|
No one would look in his writings for an idea or suggestion of the principle of differentiation of parts or organs as we now understand it, or for the idea of the physiological division of labor; these were reserved for the later periods of embryology and morphology.
Origin of the First Vital Function.—We will now return to the germ. After it had begun spontaneous existence, Lamarck proceeds to say:
"Before the containable fluids absorbed by the small, jelly-like mass in question have been expelled by the new portions of the same fluids which reach there, they can then deposit certain of the contained fluids they carry along, and the movements of the contained fluids may apply these substances to the containing parts of the newly organized microscopic being. In this way originates the first of the vital functions which becomes established in the simplest organism, i.e., nutrition. The environing containable fluids are, then, for the living body of very great simplicity, a veritable chyle entirely prepared by nature.
"Mutilation cannot operate without gradually increasing the consistence of the parts contained within the minute new organism and without extending its dimensions. Hence soon arose the second of the vital functions, growth or internal development."
First Faculty of Animal Nature.—Then gradually as the continuity of this state of things within the same minute living mass in question increases the consistence of its parts enclosed within and extends its dimensions, a vital orgasm, at first very feeble, but becoming progressively more intense, is formed in these enclosed parts and renders them susceptible of reaction against the slight impression of the fluids in motion which they contain, and at the same time renders them capable of contraction and of distention. Hence the origin of animal irritability and the basis of feeling, which is developed wherever a nervous fluid, susceptible of locating the effects in one of several special centres, can be formed.
"Scarcely will the living corpuscle, newly animalized, have received any increase in consistence and in dimensions of the parts contained, when, as the result of the organic movement which it enjoys, it will be subjected to successive changes and losses of its substance.
"It will then be obliged to take nourishment not only to obtain any development whatever, but also to preserve its individual existence, because it is necessary that it repair its losses under penalty of its destruction.
"But as the individual in question has not yet any special organ for nutrition, it therefore absorbs by the pores of its internal surface the substance adapted for its nourishment. Thus the first mode of taking food in a living body so simple can be no other than by absorption or a sort of suction, which is accomplished by the pores of its outer surface.
"This is not all; up to the present time the animalized corpuscle we are considering is still only a primitive animalcule because it as yet has no special organ. Let us see then how nature will come to furnish it with any primitive special organ, and what will be the organ that nature will form before any others, and which in the simplest animal is the only one constantly found; this is the alimentary canal, the principal organ of digestion common to all except colpodes, vibrios, proteus (amoeba), volvoces, monads, etc.
"This digestive canal is," he says—proceeding with his a priori morphology—"a little different from that of this day, produced by contractions of the body, which are stronger in one part of the body than in another, until a little crease is produced on the surface of the body. This furrow or crease will receive the food. Insensibly this little furrow by the habit of being filled, and by the so frequent use of its pores, will gradually increase in depth; it will soon assume the form of a pouch or of a tubular cavity with porous walls, a blind sac, or with but a single opening. Behold the primitive alimentary canal created by nature, the simplest organ of digestion."
In like a priori manner he describes the creation of the faculty of reproduction. The next organ, he says, is that of reproduction due to the regenerative faculty. He describes fission and budding. Finally (p. 122) he says:
"Indeed, we perceive that if the first germs of living bodies are all formed in one day in such great abundance and facility under favorable circumstances, they ought to be, nevertheless, by reason of the antiquity of the causes which make them exist, the most ancient organisms in nature."
In 1794 he rejected the view once held of a continuous chain of being, the echelle des etres suggested by Locke and by Leibnitz, and more fully elaborated by Bonnet, from the inorganic to the organic worlds, from minerals to plants, from plants to polyps (our Infusoria), polyps to worms, and so on to the higher animals. He, on the contrary, affirms that nature makes leaps, that there is a wide gap between minerals and living bodies, that everything is not gradated and shaded into each other. One reason for this was possibly his strange view, expressed in 1794, that all brute bodies and inorganic matters, even granite, were not formed at the same epoch but at different times, and were derived from organisms.[115]
The mystical doctrine of a vital force was rife in Lamarck's time. The chief starting point of the doctrine was due to Haller, and, as Verworn states, it is a doctrine which has confused all physiology down to the middle of the present century, and even now emerges again here and there in varied form.[116]
Lamarck was not a vitalist. Life, he says,[117] is usually supposed to be a particular being or entity; a sort of principle whose nature is unknown, and which possesses living bodies. This notion he denies as absurd, saying that life is a very natural phenomenon, a physical fact; in truth a little complicated in its principles, but not in any sense a particular or special being or entity.
He then defines life in the following words: "Life is an order and a state of things in the parts of every body possessing it, which permits or renders possible in it the execution of organic movement, and which, so long as it exists, is effectively opposed to death. Derange this order and this state of things to the point of preventing the execution of organic movement, or the possibility of its reestablishment, then you cause death." Afterwards, in the Philosophie zoologique, he modifies this definition, which reads thus: "Life, in the parts of a body which possesses it, is an order and a state of things which permit organic movements; and these movements, which constitute active life, result from the action of a stimulating cause which excites them."[118]
For the science of all living bodies Lamarck proposed the word "Biology," which is so convenient a term at the present day. The word first appears in the preface to the Hydrogeologie, published in 1802. It is worthy of note that in the same year the same word was proposed for the same science by G. R. Treviranus as the title of a work, Biologie, der Philosophie der lebenden Natur, published in 1802-1805 (vols. i.-vi., 1802-1822), the first volume appearing in 1802.
In the second part of the Philosophie zoologique he considers the physical causes of life, and in the introduction he defines nature as the ensemble of objects which comprise: (1) All existing physical bodies; (2) the general and special laws which regulate the changes of condition and situation of these bodies; (3) finally, the movement everywhere going on among them resulting in the wonderful order of things in nature.
To regard nature as eternal, and consequently as having existed from all time, is baseless and unreasonable. He prefers to think that nature is only a result, "whence, I suppose, and am glad to admit, a first cause, in a word, a supreme power which has given existence to nature, which has made it as a whole what it is."
As to the source of life in bodies endowed with it, he considers it a problem more difficult than to determine the course of the stars in space, or the size, masses, and movements of the planets belonging to our solar system; but, however formidable the problem, the difficulties are not insurmountable, as the phenomena are purely physical—i.e., essentially resulting from acts of organization.
After defining life, in the third chapter (beginning vol. ii.) he treats of the exciting cause of organic movements. This exciting cause is foreign to the body which it vivifies, and does not perish, like the latter. "This cause resides in invisible, subtile, expansive, ever-active fluids which penetrate or are incessantly developed in the bodies which they animate." These subtile fluids we should in these days regard as the physico-chemical agents, such as heat, light, electricity.
What he says in the next two chapters as to the "orgasme" and irritability excited by the before-mentioned exciting cause may be regarded as a crude foreshadowing of the primary properties of protoplasm, now regarded as the physical basis of life—i.e., contractility, irritability, and metabolism. In Chapter VI. Lamarck discusses direct or spontaneous generation in the same way as in 1802. In the following paragraph we have foreshadowed the characteristic qualities of the primeval protoplasmic matter fitted to receive the first traces of organization and life:
"Every mass of substance homogeneous in appearance, of a gelatinous or mucilaginous consistence, whose parts, coherent among themselves, will be in the state nearest fluidity, but will have only a consistence sufficient to constitute containing parts, will be the body most fitted to receive the first traces of organization and life."
In the third part of the Philosophie zoologique Lamarck considers the physical causes of feeling—i.e., those which form the productive force of actions, and those giving rise to intelligent acts. After describing the nervous system and its functions, he discusses the nervous fluid. His physiological views are based on those of Richerand's Physiologie, which he at times quotes.
Lamarck's thoughts on the nature of the nervous fluid (Recherches sur le fluide nerveux) are curious and illustrative of the gropings after the truth of his age.
He claims that the supposed nervous fluid has much analogy to the electric, that it is the feu ethere "animalized by the circumstances under which it occurs." In his Recherches sur l'organisation des corps vivans (1802) he states that, as the result of changes continually undergone by the principal fluids of an animal, there is continually set free in a state of feu fixe a special fluid, which at the instant of its disengagement occurs in the expansive state of the caloric, then becomes gradually rarefied, and insensibly arrives at the state of an extremely subtile fluid which then passes along the smallest nervous ramifications in the substance of the nerve, which is a very good conductor for it. On its side the brain sends back the subtile fluid in question along the nerves to the different organs.
In the same work (1802) Lamarck defines thought as a physical act taking place in the brain. "This act of thinking gives rise to different displacements of the subtile nervous fluid and to different accumulations of this fluid in the parts of the brain where the ideas have been traced." There result from the flow of the fluid on the conserved impressions of ideas, special movements which portions of this fluid acquire with each impression, which give rise to compounds by their union producing new impressions on the delicate organ which receives them, and which constitute abstract ideas of all kinds, also the different acts of thought.
All the acts which constitute thought are the comparisons of ideas, both simple and complex, and the results of these comparisons are judgments.
He then discusses the influence of the nervous fluid on the muscles, and also its influence considered as the cause of feeling (sentiment). Finally he concludes that feu fixe, caloric, the nervous fluid, and the electric fluid "are only one and the same substance occurring in different states."
FOOTNOTES:
[107] Charles Bonnet (1720-1793), a Swiss naturalist, is famous for his work on Aphides and their parthenogenetic generation, on the mode of reproduction in the Polyzoa, and on the respiration of insects. After the age of thirty-four, when his eyesight became impaired, he began his premature speculations, which did not add to his reputation. Judging, however, by an extract from his writings by D'Archiac (Introduction a l'Etude de la Paleontologie stratigraphique, ii., p. 49), he had sound ideas on the theory of descent, claiming that "la diversite et la multitude des conjunctions, peut-etre meme la diversite des climats et des nourritures, ont donne naissance a de nouvelles especes ou a des individus intermediaires" (Oeuvres d'Hist. nat. et de Philosophie, in-8vo, p. 230, 1779).
[108] See his remark: "On a dit avec raison que tout ce qui a vie provient d'un auf" (Memoires de Physique, etc., 1797, p. 272). He appears, however, to have made the simplest organisms exceptions to this doctrine.
[109] Elementa physiologiae corporis humani, iv. Lausanne, 1762.
[110] Theoria generationis, 1774.
[111] Memoires de Physique, (1797), p. 250.
[112] Memoires de Physique, etc. (1797), p. 272.
[113] Huxley's "Evolution in Biology" (Darwiniana, p. 192), where be quotes from Bonnet's statements, which "bear no small resemblance to what is understood by evolution at the present day."
[114] Buffon did not accept Bonnet's theory of preexistent germs, but he assumed the existence of "germes accumules" which reproduced parts or organs, and for the production of organisms he imagined "molecules organiques." Reaumur had previously (1712) conjectured that there were "germes caches et accumules" to account for the regeneration of the limbs of the crayfish. The ideas of Bonnet on germs are stated in his Memoires sur les Salamandres (1777-78-80) and in his Considerations sur les corps organises (1762.)
[115] Memoires de Physique, etc., pp. 318, 319, 324-359. Yet the idea of a sort of continuity between the inorganic and the organic world is expressed by Verworn.
[116] General Physiology (English trans., 1899, p. 17). In France vitalism was founded by Bordeu (1722-1766), developed further by Barthez (1734-1806) and Chaussier (1746-1828), and formulated most distinctly by Louis Dumas (1765-1813). Later vitalists gave it a thoroughly mystical aspect, distinguishing several varieties, such as the nisus formativus or formative effort, to explain the forms of organisms, accounting for the fact that from the egg of a bird, a bird and no other species always develops (l. c., p. 18).
[117] Recherches sur l'organisation des corps vivans (1802), p. 70. The same view was expressed in Memoires de physique (1797), pp. 254-257, 386.
[118] Here might be quoted for comparison other famous definitions of life:
"Life is the sum of the functions by which death is resisted."—Bichat.
"Life is the result of organization."—(?)
"Life is the principle of individuation."—Coleridge ex. Schelling.
"Life is the twofold internal movement of composition and decomposition, at once general and continuous."—De Blainville, who wisely added that there are "two fundamental and correlative conditions inseparable from the living being—an organism and a medium."
"Life is the continuous adjustment of internal relations to external relations."—Herbert Spencer.
CHAPTER XI
LAMARCK AS A BOTANIST
During the century preceding the time of Lamarck, botany had not flourished in France with the vigor shown in other countries. Lamarck himself frankly stated in his address to the Committee of Public Instruction of the National Convention that the study of plants had been for a century neglected by Frenchmen, and that the great progress which it had made during this time was almost entirely due to foreigners.
"I am free to say that since the distinguished Tournefort the French have remained to some extent inactive in this direction; they have produced almost nothing, unless we except some fragmentary mediocre or unimportant works. On the other hand, Linne in Sweden, Dilwillen in England, Haller in Switzerland, Jacquin in Austria, etc., have immortalized themselves by their own works, vastly extending the limit of our knowledge in this interesting part of natural history."
What led young Lamarck to take up botanical studies, his botanical rambles about Paris, and his longer journeys in different parts of France and in other countries, his six years of unremitting labor on his Flore Francaise, and the immediate fame it brought him, culminating in his election as a member of the French Academy, have been already recounted.
Lamarck was thirty-four when his Flore Francaise appeared. It was not preceded, as in the case of most botanical works, by any preliminary papers containing descriptions of new or unknown species, and the three stout octavo volumes appeared together at the same date.
The first volume opens with a report on the work made by MM. Duhamel and Guettard. Then follows the Discours Preliminaire, comprising over a hundred pages, while the main body of the work opens with the Principes Elementaires de Botanique, occupying 223 pages. The work was a general elementary botany and written in French. Before this time botanists had departed from the artificial system of Linne, though it was convenient for amateurs in naming their plants. Jussieu had proposed his system of natural families, founded on a scientific basis, but naturally more difficult for the use of beginners. To obviate the matter Lamarck conceived and proposed the dichotomic method for the easy determination of species. No new species were described, and the work, written in the vernacular, was simply a guide to the indigenous plants of France, beginning with the cryptogams and ending with the flowering plants. A second edition appeared in 1780, and a third, edited and remodelled by A. P. De Candolle, and forming six volumes, appeared in 1805-1815. This was until within a comparatively few years the standard French botany.
Soon after the publication of his Flore Francaise he projected two other works which gave him a still higher position among botanists. His Dictionnaire de Botanique was published in 1783-1817, forming eight volumes and five supplementary ones. The first two and part of the third volume were written by Lamarck, the remainder by other botanists, who completed it after Lamarck had abandoned botanical studies and taken up his zooelogical work. His second great undertaking was L'Illustration des Genres (1791-1800), with a supplement by Poiret (1823).
Cuvier speaks thus of these works:
"L'Illustration des Genres is a work especially fitted to enable one to acquire readily an almost complete idea of this beautiful science. The precision of the descriptions and of the definitions of Linnaeus is maintained, as in the institutions of Tournefort, with figures adapted to give body to these abstractions, and to appeal both to the eye and to the mind, and not only are the flowers and fruits represented, but often the entire plant. More than two thousand genera are thus made available for study in a thousand plates in quarto, and at the same time the abridged characters of a vast number of species are given.
"The Dictionnaire contains more details of the history with careful descriptions, critical researches on their synonymy, and many interesting observations on their uses or on special points of their organizations. The matter is not all original in either of the works, far from it, but the choice of figures is skilfully made, the descriptions are drawn from the best authors, and there are a large number which relate to species and also some genera previously unknown."
Lamarck himself says that after the publication of his Flore Francaise, his zeal for work increasing, and after travelling by order of the government in different parts of Europe, he undertook on a vast scale a general work on botany.
"This work comprised two distinct features. In the first (Le Dictionnaire), which made a part of the new encyclopedia, the citizen Lamarck treats of philosophical botany, also giving the complete description of all the genera and species known. An immense work from the labor it cost, and truly original in its execution.... The second treatise, entitled Illustration des Genres, presents in the order of the sexual system the figures and the details of all the genera known in botany, and with a concise exposition of the generic characters and of the species known. This work, unique of its kind, already contains six hundred plates executed by the best artists, and will comprise nine hundred. Also for more than ten years the citizen Lamarck has employed in Paris a great number of artists. Moreover, he has kept running three separate presses for different works, all relating to natural history."
Cuvier in his Eloge also adds:
"It is astonishing that M. de Lamarck, who hitherto had been studying botany as an amateur, was able so rapidly to qualify himself to produce so extensive a work, in which the rarest plants were described. It is because, from the moment he undertook it, with all the enthusiasm of his nature, he collected them from the gardens and examined them in all the available herbaria; passing the days at the houses of the botanists he knew, but chiefly at the home of M. de Jussieu, in that home where for more than a century a scientific hospitality welcomed with equal kindness every one who was interested in the delightful study of botany. When any one reached Paris with plants he might be sure that the first one who should visit him would be M. de Lamarck; this eager interest was the means of his receiving one of the most valuable presents he could have desired. The celebrated traveller Sonnerat, having returned in 1781 for the second time from the Indies, with very rich collections of natural history, imagined that every one who cultivated this science would flock to him; it was not at Pondichery or in the Moluccas that he had conceived an idea of the vortex which too often in this capital draws the savants as well as men of the world; no one came but M. de Lamarck, and Sonnerat, in his chagrin, gave him the magnificent collection of plants which he had brought. He profited also by that of Commerson, and by those which had been accumulated by M. de Jussieu, and which were generously opened to him."
These works were evidently planned and carried out on a broad and comprehensive scale, with originality of treatment, and they were most useful and widely used. Lamarck's original special botanical papers were numerous. They were mostly descriptive of new species and genera, but some were much broader in scope and were published over a period of ten years, from 1784 to 1794, and appeared in the Journal d'Histoire naturelle, which he founded, and in the Memoires of the Academy of Sciences.
He discussed the shape or aspect of the plants characteristic of certain countries, while his last botanical effort was on the sensibility of plants (1798).
Although not in the front rank of botanists, compared with Linne, Jussieu, De Candolle, and others, yet during the twenty-six years of his botanical career it may safely be said that Lamarck gave an immense impetus to botany in France, and fully earned the title of "the French Linne."
Lamarck not only described a number of genera and species of plants, but he attempted a general classification, as Cleland states:
"In 1785 (Hist. de l'Acad.) he evinced his appreciation of the necessity of natural orders in botany by an attempt at the classification of plants, interesting though crude, and falling immeasurably short of the system which grew in the hands of his intimate friend Jussieu."—Encyc. Brit., Art. LAMARCK.
A genus of tropical plants of the group Solanaceae was named Markea by Richard, in honor of Lamarck, but changed by Persoon and Poiret to Lamarckea. The name Lamarckia of Moench and Koeler was proposed for a genus of grasses; it is now Chrysurus.
Lamarck's success as a botanist led to more or less intimate relations with Buffon. But it appears that the good-will of this great naturalist and courtier for the rising botanist was not wholly disinterested. Lamarck owed the humble and poorly paid position of keeper of the herbarium to Buffon. Bourguin adds, however:
"Mais il les dut moins a ses merites qu'aux petits passions de la science officielle. The illustrious Buffon, who was at the same time a very great lord at court, was jealous of Linne. He could not endure having any one compare his brilliant and eloquent word-pictures of animals with the cold and methodical descriptions of the celebrated Swedish naturalist. So he attempted to combat him in another field—botany. For this reason he encouraged and pushed Lamarck into notice, who, as the popularizer of the system of classification into natural families, seemed to him to oppose the development of the arrangement of Linne."
Lamarck's style was never a highly finished one, and his incipient essays seemed faulty to Buffon, who took so much pains to write all his works in elegant and pure French. So he begged the Abbe Hauey to review the literary form of Lamarck's works.
Here it might be said that Lamarck's is the philosophic style; often animated, clear, and pure, it at times, however, becomes prolix and tedious, owing to occasional repetition.
But after all it can easily be understood that the discipline of his botanical studies, the friendship manifested for him by Buffon, then so influential and popular, the relations Lamarck had with Jussieu, Hauey, and the zooelogists of the Jardin du Roi, were all important factors in Lamarck's success in life, a success not without terrible drawbacks, and to the full fruition of which he did not in his own life attain.
CHAPTER XII
LAMARCK THE ZOOeLOGIST
Although there has been and still may be a difference of opinion as to the value and permanency of Lamarck's theoretical views, there has never been any lack of appreciation of his labors as a systematic zooelogist. He was undoubtedly the greatest zooelogist of his time. Lamarck is the one dominant personage who in the domain of zooelogy filled the interval between Linne and Cuvier, and in acuteness and sound judgment he at times surpassed Cuvier. His was the master mind of the period of systematic zooelogy, which began with Linne—the period which, in the history of zooelogy, preceded that of comparative anatomy and morphology.
After Aristotle, no epoch-making zooelogist arose until Linne was born. In England Linne was preceded by Ray, but binomial nomenclature and the first genuine attempt at the classification of animals dates back to the Systema Naturae of Linne, the tenth edition of which appeared in 1758.
The contemporaries of Lamarck in biological science, in the eighteenth century, were Camper (1722-89), Spallanzani (1729-99), Wolff (1733-94), Hunter (1728-93), Bichat (1771-1802), and Vicq d'Azyr (1748-94). These were all anatomists and physiologists, the last-named being the first to propose and use the term "comparative anatomy," while Bichat was the founder of histology and pathological anatomy. There was in fact no prominent systematic zooelogist in the interval between Linne and Lamarck. In France there were only two zooelogists of prominence when Lamarck assumed his duties at the Museum. These were Bruguiere the conchologist and Olivier the entomologist. In Germany Hermann was the leading systematic zooelogist. We would not forget the labors of the great German anatomist and physiologist Blumenbach, who was also the founder of anthropology; nor the German anatomists Tiedemann, Bojanus, and Carus; nor the embryologist Doellinger. But Lamarck's method and point of view were of a new order—he was much more than a mere systematist. His work in systematic zooelogy, unlike that of Linne, and especially of Cuvier, was that of a far higher grade. Lamarck, besides his rigid, analytical, thorough, and comprehensive work on the invertebrates, whereby he evolved order and system out of the chaotic mass of forms comprised in the Insects and Vermes of Linne, was animated with conceptions and theories to which his forerunners and contemporaries, Geoffroy St. Hilaire excepted, were entire strangers. His tabular view of the classes of the animal kingdom was to his mind a genealogical tree; his idea of the animal kingdom anticipated and was akin to that of our day. He compares the animal series to a tree with its numerous branches, rather than to a single chain of being. This series, as he expressly states, began with the monad and ended with man; it began with the simple and ended with the complex, or, as we should now say, it proceeded from the generalized or undifferentiated to the specialized and differentiated. He perceived that many forms had been subjected to what he calls degeneration, or, as we say, modification, and that the progress from the simple to the complex was by no means direct. Moreover, fossil animals were, according to his views, practically extinct species, and stood in the light of being the ancestors of the members of our existing fauna. In fact, his views, notwithstanding shortcomings and errors in classification naturally due to the limited knowledge of anatomy and development of his time, have been at the end of a century entirely confirmed—a striking testimony to his profound insight, sound judgment, and philosophic breadth.
The reforms that he brought about in the classification of the invertebrate animals were direct and positive improvements, were adopted by Cuvier in his Regne animal, and have never been set aside. We owe to him the foundation and definition of the classes of Infusoria, Annelida, Arachnida, and Crustacea, the two latter groups being separated from the insects. He also showed the distinctness of echinoderms from polyps, thus anticipating Leuckart, who established the phylum of Coelenterata nearly half a century later. His special work was the classification of the great group of Mollusca, which he regarded as a class. When in our boyhood days we attempted to arrange our shells, we were taught to use the Lamarckian system, that of Linne having been discarded many years previous. The great reforms in the classification of shells are evidenced by the numerous manuals of conchology based on the works of Lamarck.
We used to hear much of the Lamarckian genera of shells, and Lamarck was the first to perceive the necessity of breaking up into smaller categories the few genera of Linne, which now are regarded as families. He may be said to have had a wonderfully good eye for genera. All his generic divisions were at once accepted, since they were based on valid characters.
Though not a comparative anatomist, he at once perceived the value of a knowledge of the internal structure of animals, and made effective use of the discoveries of Cuvier and of his predecessors—in fact, basing his system of classification on the organs of respiration, circulation, and the nervous system.
He intimated that specific characters vary most, and that the peripheral parts of the body, as the shell, outer protective structures, the limbs, mouth-parts, antennae, etc., are first affected by the causes which produce variation, while he distinctly states that it requires a longer time for variations to take place in the internal organs. On the latter he relied in defining his classes.
One is curious to know how Lamarck viewed the question of species. This is discussed at length by him in his general essays, which are reproduced farther on in this biography, but his definition of what a species is far surpasses in breadth and terseness, and better satisfies the views now prevailing, than that of any other author.
His definition of a species is as follows:
"Every collection of similar individuals, perpetuated by generation in the same condition, so long as the circumstances of their situation do not change enough to produce variations in their habits, character, and form."
Lamarck's rare skill, thoroughness, and acuteness as an observer, combined with great breadth of view, were also supplemented by the advantages arising from residence in Paris, and his connection with the Museum of Natural History. Paris was in the opening years of the nineteenth century the chief centre of biological science. France having convalesced from the intestinal disorders of the Revolution, and, as the result of her foreign wars, adding to her territory and power, had begun with the strength of a young giant to send out those splendid exploring expeditions which gathered in collections in natural history from all parts of the known or accessible world, and poured them, as it were, into the laps of the professors of the Jardin des Plantes. The shelves and cases of the galleries fairly groaned with the weight of the zooelogical riches which crowded them. From the year 1800 to 1832 the French government showed the greatest activity in sending out exploring expeditions to Egypt, Africa, and the tropics.[119]
The zooelogists who explored Egypt were Geoffroy St. Hilaire and Savigny. Those who visited the East, the South Seas, the East Indian archipelago, and other regions were Bruguiere, Olivier, Bory de St. Vincent, Peron, Lesueur, Quoy, Gaimard, Le Vaillant, Edoux, and Souleyet. The natural result was the enormous collections of the Jardin des Plantes, and consequently enlarged views regarding the number and distribution of species, and their relation to their environment.
In Paris, about the time of Lamarck's death, flourished also Savigny, who published his immortal works on the morphology of arthropods and of ascidians; and Straus-Durckheim, whose splendidly illustrated volumes on the anatomy of the cockchafer and of the cat will never cease to be of value; and E. Geoffroy St. Hilaire, whose elaborate and classical works on vertebrate morphology, embryology, and comparative anatomy added so much to the prestige of French science.
We may be sure that Lamarck did his own work without help from others, and gave full credit to those who, like Defrance or Bruguiere, aided or immediately preceded him. He probably was lacking in executive force, or in the art which Cuvier knew so well to practise, of enlisting young men to do the drudgery or render material aid, and then, in some cases, neglecting to give them proper credit.
The first memoir or paper published on a zooelogical subject by Lamarck was a modest one on shells, which appeared in 1792 in the Journal d'Histoire naturelle, the editors of which were Lamarck, Bruguiere, Olivier, Hauey, and Pelletier. This paper was a review of an excellent memoir by Bruguiere, who preceded Lamarck in the work of dismemberment of the Linnaean genera. His next paper was on four new species of Helix. To this Journal, of which only two volumes were published, Cuvier contributed his first paper—namely, on some new species of "Cloportes" (Oniscus, a genus of terrestrial crustacea or "pill-bugs"); this was followed by his second memoir on the anatomy of the limpet, his next article being descriptions of two species of flies from his collection of insects.[120] Seven years later Lamarck gave some account of the genera of cuttlefishes. His first general memoir was a prodromus of a new classification of shells (1799).
Meanwhile Lamarck's knowledge of shells and corals was utilized by Cuvier in his Tableau elementaire, published in 1798, who acknowledges in the preface that in the exposition of the genera of shells he has been powerfully seconded, while he indicated to him (Cuvier) a part of the subgenera of corals and alcyonarians, and adds, "I have received great aid from the examination of his collection." Also he acknowledges that he had been greatly aided (puissamment seconde) by Lamarck, who had even indicated the most of the subdivisions established in his Tableau elementaire for the insects (Blainville, l. c., p. 129), and he also accepted his genera of cuttlefishes.
After this Lamarck judiciously refrained from publishing descriptions of new species, and other fragmentary labors, and for some ten years from the date of publication of his first zooelogical article reserved his strength and elaborated his first general zooelogical work, a thick octavo volume of 452 pages, entitled Systeme des Animaux sans Vertebres, which appeared in 1801.
Linne had divided all the animals below the vertebrates into two classes only, the Insecta and Vermes, the insects comprising the present classes of insects, Myriapoda, Arachnida, and Crustacea; the Vermes embracing all the other invertebrate animals, from the molluscs to the monads.
Lamarck perceived the need of reform, of bringing order out of the chaotic mass of animal forms, and he says (p. 33) that he has been continually occupied since his attachment to the museum with this reform.
He relies for his characters, the fundamental ones, on the organs of respiration, circulation, and on the form of the nervous system. The reasons he gives for his classification are sound and philosophical, and presented with the ease and aplomb of a master of taxonomy.
He divided the invertebrates, which Cuvier had called animals with white blood, into the seven following classes.
We place in a parallel column the classification of Cuvier in 1798.
Classification of Lamarck. Classification of Cuvier.
1. Mollusca. I. Mollusca.
2. Crustacea. II. Insectes et Vers.
3. Arachnides (comprising 1. Insectes. the Myriapoda). 2. Vers.
4. Insectes. III. Zoophytes.
5. Vers. 1. Echinodermes. 2. Meduses, Animaux 6. Radiaires. infusorines, Rotifer, Vibrio, Volvox. 7. Polypes. 3. Zoophytes proprement dits.
Of these, four were for the first time defined, and the others restricted. It will be noticed that he separates the Radiata (Radiaires) from the Polypes. His "Radiaires" included the Echinoderms (the Vers echinoderms of Bruguiere) and the Medusae (his Radiaires molasses), the latter forming the Discophora and Siphonophora of present zooelogists. This is an anticipation of the division by Leuckart in 1839 of the Radiata of Cuvier into Coelenterata and Echinodermata.
The "Polypes" of Lamarck included not only the forms now known as such, but also the Rotifera and Protozoa, though, as we shall see, he afterwards in his course of 1807 eliminated from this heterogeneous assemblage the Infusoria.
Comparing this classification with that of Cuvier[121] published in 1798, we find that in the most important respects, i.e., the foundation of the classes of Crustacea, Arachnida, and Radiata, there is a great advance over Cuvier's system. In Cuvier's work the molluscs are separated from the worms, and they are divided into three groups, Cephalopodes, Gasteropodes, and Acephales—an arrangement which still holds, that of Lamarck into Mollusques cephales and Mollusques acephales being much less natural. With the elimination of the Mollusca, Cuvier allowed the Vers or Vermes of Linne to remain undisturbed, except that the Zooephytes, the equivalent of Lamarck's Polypes, are separately treated.
He agrees with Cuvier in placing the molluscs at the head of the invertebrates, a course still pursued by some zooelogists at the present day. He states in the Philosophie Zoologique[122] that in his course of lectures of the year 1799 he established the class of Crustacea, and adds that "although this class is essentially distinct, it was not until six or seven years after that some naturalists consented to adopt it." The year following, or in his course of 1800, he separated from the insects the class of Arachnida, as "easy and necessary to be distinguished." But in 1809 he says that this class "is not yet admitted into any other work than my own."[123] As to the class of Annelides, he remarks: "Cuvier having discovered the existence of arterial and venous vessels in different animals which have been confounded under the name of worms (Vers) with other animals very differently organized, I immediately employed the consideration of this new fact in rendering my classification more perfect, and in my course of the year 10 (1802) I established the class of Annelides, a class which I have placed after the molluscs and before the crustaceans, as their known organization requires." He first established this class in his Recherches sur les corps vivans (1802), but it was several years before it was adopted by naturalists.
The next work in which Lamarck deals with the classification of the invertebrates is his Discours d'ouverture du Cours des Animaux sans Vertebres, published in 1806.
On page 70 he speaks of the animal chain or series, from the monad to man, ascending from the most simple to the most complex. The monad is one of his Polypes amorphs, and he says that it is the most simple animal form, the most like the original germ (ebauche) from which living bodies have descended. From the monad nature passes to the Volvox, Proteus (Amoeba), and Vibrio. From them are derived the Polypes rotiferes and other "Radiaires," and then the Vers, Arachnides, and Crustacea. On page 77 a tabular view is presented, as follows:
1. Les Mollusques. 2. Les Cirrhipedes. 3. Les Annelides. 4. Les Crustaces. 5. Les Arachnides. 6. Les Insectes. 7. Les Vers. 8. Les Radiaires. 9. Les Polypes.
It will be seen that at this date two additional classes are proposed and defined—i.e., the Annelides and the Cirrhipedes, though the class of Annelida was first privately characterized in his lectures for 1802.
The elimination of the barnacles or Cirrhipedes from the molluscs was a decided step in advance, and was a proof of the acute observation and sound judgment of Lamarck. He says that this class is still very imperfectly known and its position doubtful, and adds: "The Cirrhipedes have up to the present time been placed among the molluscs, but although certain of them closely approach them in some respects, they have a special character which compels us to separate them. In short, in the genera best known the feet of these animals are distinctly articulated and even crustaceous (crustaces)." He does not refer to the nervous system, but this is done in his next work. It will be remembered that Cuvier overlooked this feature of the jointed limbs, and also the crustaceous-like nervous system of the barnacles, and allowed them to remain among the molluscs, notwithstanding the decisive step taken by Lamarck. It was not until many years after (1830) that Thompson proved by their life-history that barnacles are true crustacea.
In the Philosophie zoologique the ten classes of the invertebrates are arranged in the following order:
Les Mollusques. Les Cirrhipedes. Les Annelides. Les Crustaces. Les Arachnides. Les Insectes. Les Vers. Les Radiaires. Les Polypes. Les Infusoires.
At the end of the second volume Lamarck gives a tabular view on a page by itself (p. 463), showing his conception of the origin of the different groups of animals. This is the first phylogeny or genealogical tree ever published.
TABLEAU
Servant a montrer l'origine des differens animaux.
Vers. Infusoires. . Polypes. . Radiaires. . . . . . . . . Insectes. . Arachnides. Annelides. Crustaces. Cirrhipedes. Mollusques. . . . Poissons. Reptiles. . . . . . Oiseaux. . . . . . Monotremes. M. Amphibies. . . . . . . . M. Cetaces. . . . M. Ongules. M. Onguicules.
The next innovation made by Lamarck in the Extrait du Cours de Zoologie, in 1812, was not a happy one. In this work he distributed the fourteen classes of the animal kingdom into three groups, which he named Animaux Apathiques, Sensibles, and Intelligens. In this physiologico-psychological base for a classification he unwisely departed from his usual more solid foundation of anatomical structure, and the results were worthless. He, however, repeats it in his great work, Histoire naturelle des Animaux sans Vertebres (1815-1822).
The sponges were by Cuvier, and also by Lamarck, accorded a position among the Polypes, near Alcyonium, which represents the latter's Polypiers empates; and it is interesting to notice that, for many years remaining among the Protozoa, meanwhile even by Agassiz regarded as vegetables, they were by Haeckel restored to a position among the Coelenterates, though for over twenty years they have by some American zooelogists been more correctly regarded as a separate phylum.[124] Lamarck also separated the seals and morses from the cetacea. Adopting his idea, Cuvier referred the seals to an order of carnivora.
Another interesting matter, to which Professor Lacaze-Duthiers has called attention in his interesting letter on p. 77, is the position assigned Lucernaria among his Radiaires molasses near what are now Ctenophora and Medusae, though one would have supposed he would, from its superficial resemblance to polyps, have placed it among the polyps. To Lamarck we are also indebted for the establishment in 1818 of the molluscan group of Heteropoda.
Lamarck's acuteness is also shown in the fact that, whereas Cuvier placed them among the acephalous molluscs, he did not regard the ascidians as molluscs at all, but places them in a class by themselves under the name of Tunicata, following the Sipunculus worms. Yet he allowed them to remain near the Holothurians (then including Sipunculus) in his group of Radiaires echinodermes, between the latter and the Vers. He differs from Cuvier in regarding the tunic as the homologue of the shell of Lamellibranches, remarking that it differs in being muscular and contractile.
Lamarck's fame as a zooelogist rests chiefly on this great work. It elicited the highest praise from his contemporaries. Besides containing the innovations made in the classification of the animal kingdom, which he had published in previous works, it was a summary of all which was then known of the invertebrate classes, thus forming a most convenient hand-book, since it mentioned all the known genera and all the known species except those of the insects, of which only the types are mentioned. It passed through two editions, and still is not without value to the working systematist.
In his Histoire des Progres des Sciences naturelles Cuvier does it justice. Referring to the earlier volume, he states that "it has extended immensely the knowledge, especially by a new distribution, of the shelled molluscs ... M. de Lamarck has established with as much care as sagacity the genera of shells." Again he says, in noticing the three first volumes: "The great detail into which M. de Lamarck has entered, the new species he has described, renders his work very valuable to naturalists, and renders most desirable its prompt continuation, especially from the knowledge we have of means which this experienced professor possesses to carry to a high degree of perfection the enumeration which he will give us of the shells" (Oeuvres completes de Buffon, 1828, t. 31, p. 354).
"His excellences," says Cleland, speaking of Lamarck as a scientific observer, "were width of scope, fertility of ideas, and a preeminent faculty of precise description, arising not only from a singularly terse style, but from a clear insight into both the distinctive features and the resemblance of forms" (Encyc. Britannica, Art. LAMARCK).
The work, moreover, is remarkable for being the first one to begin with the simplest and to end with the most highly developed forms.
Lamarck's special line of study was the Mollusca. How his work is still regarded by malacologists is shown by the following letter from our leading student of molluscs, Dr. W. H. Dall:
"SMITHSONIAN INSTITUTION, "UNITED STATES NATIONAL MUSEUM, WASHINGTON, D. C., "November 4, 1899.
"Lamarck was one of the best naturalists of his time, when geniuses abounded. His work was the first well-marked step toward a natural system as opposed to the formalities of Linne. He owed something to Cuvier, yet he knew how to utilize the work in anatomy offered by Cuvier in making a natural classification. His failing eyesight, which obliged him latterly to trust to the eyes of others; his poverty and trials of various kinds, more than excuse the occasional slips which we find in some of the later volumes of the Animaux sans Vertebres. These are rather of the character of typographical errors than faults of scheme or principle.
"The work of Lamarck is really the foundation of rational natural malacological classification; practically all that came before his time was artificial in comparison. Work that came later was in the line of expansion and elaboration of Lamarck's, without any change of principle. Only with the application of embryology and microscopical work of the most modern type has there come any essential change of method, and this is rather a new method of getting at the facts than any fundamental change in the way of using them when found. I shall await your work on Lamarck's biography with great interest.
"I remain, "Yours sincerely, "WILLIAM H. DALL."
FOOTNOTES:
[119] During the same period (1803-1829) Russia sent out expeditions to the North and Northeast, accompanied by the zooelogists Tilesius, Langsdorff, Chamisso, Eschscholtz, and Brandt, all of them of German birth and education. From 1823 to 1850 England fitted up and sent out exploring expeditions commanded by Beechey, Fitzroy, Belcher, Ross, Franklin, and Stanley, the naturalists of which were Bennett, Owen, Darwin, Adams, and Huxley. From Germany, less of a maritime country, at a later date, Humboldt, Spix, Prince Wied-Neuwied, Natterer, Perty, and others made memorable exploring expeditions and journeys.
[120] These papers have been mercilessly criticised by Blainville in his "Cuvier et Geoffroy St. Hilaire." In the second article—i.e., on the anatomy of the limpet—Cuvier, in considering the organs, follows no definite plan; he gives a description "tout-a-fait fantastique" of the muscular fibres of the foot, and among other errors in this first essay on comparative anatomy he mistakes the tongue for the intromittent organ; the salivary glands, and what is probably part of the brain, being regarded as the testes, with other "erreurs materielles inconcevables, meme a l'epoque ou elle fut redigee." In his first article he mistakes a species of the myriapod genus Glomeris for the isopod genus Armadillo. In this he is corrected by the editor (possibly Lamarck himself), who remarks in a footnote that the forms to which M. Cuvier refers under the name of Armadillo are veritable species of Julus. We have verified these criticisms of Cuvier by reference to his papers in the "Journal." It is of interest to note, as Blainville does, that Cuvier at this period admits that there is a passage from the Isopoda to the armadilloes and Julus. Cuvier, then twenty-three years old, wrote: "Nous sommes donc descendus par degres, des Ecrevisses aux Squilles, de celles-ci aux Aselles, puis aux Cloportes, aux Armadilles et aux Iules" (Journal d'Hist. nat., tom. ii., p. 29, 1792). These errors, as regards the limpet, were afterwards corrected by Cuvier (though he does not refer to his original papers) in his Memoires pour servir a l'Histoire et a l'Anatomie des Mollusques (1817).
[121] Tableau elementaire de l'Histoire naturelle des Animaux. Paris, An VI. (1798). 8vo, pp. 710. With 14 plates.
[122] Tome i., p. 123.
[123] In his Histoire des Progres des Sciences naturelles Cuvier takes to himself part of the credit of founding the class Crustacea, stating that Aristotle had already placed them in a class by themselves, and adding, "MM. Cuvier et de Lamarck les en out distingues par des caracteres de premier ordre tires de leur circulation." Undoubtedly Cuvier described the circulation, but it was Lamarck who actually realized the taxonomic importance of this feature and placed them in a distinct class.
[124] See A. Hyatt's Revision of North American Poriferae, Part II. (Boston, 1877, p. 11); also the present writer in his Text-book of Zooelogy (1878).
CHAPTER XIII
THE EVOLUTIONARY VIEWS OF BUFFON AND OF GEOFFROY ST. HILAIRE
Of the French precursors of Lamarck there were four—Duret (1609), De Maillet (1748), Robinet (1768), and Buffon. The opinions of the first three could hardly be taken seriously, as they were crude and fantastic, though involving the idea of descent. The suggestions and hypotheses of Buffon and of Erasmus Darwin were of quite a different order, and deserve careful consideration.
George Louis Leclerc, Comte de Buffon, was born in 1707 at Montbard, Burgundy, in the same year as Linne. He died at Paris in 1788, at the age of eighty-one years. He inherited a large property from his father, who was a councillor of the parliament of Burgundy. He studied at Dijon, and travelled abroad. Buffon was rich, but, greatly to his credit, devoted all his life to the care of the Royal Garden and to writing his works, being a most prolific author. He was not an observer, not even a closet naturalist. "I have passed," he is reported to have said, "fifty years at my desk." Appointed in 1739, when he was thirty-two years old, Intendant of the Royal Garden, he divided his time between his retreat at Montbard and Paris, spending four months in Paris and the remainder of the year at Montbard, away from the distractions and dissipations of the capital. It is significant that he wrote his great Histoire naturelle at Montbard and not at Paris, where were the collections of natural history.
His biographer, Flourens, says: "What dominates in the character of Buffon is elevation, force, the love of greatness and glory; he loved magnificence in everything. His fine figure, his majestic air, seemed to have some relation with the greatness of his genius; and nature had refused him none of those qualities which could attract the attention of mankind.
"Nothing is better known than the naivete of his self-esteem; he admired himself with perfect honesty, frankly, but good-naturedly."
He was once asked how many great men he could really mention; he answered: "Five—Newton, Bacon, Leibnitz, Montesquieu, and myself." His admirable style gained him immediate reputation and glory throughout the world of letters. His famous epigram, "Le style est l'homme meme" is familiar to every one. That his moral courage was scarcely of a high order is proved by his little affair with the theologians of the Sorbonne. Buffon was not of the stuff of which martyrs are made.
His forte was that of a brilliant writer and most industrious compiler, a popularizer of science. He was at times a bold thinker; but his prudence, not to say timidity, in presenting in his ironical way his thoughts on the origin of things, is annoying, for we do not always understand what Buffon did really believe about the mutability or the fixity of species, as too plain speaking in the days he wrote often led to persecution and personal hazard.[125]
His cosmological ideas were based on those of Burnet and Leibnitz. His geological notions were founded on the labors of Palissy, Steno, Woodward, and Whiston. He depended upon his friend Daubenton for anatomical facts, and on Gueneau de Montbeliard and the Abbe Bexon for his zooelogical data. As Flourens says, "Buffon was not exactly an observer: others observed and discovered for him. He discovered, himself, the observations of others; he sought for ideas, others sought facts for him." How fulsome his eulogists were is seen in the case of Flourens, who capped the climax in exclaiming, "Buffon is Leibnitz with the eloquence of Plato;" and he adds, "He did not write for savants: he wrote for all mankind." No one now reads Buffon, while the works of Reaumur, who preceded him, are nearly as valuable as ever, since they are packed with careful observations.
The experiments of Redi, of Swammerdam, and of Vallisneri, and the observations of Reaumur, had no effect on Buffon, who maintained that, of the different forms of genesis, "spontaneous generation" is not only the most frequent and the most general, but the most ancient—namely, the primitive and the most universal.[126]
Buffon by nature was unsystematic, and he possessed little of the spirit or aim of the true investigator. He left no technical papers or memoirs, or what we would call contributions to science. In his history of animals he began with the domestic breeds, and then described those of most general, popular interest, those most known. He knew, as Malesherbes claimed, little about the works even of Linne and other systematists, neither grasping their principles nor apparently caring to know their methods. His single positive addition to zooelogical science was generalizations on the geographical distribution of animals. He recognized that the animals of the tropical and southern portions of the old and new worlds were entirely unlike, while those of North America and northern Eurasia were in many cases the same.
We will first bring together, as Flourens and also Butler have done, his scattered fragmentary views, or rather suggestions, on the fixity of species, and then present his thoughts on the mutability of species. "The species" is then "an abstract and general term."[127] "There only exist individuals and suites of individuals, that is to say, species."[128] He also says that Nature "imprints on each species its unalterable characters;" that "each species has an equal right to creation;"[129] that species, even those nearest allied, "are separated by an interval over which nature cannot pass;"[130] and that "each species having been independently created, the first individuals have served as a model for their descendants."[131]
Buffon, however, shows the true scientific spirit in speaking of final causes.
"The pig," he says, "is not formed as an original, special, and perfect type; its type is compounded of that of many other animals. It has parts which are evidently useless, or which, at any rate, it cannot use." ... "But we, ever on the lookout to refer all parts to a certain end—when we can see no apparent use for them, suppose them to have hidden uses, and imagine connections which are without foundation, and serve only to obscure our perception of Nature as she really is: we fail to see that we thus rob philosophy of her true character, which is to inquire into the 'how' of these things—into the manner in which Nature acts—and that we substitute for this true object a vain idea, seeking to divine the 'why'—the ends which she has proposed in acting" (tome v., p. 104, 1755, ex Butler).
The volumes of the Histoire naturelle on animals, beginning with tome iv., appeared in the years 1753 to 1767, or over a period of fourteen years. Butler, in his Evolution, Old and New, effectually disposes of Isidore Geoffroy St. Hilaire's statement that at the beginning of his work (tome iv., 1753) he affirms the fixity of species, while from 1761 to 1766 he declares for variability. But Butler asserts from his reading of the first edition that "from the very first chapter onward he leant strongly to mutability, even if he did not openly avow his belief in it.... The reader who turns to Buffon himself will find that the idea that Buffon took a less advanced position in his old age than he had taken in middle life is also without foundation"[132] (p. 104).
But he had more to say on the other side, that of the mutability of species, and it is these tentative views that his commentators have assumed to have been his real sentiments or belief, and for this reason place Buffon among the evolutionists, though he had little or no idea of evolution in the enlarged and thoroughgoing sense of Lamarck.
He states, however, that the presence of callosities on the legs of the camel and llama "are the unmistakable results of rubbing or friction; so also with the callosities of baboons and the pouched monkeys, and the double soles of man's feet."[133] In this point he anticipates Erasmus Darwin and Lamarck. As we shall see, however, his notions were much less firmly grounded than those of Erasmus Darwin, who was a close observer as well as a profound thinker.
In his chapter on the Degeneration des Animaux, or, as it is translated, "modification of animals," Buffon insists that the three causes are climate, food, and domestication. The examples he gives are the sheep, which having originated, as he thought, from the mufflon, shows marked changes. The ox varies under the influence of food; reared where the pasturage is rich it is twice the size of those living in a dry country. The races of the torrid zones bear a hump on their shoulders; "the zebu, the buffalo, is, in short, only a variety, only a race of our domestic ox." He attributed the camel's hump to domesticity. He refers the changes of color in the northern hare to the simple change of seasons.
He is most explicit in referring to the agency of climate, and also to time and to the uniformity of nature's processes in causing variation. Writing in 1756 he says:
"If we consider each species in the different climates which it inhabits we shall find perceptible varieties as regards size and form; they all derive an impress to a greater or less extent from the climate in which they live. These changes are only made slowly and imperceptibly. Nature's great workman is time. He marches ever with an even pace and does nothing by leaps and bounds, but by degrees, gradations, and succession he does all things; and the changes which he works—at first imperceptible—become little by little perceptible, and show themselves eventually in results about which there can be no mistake. Nevertheless, animals in a free, wild state are perhaps less subject than any other living beings, man not excepted, to alterations, changes, and variations of all kinds. Being free to choose their own food and climate, they vary less than domestic animals vary."[134]
The Buffonian factor of the direct influence of climate is not in general of so thoroughgoing a character as usually supposed by the commentators of Buffon. He generally applies it to the superficial changes, such as the increase or decrease in the amount of hair, or similar modifications not usually regarded as specific characters. The modifications due to the direct influence of climate may be effected, he says, within even a few generations.
Under the head of geographical distribution (in tome ix., 1761), in which subject Buffon made his most original contribution to exact biology, he claims to have been the first "even to have suspected" that not a single tropical species is common to both eastern and western continents, but that the animals common to both continents are those adapted to a temperate or cold climate. He even anticipates the subject of migration in past geological times by supposing that those forms travelled from the Old World either over some land still unknown, or "more probably" over territory which has long since been submerged.[135]
The mammoth "was certainly the greatest and strongest of all quadrupeds, but it has disappeared; and if so, how many smaller, feebler, and less remarkable species must have perished without leaving us any traces or even hints of their having existed? How many other species have changed their nature, that is to say, become perfected or degraded, through great changes in the distribution of land and ocean; through the cultivation or neglect of the country which they inhabit; through the long-continued effects of climatic changes, so that they are no longer the same animals that they once were. Yet of all living beings after man the quadrupeds are the ones whose nature is most fixed and form most constant; birds and fishes vary much more easily; insects still more again than these; and if we descend to plants, which certainly cannot be excluded from animated nature, we shall be surprised at the readiness with which species are seen to vary, and at the ease with which they change their forms and adopt new natures."[136]
The following passages, debarring the error of deriving all the American from the Old World forms, and the mistake in supposing that the American forms grew smaller than their ancestors in the Old World, certainly smack of the principle of isolation and segregation, and this is Buffon's most important contribution to the theory of descent.
"It is probable, then, that all the animals of the New World are derived from congeners in the Old, without any deviation from the ordinary course of nature. We may believe that, having become separated in the lapse of ages by vast oceans and countries which they could not traverse, they have gradually been affected by, and derived impressions from, a climate which has itself been modified so as to become a new one through the operations of those same causes which dissociated the individuals of the Old and the New World from one another; thus in the course of time they have grown smaller and changed their characters. This, however, should not prevent our classifying them as different species now, for the difference is no less real though it dates from the creation. Nature, I maintain, is in a state of continual flux and movement. It is enough for man if he can grasp her as she is in his own time, and throw but a glance or two upon the past and future, so as to try and perceive what she may have been in former times and what one day she may attain to."[137]
Buffon thus suggests the principle of the struggle for existence to prevent overcrowding, resulting in the maintenance of the balance of nature:
"It may be said that the movement of Nature turns upon two immovable pivots—one, the illimitable fecundity which she has given to all species; the other, the innumerable difficulties which reduce the results of that fecundity, and leave throughout time nearly the same quantity of individuals in every species; ... destruction and sterility follow closely upon excessive fecundity, and, independently of the contagion which follows inevitably upon overcrowding, each species has its own special sources of death and destruction, which are of themselves sufficient to compensate for excess in any past generation."[138]
He also adds, "The species the least perfect, the most delicate, the most unwieldy, the least active, the most unarmed, etc., have already disappeared or will disappear."[139]
On one occasion, in writing on the dog, he anticipates Erasmus Darwin and Lamarck in ascribing to the direct cause of modification the inner feelings of the animal modified, change of condition being the indirect cause.[140] He, however, did not suggest the idea of the transmission of acquired characters by heredity, and does not mention the word heredity.
These are all the facts he stated; but though not an observer, Buffon was a broad thinker, and was led from these few data to generalize, as he could well do, from the breadth of his knowledge of geology gained from the works of his predecessors, from Leibnitz to Woodward and Whiston.
"After the rapid glance," he says, "at these variations, which indicate to us the special changes undergone by each species, there arises a more important consideration, and the view of which is broader; it is that of the transformation (changement) of the species themselves; it is that more ancient modification which has gone on from time immemorial, which seems to have been made in each family or, if we prefer, in each of the genera in which were comprised more or less allied species."[141]
In the beginning of his first volume he states "that we can descend by almost imperceptible degrees from the most perfect creature to the most formless matter—from the most highly organized animal to the most entirely inorganic substance. We will recognize this gradation as the great work of nature; and we will observe it not only as regards size and form, but also in respect of movements and in the successive generations of every species."
"Hence," he continues, "arises the difficulty of arriving at any perfect system or method in dealing either with nature as a whole or even with any single one of her subdivisions. The gradations are so subtle that we are often obliged to make arbitrary divisions. Nature knows nothing about our classifications, and does not choose to lend herself to them without reasons. We therefore see a number of intermediate species and objects which it is very hard to classify, and which of necessity derange our system, whatever it may be."[142]
This is all true, and was probably felt by Buffon's predecessors, but it does not imply that he thought these forms had descended from one another.
"In thus comparing," he adds, "all the animals, and placing them each in its proper genus, we shall find that the two hundred species whose history we have given may be reduced to a quite small number of families or principal sources from which it is not impossible that all the others may have issued."[143]
He then establishes, on the one hand, nine species which he regarded as isolated, and, on the other, fifteen principal genera, primitive sources or, as we would say, ancestral forms, from which he derived all the animals (mammals) known to him.
Hence he believed that he could derive the dog, the jackal, the wolf, and the fox from a single one of these four species; yet he remarks, per contra, in 1753:
"Although we cannot demonstrate that the production of a species by modification is a thing impossible to nature, the number of contrary probabilities is so enormous that, even philosophically, we can scarcely doubt it; for if any species has been produced by the modification of another, if the species of ass has been derived from that of the horse, this could have been done only successively and by gradual steps: there would have been between the horse and ass a great number of intermediate animals, the first of which would gradually differ from the nature of the horse, and the last would gradually approach that of the ass; and why do we not see to-day the representatives, the descendants of those intermediate species? Why are only the two extremes living?" (tome iv., p. 390). "If we once admit that the ass belongs to the horse family, and that it only differs from it because it has been modified (degenere), we may likewise say that the monkey is of the same family as man, that it is a modified man, that man and the monkey have had a common origin like the horse and ass, that each family has had but a single source, and even that all the animals have come from a single animal, which in the succession of ages has produced, while perfecting and modifying itself, all the races of other animals" (tome iv., p. 382). "If it were known that in the animals there had been, I do not say several species, but a single one which had been produced by modification from another species; if it were true that the ass is only a modified horse, there would be no limit to the power of nature, and we would not be wrong in supposing that from a single being she has known how to derive, with time, all the other organized beings" (ibid., p. 382).
The next sentence, however, translated, reads as follows:
"But no. It is certain from revelation that all animals have alike been favored with the grace of an act of direct creation, and that the first pair of every species issued fully formed from the hands of the Creator" (tome iv., p. 383).
In which of these views did Buffon really believe? Yet they appear in the same volume, and not at different periods of his life.
He actually does say in the same volume (iv., p. 358): "It is not impossible that all species may be derivations (issues)." In the same volume also (p. 215) he remarks:
"There is in nature a general prototype in each species on which each individual is modelled, but which seems, in being realized, to change or become perfected by circumstances; so that, relatively to certain qualities, there is a singular (bizarre) variation in appearance in the succession of individuals, and at the same time a constancy in the entire species which appears to be admirable."
And yet we find him saying at the same period of his life, in the previous volume, that species "are the only beings in nature, beings perpetual, as ancient, as permanent as she."[144] A few pages farther on in the same volume of the same work, apparently written at the same time, he is strongly and stoutly anti-evolutional, affirming: "The imprint of each species is a type whose principal features are graven in characters forever ineffaceable and permanent."[145]
In this volume (iv., p. 55) he remarks that the senses, whether in man or in animals, may be greatly developed by exercise.
The impression left on the mind, after reading Buffon, is that even if he threw out these suggestions and then retracted them, from fear of annoyance or even persecution from the bigots of his time, he did not himself always take them seriously, but rather jotted them down as passing thoughts. Certainly he did not present them in the formal, forcible, and scientific way that Erasmus Darwin did. The result is that the tentative views of Buffon, which have to be with much research extracted from the forty-four volumes of his works, would now be regarded as in a degree superficial and valueless. But they appeared thirty-four years before Lamarck's theory, and though not epoch-making, they are such as will render the name of Buffon memorable for all time.
ETIENNE GEOFFROY ST. HILAIRE.
Etienne Geoffroy St. Hilaire was born at Etampes, April 15, 1772. He died in Paris in 1844. He was destined for the church, but his tastes were for a scientific career. His acquaintance with the Abbe Hauey and Daubenton led him to study mineralogy. He was the means of liberating Hauey from a political prison; the Abbe, as the result of the events of August, 1792, being promptly set free at the request of the Academy of Sciences. The young Geoffroy was in his turn aided by the illustrious Hauey, who obtained for him the position of sub-guardian and demonstrator of mineralogy in the Cabinet of Natural History. At the early age of twenty-one years, as we have seen, he was elected professor of zooelogy in the museum, in charge of the department of mammals and birds. He was the means of securing for Cuvier, then of his own age, a position in the museum as professor-adjunct of comparative anatomy. For two years (1795 and 1796) the two youthful savants were inseparable, sharing the same apartments, the same table, the same amusements, the same studies, and their scientific papers were prepared in company and signed in common.
Geoffroy became a member of the great scientific commission sent to Egypt by Napoleon (1789-1802). By his boldness and presence of mind he, with Savigny and the botanist Delille, saved the treasures which at Alexandria had fallen into the hands of the English general in command. In 1808 he was charged by Napoleon with the duty of organizing public instruction in Portugal. Here again, by his address and firmness, he saved the collections and exchanges made there from the hands of the English. When thirty-six years old he was elected a member of the Institute.
In 1818 he began to discuss philosophical anatomy, the doctrine of homologies; he also studied the embryology of the mammals, and was the founder of teratology. It was he who discovered the vestigial teeth of the baleen whale and those of embryo birds, and the bearing of this on the doctrine of descent must have been obvious to him.
As early as 1795, before Lamarck had changed his views as to the stability of species, the young Geoffroy, then twenty-three years old, dared to claim that species may be only "les diverses degenerations d'un meme type." These views he did not abandon, nor, on the other hand, did he actively promulgate them. It was not until thirty years later, in his memoir on the anatomy of the gavials, that he began the series of his works bearing on the question of species. In 1831 was held the famous debates between himself and Cuvier in the Academy of Sciences. But the contest was not so much on the causes of the variation of species as on the doctrine of homologies and the unity of organization in the animal kingdom.
In fact, Geoffroy did not adopt the views peculiar to his old friend Lamarck, but was rather a follower of Buffon. His views were preceded by two premises.
The species is only "fixe sous la raison du maintien de l'etat conditionnel de son milieu ambiant."
It is modified, it changes, if the environment (milieu ambiant) varies, and according to the extent (selon la portee) of the variations of the latter.[146]
As the result, among recent or living beings there are no essential differences as regards them—"c'est le meme cours d'evenements," or "la meme marche d'excitation."[147]
On the other hand, the monde ambiant having undergone more or less considerable change from one geological epoch to another, the atmosphere having even varied in its chemical composition, and the conditions of respiration having been thus modified,[148] the beings then living would differ in structure from their ancestors of ancient times, and would differ from them according "to the degree of the modifying power."[149] Again, he says, "The animals living to-day have been derived by a series of uninterrupted generations from the extinct animals of the antediluvian world."[150] He gave as an example the crocodiles of the present day, which he believed to have descended from the fossil forms. While he admitted the possibility of one type passing into another, separated by characters of more than generic value, he always, according to his son Isidore, rejected the view which made all the living species descend "d'une espece antediluvienne primitive."[151] It will be seen that Geoffroy St. Hilaire's views were chiefly based on palaeontological evidence. He was throughout broad and philosophical, and his eloquent demonstration in his Philosophie anatomique of the doctrine of homologies served to prepare the way for modern morphology, and affords one of the foundation stones on which rests the theory of descent. Though temporarily vanquished in the debate with Cuvier, who was a forceful debater and represented the views then prevalent, a later generation acknowledges that he was in the right, and remembers him as one of the founders of evolution.
FOOTNOTES:
[125] Mr. Morley, in his Rousseau, gives a startling picture of the hostility of the parliament at the period (1762) when Buffon's works appeared. Not only was Rousseau hunted out of France, and his books burnt by the public executioner, but there was "hardly a single man of letters of that time who escaped arbitrary imprisonment" (p. 270); among others thus imprisoned was Diderot. At this time (1750-1765) Malesherbes (born 1721, guillotined 1794), one of the "best instructed and most enlightened men of the century," was Directeur de la Libraire. "The process was this: a book was submitted to him; he named a censor for it; on the censor's report the director gave or refused permission to print or required alterations. Even after these formalities were complied with, the book was liable to a decree of the royal council, a decree of the parliament, or else a lettre-de-cachet might send the author to the Bastille" (Morley's Rousseau, p. 266).
[126] Histoire naturelle, generale et particuliere. 1st edition. Imprimerie royale. Paris: 1749-1804, 44 vols. 4to. Tome iv., p. 357. This is the best of all the editions of Buffon, says Flourens, from whose Histoire des Travaux et des Idees de Buffon, 1st edition (Paris, 1844), we take some of the quotations and references, which, however, we have verified. We have also quoted some passages from Buffon translated by Butler in his "Evolution, Old and New" (London, 1879).
[127] L. c., tome iv., p. 384 (1753). This is the first volume on the animals below man.
[128] Tome xi., p. 369 (1764).
[129] Tome xii., p. 3 (1764).
[130] Tome v., p. 59 (1755).
[131] Tome xiii., p. vii. (1765).
[132] Osborn adopts, without warrant we think, Isidore Geoffroy St. Hilaire's notion, stating that he "shows clearly that his opinions marked three periods." The writings of Isidore, the son of Etienne Geoffroy, have not the vigor, exactness, or depth of those of his father.
[133] Tome xiv., p. 326 (1766).
[134] Tome vi., pp. 59-60 (1756).
[135] Butler, l. c., pp. 145-146.
[136] Tome ix., p. 127, 1761 (ex Butler).
[137] Tome ix., p. 127, 1761 (ex Butler).
[138] Tome vi., p. 252, 1756 (quoted from Butler, l. c., pp. 123-126).
[139] Quoted from Osborn, who takes it from De Lanessan.
[140] Butler, l. c., p. 122 (from Buffon, tome v., 1755).
[141] Tome xiv., p. 335 (1766).
[142] Tome i., p. 13.
[143] Tome xiv., p. 358.
[144] Tome xiii., p. i.
[145] Tome xiii., p. ix.
[146] Etudes progressives d'un Naturaliste, etc., 1835, p. 107.
[147] Ibid.
[148] Sur l'Influence du Monde ambiant pour modifier les Formes animaux (Memoires Acad. Sciences, xii., 1833, pp. 63, 75).
[149] Recherches sur l'Organisation des Gavials (Memoires du Museum d'Histoire naturelle), xii., p. 97 (1825).
[150] Sur l'Influence du Monde ambiant, p. 74.
[151] Dictionnaire de la Conversation, xxxi., p. 487, 1836 (quoted by I. Geoffroy St. Hilaire); Histoire nat. gen. des Regnes organiques, ii., 2^e partie; also Resume, p. 30 (1859).
CHAPTER XIV
THE VIEWS OF ERASMUS DARWIN
Erasmus Darwin, the grandfather of Charles Darwin, was born in 1731, or twenty-four years after Buffon. He was an English country physician with a large practice, and not only interested in philosophy, mechanics, and natural science, but given to didactic rhyming, as evinced by The Botanical Garden and The Loves of the Plants, the latter of which was translated into French in 1800, and into Italian in 1805. His "shrewd and homely mind," his powers of keen observation and strong common sense were revealed in his celebrated work Zoonomia, which was published in two volumes in 1794, and translated into German in 1795-99. He was not a zooelogist, published no separate scientific articles, and his striking and original views on evolution, which were so far in advance of his time, appear mostly in the section on "Generation," comprising 173 pages of his Zoonomia,[152] which was mainly a medical work. The book was widely read, excited much discussion, and his views decided opposition. Samuel Butler in his Evolution, Old and New (1879) remarks: "Paley's Natural Theology is written throughout at the Zoonomia, though he is careful, moro suo, never to mention this work by name. Paley's success was probably one of the chief causes of the neglect into which the Buffonian and Darwinian systems fell in this country." Dr. Darwin died in the same year (1802) as that in which the Natural Theology was published.
Krause also writes of the reception given by his contemporaries to his "physio-philosophical ideas." "They spoke of his wild and eccentric fancies, and the expression 'Darwinising' (as employed, for example, by the poet Coleridge when writing on Stillingfleet) was accepted in England nearly as the antithesis of sober biological investigation."[153]
The grandson of Erasmus Darwin had little appreciation of the views of him of whom, through atavic heredity, he was the intellectual and scientific child. "It is curious," he says in the 'Historical Sketch' of the Origin of Species—"it is curious how largely my grandfather, Dr. Erasmus Darwin, anticipated the views and erroneous grounds of opinion of Lamarck in his Zoonomia (vol. i., pp. 500-510), published in 1794." It seems a little strange that Charles Darwin did not devote a few lines to stating just what his ancestor's views were, for certain of them, as we shall see, are anticipations of his own.
The views of Erasmus Darwin may thus be summarily stated:
1. All animals have originated "from a single living filament" (p. 230), or, stated in other words, referring to the warm-blooded animals alone, "one is led to conclude that they have alike been produced from a similar living filament" (p. 236); and again he expresses the conjecture that one and the same kind of living filament is and has been the cause of all organic life (p. 244). It does not follow that he was a "spermist," since he strongly argued against the incasement or "evolution" theory of Bonnet.
2. Changes produced by differences of climate and even seasons. Thus "the sheep of warm climates are covered with hair instead of wool, and the hares and partridges of the latitudes which are long buried in snow become white during the winter months" (p. 234). Only a passing reference is made to this factor, and the effects of domestication are but cursorily referred to. In this respect Darwin's views differed much from Buffon's, with whom they were the primary causes in the modification of animals.
The other factors or agencies are not referred to by Buffon, showing that Darwin was not indebted to Buffon, but thought out the matter in his own independent way.
3. "Fifthly, from their first rudiment or primordium to the termination of their lives, all animals undergo perpetual transformations, which are in part produced by their own exertions in consequence of their desires and aversions, of their pleasures and their pains, or of irritations or of associations; and many of these acquired forms or propensities are transmitted to their posterity" (p. 237). The three great objects of desire are, he says, "lust, hunger, and security" (p. 237).
4. Contests of the males for the possession of the females, or law of battle. Under the head of desire he dwells on the desire of the male for the exclusive possession of the female; and "these have acquired weapons to combat each other for this purpose," as the very thick, shield-like horny skin on the shoulders of the boar, and his tusks, the horns of the stag, the spurs of cocks and quails. "The final cause," he says, "of this contest among the males seems to be that the strongest and most active animal should propagate the species, which should thence become improved" (p. 238). This savors so strongly of sexual selection that we wonder very much that Charles Darwin repudiated it as "erroneous." It is not mentioned by Lamarck, nor is Dr. Darwin's statement of the exertions and desires of animals at all similar to Lamarck's, who could not have borrowed his ideas on appetency from Darwin or any other predecessor.
5. The transmission of characters acquired during the lifetime of the parent. This is suggested in the following crude way:
"Thirdly, when we enumerate the great changes produced in the species of animals before their maturity, as, for example, when the offspring reproduces the effects produced upon the parent by accident or cultivation; or the changes produced by the mixture of species, as in mules; or the changes produced probably by the exuberance of nourishment supplied to the fetus, as in monstrous births with additional limbs, many of these enormities of shape are propagated and continued as a variety, at least, if not as a new species of animal. I have seen a breed of cats with an additional claw on every foot; of poultry also with an additional claw, and with wings to their feet, and of others without rumps. Mr. Buffon mentions a breed of dogs without tails, which are common at Rome and Naples, which he supposes to have been produced by a custom, long established, of cutting their tails close off. There are many kinds of pigeons admired for their peculiarities which are more or less thus produced and propagated."[154]
6. The means of procuring food has, he says, "diversified the forms of all species of animals. Thus the nose of the swine has become hard for the purpose of turning up the soil in search of insects and of roots. The trunk of the elephant is an elongation of the nose for the purpose of pulling down the branches of trees for his food, and for taking up water without bending his knees. Beasts of prey have acquired strong jaws or talons. Cattle have acquired a rough tongue and a rough palate to pull off the blades of grass, as cows and sheep. Some birds have acquired harder beaks to crack nuts, as the parrot. Others have acquired beaks to break the harder seeds, as sparrows. Others for the softer kinds of flowers, or the buds of trees, as the finches. Other birds have acquired long beaks to penetrate the moister soils in search of insects or roots, as woodcocks, and others broad ones to filtrate the water of lakes and to retain aquatic insects. All which seem to have been gradually produced during many generations by the perpetual endeavors of the creature to supply the want of food, and to have been delivered to their posterity with constant improvement of them for the purpose required" (p. 238).
7. The third great want among animals is that of security, which seems to have diversified the forms of their bodies and the color of them; these consist in the means of escaping other animals more powerful than themselves.[155] Hence some animals have acquired wings instead of legs, as the smaller birds, for purposes of escape. Others, great length of fin or of membrane, as the flying-fish and the bat. Others have acquired hard or armed shells, as the tortoise and the Echinus marinus (p. 239).
"The colors of insects," he says, "and many smaller animals contribute to conceal them from the dangers which prey upon them. Caterpillars which feed on leaves are generally green; earthworms the color of the earth which they inhabit; butterflies, which frequent flowers, are colored like them; small birds which frequent hedges have greenish backs like the leaves, and light-colored bellies like the sky, and are hence less visible to the hawk, who passes under them or over them. Those birds which are much amongst flowers, as the goldfinch (Fringilla carduelis), are furnished with vivid colors. The lark, partridge, hare, are the color of dry vegetables or earth on which they rest. And frogs vary their color with the mud of the streams which they frequent; and those which live on trees are green. Fish, which are generally suspended in water, and swallows, which are generally suspended in air, have their backs the color of the distant ground, and their bellies of the sky. In the colder climates many of these become white during the existence of the snows. Hence there is apparent design in the colors of animals, whilst those of vegetables seem consequent to the other properties of the materials which possess them" (The Loves of the Plants, p. 38, note).
In his Zoonomia (Sec. xxxix., vi.) Darwin also speaks of the efficient cause of the various colors of the eggs of birds and of the hair and feathers of animals which are adapted to the purpose of concealment. "Thus the snake, and wild cat, and leopard are so colored as to resemble dark leaves and their light interstices" (p. 248). The eggs of hedge-birds are greenish, with dark spots; those of crows and magpies, which are seen from beneath through wicker nests, are white, with dark spots; and those of larks and partridges are russet or brown, like their nests or situations. He adds: "The final cause of their colors is easily understood, as they serve some purpose of the animal, but the efficient cause would seem almost beyond conjecture." Of all this subject of protective mimicry thus sketched out by the older Darwin, we find no hint or trace in any of Lamarck's writings.
8. Great length of time. He speaks of the "great length of time since the earth began to exist, perhaps millions of ages before the commencement of the history of mankind" (p. 240).
In this connection it may be observed that Dr. Darwin emphatically opposes the preformation views of Haller and Bonnet in these words: |
|