p-books.com
Kepler
by Walter W. Bryant
Previous Part     1  2
Home - Random Browse

It was probably Galileo whose praise of the new Tables induced the Grand Duke of Tuscany to send Kepler a gold chain soon after their publication, and we may perhaps regard it as a mark of favour from the Emperor Ferdinand that he permitted Kepler to attach himself to the great Wallenstein, now Duke of Friedland, and a firm believer in Astrology. The Duke was a better paymaster than either of the three successive Emperors. He furnished Kepler with an assistant and a printing press; and obtained for him the Professorship of Astronomy at the University of Rostock in Mecklenburg. Apparently, however, the Emperor could not induce Wallenstein to take over the responsibility of the 8000 crowns, still owing from the Imperial treasury on account of the Rudolphine Tables. Kepler made a last attempt to secure payment at Ratisbon, but his journey thither brought disappointment and fatigue and left him in such a condition that he rapidly succumbed to an attack of fever, dying in November, 1630, in his fifty-ninth year. His body was buried at Ratisbon, but the tombstone was destroyed during the war then raging. His daughter, Susanna, the wife of Jacob Bartsch, a physician who had helped Kepler with his Ephemeris, lost her husband soon after her father's death, and succeeded in obtaining part of Kepler's arrears of salary by threatening to keep Tycho's manuscripts, but her stepmother was left almost penniless with five young children. For their benefit Louis Kepler printed a "Dream of Lunar Astronomy," which first his father and then his brother-in-law had been preparing for publication at the time of their respective deaths. It is a curious mixture of saga and fairy tale with a little science in the way of astronomy studied from the moon, and cast in the form of a dream to overcome the practical difficulties of the hypothesis of visiting the moon. Other writings in large numbers were left unpublished. No attempt at a complete edition of Kepler's works was made for a long time. One was projected in 1714 by his biographer, Hantsch, but all that appeared was one volume of letters. After various learned bodies had declined to move in the matter the manuscripts were purchased for the Imperial Russian library. An edition was at length brought out at Frankfort by C. Frisch, in eight volumes, appearing at intervals from 1858-1870.

Kepler's fame does not rest upon his voluminous works. With his peculiar method of approaching problems there was bound to be an inordinate amount of chaff mixed with the grain, and he used no winnowing machine. His simplicity and transparent honesty induced him to include everything, in fact he seemed to glory in the number of false trails he laboriously followed. He was one who might be expected to find the proverbial "needle in a haystack," but unfortunately the needle was not always there. Delambre says, "Ardent, restless, burning to distinguish himself by his discoveries he attempted everything, and having once obtained a glimpse of one, no labour was too hard for him in following or verifying it. All his attempts had not the same success, and in fact that was impossible. Those which have failed seem to us only fanciful; those which have been more fortunate appear sublime. When in search of that which really existed, he has sometimes found it; when he devoted himself to the pursuit of a chimera, he could not but fail, but even then he unfolded the same qualities, and that obstinate perseverance that must triumph over all difficulties but those which are insurmountable." Berry, in his "Short History of Astronomy," says "as one reads chapter after chapter without a lucid, still less a correct idea, it is impossible to refrain from regrets that the intelligence of Kepler should have been so wasted, and it is difficult not to suspect at times that some of the valuable results which lie embedded in this great mass of tedious speculation were arrived at by a mere accident. On the other hand it must not be forgotten that such accidents have a habit of happening only to great men, and that if Kepler loved to give reins to his imagination he was equally impressed with the necessity of scrupulously comparing speculative results with observed facts, and of surrendering without demur the most beloved of his fancies if it was unable to stand this test. If Kepler had burnt three-quarters of what he printed, we should in all probability have formed a higher opinion of his intellectual grasp and sobriety of judgment, but we should have lost to a great extent the impression of extraordinary enthusiasm and industry, and of almost unequalled intellectual honesty which we now get from a study of his works."

Professor Forbes is more enthusiastic. In his "History of Astronomy," he refers to Kepler as "the man whose place, as is generally agreed, would have been the most difficult to fill among all those who have contributed to the advance of astronomical knowledge," and again a propos of Kepler's great book, "it must be obvious that he had at that time some inkling of the meaning of his laws—universal gravitation. From that moment the idea of universal gravitation was in the air, and hints and guesses were thrown out by many; and in time the law of gravitation would doubtless have been discovered, though probably not by the work of one man, even if Newton had not lived. But, if Kepler had not lived, who else could have discovered his Laws?"



APPENDIX I.

LIST OF DATES.

Johann Kepler, born 1571; school at Maulbronn, 1586; University of Tuebingen, 1589; M.A. of Tuebingen, 1591; Professor at Gratz, 1594; "Prodromus," with "Mysterium Cosmographicum," published 1596; first marriage, 1597; joins Tycho Brahe at Prague, 1600; death of Tycho, 1601; Kepler's optics, 1603; Nova, 1604; on Comets, 1607; Commentary on Mars, including First and Second Laws, 1609; Professor at Linz, 1612; second marriage, 1613; Third Law discovered, 1618; Epitome of Copernican Astronomy, 1618-1621; Rudolphine Tables published, 1627; died, 1630.



APPENDIX II.

BIBLIOGRAPHY.

For a full account of the various systems of Kepler and his predecessors the reader cannot do better than consult the "History of the Planetary Systems, from Thales to Kepler," by Dr. J.L.E. Dreyer (Cambridge Univ. Press, 1906). The same author's "Tycho Brahe" gives a wealth of detail about that "Phoenix of Astronomers," as Kepler styles him. A great proportion of the literature relating to Kepler is German, but he has his place in the histories of astronomy, from Delambre and the more modern R. Wolfs "Geschichte" to those of A. Berry, "History of Astronomy" (University Extension Manuals, Murray, 1898), and Professor G. Forbes, "History of Astronomy" (History of Science Series, Watts, 1909).



GLOSSARY.

Apogee: The point in the orbit of a celestial body when it is furthest from the earth.

Apse: An extremity of the major axis of the orbit of a body; a body is at its greatest and least distances from the body about which it revolves, when at one or other apse.

Conjunction: When a plane containing the earth's axis and passing through the centre of the sun also passes through that of the moon or a planet, at the same side of the earth, the moon or planet is in conjunction, or if on opposite sides of the earth, the moon or planet is in opposition. Mercury and Venus cannot be in opposition, but are in inferior or superior conjunction according as they are nearer or further than the sun.

Deferent: In the epicyclic theory, uneven motion is represented by motion round a circle whose centre travels round another circle, the latter is called the deferent.

Ecliptic: The plane of the earth's orbital motion about the sun, which cuts the heavens in a great circle. It is so called because obviously eclipses can only occur when the moon is also approximately in this plane, besides being in conjunction or opposition with the sun.

Epicycle: A point moving on the circumference of a circle whose centre describes another circle, traces an epicycle with reference to the centre of the second circle.

Equant: In Ptolemy's excentric theory, when a planet is describing a circle about a centre which is not the earth, in order to satisfy the convention that the motion must be uniform, a point was found about which the motion was apparently uniform,[4] and this point was called the equant.

[Footnote 4: I.e. the angular motion about the equant was uniform.]

Equinox: When the sun is in the plane of the earth's equator the lengths of day and night are equal. This happens twice a year, and the times when the sun passes the equator are called the vernal or spring equinox and the autumnal equinox respectively.

Evection: The second inequality of the moon, which vanishes at new and full moon and is a maximum at first and last quarter.

Excentric: As an alternative to epicycles, planets whose motion round the earth was not uniform could be represented as moving round a point some distance from the earth called the excentric.

Geocentric: Referred to the centre of the earth; e.g. Ptolemy's theory.

Heliocentric: Referred to the centre of the sun; e.g. the theory commonly called Copernican.

Inequality: The difference between the actual position of a planet and its theoretical position on the hypothesis of uniform circular motion.

Node: The points where the orbit of the moon or a planet intersect the plane of the ecliptic. The ascending node is the one when the planet is moving northwards, and the line of intersection of the orbital plane with the ecliptic is the line of nodes.

Occultation: Usually means when a planet or star is hidden by the moon, but it also includes "occultation" of a star by a planet or of a satellite by a planet or of one planet by another.

Opposition v. Conjunction.

Parallax: The error introduced by observing from some point other than that required in theory, e.g. in geocentric places because the observations are made from the surface of the earth instead of the centre, or in heliocentric places because observations are made from the earth and not from the sun.

Perigee: The point in the orbit of a celestial body when it is nearest to the earth.

Precession: Owing to the slow motion of the earth's pole around the pole of the ecliptic, the equator cuts the ecliptic a little earlier every year, so that the equinox each year slightly precedes, with reference to the stars, that of the previous year.

THE END

Previous Part     1  2
Home - Random Browse