p-books.com
Lamarck, the Founder of Evolution - His Life and Work
by Alpheus Spring Packard
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

"A great number of citations being unnecessary, we now see to what the case under discussion is reduced.

"The fact is that divers animals have each, according to their genus and their species, special habits, and in all cases an organization which is perfectly adapted to these habits.

"From the consideration of this fact, it appears that we should be free to admit either one or the other of the following conclusions, and that only one of them is susceptible of proof.

"Conclusion admitted up to this day: Nature (or its Author), in creating the animals, has foreseen all the possible kinds of circumstances in which they should live, and has given to each species an unchanging organization, as also a form determinate and invariable in its different parts, which compels each species to live in the places and in the climate where we find it, and has there preserved its known habits.

"My own conclusion: Nature, in producing in succession every species of animal, and beginning with the least perfect or the simplest to end her work with the most perfect, has gradually complicated their structure; and these animals spreading generally throughout all the inhabitable regions of the globe, each species has received, through the influence of circumstances to which it has been exposed, the habits which we have observed, and the modifications in its organs which observation has shown us it possesses.

"The first of these two conclusions is that believed up to the present day—namely, that held by nearly every one; it implies, in each animal, an unchanging organization and parts which have never varied, and which will never vary; it implies also that the circumstances of the places which each species of animal inhabits will never vary in these localities; for should they vary, the same animals could not live there, and the possibility of discovering similar forms elsewhere, and of transporting them there, would be forbidden.

"The second conclusion is my own: it implies that, owing to the influence of circumstances on habits, and as the result of that of habits on the condition of the parts and even on that of the organization, each animal may receive in its parts and its organization, modifications susceptible of becoming very considerable, and of giving rise to the condition in which we find all animals.

"To maintain that this second conclusion is unfounded, it is necessary at first to prove that each point of the surface of the globe never varies in its nature, its aspect, its situation whether elevated or depressed, its climate, etc., etc.; and likewise to prove that any part of animals does not undergo, even at the end of a long period, any modification by changes of circumstances, and by the necessity which directs them to another kind of life and action than that which is habitual to them.

"Moreover, if a single fact shows that an animal for a long time under domestication differs from the wild form from which it has descended, and if in such a species in domesticity we find a great difference in conformation between the individuals submitted to such habits and those restricted to different habits, then it will be certain that the first conclusion does not conform to the laws of nature, and that, on the contrary, the second is perfectly in accord with them.

"Everything combines then to prove my assertion—namely, that it is not the form, either of the body or of its parts, which gives rise to habits, and to the mode of life among animals; but that it is on the contrary the habits, the manner of living, and all the other influencing circumstances which have, after a time, constituted the form of the body and of the parts of animals. With the new forms, new faculties have been acquired, and gradually nature has come to form the animals as we actually see them.

"Can there be in natural history a consideration more important, and to which we should give more attention, than that which I have just stated?

"We will end this first part with the principles and the exposition of the natural classification of animals."

In the fourth chapter of the third part (vol. ii. pp. 276-301) Lamarck treats of the internal feelings of certain animals, which provoke wants (besoins). This is the subject which has elicited so much adverse criticism and ridicule, and has in many cases led to the wholesale rejection of all of Lamarck's views. It is generally assumed or stated by Lamarck's critics, who evidently did not read his book carefully, that while he claimed that the plants were evolved by the direct action of the physical factors, that in the case of all the animals the process was indirect. But this is not correct. He evidently, as we shall see, places the lowest animals, those without (or what he supposed to be without) a nervous system, in the same category as the plants. He distinctly states at the outset that only certain animals and man are endowed with this singular faculty, "which consists in being able to experience internal emotions which provoke the wants and different external or internal causes, and which give birth to the power which enables them to perform different actions."

"The nervous fluid," he says, "can, then, undergo movements in certain parts of its mass, as well as in every part at once; moreover, it is these latter movements which constitute the general movements (ebranlements) of this fluid, and which we now proceed to consider.

"The general movements of the nervous fluid are of two kinds; namely,

"1. Partial movements (ebranlements), which finally become general and end in a reaction. It is the movements of this sort which produce feeling. We have treated of them in the third chapter.

"2. The movements which are general from the time they begin, and which form no reaction. It is these which constitute internal emotions, and it is of them alone of which we shall treat.

"But previously, it is necessary to say a word regarding the feeling of existence, because this feeling is the source from which the inner emotions originate.

"On the Feeling of Existence.

"The feeling of existence (sentiment d'existence), which I shall call inner feeling,[183] so as to separate from it the idea of a general condition (generalite) which it does not possess, since it is not common to all living beings and not even to all animals, is a very obscure feeling, with which are endowed those animals provided with a nervous system sufficiently developed to give them the faculty of feeling.

"This sentiment, very obscure as it is, is nevertheless very powerful, for it is the source of inner emotions which test (eprouvent) the individuals possessing it, and, as the result, this singular force urges these individuals to themselves produce the movements and the actions which their wants require. Moreover this feeling, considered as a very active motor, only acts thus by sending to the muscles which necessarily cause these movements and actions the nervous fluid which excites them....

"Indeed, as the result of organic or vital movements which are produced in every animal, that which possesses a nervous system sufficiently developed has physical sensibility and continually receives in every inner and sensitive part impressions which continually affect it, and which it feels in general without being able to distinguish any single one.

"The sentiment of existence [consciousness] is general, since almost every sensitive part of the body shares in it. 'It constitutes this me (moi) with which all animals, which are only sensitive, are penetrated, without perceiving it, but which those possessing a brain are able to notice, having the power of thought and of giving attention to it. Finally, it is in all the source of a power which is aroused by wants, which acts effectively only by emotion, and through which the movements and actions derive the force which produces them'....

"Finally, the inner feeling only manifests its power, and causes movements, when there exists a system for muscular movement, which is always dependent on the nervous system, and cannot take place without it."

The author then states that these emotions of the organic sense may operate in the animals and in man either without or with an act of their will.

"From what has been said, we cannot doubt but that the inner and general feeling which urges the animals possessing a nervous system fitted for feeling should be susceptible of being aroused by the causes which affect it; moreover, these causes are always the need both of satisfying hunger, of escaping dangers, of avoiding pain, of seeking pleasure, or that which is agreeable to the individual, etc.

"The emotions of the inner feeling can only be recognized by man, who alone pays attention to them, but he only perceives those which are strong, which excite his whole being, such as a view from a precipice, a tragic scene, etc."

Lamarck then divides the emotions into physical and moral, the latter arising from our ideas, thoughts—in short, our intellectual acts—in the account of which we need not follow him.

In the succeeding chapter (V.) the author dilates on the force which causes actions in animals. "We know," he says "that plants can satisfy their needs without moving, since they find their food in the environing milieux. But it is not the same with animals, which are obliged to move about to procure their sustenance. Moreover, most of them have other wants to satisfy, which require other kinds of movements and acts." This matter is discussed in the author's often leisurely and prolix way, with more or less repetition, which we will condense.

The lowest animals—those destitute of a nervous system—move in response to a stimulus from without. Nature has gradually created the different organs of animals, varying the structure and situation of these organs according to circumstances, and has progressively improved their powers. She has begun by borrowing from without, so to speak—from the environment—the productive force, both of organic movements and those of the external parts. "She has thus transported this force [the result of heat, electricity, and perhaps others (p. 307)] into the animal itself, and, finally, in the most perfect animals she has placed a great part of this force at their disposal, as I will soon show."

This force incessantly introduced into the lowest animals sets in motion the visible fluids of the body and excites the irritability of their contained parts, giving rise to different contractile movements which we observe; hence the appearance of an irresistible propensity (penchant) which constrains them to execute those movements which by their continuity or their repetition give rise to habits.

The most imperfect animals, such as the Infusoria, especially the monads, are nourished by absorption and by "an internal inhibition of absorbed matters." "They have," he says, "no power of seeking their food, they have not even the power of recognizing it, but they absorb it because it comes in contact with every side of them (avec tous les points de leur individu), and because the water in which they live furnishes it to them in sufficient abundance."

"These frail animals, in which the subtile fluids of the environing milieux constitute the stimulating cause of the orgasm, of irritability and of organic movements, execute, as I have said, contractile movements which, provoked and varied without ceasing by this stimulating cause, facilitate and hasten the absorptions of which I have just spoken." ...

On the Transportation of the force-producing Movements in the Interior of Animals.

"If nature were confined to the employment of its first means—namely, of a force entirely external and foreign to the animal—its work would have remained very important; the animals would have remained machines totally passive, and she would never have given origin in any of these living beings to the admirable phenomena of sensibility, of inmost feelings of existence which result therefrom, of the power of action, finally, of ideas, by which she can create the most wonderful of all, that of thought—in a word, intelligence.

"But, wishing to attain these grand results, she has by slow degrees prepared the means, in gradually giving consistence to the internal parts of animals; in differentiating the organs, and in multiplying and farther forming the fluids contained, etc., after which she has transported into the interior of these animals that force productive of movements and of actions which in truth it would not dominate at first, but which she has come to place, in great part, at their disposition when their organization should become very much more perfect.

"Indeed, from the time that the animal organization had sufficiently advanced in its structure to possess a nervous system—even slightly developed, as in insects—the animals provided with this organization were endowed with an intimate sense of their existence, and from that time the force productive of movements was conveyed into the very interior of the animal.

"I have already made it evident that this internal force which produces movements and actions should derive its origin in the intimate feeling of existence which animals with a nervous system possess, and that this feeling, solicited or aroused by needs, should then start into motion the subtile fluid contained in the nerves and carry it to the muscles which should act, this producing the actions which the needs require.

"Moreover, every want felt produces an emotion in the inner feeling of the individual which experiences it; and from this emotion of the feeling in question arises the force which gives origin to the movement of the parts which are placed in activity....

"Thus, in the animals which possess the power of acting—namely, the force productive of movements and actions—the inner feeling, which on each occasion originates this force, being excited by some need, places in action the power or force in question; excites the movement of displacement in the subtile fluid of the nerves—which the ancients called animal spirits; directs this fluid towards that of its organs which any want impels to action; finally makes this same fluid flow back into its habitual reservoirs when the needs no longer require the organ to act.

"The inner feeling takes the place of the will; for it is now important to consider that every animal which does not possess the special organ in which or by which it executes thoughts, judgments, etc., has in reality no will, does not make a choice, and consequently cannot control the movements which its inner feeling excites. Instinct directs these actions, and we shall see that this direction always results from emotions of the inner feeling, in which intelligence has no part, and from the organization even which the habits have modified, in such a manner that the needs of animals which are in this category, being necessarily limited and always the same in the same species, the inner feeling and, consequently, the power of acting, always produces the same actions.

"It is not the same in animals which besides a nervous system have a brain [the author meaning the higher vertebrates], and which make comparisons, judgments, thoughts, etc. These same animals control more or less their power of action according to the degree of perfection of their brain; and although they are still strongly subjected to the results of their habits, which have modified their structure, they enjoy more or less freedom of the will, can choose, and can vary their acts, or at least some of them."

Lamarck then treats of the consumption and exhaustion of the nervous fluid in the production of animal movements, resulting in fatigue.

He next occupies himself with the origin of the inclination to the same actions, and of instinct in animals.

"The cause of the well-known phenomenon which constrains almost all animals to always perform the same acts, and that which gives rise in man to a propensity (penchant) to repeat every action, becoming habitual, assuredly merits investigation.

"The animals which are only 'sensible'[184]—namely, which possess no brain, cannot think, reason, or perform intelligent acts, and their perceptions being often very confused—do not reason and can scarcely vary their actions. They are, then, invariably bound by habits. Thus the insects, which of all animals endowed with feeling have the least perfect nervous system,[185] have perceptions of objects which affect them, and seem to have memory of them when they are repeated. Yet they can vary their actions and change their habits, though they do not possess the organ whose acts could give them the means.

"On the Instincts of Animals.

"We define instinct as the sum (ensemble) of the decisions (determinations) of animals in their actions; and, indeed, some have thought that these determinations were the product of a rational choice, and consequently the fruit of experience. Others, says Cabanis, may think with the observers of all ages that several of these decisions should not be ascribed to any kind of reasoning, and that, without ceasing as for that to have their source in physical sensibility, they are most often formed without the will of the individuals able to have any other part than in better directing the execution. It should be added, without the will having any part in it; for when it does not act, it does not, of course, direct the execution.

"If it had been considered that all the animals which enjoy the power of sensation have their inner feeling susceptible of being aroused by their needs, and that the movements of their nervous fluids, which result from these emotions, are constantly directed by this inner sentiment and by habits, then it has been felt that in all the animals deprived of intelligence all the decisions of action can never be the result of a rational choice, of judgment, of profitable experience—in a word, of will—but that they are subjected to needs which certain sensations excite, and which awaken the inclinations which urge them on.

"In the animals even which enjoy the power of performing certain intelligent acts, it is still more often the inner feeling and the inclinations originating from habits which decide, without choice, the acts which animals perform.

"Moreover, although the executing power of movements and of actions, as also the cause which directs them, should be entirely internal, it is not well, as has been done,[186] to limit to internal impressions the primary cause or provocation of these acts, with the intention to restrict to external impressions that which provokes intelligent acts; for, from what few facts are known bearing on these considerations, we are convinced that, either way, the causes which arouse and provoke acts are sometimes internal and sometimes external, that these same causes give rise in reality to impressions all of which act internally.

"According to the idea generally attached to the word instinct the faculty which this word expresses is considered as a light which illuminates and guides animals in their actions, and which is with them what reason is to us. No one has shown that instinct can be a force which calls into action; that this force acts effectively without any participation of the will, and that it is constantly directed by acquired inclinations."

There are, the author states, two kinds of causes which can arouse the inner feeling (organic sense)—namely, those which depend on intellectual acts, and those which, without arising from it, immediately excite it and force it to direct its power of acting in the direction of acquired inclinations.

"These are the only causes of this last kind, which constitute all the acts of instinct; and as these acts are not the result of deliberation, of choice, of judgment, the actions which arise from them always satisfy, surely and without error, the wants felt and the propensities arising from habits.

"Hence, instinct in animals is an inclination which necessitates that from sensations provoked while giving rise to wants the animal is impelled to act without the participation of any thought or any act of the will.

"This propensity owes to the organization what the habits have modified in its favor, and it is excited by impressions and wants which arouse the organic sense of the individual and put it in the way of sending the nervous fluid in the direction which the propensity in activity needs to the muscles to be placed in action.

"I have already said that the habit of exercising such an organ, or such a part of the body, to satisfy the needs which often spring up, should give to the subtile fluid which changes its place where is to be operated the power which causes action so great a facility in moving towards this organ, where it has been so often employed, that this habit should in a way become inherent in the nature of the individual, which is unable to change it.

"Moreover, the wants of animals possessing a nervous system being, in each case, dependent on the Structure of these organisms, are:

"1. Of obtaining any kind of food;

"2. Of yielding to sexual fecundation which excites in them certain sensations;

"3. Of avoiding pain;

"4. Of seeking pleasure or happiness.

"To satisfy these wants they contract different kinds of habits, which are transformed into so many propensities, which they can neither resist nor change. From this originate their habitual actions, and their special propensities to which we give the name of instinct.[187]

"This propensity of animals to preserve their habits and to renew the actions resulting from them being once acquired, is then propagated by means of reproduction or generation, which preserves the organization and the disposition of parts in the state thus attained, so that this same propensity already exists in the new individuals even before they have exercised it.

"It is thus that the same habits and the same instinct are perpetuated from generation to generation in the different species or races of animals, without offering any notable variation,[188] so long as it does not suffer change in the circumstances essential to the mode of life."

"On the Industry of Certain Animals.

"In those animals which have no brain that which we call industry as applied to certain of their actions does not deserve such a name, for it is a mistake to attribute to them a faculty which they do not possess.

"Propensities transmitted and received by heredity (generation); habits of performing complicated actions, and which result from these acquired propensities; finally, different difficulties gradually and habitually overcome by as many emotions of the organic sense (sentiment interieur), constitute the sum of actions which are always the same in the individuals of the same race, to which we inconsiderately give the name of industry.

"The instinct of animals being formed by the habit of satisfying the four kinds of wants mentioned above, and resulting from the propensities acquired for a long time which urge them on in a way determined for each species, there comes to pass, in the case of some, only a complication in the actions which can satisfy these four kinds of wants, or certain of them, and, indeed, only the different difficulties necessary to be overcome have gradually compelled the animal to extend and make contrivances, and have led it, without choice or any intellectual act, but only by the emotions of the organic sense, to perform such and such acts.

"Hence the origin, in certain animals, of different complicated actions, which has been called industry, and which are so enthusiastically admired, because it has always been supposed, at least tacitly, that these actions were contrived and deliberately planned, which is plainly erroneous. They are evidently the fruit of a necessity which has expanded and directed the habits of the animals performing them, and which renders them such as we observe.

"What I have just said is especially applicable to the invertebrate animals, in which there enters no act of intelligence. None of these can indeed freely vary its actions; none of them has the power of abandoning what we call its industry to adopt any other kind.

"There is, then, nothing wonderful in the supposed industry of the ant-lion (Myrmeleon formica-leo), which, having thrown up a hillock of movable sand, waits until its booty is thrown down to the bottom of its funnel by the showers of sand to become its victim; also there is none in the manoeuvre of the oyster, which, to satisfy all its wants, does nothing but open and close its shell. So long as their organization is not changed they will always, both of them, do what we see them do, and they will do it neither voluntarily nor rationally.

"This is not the case with the vertebrate animals, and it is among them, especially in the birds and mammals, that we observe in their actions traces of a true industry; because in difficult cases their intelligence, in spite of their propensity to habits, can aid them in varying their actions. These acts, however, are not common, and are only slightly manifested in certain races which have exercised them more, as we have had frequent occasion to remark."

Lamarck then (chapter vi.) examines into the nature of the will, which he says is really the principle underlying all the actions of animals. The will, he says, is one of the results of thought, the result of a reflux of a portion of the nervous fluid towards the parts which are to act.

He compares the brain to a register on which are imprinted ideas of all kinds acquired by the individual, so that this individual provokes at will an effusion of the nervous fluid on this register, and directs it to any particular page. The remainder of the second volume (chapter vii.) is devoted to the understanding, its origin and that of ideas. The following additions relative to chapters vii. and viii. of the first part of this work are from vol. ii., pp. 451-466.

In the last of June, 1809, the menagerie of the Museum of Natural History having received a Phoca (Phoca vitulina), Lamarck, as he says, had the opportunity of observing its movements and habits. After describing its habits in swimming and moving on land and observing its relation to the clawed mammals, he says his main object is to remark that the seals do not have the hind legs arranged in the same direction as the axis of their body, because these animals are constrained to habitually use them to form a caudal fin, closing and widening, by spreading their digits, the paddle (palette) which results from their union.

"The morses, on the contrary, which are accustomed to feed on grass near the shore, never use their hind feet as a caudal fin; but their feet are united together with the tail, and cannot separate. Thus in animals of similar origin we see a new proof of the effect of habits on the form and structure of organs."

He then turns to the flying mammals, such as the flying squirrel (Sciurus volans, aerobates, petaurista, sagitta, and volucella), and then explains the origin of their adaptation for flying leaps.

"These animals, more modern than the seals, having the habit of extending their limbs while leaping to form a sort of parachute, can only make a very prolonged leap when they glide down from a tree or spring only a short distance from one tree to another. Now, by frequent repetitions of such leaps, in the individuals of these races the skin of their sides is expanded on each side into a loose membrane, which connects the hind and fore legs, and which, enclosing a volume of air, prevents their sudden falling. These animals are, moreover, without membranes between the fingers and toes.

"The Galeopithecus (Lemur volans), undoubtedly a more ancient form but with the same habits as the flying squirrel (Pteromys Geoff.), has the skin of the flancs more ample, still more developed, connecting not only the hinder with the fore legs, but in addition the fingers and the tail with the hind feet. Moreover, they leap much farther than the flying squirrels, and even make a sort of flight.[189]

"Finally, the different bats are probably mammals still older than the Galeopithecus, in the habit of extending their membrane and even their fingers to encompass a greater volume of air, so as to sustain their bodies when they fly out into the air.

"By these habits, for so long a period contracted and preserved, the bats have obtained not only lateral membranes, but also an extraordinary elongation of the fingers of their fore feet (with the exception of the thumb), between which are these very ample membranes uniting them; so that these membranes of the hands become continuous with those of the flanks, and with those which connect the tail with the two hind feet, forming in these animals great membranous wings with which they fly perfectly, as everybody knows.

"Such is then the power of habits, which have a singular influence on the conformation of parts, and which give to the animals which have for a long time contracted certain of them, faculties not found in other animals.

"As regards the amphibious animals of which I have often spoken, it gives me pleasure to communicate to my readers the following reflections which have arisen from an examination of all the objects which I have taken into consideration in my studies, and seen more and more to be confirmed.

"I do not doubt but that the mammals have in reality originated from them, and that they are the veritable cradle (berceau) of the entire animal kingdom.

"Indeed, we see that the least perfect animals (and they are the most numerous) live only in the water; hence it is probable, as I have said (vol. ii., p. 85), that it is only in the water or in very humid places that nature causes and still forms, under favorable conditions, direct or spontaneous generations which have produced the simplest animalcules and those from which have successively been derived all the other animals.

"We know that the Infusoria, the polyps, and the Radiata only live in the water; that the worms even only live some in the water and others in very damp places.

"Moreover, regarding the worms, which seem to form an initial branch of the animal scale, since it is evident that the Infusoria form another branch, we may suppose that among those of them which are wholly aquatic—namely, which do not live in the bodies of other animals, such as the Gordius and many others still unknown—there are doubtless a great many different aquatic forms; and that among these aquatic worms, those which afterwards habitually expose themselves to the air have probably produced amphibious insects, such as the mosquitoes, the ephemeras, etc., etc., which have successively given origin to all the insects which live solely in the air. But several races of these having changed their habits by the force of circumstances, and having formed habits of a life solitary, retired, or hidden, have given rise to the arachnides, almost all of which also live in the air.

"Finally, those of the arachnides which have frequented the water, which have consequently become progressively habituated to live in it, and which finally cease to expose themselves to the air—this indicates the relations which, connecting the Scolopendrae to Julus, this to the Oniscus, and the last to Asellus, shrimps, etc., have caused the existence of all the Crustacea.

"The other aquatic worms which are never exposed to the air, multiplying and diversifying their races with time, and gradually making progress in the complication of their structure, have caused the formation of the Annelida, Cirripedia, and molluscs, which together form an uninterrupted portion of the animal scale.

"In spite of the considerable hiatus which we observe between the known molluscs and the fishes, the molluscs, whose origin I have just indicated, have, by the intermediation of those yet remaining unknown, given origin to the fishes, as it is evident that the latter have given rise to the reptiles.

"In continuing to consult the probabilities on the origin of different animals, we cannot doubt but that the reptiles, by two distinct branches which circumstances have brought about, have given rise on one side to the formation of birds, and on the other to that of amphibious mammals, which have given in their turn origin to all the other mammals.[190]

"Indeed, the fishes having caused the formation of Batrachia, and these of the Ophidian reptiles, both having only one auricle in the heart, nature has easily come to give a heart with a double auricle to other reptiles which constitute two special branches; finally, she has easily arrived at the end of forming, in the animals which had originated from each of these branches, a heart with two ventricles.

"Thus, among the reptiles whose heart has a double auricle, on the one side, the Chelonians seem to have given origin to the birds; if, independently of several relations which we cannot disregard, I should place the head of a tortoise on the neck of certain birds, I should perceive almost no disparity in the general physiognomy of the factitious animal; and on the other side, the saurians, especially the 'planicaudes,' such as the crocodiles, seem to have given origin to the amphibious mammals.

"If the branch of the Chelonians has given rise to birds, we can yet presume that the palmipede aquatic birds, especially the brevipennes, such as the penguins and the manchots, have given origin to the monotremes.

"Finally, if the branch of saurians has given rise to the amphibious mammals, it will be most probable that this branch is the source whence all the mammals have taken their origin.

"I therefore believe myself authorized to think that the terrestrial mammals originally descended from those aquatic mammals that we call Amphibia. Because the latter being divided into three branches by the diversity of the habits which, with the lapse of time, they have adopted, some have caused the formation of the Cetacea, others that of the ungulated mammals, and still others that of the unguiculate mammals.

"For example, those of the Amphibia which have preserved the habit of frequenting the shores differ in the manner of taking their food. Some among them accustoming themselves to browse on herbage, such as the morses and lamatines, gradually gave origin to the ungulate mammals, such as the pachyderms, ruminants, etc.; the others, such as the Phocidae, contracting the habit of feeding on fishes and marine animals, caused the existence of the unguiculate mammals, by means of races which, while becoming differentiated, became entirely terrestrial.

"But those aquatic mammals which would form the habit of never leaving the water, and only rising to breathe at the surface, would probably give origin to the different known cetaceans. Moreover, the ancient and complete habitation of the Cetacea in the ocean has so modified their structure that it is now very difficult to recognize the source whence they have derived their origin.

"Indeed, since the enormous length of time during which these animals have lived in the depths of the sea, never using their hind feet in seizing objects, their disused feet have wholly disappeared, as also their skeleton, and even the pelvis serving as their attachment.

"The alteration which the cetaceans have undergone in their limbs, owing to the influence of the medium in which they live and the habits which they have there contracted, manifests itself also in their fore limbs, which, entirely enveloped by the skin, no longer show externally the fingers in which they end; so that they only offer on each side a fin which contains concealed within it the skeleton of a hand.

"Assuredly, the cetaceans being mammals, it entered into the plan of their structure to have four limbs like the others, and consequently a pelvis to sustain their hind legs. But here, as elsewhere, that which is lacking in them is the result of atrophy brought about, at the end of a long time, by the want of use of the parts which were useless.

"If we consider that in the Phocae, where the pelvis still exists, this pelvis is impoverished, narrowed, and with no projections on the hips, we see that the lessened (mediocre) use of the hind feet of these animals must be the cause, and that if this use should entirely cease, the hind limbs and even the pelvis would in the end disappear.

"The considerations which I have just presented may doubtless appear as simple conjectures, because it is possible to establish them only on direct and positive proofs. But if we pay any attention to the observations which I have stated in this work, and if then we examine carefully the animals which I have mentioned, as also the result of their habits and their surroundings, we shall find that these conjectures will acquire, after this examination, an eminent probability.

"The following tableau[191] will facilitate the comprehension of what I have just stated. It will be seen that, in my opinion, the animal scale begins at least by two special branches, and that in the course of its extent some branchlets (rameaux) would seem to terminate in certain places.

"This series of animals beginning with two branches where are situated the most imperfect, the first of these branches received their existence only by direct or spontaneous generation.

"A strong reason prevents our knowing the changes successively brought about which have produced the condition in which we observe them; it is because we are never witnesses of these changes. Thus we see the work when done, but never watching them during the process, we are naturally led to believe that things have always been as we see them, and not as they have progressively been brought about.

"Among the changes which nature everywhere incessantly produces in her ensemble, and her laws remain always the same, such of these changes as, to bring about, do not need much more time than the duration of human life, are easily understood by the man who observes them; but he cannot perceive those which are accomplished at the end of a considerable time.

"If the duration of human life only extended to the length of a second, and if there existed one of our actual clocks mounted and in movement, each individual of our species who should look at the hour-hand of this clock would never see it change its place in the course of his life, although this hand would really not be stationary. The observations of thirty generations would never learn anything very evident as to the displacement of this hand, because its movement, only being that made during half a minute, would be too slight to make an impression; and if observations much more ancient should show that this same hand had really moved, those who should see the statement would not believe it, and would suppose there was some error, each one having always seen the hand on the same point of the dial-plate.

"I leave to my readers all the applications to be made regarding this supposition.

"Nature, that immense totality of different beings and bodies, in every part of which exists an eternal circle of movements and changes regulated by law; totality alone unchangeable, so long as it pleases its SUBLIME AUTHOR to make it exist, should be regarded as a whole constituted by its parts, for a purpose which its Author alone knows, and not exclusively for any one of them.

"Each part necessarily is obliged to change, and to cease to be one in order to constitute another, with interests opposed to those of all; and if it has the power of reasoning it finds this whole imperfect. In reality, however, this whole is perfect, and completely fulfils the end for which it was designed."

The last work in which Lamarck discussed the theory of descent was in his introduction to the Animaux sans Vertebres. But here the only changes of importance are his four laws, which we translate, and a somewhat different phylogeny of the animal kingdom.

The four laws differ from the two given in the Philosophie zoologique in his theory (the second law) accounting for the origin of a new organ, the result of a new need.

"First law: Life, by its proper forces, continually tends to increase the volume of every body which possesses it, and to increase the size of its parts, up to a limit which it brings about.

"Second law: The production of a new organ in an animal body results from the supervention of a new want (besoin) which continues to make itself felt, and of a new movement which this want gives rise to and maintains.

"Third law: The development of organs and their power of action are constantly in ratio to the employment of these organs.

"Fourth law: Everything which has been acquired, impressed upon, or changed in the organization of individuals, during the course of their life is preserved by generation and transmitted to the new individuals which have descended from those which have undergone those changes."

In explaining the second law he says:

"The foundation of this law derives its proof from the third, in which the facts known allow of no doubt; for, if the forces of action of an organ, by their increase, further develop this organ—namely, increase its size and power, as is constantly proved by facts—we may be assured that the forces by which it acts, just originated by a new want felt, would necessarily give birth to the organ adapted to satisfy this new want, if this organ had not before existed.

"In truth, in animals so low as not to be able to feel, it cannot be that we should attribute to a felt want the formation of a new organ, this formation being in such a case the product of a mechanical cause, as that of a new movement produced in a part of the fluids of the animal.

"It is not the same in animals with a more complicated structure, and which are able to feel. They feel wants, and each want felt, exciting their inner feeling, forthwith sets the fluids in motion and forces them towards the point of the body where an action may satisfy the want experienced. Now, if there exists at this point an organ suitable for this action, it is immediately cited to act; and if the organ does not exist, and only the felt want be for instance pressing and continuous, gradually the organ originates, and is developed on account of the continuity and energy of its employment.

"If I had not been convinced: 1, that the thought alone of an action which strongly interests it suffices to arouse the inner feeling of an individual; 2, that a felt want can itself arouse the feeling in question; 3, that every emotion of inner feeling, resulting from a want which is aroused, directs at the same instant a mass of nervous fluid to the points to be set in activity, that it also creates a flow thither of the fluids of the body, and especially nutrient ones; that, finally, it then places in activity the organs already existing, or makes efforts for the formation of those which would not have existed there, and which a continual want would therefore render necessary—I should have had doubts as to the reality of the law which I have just indicated.

"But, although it may be very difficult to verify this law by observation, I have no doubt as to the grounds on which I base it, the necessity of its existence being involved in that of the third law, which is now well established.

"I conceive, for example, that a gasteropod mollusc, which, as it crawls along, finds the need of feeling the bodies in front of it, makes efforts to touch those bodies with some of the foremost parts of its head, and sends to these every time supplies of nervous fluids, as well as other fluids—I conceive, I say, that it must result from this reiterated afflux towards the points in question that the nerves which abut at these points will, by slow degrees, be extended. Now, as in the same circumstances other fluids of the animal flow also to the same places, and especially nourishing fluids, it must follow that two or more tentacles will appear and develop insensibly under those circumstances on the points referred to.

"This is doubtless what has happened to all the races of Gasteropods, whose wants have compelled them to adopt the habit of feeling bodies with some part of their head.

"But if there occur, among the Gasteropods, any races which, by the circumstances which concern their mode of existence or life, do not experience such wants, then their head remains without tentacles; it has even no projection, no traces of tentacles, and this is what has happened in the case of Bullaea, Bulla, and Chiton."

In the Supplement a la Distribution generale des Animaux (Introduction, p. 342), concerning the real order of origin of the invertebrate classes, Lamarck proposes a new genealogical tree. He states that the order of the animal series "is far from simple, that it is branching, and seems even to be composed of several distinct series;" though farther on (p. 456) he adds:

"Je regarde l'ordre de la production des animaux comme forme de deux series distinctes.

"Ainsi, je soumets a la meditation des zoologistes l'ordre presume de la formation des animaux, tel que l'exprime le tableau suivant:"

In the matter of the origin of instinct, as in evolution in general, Lamarck appears to have laid the foundation on which Darwin's views, though he throws aside Lamarck's factors, must rest. The "inherited habit" theory is thus stated by Lamarck.

Instinct, he claims, is not common to all animals, since the lowest forms, like plants, are entirely passive under the influences of the surrounding medium; they have no wants, are automata.

"But animals with a nervous system have wants, i.e., they feel hunger, sexual desires, they desire to avoid pain or to seek pleasure, etc. To satisfy these wants they contract habits, which are gradually transformed into so many propensities which they can neither resist nor change. Hence arise habitual actions and special propensities, to which we give the name of instinct.

"These propensities are inherited and become innate in the young, so that they act instinctively from the moment of birth. Thus the same habits and instincts are perpetuated from one generation to another, with no notable variations, so long as the species does not suffer change in the circumstances essential to its mode of life."

The same views are repeated in the introduction to the Animaux sans Vertebres (1815), and again in 1820, in his last work, and do not need to be translated, as they are repetitions of his previously published views in the Philosophie zoologique.

Unfortunately, to illustrate his thoughts on instinct Lamarck does not give us any examples, nor did he apparently observe to any great extent the habits of animals. In these days one cannot follow him in drawing a line—as regards the possession of instincts—between the lowest organisms, or Protozoa, and the groups provided with a nervous system.

Lamarck's meaning of the word "besoins," or wants or needs.—Lamarck's use of the word wants or needs (besoins) has, we think, been greatly misunderstood and at times caricatured or pronounced as "absurd." The distinguished French naturalist, Quatrefages, although he was not himself an evolutionist, has protested against the way Lamarck's views have been caricatured. By nearly all authors he is represented as claiming that by simply "willing" or "desiring" the individual bird or other animal radically and with more or less rapidity changed its shape or that of some particular organ or part of the body. This is, as we have seen, by no means what he states. In no instance does he speak of an animal as simply "desiring" to modify an organ in any way. The doctrine of appetency attributed to Lamarck is without foundation. In all the examples given he intimates that owing to changes in environment, leading to isolation in a new area separating a large number of individuals from their accustomed habitat, they are driven by necessity (besoin) or new needs to adopt a new or different mode of life—new habits. These efforts, whatever they may be—such as attempts to fly, swim, wade, climb, burrow, etc., continued for a long time "in all the individuals of its species," or the great number forced by competition to migrate and become segregated from the others of the original species—finally, owing to the changed surroundings, affect the mass of individuals thus isolated, and their organs thus exercised in a special direction undergo a slow modification.

Even so careful a writer as Dr. Alfred R. Wallace does not quite fairly, or with exactness, state what Lamarck says, when in his classical essay of 1858 he represents Lamarck as stating that the giraffe acquired its long neck by desiring to reach the foliage of the more lofty shrubs, and constantly stretching its neck for the purpose. On the contrary, he does not use the word "desiring" at all. What Lamarck does say is that—

"The giraffe lives in dry, desert places, without herbage, so that it is obliged to browse on the leaves of trees, and is continually forced to reach up to them. It results from this habit, continued for a long time in all the individuals of its species, that its fore limbs have become so elongated that the giraffe, without raising itself erect on its hind legs, raises its head and reaches six meters high (almost twenty feet)."[192]

We submit that this mode of evolution of the giraffe is quite as reasonable as the very hypothetical one advanced by Mr. Wallace;[193] i.e., that a variety occurred with a longer neck than usual, and these "at once secured a fresh range of pasture over the same ground as their shorter-necked companions, and on the first scarcity of food were thereby enabled to outlive them." Mr. Wallace's account also of Lamarck's general theory appears to us to be one-sided, inadequate, and misleading. He states it thus: "The hypothesis of Lamarck—that progressive changes in species have been produced by the attempts of animals to increase the development of their own organs, and thus modify their structure and habits." This is a caricature of what Lamarck really taught. Wants, needs (besoins), volitions, desires, are not mentioned by Lamarck in his two fundamental laws (see p. 303), and when the word besoins is introduced it refers as much to the physiological needs as to the emotions of the animal resulting from some new environment which forces it to adopt new habits such as means of locomotion or of acquiring food.

It will be evident to one who has read the original or the foregoing translations of Lamarck's writings that he does not refer so much to mental desires or volitions as to those physiological wants or needs thrust upon the animal by change of circumstances or by competition; and his besoins may include lust, hunger, as well as the necessity of making muscular exertions such as walking, running, leaping, climbing, swimming, or flying.

As we understand Lamarck, when he speaks of the incipient giraffe or long-necked bird as making efforts to reach up or outwards, the efforts may have been as much physiological, reflex, or instinctive as mental. A recent writer, Dr. R. T. Jackson, curiously and yet naturally enough uses the same phraseology as Lamarck when he says that the long siphon of the common clam (Mya) "was brought about by the effort to reach the surface, induced by the habit of deep burial" in its hole.[194]

On the other hand, can we in the higher vertebrates entirely dissociate the emotional and mental activities from their physiological or instinctive acts? Mr. Darwin, in his Expressions of the Emotions in Man and Animals, discusses in an interesting and detailed way the effects of the feelings and passions on some of the higher animals.

It is curious, also, that Dr. Erasmus Darwin went at least as far as Lamarck in claiming that the transformations of animals "are in part produced by their own exertions in consequence of their desires and aversions, of their pleasures and their pains, or of irritations or of associations."

Cope, in the final chapter of his Primary Factors of Organic Evolution, entitled "The Functions of Consciousness," goes to much farther extremes than the French philosopher has been accused of doing, and unhesitatingly attributes consciousness to all animals. "Whatever be its nature," he says, "the preliminary to any animal movement which is not automatic is an effort." Hence he regards effort as the immediate source of all movement, and considers that the control of muscular movements by consciousness is distinctly observable; in fact, he even goes to the length of affirming that reflex acts are the product of conscious acts, whereas it is plain enough that reflex acts are always the result of some stimulus.

Another case mentioned by Lamarck in his Animaux sans Vertebres, which has been pronounced as absurd and ridiculous, and has aided in throwing his whole theory into disfavor, is his way of accounting for the development of the tentacles of the snail, which is quoted on p. 348.

This account is a very probable and, in fact, the only rational explanation. The initial cause of such structures is the intermittent stimulus of occasional contact with surrounding objects, the irritation thus set up causing a flow of the blood to the exposed parts receiving the stimuli. The general cause is the same as that concerned in the production of horns and other hard defensive projections on the heads of various animals.

In commenting on this case of the snail, Professor Cleland, in his just and discriminating article on Lamarck, says:

"However absurd this may seem, it must be admitted that, unlimited time having been once granted for organs to be developed in series of generations, the objections to their being formed in the way here imagined are only such as equally apply to the theory of their origin by natural selection.... In judging the reasonableness of the second law of Lamarck [referring to new wants, see p. 346] as compared with more modern and now widely received theories, it must be observed that it is only an extension of his third law; and that third law is a fact. The strengthening of the blacksmith's arm by use is proverbially notorious. It is, therefore, only the sufficiency of the Lamarckian hypothesis to explain the first commencement of new organs which is in question, if evolution by the mere operation of forces acting in the organic world be granted; and surely the Darwinian theory is equally helpless to account for the beginning of a new organ, while it demands as imperatively that every stage in the assumed hereditary development of an organ must have been useful.... Lamarck gave great importance to the influence of new wants acting indirectly by stimulating growth and use. Darwin has given like importance to the effects of accidental variations acting indirectly by giving advantage in the struggle for existence. The speculative writings of Darwin have, however, been interwoven with a vast number of beautiful experiments and observations bearing on his speculations, though by no means proving his theory of evolution; while the speculations of Lamarck lie apart from his wonderful descriptive labors, unrelieved by intermixture with other matters capable of attracting the numerous class who, provided they have new facts set before them, are not careful to limit themselves to the conclusions strictly deducible therefrom. But those who read the Philosophie Zoologique will find how many truths often supposed to be far more modern are stated with abundant clearness in its pages." (Encyc. Brit., art. "Lamarck.")

COMPARATIVE SUMMARY OF THE VIEWS OF THE FOUNDERS OF THE THEORY OF EVOLUTION, WITH DATES OF PUBLICATION.

- - Erasmus Geoffroy St. Charles Buffon Darwin Lamarck Hilaire Darwin (1761-1778). (1790-1794). (1801-1809-1815). (1795-1831). (1859). - - All animals All animals All organisms arose from Unity of Universal possibly derived from germs. First germ organization tendency to derived from a single originated by in animal fortuitous a single filament. spontaneous generation. kingdom. variability type. Development from the assumed. simple to the complex. Change of Time, its Animal series not "milieu great length, continuous, but ambiant," stated. tree-like; graduated direct. from monad to man; Immutability constructed the first of species phylogenetic tree. stated and Founded the Struggle then denied. Time, great Time, great length of, doctrine of for length of, definitely postulated; homologies. existence. Nature definitely its duration practically advances by demanded. unlimited. gradations, passing from Uniformitarianism of one species Hutton and of Lyell Founder of to another by anticipated. teratology. imperceptible degrees. Effects of Effects of favorable His embryo- change of circumstances, such as logical Changes in climate, changes of environment, studies distribution direct climate, soil, food, influenced of land and (briefly temperature; direct in his water as stated). case of plants and philosophic causing lowest animals, indirect views. variation. in case of the higher animals and man. Effects of changes of Conditions of existence climate, remaining constant, direct. species do not vary and Competition vice-versa. strongly Effects of advocated. changes of Struggle for existence; food. stronger devour the Natural Domesti- weaker. Competition selection. Effects of cation stated in case of ai or Species are domesti- briefly sloth. Balance of "different Sexual cation. referred to. nature. modifi- selection. cations of Effects of Effects of Effects of use and one and the Effects of use. (The use: disuse, discussed at same type." use and only examples characters length. disuse (in given are the produced by some callosities their own Vestigial structures the cases). on legs of exertions in remains of organs camel, of consequence actively used by baboon, and of their ancestors of present the desires, forms. thickening by aversions, use of soles lust, hunger, New wants or necessities on man's and security. induced by changes of feet.) climate, habitat, etc., Sexual result in production of selection, new propensities, new law of habits, and functions. battle. Change of habits Protective originate organs; change mimicry. of functions create new organs; formation of new Origin of habits precede the organs before origin of new or development modification of organs of their already formed. functions. Geographical isolation Isolation Inheritance suggested as a factor in "an of acquired case of man. important characters element." (vaguely Swamping effects of stated). crossing. Instincts Lamarck's definition of result of species the most imitation. satisfactory yet stated. Opposed Inheritance of acquired Inheritance preformation characters. of acquired views of characters. Haller and Instinct the result of Bonnet. inherited habits. Opposed preformation views; epigenesis definitely stated and adopted. - -

FOOTNOTES:

[179] [Cabanis.] Rapp. du Phys. et du Moral de l'Homme, pp. 38 a 39, et 85.

[180] Lamarck's idea of the animal series was that of a branched one, as shown by his genealogical tree on p. 193, and he explains that the series begins at least by two special branches, these ending in branchlets. He thus breaks entirely away from the old idea of a continuous ascending series of his predecessors Bonnet and others. Professor R. Hertwig therefore makes a decided mistake and does Lamarck a great injustice in his "Zooelogy," where he states: "Lamarck, in agreement with the then prevailing conceptions, regarded the animal kingdom as a series grading from the lowest primitive animal up to man" (p. 26); and again, on the next page, he speaks of "the theory of Geoffroy St.-Hilaire and Lamarck" as having in it "as a fundamental error the doctrine of the serial arrangement of the animal world" (English Trans.). Hertwig is in error, and could never have carefully read what Lamarck did say, or have known that he was the first to throw aside the serial arrangement, and to sketch out a genealogical tree.

[181] The foregoing pages (283-286) are reprinted by the author from the Discours of 1803. See pp. 266-270.

[182] Perrier thus comments on this passage: "Ici nous sommes bien pres, semble-t-il, non seulement de la lutte pour la vie telle one la concevra Darwin, mais meme de la selection naturelle. Malheureusement, au lieu de poursuivre l'idee, Lamarck aussitot s'engage dans une autre voie," etc. (La Philosophie zoologique avant Darwin, p. 81).

[183] The expression "sentiment interieur" may be nearly equivalent to the "organic sense" of modern psychologists, but more probably corresponds to our word consciousness.

[184] Lamarck's division of Animaux sensibles comprises the insects, arachnids, crustacea, annelids, cirrhipedes, and molluscs.

[185] Rather a strange view to take, as the brain of insects is now known to be nearly as complex as that of mammals.

[186] Richerand, Physiologie. vol ii. p. 151.

[187] "As all animals do not have the power of performing voluntary acts, so in like manner instinct is not common to all animals: for those lacking the nervous system also want the organic sense, and can perform no instinctive acts.

"These imperfect animals are entirely passive, they do nothing of themselves, they have no wants, and nature as regards them treats them as she does plants. But as they are irritable in their parts, the means which nature employs to maintain their existence enables them to execute movements which we call actions."

It thus appears that Lamarck practically regards the lowest animals as automata, but we must remember that the line he draws between animals with and without a nervous system is an artificial one, as some of the forms which he supposed to be destitute of a nervous system are now known to possess one.

[188] It should be noticed that Lamarck does not absolutely state that there are no variations whatever in instinct. His words are much less positive: "Sans offrer de variation notable." This dues not exclude the fact, discovered since his time, that instincts are more or less variable, thus affording grounds for Darwin's theory of the origin of new kinds of instincts from the "accidental variation of instincts." Professor James' otherwise excellent version of Lamarck's view is inexact and misleading when he makes Lamarck say that instincts are "perpetuated without variation from one generation to another, so long as the outward conditions of existence remain the same" (The Principles of Psychology, vol. ii., p. 678, 1890). He leaves out the word notable. The italics are ours. Farther on (p. 337), it will be seen that Lamarck acknowledges that in birds and mammals instinct is variable.

[189] It is interesting to compare with this Darwin's theory of the origin of the same animals, the flying squirrels and Galeopithecus (Origin of Species, 5th edition, New York, pp. 173-174), and see how he invokes the Lamarckian factors of change of "climate and vegetation" and "changing conditions of life," to originate the variations before natural selection can act. His account is a mixture of Lamarckism with the added Darwinian factors of competition and natural selection. We agree with this view, that the change in environment and competition sets the ball in motion, the work being finished by the selective process. The act of springing and the first attempts at flying also involve strong emotions and mental efforts, and it can hardly be denied that these Lamarckian factors came into continual play during the process of evolution of these flying creatures.

[190] This sagacious, though crude suggestion of the origin of birds and mammals from the reptiles is now, after the lapse of nearly a century, being confirmed by modern morphologists and palaeontologists.

[191] Reproduced on page 193.

[192] This is taken from my article, "Lamarck and Neo-lamarckianism," in the Open Court, Chicago, February, 1897. Compare also "Darwin Wrong," etc., by R. F. Licorish, M.D., Barbadoes, 1898, reprinted in Natural Science, April, 1899.

[193] Natural Selection, pp. 41-42.

[194] American Naturalist, 1891, p. 17.



CHAPTER XVIII

LAMARCK'S THEORY AS TO THE EVOLUTION OF MAN

Lamarck's views on the origin of man are contained in his Recherches sur l'Organisation des Corps vivans (1802) and his Philosophie zoologique, published in 1809. We give the following literal translation in full of the views he presented in 1802, and which were probably first advanced in lectures to his classes.

"As to man, his origin, his peculiar nature, I have already stated in this book that I have not kept these subjects in view in making these observations. His extreme superiority over the other living creatures indicates that he is a privileged being who has in common with the animals only that which concerns animal life.

"In truth, we observe a sort of gradation in the intelligence of animals, like what exists in the gradual improvement of their organization, and we remark that they have ideas, memory; that they think, choose, love, hate, that they are susceptible of jealousy, and that by different inflexions of their voice and by signs they communicate with and understand each other. It is not less evident that man alone is endowed with reason, and that on this account he is clearly distinguished from all the other productions of nature.

"However, were it not for the picture that so many celebrated men have drawn of the weakness and lack of human reason; were it not that, independently of all the freaks into which the passions of man almost constantly allure him, the ignorance which makes him the opinionated slave of custom and the continual dupe of those who wish to deceive him; were it not that his reason has led him into the most revolting errors, since we actually see him so debase himself as to worship animals, even the meanest, of addressing to them his prayers, and of imploring their aid; were it not, I say, for these considerations, should we feel authorized to raise any doubts as to the excellence of this special light which is the attribute of man?

"An observation which has for a long time struck me is that, having remarked that the habitual use and exercise of an organ proportionally develops its size and functions, as the lack of employment weakens in the same proportion its power, and even more or less completely atrophies it, I am apprised that of all the organs of man's body which is the most strongly submitted to this influence, that is to say, in which the effects of exercise and of habitual use are the most considerable, is it not the organ of thought—in a word, is it not the brain of man?

"Compare the extraordinary difference existing in the degree of intelligence of a man who rarely exercises his powers of thought, who has always been accustomed to see but a small number of things, only those related to his ordinary wants and to his limited desires; who at no time thinks about these same objects, because he is obliged to occupy himself incessantly with providing for these same wants; finally, who has few ideas, because his attention, continually fixed on the same things, makes him notice nothing, that he makes no comparisons, that he is in the very heart of nature without knowing it, that he looks upon it almost in the same way as do the beasts, and that all that surrounds him is nothing to him: compare, I say, the intelligence of this individual with that of the man who, prepared at the outset by education, has contracted the useful practice of exercising the organ of his thought in devoting himself to the study of the principal branches of knowledge; who observes and compares everything he sees and which affects him; who forgets himself in examining everything he can see, who insensibly accustoms himself to judge of everything for himself, instead of giving a blind assent to the authority of others; finally, who, stimulated by reverses and especially by injustice, quietly rises by reflection to the causes which have produced all that we observe both in nature and in human society; then you will appreciate how enormous is the difference between the intelligence of the two men in question.

"If Newton, Bacon, Montesquieu, Voltaire, and so many other men have done honor to the human species by the extent of their intelligence and their genius, how nearly does the mass of brutish, ignorant men approach the animal, becoming a prey to the most absurd prejudices and constantly enslaved by their habits, this mass forming the majority of all nations?

"Search deeply the facts in the comparison I have just made, you will see how in one part the organ which serves for acts of thought is perfected and acquires greater size and power, owing to sustained and varied exercise, especially if this exercise offers no more interruptions than are necessary to prevent the exhaustion of its powers; and, on the other hand, you will perceive how the circumstances which prevent an individual from exercising this organ, or from exercising it habitually only while considering a small number of objects which are always of the same nature, impede the development of his intellectual faculties.

"After what I have just stated as to the results in man of a slight exercise of the organ by which he thinks, we shall no longer be astonished to see that in the nations which have come to be the most distinguished, because there is among them a small number of men who have been able, by observation and reflection, to create or advance the higher sciences, the multitude in these same nations have not been for all that exempted from the most absurd errors, and have not the less always been the dupe of impostors and victims of their prejudices.

"Such is, in fact, the fatality attached to the destiny of man that, with the exception of a small number of individuals who live under favorable though special circumstances, the multitude, forced to continually busy itself with providing for its needs, remains permanently deprived of the knowledge which it should acquire; in general, exercises to a very slight extent the organ of its intelligence; preserves and propagates a multitude of prejudices which enslave it, and cannot be as happy as those who, guiding it, are themselves guided by reason and justice.

"As to the animals, besides the fact that they in descending order have the brain less developed, they are otherwise proportionally more limited in the means of exercising and of varying their intellectual processes. They each exercise them only on a single or on some special points, on which they become more or less expert according to their species. And while their degree of organization remains the same and the nature of their needs (besoins) does not vary, they can never extend the scope of their intelligence, nor apply it to other objects than to those which are related to their ordinary needs.

"Some among them, whose structure is a little more perfect than in others, have also greater means of varying and extending their intellectual faculties; but it is always within limits circumscribed by their necessities and habits.

"The power of habit which is found to be still so great in man, especially in one who has but slightly exercised the organ of his thought, is among animals almost insurmountable while their physical state remains the same. Nothing compels them to vary their powers, because they suffice for their wants and these require no change. Hence it is constantly the same objects which exercise their degree of intelligence, and it results that these actions are always the same in each species.

"The sole acts of variation, i.e., the only acts which rise above the limits of habits, and which we see performed in animals whose organization allows them to, are acts of imitation. I only speak of actions which they perform voluntarily or freely (actions qu'ils font de leur plein gre).

"Birds, very limited in this respect in the powers which their structure furnishes, can only perform acts of imitation with their vocal organ; this organ, by their habitual efforts to render the sounds, and to vary them, becomes in them very perfect. Thus we know that several birds (the parrot, starling, raven, jay, magpie, canary bird, etc.) imitate the sounds they hear.

"The monkeys, which are, next to man, the animals by their structure having the best means to this end, are most excellent imitators, and there is no limit to the things they can mimic.

"In man, infants which are still of the age when simple ideas are formed on various subjects, and who think but little, forming no complex ideas, are also very good imitators of everything which they see or hear.

"But if each order of things in animals is dependent on the state of organization occurring in each of them, which is not doubted, there is no occasion for thinking that in these same animals the order which is superior to all the others in organization is proportionally so also in extent of means, invariability of actions, and consequently in intellectual powers.

"For example, in the mammals which are the most highly organized, the Quadrumana, which form a part of them, have, besides the advantages over other mammals, a conformation in several of their organs which considerably increases their powers, which allows of a great variability in their actions, and which extends and even makes predominant their intelligence, enabling them to deal with a greater variety of objects with which to exercise their brain. It will doubtless be said: But although man may be a true mammal in his general structure, and although among the mammals the Quadrumana are most nearly allied to him, this will not be denied, not only that man is strongly distinguished from the Quadrumana by a great superiority of intelligence, but he is also very considerably so in several structural features which characterize him.

"First, the occipital foramen being situated entirely at the base of the cranium of man and not carried up behind, as in the other vertebrates, causes his head to be posed at the extremity of the vertebral column as on a pivot, not bowed down forward, his face not looking towards the ground. This position of the head of man, who can easily turn it to different sides, enables him to see better a larger number of objects at one time, than the much inclined position of the head of other mammals allows them to see.

"Secondly, the remarkable mobility of the fingers of the hand of man, which he employs either all together or several together, or each separately, according to his pleasure, and besides, the sense of touch highly developed at the extremity of these same fingers, enables him to judge the nature of the bodies which surround him, to recognize them, to make use of them—means which no other animals possess to such a degree.

"Thirdly, by the state of his organization man is able to hold himself up and walk erect. He has, for this attitude which is natural to him, large muscles at the lower extremities which are adapted to this end, and it would thus be as difficult to walk habitually on his four extremities as it would be for the other mammals, and even for the Quadrumana, to walk so habitually erect on the soles of their feet.

"Moreover, man is not truly quadrumanous; for he has not, like the monkeys, an almost equal facility in using the fingers of his feet, and of seizing objects with them. In the feet of man the thumbs are not in opposition to the other fingers to use in grasping, as in monkeys, etc.

"I appreciate all these reasons, and I see that man, although near the Quadrumana, is so distinct that he alone represents a separate order, belonging to a single genus and species, offering, however, many different varieties. This order may be, if it is desired, that of the Bimana.

"However, if we consider that all the characteristics which have been cited are only differences in degree of structure, may we not suppose that this special condition of organization of man has been gradually acquired at the close of a long period of time, with the aid of circumstances which have proved favorable?[195] What a subject for reflection for those who have the courage to enter into it!

"If the Quadrumana have not the occipital opening situated directly at the base of the cranium as in man, it is assuredly much less raised posteriorly than in the dog, cat, and all the other mammals. Thus they all may quite often stand erect, although this attitude for them is very irksome.

"I have not observed the situation of the occipital opening of the jacko or orang-outang (Simia satyrus L.); but as I know that this animal almost habitually walks erect, though it has no strength in its legs, I suppose that the occipital foramen is not situated so far from the base of the skull as in the other Quadrumana.

"The head of the negro, less flattened in front than that of the European man, necessarily has the occipital foramen central.

"The more should the jacko contract the habit of walking about, the less mobility would he have in his toes, so that the thumbs of the feet, which are already much shorter than the other digits, would gradually cease to be placed in opposition to the other toes, and to be useful in grasping. The muscles of its lower extremities would acquire proportionally greater thickness and strength. Then the increased or more frequent exercise of the fingers of its hands would develop nervous masses at their extremities, thus rendering the sense of touch more delicate. This is what our train of reasoning indicates from the consideration of a multitude of facts and observations which support it."[196]

The subject is closed by a quotation from Grandpre on the habits of the chimpanzee. It is not of sufficient importance to be here reproduced.

Seven years after the publication of these views, Lamarck again returns to the subject in his Philosophie zoologique, which we translate.

"Some Observations Relative to Man.

"If man were distinguished from the animals by his structure alone, it would be easy to show that the structural characters which place him, with his varieties, in a family by himself, are all the product of former changes in his actions, and in the habits which he has adopted and which have become special to the individuals of his species.

"Indeed, if any race whatever of Quadrumana, especially the most perfect, should lose, by the necessity of circumstances or from any other cause, the habit of climbing trees, and of seizing the branches with the feet, as with the hands, to cling to them; and if the individuals of this race, during a series of generations, should be obliged to use their feet only in walking, and should cease to use their hands as feet, there is no doubt, from the observations made in the preceding chapter, that these Quadrumana would be finally transformed into Bimana, and that the thumbs of their feet would cease to be shorter than the fingers, their feet only being of use for walking.

"Moreover, if the individuals of which I speak were impelled by the necessity of rising up and of looking far and wide, of endeavoring to stand erect, and of adopting this habit constantly from generation to generation, there is no doubt that their feet would gradually and imperceptibly assume a conformation adapted for an erect posture, that their legs would develop calves, and that these creatures would not afterwards walk as they do now, painfully on both hands and feet.

"Also, if these same individuals should cease using their jaws for biting in self-defence, tearing or seizing, or using them like nippers in cutting leaves for food, and should they only be used in chewing food, there is no doubt that their facial angle would become higher, that their muzzle would become shorter and shorter, and that in the end this being entirely effaced, their incisor teeth would become vertical.

"Now supposing that a race of Quadrumana, as for example the most perfect, had acquired, by habits constant in every individual, the structure I have just described, and the power of standing erect and of walking upright, and that as the result of this it had come to dominate the other races of animals, we should then conceive:

"1. That this race farther advanced in its faculties, having arrived at the stage when it lords it over the others, will be spread over the surface of the globe in every suitable place;

"2. That it will hunt the other higher races of animals and will struggle with them for preeminence (lui disputer les biens de la terre) and that it will force them to take refuge in regions which it does not occupy;

"3. That being injured by the great multiplication of closely allied races, and having banished them into forests or other desert places, it will arrest the progress of improvement in their faculties, while its own self, the ruler of the region over which it spreads, will increase in population without hindrance on the part of others, and, living in numerous tribes, will in succession create new needs which should stimulate industry and gradually render still more perfect its means and powers;

"4. That, finally, this preeminent race having acquired an absolute supremacy over all the others, there arose between it and the highest animals a difference and indeed a considerable interval.

"Thus the most perfect race of Quadrumana will have been enabled to become dominant, to change its habits as the result of the absolute dominion which it will have assumed over the others, and with its new needs, by progressively acquiring modifications in its structure and its new and numerous powers, to keep within due limits the most highly developed of the other races in the state to which they had advanced, and to create between it and these last very remarkable distinctions.

"The Angola orang (Simia troglodytes Lin.) is the highest animal; it is much more perfect than the orang of the Indies (Simia satyrus Lin.), which is called the orang-outang, and, nevertheless, as regards their structure they are both very inferior to man in bodily faculties and intelligence. These animals often stand erect; but this attitude is not habitual, their organization not having been sufficiently modified, so that standing still (station) is painful for them.

"It is known, from the accounts of travellers, especially in regard to the orang of the Indies, that when immediate danger obliges it to fly, it immediately falls on all fours. This betrays, they tell us, the true origin of this animal, since it is obliged to abandon the alien unaccustomed partially erect attitude which is thrust upon it.

"Without doubt this attitude is foreign to it, since in its change of locality it makes less use of it, which shows that its organization is less adapted to it; but though it has become easier for man to stand up straight, is the erect posture wholly natural to him?

"Although man, who, by his habits, maintained in the individuals of his species during a great series of generations, can stand erect only while changing from one place to another, this attitude is not less in his case a condition of fatigue, during which he is able to maintain himself in an upright position only during a limited time and with the aid of the contraction of several of his muscles.

"If the vertebral column of the human body should form the axis of this body, and sustain the head in equilibrium, as also the other parts, the man standing would be in a state of rest. But who does not know that this is not so; that the head is not articulated at its centre of gravity; that the chest and stomach, as also the viscera which these cavities contain, weigh heavily almost entirely on the anterior part of the vertebral column; that the latter rests on an oblique base, etc.? Also, as M. Richerand observes, there is needed in standing a force active and watching without ceasing to prevent the body from falling over, the weight and disposition of parts tending to make the body fall forward.

"After having developed the considerations regarding the standing posture of man, the same savant then expresses himself: 'The relative weight of the head, of the thoracic and abdominal viscera, tends therefore to throw it in front of the line, according to which all the parts of the body bear down on the ground sustaining it; a line which should be exactly perpendicular to this ground in order that the standing position may be perfect. The following fact supports this assertion: I have observed that infants with a large head, the stomach protruding and the viscera loaded with fat, accustom themselves with difficulty to stand up straight, and it is not until the end of their second year that they dare to surrender themselves to their proper forces; they stand subject to frequent falls and have a natural tendency to revert to the quadrupedal state.' (Physiologie, vol. ii., p. 268.)

"This disposition of the parts which cause the erect position of man, being a state of activity, and consequently fatiguing, instead of being a state of rest, would then betray in him an origin analogous to that of the mammals, if his organization alone should be taken into consideration.

"Now in order to follow, in all its particulars, the hypothesis presented in the beginning of these observations, it is fitting to add the following considerations:

"The individuals of the dominant race previously mentioned, having taken possession of all the inhabitable places which were suitable for them, and having to a very considerable extent multiplied their necessities in proportion as the societies which they formed became more numerous, were able equally to increase their ideas, and consequently to feel the need of communicating them to their fellows. We conceive that there would arise the necessity of increasing and of varying in the same proportion the signs adopted for the communication of these ideas. It is then evident that the members of this race would have to make continual efforts, and to employ every possible means in these efforts, to create, multiply, and render sufficiently varied the signs which their ideas and their numerous wants would render necessary.

"It is not so with any other animals; because, although the most perfect among them, such as the Quadrumana, live mostly in troops, since the eminent supremacy of the race mentioned they have remained stationary as regards the improvement of their faculties, having been driven out from everywhere and banished to wild, desert, usually restricted regions, whither, miserable and restless, they are incessantly constrained to fly and hide themselves. In this situation these animals no longer contract new needs, they acquire no new ideas; they have but a small number of them, and it is always the same ones which occupy their attention, and among these ideas there are very few which they have need of communicating to the other individuals of their species. There are, then, only very few different signs which they employ among their fellows, so that some movements of the body or of certain of its parts, certain hisses and cries raised by the simple inflexions of the voice, suffice them.

"On the contrary, the individuals of the dominant race already mentioned, having had need of multiplying the signs for the rapid communication of their ideas, now become more and more numerous, and, no longer contented either with pantomimic signs or possible inflexions of their voice to represent this multitude of signs now become necessary, would succeed by different efforts in forming articulated sounds: at first they would use only a small number, conjointly with the inflexions of their voice; as the result they would multiply, vary, and perfect them, according to their increasing necessities, and according as they would be more accustomed to produce them. Indeed, the habitual exercise of their throat, their tongue, and their lips to make articulate sounds, will have eminently developed in them this faculty.

"Hence for this particular race the origin of the wonderful power of speech; and as the distance between the regions where the individuals composing it would be spread would favor the corruption of the signs fitted to express each idea, from this arose the origin of languages, which must be everywhere diversified.

"Then in this respect necessities alone would have accomplished everything; they would give origin to efforts; and the organs fitted for the articulation of sounds would be developed by their habitual use.

"Such would be the reflections which might be made if man, considered here as the preeminent race in question, were distinguished from the animals only by his physical characters, and if his origin were not different from theirs."

This is certainly, for the time it was written, an original, comprehensive, and bold attempt at explaining in a tentative way, or at least suggesting, the probable origin of man from some arboreal creature allied to the apes. It is as regards the actual evolutional steps supposed to have been taken by the simian ancestors of man, a more detailed and comprehensive hypothesis than that offered by Darwin in his Descent of Man,[197] which Lamarck has anticipated. Darwin does not refer to this theory of Lamarck, and seems to have entirely overlooked it, as have others since his time. The theory of the change from an arboreal life and climbing posture to an erect one, and the transformation of the hinder pair of hands into the feet of the erect human animal, remind us of the very probable hypothesis of Mr. Herbert Spencer, as to the modification of the quadrumanous posterior pair of hands to form the plantigrade feet of man.

FOOTNOTES:

[195] Author's italics.

[196] "How much this unclean beast resembles man!"—Ennius.

"Indeed, besides other resemblances the monkey has mammae, a clitoris, nymphs, uterus, uvula, eye-lobes, nails, as in the human species; it also lacks a suspensory ligament of the neck. Is it not astonishing that man, endowed with wisdom, differs so little from such a disgusting animal!"—Linnaeus.

[197] Vol. i., chapter iv., pp. 135-151; ii., p. 372.



CHAPTER XIX

LAMARCK'S THOUGHTS ON MORALS, AND ON THE RELATION BETWEEN SCIENCE AND RELIGION

One who has read the writings of the great French naturalist, who may be regarded as the founder of evolution, will readily realize that Lamarck's mind was essentially philosophic, comprehensive, and synthetic. He looked upon every problem in a large way. His breadth of view, his moral and intellectual strength, his equably developed nature, generous in its sympathies and aspiring in its tendencies, naturally led him to take a conservative position as to the relations between science and religion. He should, as may be inferred from his frequent references to the Author of nature, be regarded as a deist.

When a very young man, he was for a time a friend of the erratic and gifted Rousseau, and was afterwards not unknown to Condorcet, the secretary of the French Academy of Sciences, so liberal in his views and so bitter an enemy of the Church; and though constantly in contact with the radical views and burning questions of that day, Lamarck throughout his life preserved his philosophic calm, and maintained his lofty tone and firm temper. We find no trace in his writings of sentiments other than the most elevated and inspiring, and we know that in character he was pure and sweet, self-sacrificing, self-denying, and free from self-assertion.

The quotations from his Philosophie zoologique, published in 1809, given below, will show what were the results of his meditations on the relations between science and religion. Had his way of looking at this subject prevailed, how much misunderstanding and ill-feeling between theologians and savants would have been avoided! Had his spirit and breadth of view animated both parties, there would not have been the constant and needless opposition on the part of the Church to the grand results of scientific discovery and philosophy, or too hasty dogmatism and scepticism on the part of some scientists.

In Lamarck, at the opening of the past century, we behold the spectacle of a man devoting over fifty years of his life to scientific research in biology, and insisting on the doctrine of spontaneous generation; of the immense length of geological time, so opposed to the views held by the Church; the evolution of plants and animals from a single germ, and even the origin of man from the apes, yet as earnestly claiming that nature has its Author who in the beginning established the order of things, giving the initial impulse to the laws of the universe.

As Duval says, after quoting the passage given below: "Deux faits son a noter dans ce passage: d'une part, les termes dignes et conciliants dans lesquels Lamarck etablit la part de la science et de la religion; cela vaut, mieux, meme en tenant compte des differences d'epoques, que les abjurations de Buffon."[198]

The passage quoted by M. Duval is the following one:

"Surely nothing exists except by the will of the Sublime Author of all things. But can we not assign him laws in the execution of his will, and determine the method which he has followed in this respect? Has not his infinite power enabled him to create an order of things which has successively given existence to all that we see, as well as to that which exists and that of which we have no knowledge? As regards the decrees of this infinite wisdom, I have confined myself to the limits of a simple observer of nature."[199]

In other places we find the following expressions:

"There is then, for the animals as for the plants, an order which belongs to nature, and which results, as also the objects which this order makes exist, from the power which it has received from the SUPREME AUTHOR of all things. She is herself only the general and unchangeable order that this Sublime Author has created throughout, and only the totality of the general and special laws to which this order is subject. By these means, whose use it continues without change, it has given and will perpetually give existence to its productions; it varies and renews them unceasingly, and thus everywhere preserves the whole order which is the result of it."[200]

~ ~ ~ ~ ~

"To regard nature as eternal, and consequently as having existed from all time, is to me an abstract idea, baseless, limitless, improbable, and not satisfactory to my reason. Being unable to know anything positive in this respect, and having no means of reasoning on this subject, I much prefer to think that all nature is only a result: hence, I suppose, and I am glad to admit it, a first cause, in a word, a supreme power which has given existence to nature, and which has made it in all respects what it is."[201]

~ ~ ~ ~ ~

"Nature, that immense totality of different beings and bodies, in every part of which exists an eternal circle of movements and changes regulated by law; totality alone unchangeable, so long as it pleases its SUBLIME AUTHOR to cause its existence, should be regarded as a whole constituted by its parts, for a purpose which its Author alone knows, and not exclusively for any one of them.

"Each part is necessarily obliged to change, and to cease to be one in order to constitute another, with interests opposed to those of all; and if it has the power of reasoning it finds this whole imperfect. In reality, however, this whole is perfect and completely fulfils the end for which it was designed."[202]

Lamarck's work on general philosophy[203] was written near the end of his life, in 1820. He begins his "Discours preliminaire" by referring to the sudden loss of his eyesight, his work on the invertebrate animals being thereby interrupted. The book was, he says, "rapidly" dictated to his daughter, and the ease with which he dictated was due, he says, to his long-continued habit of meditating on the facts he had observed.

In the "Principes primordiaux" he considers man as the only being who has the power of observing nature, and the only one who has perceived the necessity of recognizing a superior and only cause, creator of the order of the wonders of the world of life. By this he is led to raise his thoughts to the Supreme Author of all that exists.

"In the creation of his works, and especially those we can observe, this omnipotent Being has undoubtedly been the ruling power in pursuing the method which has pleased him, namely, his will has been:

"Either to create instantaneously and separately every particular living being observed by us, to personally care for and watch over them in all their changes, their movements, or their actions, to unremittingly care for each one separately, and by the exercise of his supreme will to regulate all their life;

"Or to reduce his creations to a small number, and among these, to institute an order of things general and continuous, pervaded by ceaseless activity (mouvement), especially subject to laws by means of which all the organisms of whatever nature, all the changes they undergo, all the peculiarities they present, and all the phenomena that many of them exhibit, may be produced.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse