the protein substance of the yeast plant. And therefore this remarkable result came out—that however much a plant may differ from an animal, yet that the essential constituent of the contents of these various cells or sacs of which the plant is made up, the nitrogenous protein matter, is the same in the animal as in the plant. And not only was this gradually discovered, but it was found that these semifluid contents of the plant cell had, in many cases, a remarkable power of contractility quite like that of the substance of animals. And about 24 or 25 years ago, namely, about the year 1846, to the best of my recollection, a very eminent German botanist, Hugo Von Mohl, conferred upon this substance which is found in the interior of the plant cell, and which is identical with the matter found in the inside of the yeast cell, and which again contains an animal substance similar to that of which we ourselves are made up—he conferred upon this that title of "protoplasm," which has brought other people a great deal of trouble since! I beg particularly to say that, because I find many people suppose that I was the inventor of that term, whereas it has been in existence for at least twenty-five years. And then other observers, taking the question up, came to this astonishing conclusion (working from this basis of the yeast), that the differences between animals and plants are not so much in the fundamental substances which compose them, not in the protoplasm, but in the manner in which the cells of which their bodies are built up have become modified. There is a sense in which it is true—and the analogy was pointed out very many years ago by some French botanists and chemists—there is a sense in which it is true that every plant is substantially an enormous aggregation of bodies similar to yeast cells, each having to a certain extent its own independent life. And there is a sense in which it is also perfectly true—although it would be impossible for me to give the statement to you with proper qualifications and limitations on an occasion like this—but there is also a sense in which it is true that every animal body is made up of an aggregation of minute particles of protoplasm, comparable each of them to the individual separate yeast plant. And those who are acquainted with the history of the wonderful revolution which has been worked in our whole conception of these matters in the last thirty years, will bear me out in saying that the first germ of them, to a very great extent, was made to grow and fructify by the study of the yeast plant, which presents us with living matter in almost its simplest condition.

Then there is yet one last and most important bearing of this yeast question. There is one direction probably in which the effects of the careful study of the nature of fermentation will yield results more practically valuable to mankind than any other. Let me recall to your minds the fact which I stated at the beginning of this lecture. Suppose that I had here a solution of pure sugar with a little mineral matter in it; and suppose it were possible for me to take upon the point of a needle one single, solitary yeast cell, measuring no more perhaps than the three-thousandth of an inch in diameter—not bigger than one of those little coloured specks of matter in my own blood at this moment, the weight of which it would be difficult to express in the fraction of a grain—and put it into this solution. From that single one, if the solution were kept at a fair temperature in a warm summer's day, there would be generated, in the course of a week, enough torulae to form a scum at the top and to form lees at the bottom, and to change the perfectly tasteless and entirely harmless fluid, syrup, into a solution impregnated with the poisonous gas carbonic acid, impregnated with the poisonous substance alcohol; and that, in virtue of the changes worked upon the sugar by the vital activity of these infinitesimally small plants. Now you see that this is a case of infection. And from the time that the phenomenon of fermentation were first carefully studied, it has constantly been suggested to the minds of thoughtful physicians that there was a something astoundingly similar between this phenomena of the propagation of fermentation by infection and contagion, and the phenomena of the propagation of diseases by infection and contagion. Out of this suggestion has grown that remarkable theory of many diseases which has been called the "germ theory of disease," the idea, in fact, that we owe a great many diseases to particles having a certain life of their own, and which are capable of being transmitted from one living being to another, exactly as the yeast plant is capable of being transmitted from one tumbler of saccharine substance to another. And that is a perfectly tenable hypothesis, one which in the present state of medicine ought to be absolutely exhausted and shown not to be true, until we take to others which have less analogy in their favour. And there are some diseases most assuredly in which it turns out to be perfectly correct. There are some forms of what are called malignant carbuncle which have been shown to be actually effected by a sort of fermentation, if I may use the phrase, by a sort of disturbance and destruction of the fluids of the animal body, set up by minute organisms which are the cause of this destruction and of this disturbance; and only recently the study of the phenomena which accompany vaccination has thrown an immense light in this direction, tending to show by experiments of the same general character as that to which I referred as performed by Helmholz, that there is a most astonishing analogy between the contagion of that healing disease and the contagion of destructive diseases. For it has been made out quite clearly, by investigations carried on in France and in this country, that the only part of the vaccine matter which is contagious, which is capable of carrying on its influence in the organism of the child who is vaccinated, is the solid particles and not the fluid. By experiments of the most ingenious kind, the solid parts have been separated from the fluid parts, and it has then been discovered that you may vaccinate a child as much as you like with the fluid parts, but no effect takes place, though an excessively small portion of the solid particles, the most minute that can be separated, is amply sufficient to give rise to all the phenomena of the cow pock, by a process which we can compare to nothing but the transmission of fermentation from one vessel into another, by the transport to the one of the torula particles which exist in the other. And it has been shown to be true of some of the most destructive diseases which infect animals, such diseases as the sheep pox, such diseases as that most terrible and destructive disorder of horses, glanders, that in these, also, the active power is the living solid particle, and that the inert part is the fluid. However, do not suppose that I am pushing the analogy too far. I do not mean to say that the active, solid parts in these diseased matters are of the same nature as living yeast plants; but, so far as it goes, there is a most surprising analogy between the two; and the value of the analogy is this, that by following it out we may some time or other come to understand how these diseases are propagated, just as we understand, now, about fermentation; and that, in this way, some of the greatest scourges which afflict the human race may be, if not prevented, at least largely alleviated.

This is the conclusion of the statements which I wished to put before you. You see we have not been able to have any accessories. If you will come in such numbers to hear a lecture of this kind, all I can say is, that diagrams cannot be made big enough for you, and that it is not possible to show any experiments illustrative of a lecture on such a subject as I have to deal with. Of course my friends the chemists and physicists are very much better off, because they can not only show you experiments, but you can smell them and hear them! But in my case such aids are not attainable, and therefore I have taken a simple subject and have dealt with it in such a way that I hope you all understand it, at least so far as I have been able to put it before you in words; and having once apprehended such of the ideas and simple facts of the case as it was possible to put before you, you can see for yourselves the great and wonderful issues of such an apparently homely subject.

End of Yeast.



WILLIAM HARVEY AND THE DISCOVERY OF THE CIRCULATION OF THE BLOOD.

THE CIRCULATION OF THE BLOOD.*

([Footnote] *A Lecture delivered in the Free Trade Hall, November 2nd, 1878.)

I desire this evening to give you some account of the life and labours of a very noble Englishman—William Harvey.

William Harvey was born in the year 1578, and as he lived until the year 1657, he very nearly attained the age of 80. He was the son of a small landowner in Kent, who was sufficiently wealthy to send this, his eldest son, to the University of Cambridge; while he embarked the others in mercantile pursuits, in which they all, as time passed on, attained riches.

William Harvey, after pursuing his education at Cambridge, and taking his degree there, thought it was advisable—and justly thought so, in the then state of University education—to proceed to Italy, which at that time was one of the great centres of intellectual activity in Europe, as all friends of freedom hope it will become again, sooner or later. In those days the University of Padua had a great renown; and Harvey went there and studied under a man who was then very famous—Fabricius of Aquapendente. On his return to England, Harvey became a member of the College of Physicians in London, and entered into practice; and, I suppose, as an indispensable step thereto, proceeded to marry. He very soon became one of the most eminent members of the profession in London; and, about the year 1616, he was elected by the College of Physicians their Professor of Anatomy. It was while Harvey held this office that he made public that great discovery of the circulation of the blood and the movements of the heart, the nature of which I shall endeavour by-and-by to explain to you at length. Shortly afterwards, Charles the First having succeeded to the throne in 1625, Harvey became one of the king's physicians; and it is much to the credit of the unfortunate monarch—who, whatever his faults may have been, was one of the few English monarchs who have shown a taste for art and science—that Harvey became his attached and devoted friend as well as servant; and that the king, on the other hand, did all he could to advance Harvey's investigations. But, as you know, evil times came on; and Harvey, after the fortunes of his royal master were broken, being then a man of somewhat advanced years—over 60 years of age, in fact—retired to the society of his brothers in and near London, and among them pursued his studies until the day of his death. Harvey's career is a life which offers no salient points of interest to the biographer. It was a life devoted to study and investigation; and it was a life the devotion of which was amply rewarded, as I shall have occasion to point out to you, by its results.

Harvey, by the diversity, the variety, and the thoroughness of his investigations, was enabled to give an entirely new direction to at least two branches—and two of the most important branches—of what now-a-days we call Biological Science. On the one hand, he founded all our modern physiology by the discovery of the exact nature of the motions of the heart, and of the course in which the blood is propelled through the body; and, on the other, he laid the foundation of that study of development which has been so much advanced of late years, and which constitutes one of the great pillars of the doctrine of evolution. This doctrine, I need hardly tell you, is now tending to revolutionise our conceptions of the origin of living things, exactly in the same way as Harvey's discovery of the circulation in the seventeeth century revolutionised the conceptions which men had previously entertained with regard to physiological processes.

It would, I regret, be quite impossible for me to attempt, in the course of the time I can presume to hold you here, to unfold the history of more than one of these great investigations of Harvey. I call them "great investigations," as distinguished from "large publications." I have in my hand a little book, which those of you who are at a great distance may have some difficulty in seeing, and which I value very much. It is, I am afraid, sadly thumbed and scratched with annotations by a very humble successor and follower of Harvey. This little book is the edition of 1651 of the 'Exercitationes de Generatione'; and if you were to add another little book, printed in the same small type, and about one-seventh of the thickness, you would have the sum total of the printed matter which Harvey contributed to our literature. And yet in that sum total was contained, I may say, the materials of two revolutions in as many of the main branches of biological science. If Harvey's published labours can be condensed into so small a compass, you must recollect that it is not because he did not do a great deal more. We know very well that he did accumulate a very considerable number of observations on the most varied topics of medicine, surgery, and natural history. But, as I mentioned to you just now, Harvey, for a time, took the royal side in the domestic quarrel of the Great Rebellion, as it is called; and the Parliament, not unnaturally resenting that action of his, sent soldiers to seize his papers. And while I imagine they found nothing treasonable among those papers, yet, in the process of rummaging through them, they destroyed all the materials which Harvey had spent a laborious life in accumulating; and hence it is that the man's work and labours are represented by so little in apparent bulk.

What I chiefly propose to do to-night is to lay before you an account of the nature of the discovery which Harvey made, and which is termed the Discovery of the Circulation of the Blood. And I desire also, with some particularity, to draw your attention to the methods by which that discovery was achieved; for, in both these respects, I think, there will be much matter for profitable reflection.

Let me point out to you, in the first place, with respect to this important matter of the movements of the heart and the course of the blood in the body, that there is a certain amount of knowledge which must have been obtained without men taking the trouble to seek it—knowledge which must have been taken in, in the course of time, by everybody who followed the trade of a butcher, and still more so by those people who, in ancient times, professed to divine the course of future events from the entrails of animals. It is quite obvious to all, from ordinary accidents, that the bodies of all the higher animals contain a hot red fluid—the blood. Everybody can see upon the surface of some part of the skin, underneath that skin, pulsating tubes, which we know as the arteries. Everybody can see under the surface of the skin more delicate and softer looking tubes, which do not pulsate, which are of a bluish colour, and are termed the veins. And every person who has seen a recently killed animal opened knows that these two kinds of tubes to which I have just referred, are connected with an apparatus which is placed in the chest, which apparatus, in recently killed animals, is still pulsating. And you know that in yourselves you can feel the pulsation of this organ, the heart, between the fifth and sixth ribs. I take it that this much of anatomy and physiology has been known from the oldest times, not only as a matter of curiosity, but because one of the great objects of men, from their earliest recorded existence, has been to kill one another, and it was a matter of considerable importance to know which was the best place for hitting an enemy. I can refer you to very ancient records for most precise and clear information that one of the best places is to smite him between the fifth and sixth ribs. Now that is a very good piece of regional anatomy, for that is the place where the heart strikes in its pulsations, and the use of smiting there is that you go straight to the heart. Well, all that must have been known from time immemorial—at least for 4,000 or 5,000 years before the commencement of our era—because we know that for as great a period as that the Egyptians, at any rate, whatever may have been the case with other people, were in the enjoyment of a highly developed civilisation. But of what knowledge they may have possessed beyond this we know nothing; and in tracing back the springs of the origin of everything that we call "modern science" (which is not merely knowing, but knowing systematically, and with the intention and endeavour to find out the causal connection of things)—I say that when we trace back the different lines of all the modern sciences we come at length to one epoch and to one country—the epoch being about the fourth and fifth centuries before Christ, and the country being ancient Greece. It is there that we find the commencement and the root of every branch of physical science and of scientific method. If we go back to that time we have in the works attributed to Aristotle, who flourished between 300 and 400 years before Christ, a sort of encyclopaedia of the scientific knowledge of that day—and a very marvellous collection of, in many respects, accurate and precise knowledge it is. But, so far as regards this particular topic, Aristotle, it must be confessed, has not got very far beyond common knowledge. He knows a little about the structure of the heart. I do not think that his knowledge is so inaccurate as many people fancy, but it does not amount to much. A very few years after his time, however, there was a Greek philosopher, Erasistratus, who lived about three hundred years before Christ, and who must have pursued anatomy with much care, for he made the important discovery that there are membranous flaps, which are now called "valves," at the origins of the great vessels; and that there are certain other valves in the interior of the heart itself.

(FIGURE 1.—The apparatus of the circulation, as at present known. The capillary vessels, which connect the arteries and veins, are omitted, on account of their small size. The shading of the "venous system" is given to all the vessels which contain venous blood; that of the "arterial system" to all the vessels which contain arterial blood.)

I have here (Figure 1) a purposely rough, but, so far as it goes, accurate, diagram of the structure of the heart and the course of the blood. The heart is supposed to be divided into two portions. It would be possible, by very careful dissection, to split the heart down the middle of a partition, or so-called 'septum', which exists in it, and to divide it into the two portions which you see here represented; in which case we should have a left heart and a right heart, quite distinct from one another. You will observe that there is a portion of each heart which is what is called the ventricle. Now the ancients applied the term 'heart' simply and solely to the ventricles. They did not count the rest of the heart—what we now speak of as the 'auricles'—as any part of the heart at all; but when they spoke of the heart they meant the left and the right ventricles; and they described those great vessels, which we now call the 'pulmonary veins' and the 'vena cava', as opening directly into the heart itself.

What Erasistratus made out was that, at the roots of the aorta and the pulmonary artery (Figure 1) there were valves, which opened in the direction indicated by the arrows; and, on the other hand, that at the junction of what he called the veins with the heart there were other valves, which also opened again in the direction indicated by the arrows. This was a very capital discovery, because it proved that if the heart was full of fluid, and if there were any means of causing that fluid in the ventricles to move, then the fluid could move only in one direction; for you will observe that, as soon as the fluid is compressed, the two valves between the ventricles and the veins will be shut, and the fluid will be obliged to move into the arteries; and, if it tries to get back from them into the heart, it is prevented from doing so by the valves at the origin of the arteries, which we now call the semilunar valves (half-moon shaped valves); so that it is impossible, if the fluid move at all, that it should move in any other way than from the great veins into the arteries. Now that was a very remarkable and striking discovery.

But it is not given to any man to be altogether right (that is a reflection which it is very desirable for every man who has had the good luck to be nearly right once, always to bear in mind); and Erasistratus, while he made this capital and important discovery, made a very capital and important error in another direction, although it was a very natural error. If, in any animal which is recently killed, you open one of those pulsating trunks which I referred to a short time ago, you will find, as a general rule, that it either contains no blood at all or next to none; but that, on the contrary, it is full of air. Very naturally, therefore, Erasistratus came to the conclusion that this was the normal and natural state of the arteries, and that they contained air. We are apt to think this a very gross blunder; but, to anybody who is acquainted with the facts of the case, it is, at first sight, an exceedingly natural conclusion. Not only so, but Erasistratus might have very justly imagined that he had seen his way to the meaning of the connection of the left side of the heart with the lungs; for we find that what we now call the pulmonary vein is connected with the lungs, and branches out in them (Figure 1). Finding that the greater part of this system of vessels was filled with air after death, this ancient thinker very shrewdly concluded that its real business was to receive air from the lungs, and to distribute that air all through the body, so as to get rid of the grosser humours and purify the blood. That was a very natural and very obvious suggestion, and a highly ingenious one, though it happened to be a great error. You will observe that the only way of correcting it was to experiment upon living animals, for there is no other way in which this point could be settled.

(FIGURE 2. The Course of the Blood according to Galen (A.D. 170).)

And hence we are indebted, for the correction of the error of Erasistratus, to one of the greatest experimenters of ancient or modern times, Claudius Galenus, who lived in the second century after Christ. I say it was to this man more than any one else, because he knew that the only way of solving physiological problems was to examine into the facts in the living animal. And because Galen was a skilful anatomist, and a skilful experimenter, he was able to show in what particulars Erasistratus had erred, and to build up a system of thought upon this subject which was not improved upon for fully 1,300 years. I have endeavoured, in Figure 2, to make clear to you exactly what it was he tried to establish. You will observe that this diagram is practically the same as that given in Figure 1, only simplified. The same facts may be looked upon by different people from different points of view. Galen looked upon these facts from a very different point of view from that which we ourselves occupy; but, so far as the facts are concerned, they were the same for him as for us. Well then, the first thing that Galen did was to make out experimentally that, during life, the arteries are not full of air, but that they are full of blood. And he describes a great variety of experiments which he made upon living animals with the view of proving this point, which he did prove effectually and for all time; and that you will observe was the only way of settling the matter. Furthermore, he demonstrated that the cavities of the left side of the heart—what we now call the left auricle and the left ventricle—are, like the arteries, full of blood during life, and that that blood was of the scarlet kind—arterialised, or as he called it "pneumatised," blood. It was known before, that the pulmonary artery, the right ventricle, and the veins, contain the darker kind of blood, which was thence called venous. Having proved that the whole of the left side of the heart, during life, is full of scarlet arterial blood, Galen's next point was to inquire into the mode of communication between the arteries and veins. It was known before his time that both arteries and veins branched out. Galen maintained, though he could not prove the fact, that the ultimate branches of the arteries and veins communicated together somehow or other, by what he called 'anastomoses', and that these 'anastomoses' existed not only in the body in general but also in the lungs. In the next place, Galen maintained that all the veins of the body arise from the liver; that they draw the blood thence and distribute it over the body. People laugh at that notion now-a-days; but if anybody will look at the facts he will see that it is a very probable supposition. There is a great vein (hepatic vein—Figure 1) which rises out of the liver, and that vein goes straight into the 'vena cava' (Figure 1) which passes to the heart, being there joined by the other veins of the body. The liver itself is fed by a very large vein (portal vein—Figure 1), which comes from the alimentary canal. The way the ancients looked at this matter was, that the food, after being received into the alimentary canal, was then taken up by the branches of this great vein, which are called the 'vena portae', just as the roots of a plant suck up nourishment from the soil in which it lives; that then it was carried to the liver, there to be what was called "concocted," which was their phrase for its conversion into substances more fitted for nutrition than previously existed in it. They then supposed that the next thing to be done was to distribute this fluid through the body; and Galen like his predecessors, imagined that the "concocted" blood, having entered the great 'vena cava', was distributed by its ramifications all over the body. So that, in his view (Figure 2), the course of the blood was from the intestine to the liver, and from the liver into the great 'vena cava', including what we now call the right auricle of the heart, whence it was distributed by the branches of the veins. But the whole of the blood was not thus disposed of. Part of the blood, it was supposed, went through what we now call the pulmonary arteries (Figure 1), and, branching out there, gave exit to certain "fuliginous" products, and at the same time took in from the air a something which Galen calls the 'pneuma'. He does not know anything about what we call oxygen; but it is astonishing how very easy it would be to turn his language into the equivalent of modern chemical theory. The old philosopher had so just a suspicion of the real state of affairs that you could make use of his language in many cases, if you substituted the word "oxygen," which we now-a-days use, for the word 'pneuma'. Then he imagined that the blood, further concocted or altered by contact with the 'pneuma', passed to a certain extent to the left side of the heart. So that Galen believed that there was such a thing as what is now called the pulmonary circulation. He believed, as much as we do, that the blood passed through the right side of the heart, through the artery which goes to the lungs, through the lungs themselves, and back by what we call the pulmonary veins to the left side of the heart. But he thought it was only a very small portion of the blood which passes to the right side of the heart in this way; the rest of the blood, he thought, passed through the partition which separates the two ventricles of the heart. He describes a number of small pits, which really exist there, as holes, and he supposed that the greater part of the blood passed through these holes from the right to the left ventricle (Figure 2).

Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse