p-books.com
James Watt
by Andrew Carnegie
Previous Part     1  2  3  4     Next Part
Home - Random Browse

Overtures were made by Wasborough to exchange patents and work together, which Watt scornfully rejected. He writes:

Though I am not so saucy as many of my countrymen, I have enough innate pride to prevent me from doing a mean action because a servile prudence may dictate it ... I will never meanly sue a thief to give me my own again unless I have nothing left behind.

His blood was up. No dealings with rascals!

July, 1781, Watt had finished his studies, went to Penryn, and swore he had "invented certain new methods of applying the vibrating or reciprocating motion of steam or fire engines to produce a continued rotation or circular motion round an axis or centre, and thereby to give motion to the wheels of mills or other machines."

Watt proceeded to work out the plan of the rotary engine, stimulated by numerous inquiries for steam engines for driving all kinds of mills. He found that "the people in London, Manchester and Birmingham are steam-mill mad."

During many long years of trial with their financial troubles, inferior and drunken workmen, disappointing engines, Cornish mine-owners to annoy him, it is highly probable that Watt only found relief in retiring to his garret to gratify his passion for solving difficult mechanical problems. We may even imagine that from his serious mission—the development of the engine—which was ever present, he sometimes flew to the numerous less exhausting inventions for recreation, as the weary student flies to fiction. His mind at this period seems never to have been at rest. His voluminous correspondence constantly reveals one invention after another upon which he was engaged. A new micrometer, a dividing screw, a new surveying-quadrant, problems for clearing the observed distance of the moon from a star of the effects of refraction and parallax, a drawing-machine, a copying-machine for sculpture—anything and everything he used or saw seems immediately to have been subjected to the question: "Cannot this be improved?" usually with a response in the affirmative.

As we have read, he had long studied the question of a locomotive steam carriage. In Muirhead's Biography, several pages are devoted to this. In his seventh "new improvement," in his patent of 1784, he describes "the principle and construction of steam engines which are applied to give motion to wheel carriages for removing persons, goods, or other matter from place to place, in which case the engines themselves must be portable." Mr. Murdoch made a model of the engine here specified which performed well, but nothing important came of all this until 1802, when the problem was instantly changed by Watt's friend, Mr. Edgeworth, writing him, "I have always thought that steam would become the universal lord, and that we should in time scorn post-horses. An iron railroad would be a cheaper thing than a road of the common construction." Here lay in a few words the idea from which our railway system has sprung. Surely Edgeworth deserves to be placed among the immortals.[3] As in the case of the steamship, however, the indispensable steam engine of Watt had to furnish the motive power. The railroad is only the necessary smooth track upon which the steam engine could perform its miracle. It is significant that steam power upon roads required the abandonment of the usual highway. So we may believe is the automobile to force new roads of its own, or to widen existing highways, rendering those safe under certain rules for speed of twenty miles per hour, or even more, when they were intended only for eight or ten.

The reading lamp of Watt's day was a poor affair, and as he never saw an inefficient instrument without studying its improvement, he produced a new lamp. He wrote Argand of the Argand burner upon the subject and for a long time Watt lamps were made at the Soho works, which gave a light surpassing in steadiness and brilliance anything of the kind that had yet appeared. He gives four plans for lamps, "with the reservoir below and the stem as tall as you please." He also made an instrument for determining the specific gravity of liquids, and a year after this he "found out a method of working tubes of the elastic resin without dissolving it." The importance of such tubes for a thousand purposes in the arts and sciences is now appreciated.

Watt gave much time to an arithmetical machine which he found exceedingly simple to plan, but he adds, "I have learnt by experience that in mechanics many things fall out between the cup and the mouth." He describes what it is to accomplish, but it remained for Babbage at a much later date to perfect the machine. A machine for copying sculpture amused him for a time but it was never finished.

If any difficulty of a mechanical nature arose, people naturally turned to Watt for a solution. Thus the Glasgow University failed to get pipes for conveying water across the Clyde to stand, the channel of the river being covered with mud and shifty sand, full of inequalities, and subject to the pressure of a considerable body of water. Application was at last made to the recognised genius. If he could not solve it, who could? This was just one of the things that Watt liked to do. He promptly devised an articulated suction pipe with parts formed on the principle of a lobster's tail. This crustacean tube a thousand feet long solved the matter. Watt stated that his services were induced solely by a desire to be of use in procuring good water to the city of Glasgow, and to promote the prosperity of a company which had risked so much for the public good. These were handsomely acknowledged by the presentation to him of a valuable piece of plate.

As another proof of Watt's habit of thinking of everything that could possibly be improved, it may be news to many readers that the consumption of the smoke from steam engines early attracted his attention, and that he patented devices for this. These have been substantially followed in the numerous attempts which have been made from time to time to reduce the huge volumes of smoke that keep so many cities under a cloud. He was successful and his son James writes to him in 1790 from Manchester:

It is astonishing what an impression the smoke-consuming power of the engine has made upon everybody hereabouts. They scarcely trusted to the evidence of their senses. You would be diverted to hear the strange hypotheses which have been stated to account for it.

This is all very well. It is certain that most of the smoke made in manufacturing concerns can be consumed, if manufacturers are compelled by law to erect sufficient heating surface and to include the well-known appliances, including those for careful firing, but no city so far as the writer knows has ever been able to enforce effective laws. There remain the dwellings of the people to deal with, which give forth smoke in large cities in the aggregate far exceeding that made by the manufacturing plants. New York pursues the only plan for ensuring the clearest skies of any large city in the world where coal is generally used, by making the use of bituminous coal unlawful. The enormous growth of present New York (45 per cent. in last decade) is not a little dependent upon the attraction of clear blue sides and the resulting cleanliness of all things in and about the city compared with others. When, by the progress of invention or new methods of distributing heat, smoke is banished, as it probably will be some day, many rich citizens will remain in their respective western cities instead of flocking to the clear blue-skied metropolis, as they are now so generally doing.

Such were some of Watt's by-products. His recreation, if found at all, was found in change of occupation. We read of no idle days, no pleasure trips, no vacations, only change of work.

Rumors of new inventions of engines far excelling his continued to disturb Watt, and much of his time was given to investigation. He thought of a caloric air engine as possibly one of the new ideas; then of the practicability of producing mechanical power by the absorption and condensation of gas on the one hand and by its disengagement and expansion on the other. His mind seemed to range over the entire field of possibilities.

The Hornblower engine had been heralded as sure to displace the Watt. When it was described, it proved to be as Watt said, "no less than our double-cylinder engine, worked upon our principle of expansion. It is fourteen years since I mentioned it to Mr. Smeaton." Watt had explained to Dr. Small his method of working steam expansively as early as May, 1769, and had adopted it in the Soho engine and also in the Shadwell engine erected in that year.

We have seen before that Watt had to retrace his steps and abandon for a time in later engines what he had before ventured upon.

The application of steam for propelling boats upon the water was, at this time (1788), attracting much attention. Boulton and Watt were urged to undertake experiments. This they declined to entertain, having their facilities fully employed in their own field, but finally Fulton, on August 6, 1803, ordered an engine from them from his own drawings, intended for this purpose, repeating the order in person in 1804. It was shipped to America early in 1805, and in 1807 placed upon the Clermont, which ran upon the Hudson River as a passenger boat, attaining a speed of about five miles an hour. This was the first steamboat that was ever used for passengers, and altho Fulton neither invented the boat nor the engine, nor the combination of the two, still he is entitled to great credit for overcoming innumerable difficulties sufficient to discourage most men. Fulton, who was the son of a Scotsman from Dumfrieshire, visited Syminton's steamboat, the Charlotte Dundas, in Scotland, in 1801, and had seen it successfully towing canal boats upon the Forth and Clyde Canal. This was the first boat ever propelled by steam successfully for commercial purposes. It was subsequently discarded, not because it did not tow the canal boats, but because the revolving paddle-wheels caused waves that threatened to wash away the canal banks.

Several engines were sent to New York. The men in charge of one found on shipboard a pattern-maker going to America named John Hewitt. He settled in America January 12th, 1796, and became the father of the late famous and deeply lamented Hon. Abram S. Hewitt, long a member of Congress and afterward mayor of New York, foremost in many improvements in the city, the last being the Subway, just opened, which owes its inception to him. For this service, the Chamber of Commerce presented him with a memorial medal. Mr. Hewitt married a daughter of Peter Cooper, founder of the Cooper Institute, which owes its wonderful development chiefly to him. His children devote themselves and their fortunes to its management. At the time of his death in 1902, he was pronounced "the first private citizen of the Republic." Small engine-shops (of which the ruins still remain), called "Soho" after their prototype, were erected by his father near New York city, on the Greenwood division of the Erie Railroad. The railroad station was called "Soho" by Mr. Abram S. Hewitt, who was then president of the railroad company. Upon Mr. Hewitt's eightieth birthday congratulations poured in from all quarters. One cable from abroad attracted attention as appropriate and deserved: "Ten octaves every note truly struck and grandly sung." No man in private life passed away in our day with such general lamentation. The Republic got even more valuable material than engines from the old home in the ship that arrived on January 12, 1796.

We must not permit ourselves to forget that it was not until the Watt engine was applied to steam navigation that the success of the latter became possible. It was only by this that it could be made practicable, so that the steamship is the product of the steam-engine, and it is to Watt we owe the modern twenty-three-thousand-ton monster (and larger monsters soon to come), which keeps its course against wind and tide, almost "unshaked of motion," for this can now properly be said. Passengers crossing the Atlantic from port to port now scarcely know anything of irregular motion, and never more than the gentlest of slight heaves, even during the gale that

"Catches the ruffian billows by their tops, Curling their monstrous heads."

The ocean, traversed in these ships, is a smooth highway—nothing but a ferry—and a week spent upon it has become perhaps the most enjoyable and the most healthful of holiday excursions, provided the prudent excursionist has left behind positive instructions that wireless telegrams shall not follow.

[1] Perhaps there is no instance so striking as this of the immense difference that sometimes lies in the mere accent given one monosyllable. Until Mrs. Siddons revealed the real Lady Macbeth, every actress had replied, "We fail?" interrogatively, and then encouragingly, "Screw your courage to the sticking-point and we'll not fail." Such the commonplace reciters. When genius touched the word it flashed and sparkled. Then came the prompt response. "We fail." She was of such stuff as meets failure without fear. For this revelation the actress becomes immortal, since her name is linked with the greatest son of time. One word did it, nay a new accent upon a monosyllable—a trifling change say you? "I make it a rule never to mind trifles," said a great man. "So should I if I could only tell what were trifles," said a greater. One is far on if he can predict consequences that may flow from one kind word or the intonation of a word. Fortune sometimes hangs upon a glance or nod of kindly recognition as we pass.

[2] An American Murdoch was found in Captain Jones, the best manager of works of his day. He entered the service of the Carnegie Steel Company as a young mechanic at two dollars per day, a perfect copy of Murdoch in many important respects. Reading Murdoch's history, we have found ourselves substituting the "captain," a title well earned on the field in the war for the Union, which he entered as a private. Once he was offered an interest in the firm, which would have made him one of the band of young millionaires. His reply was, "Thank you, don't want to have anything to do with business. These works (Steel rail mills, Pittsburg) give me enough to think of. You just give me a 'thundering salary.'" "All right, Captain, the salary of the president of the United States is yours." Also like Murdoch, he was an inventor. His principal invention, recently sustained by the Supreme Court, would easily yield from those who appropriated it and refused payment, at least five millions of dollars in royalties. Captain Jones was born in Pennsylvania of Welsh parents. Murdoch won promotion at last, and was first superintendent of one of the special departments, and later had general supervision of the mechanical department, becoming "the right hand man" of the firm. The young partners dealt generously with him, and treated him with reverence and affection to the end. He died in his eighty-fifth year. Captain Jones was injured at the works and passed away just as a touch of age came upon him, as many war veterans did. Fortunate is the firm that discovers a William Murdoch or a William Jones, and gives him swing to do the work of an original in his own way.

[3] Since the above was put in type I learn that in his forthcoming book upon "The Development of the Locomotive," which promises to become the standard, Mr. Angus Sinclair says: "The first suggestion of a railroad for goods transportation appears to have been made before The Literary and Philosophical Society of Newcastle by a Mr Thomas, of Denton, in February, 1800. Two years later Richard Edgeworth, father of the famous novelist, suggested that it should be extended for the carrying of passengers." There is no record of Thomas's suggestion, as far as we know, but only tradition. Even if made, however, it seems to have lain dead. Edgeworth evidently knew nothing of it, and as it was his letter to Watt which seems first to have attracted public attention, the passage is allowed to stand as written.



CHAPTER VII

SECOND PATENT

The number and activity of rivals attracted to the steam engine and its possible improvement, some of whom had begun infringements upon the Watt patents, alarmed Messrs. Watt and Boulton so much that they decided Watt should apply for another patent, covering his important improvements since the first. Accordingly, October 25, 1781, the patent (already referred to on p. 91) was secured, "for certain new methods of producing a continued rotative motion around an axis or centre, and thereby to give motion to the wheels of mills or other machines."

This patent was necessary in consequence of the difficulties experienced in working the steam wheels or rotatory engines described in the first patent of 1769, and by Watt's having been so unfairly anticipated, by Wasborough in the crank motion.

No less than five different methods for rotatory motion are described in the patent, the fifth commonly known as the "sun and planet wheels," of which Watt writes to Boulton, January 3, 1782,

I have tried a model of one of my old plans of rotative engines, revived and executed by Mr. Murdoch, which merits being included in the specification as a fifth method; for which purpose I shall send a drawing and description next post. It has the singular property of going twice round for each stroke of the engine, and may be made to go oftener round, if required, without additional machinery.

Then followed an explanation of the sketch which he sent, and two days later he wrote, "I send you the drawings of the fifth method, and thought to have sent you the description complete, but it was late last night before I finished so far, and to-day have a headache, therefore only send you a rough draft of part."

In all of these Watt recommended that a fly-wheel be used to regulate the motion, but in the specification for the patent of the following year, 1782, his double-acting engine produced a more regular motion and rendered a fly-wheel unnecessary, "so that," he says, "in most of our great manufactories these engines now supply the place of water, wind and horse mills, and instead of carrying the work to the power, the prime agent is placed wherever it is most convenient to the manufacturer."

This marks one of the most important stages in the development of the steam engine. It was at last the portable machine it remains to-day, and was placed wherever convenient, complete in itself and with the rotative motion adaptable for all manner of work. The ingenious substitutes Watt had to invent to avoid the obviously perfect crank motion have of course all been discarded, and nothing of these remains except as proofs, where none are needed, that genius has powers in reserve for emergencies; balked in one direction, it hews out another path for itself.

While preparing the specification for this patent of 1781, Watt was busy upon another specification quite as important, which appeared in the following year, 1782. It embraced the following new improvements, the winnowing of numberless ideas and experiments that he had conceived and tested for some years previous:

1. The use of steam on the expansive principle; together with various methods or contrivances (six in number, some of them comprising various modifications), for equalising the expansive power.

2. The double-acting engine; in which steam is admitted to press the piston upward as well as downward; the piston being also aided in its ascent as well as in its descent by a vacuum produced by condensation on the other side.

3. The double-engine; consisting of two engines, primary and secondary, of which the steam-vessels and condensers communicate by pipes and valves, so that they can be worked either independently or in concert; and make their strokes either alternately or both together, as may be required.

4. The employment of a toothed rack and sector, instead of chains, for guiding the piston-rod.

5. A rotative engine, or steam-wheel.

Here we have three of the vital elements required toward the completion of the work: first, steam used expansively; second, the double-acting engine. It will be remembered that Watt's first engines only took in steam at the bottom of the cylinder, as Newcomen's did, but with this difference: Watt used the steam to perform work which Newcomen could not do, the latter only using steam to force the piston itself upward. Now came Watt's great step forward. Having a cylinder closed at the top, while the Newcomen cylinder remained open, it was as easy to admit steam at the top to press the piston down as to admit it at the bottom to press the piston up; also as easy to apply his condenser to the steam above as below, at the moment a vacuum was needed. All this was ingeniously provided for by numerous devices and covered by the patent. Third, he went one step farther to the compound engine, consisting of two engines, primary and secondary, working steam expansively independently or in concert, with strokes alternate or simultaneous. The compound engine was first thought of by Watt about 1767. He laid a large drawing of it on parchment before parliament when soliciting an extension of his first patent. The reason he did not proceed to construct it was "the difficulty he had encountered in teaching others the construction and use of the single engine, and in overcoming prejudices"; the patent of 1782 was only taken out because he found himself "beset with a host of plagiaries and pirates."

One of the earliest of these double-acting engines was erected at the Albion Mills, London, in 1786. Watt writes:

The mention of Albion Mills induces me to say a few words respecting an establishment so unjustly calumniated in its day, and the premature destruction of which, by fire, in 1791, was, not improbably, imputed to design. So far from being, as misrepresented, a monopoly injurious to the public, it was the means of considerably reducing the price of flour while it continued at work.

The "double-acting" engine was followed by the "compound" engine, of which Watt says:

A new compound engine, or method of connecting together the cylinders and condensers of two or more distinct engines, so as to make the steam which has been employed to press on the piston of the first, act expansively upon the piston of the second, etc., and thus derive an additional power to act either alternately or co-jointly with that of the first cylinder.

We have here, in all substantial respects, the modern engine of to-day.

Two fine improvements have been made since Watt's time: first, the piston-rings of Cartwright, which effectively removed one of Watt's most serious difficulties, the escape of steam, even though the best packing he could devise were used—the chief reason he could not use high-pressure steam. In our day, the use of this is rapidly extending, as is that of superheated steam. Packing the piston was an elaborate operation even after Watt's day.

It was not because Watt did not know as well as any of our present experts the advantages of high pressures, that he did not use them, but simply because of the mechanical difficulties then attending their adoption. He was always in advance of mechanical practicalities rather than behind, and as we have seen, had to retrace his steps, in the case of expansion.

The other improvement is the cross-head of Haswell, an American, a decided advance, giving the piston rod a smooth and straight bed to rest upon and freeing it from all disturbance. The drop valve is now displacing the slide valve as a better form of excluding or admitting steam.

Watt of course knew nothing of the thermo-dynamic value of high temperature without high pressure, altho fully conversant with the value of pressures. This had not been even imagined by either philosopher or engineer until discovered by Carnot as late as 1824. Even if he had known about it the mechanical arts in his day were in no condition to permit its use. Even high pressures were impracticable to any great extent. It is only during the past few years that turbines and superheating, having long been practically discarded, show encouraging signs of revival. They give great promise of advancement, the hitherto insuperable difficulties of lubrication and packing having been overcome within the last five years. Superheating especially promises to yield substantial results as compared with the practice with ordinary engines, but the margin of saving in steam over the best quadruple expansion engine cannot be great. Lord Kelvin however expects it to be the final contribution of science to the highest possible economy in the steam engine.

In the January (1905) number of "Stevens Institute Indicator," Professor Denton has an instructive resume of recent steam engine economics. He tells us that Steam Turbines are now being applied to Piston Engines to operate with the latter's exhaust, to effect the same saving as the sulphur dioxide cylinder; and adds

that the Turbine is a formidable competitor to the Piston Engine is mainly due to the fact that it more completely realizes the expansive principle enunciated in the infancy of steam history as the fundamental factor of economy by its sagacious founder, the immortal Watt.

Watt's favorite employment in Soho works late in 1783 and early in 1784 was to teach his engine, now become as docile as it was powerful, to work a tilt hammer. In 1777 he had written Boulton that

Wilkinson wants an engine to raise a stamp of 15 cwt. thirty or forty times in a minute. I have set Webb to work to try it with the little engine and a stamp-hammer of 60 lbs. weight. Many of these battering rams will be wanted if they answer.

The trial was successful. A new machine to work a 700 lbs. hammer for Wilkinson was made, and April 27, 1783, Watt writes that

it makes from 15 to 50, and even 60, strokes per minute, and works a hammer, raised two feet high, which has struck 300 blows per minute.

The engine was to work two hammers, but was capable of working four of 7 cwt. each. He says, with excusable pride,

I believe it is a thing never done before, to make a hammer of that weight make 300 blows per minute; and, in fact, it is more a matter to brag of than for any other use, as the rate wanted is from 90 to 100 blows, being as quick as the workmen can manage the iron under it.

This most ingenious application of steam power was included in Watt's next patent of April 28, 1784. It embraced many improvements, mostly, however, now of little consequence, the most celebrated being "parallel motion," of which Watt was prouder than any other of his triumphs. He writes to his son, November, 1808, twenty-four years after it was invented (1784):

Though I am not over anxious after fame, yet I am more proud of the parallel motion than of any other mechanical invention I have ever made.

He wrote Boulton, in June, 1784:

I have started a new hare. I have got a glimpse of a method of causing a piston-rod to move up and down perpendicularly, by only fixing it to a piece of iron upon the beam ... I think it one of the most ingenious simple pieces of mechanism I have contrived.

October, 1784, he writes:

The new central perpendicular motion answers beyond expectation, and does not make the shadow of a noise.

He says:

When I saw it in movement, it afforded me all the pleasure of a novelty, as if I had been examining the invention of another.

When beam-engines were universally used for pumping, this parallel motion was of great advantage. It has been superseded in our day, by improved piston guides and cross-heads, the construction of which in Watt's day was impossible, but no invention has commanded in greater degree the admiration of all who comprehend the principles upon which it acts, or who have witnessed the smoothness, orderly power and "sweet simplicity" of its movements. Watt's pride in it as his favorite invention in these respects is fully justified.

A detailed specification for a road steam-carriage concludes the claims of this patent, but the idea of railroads, instead of common roads, coming later left the construction of the locomotive to Stephenson.[1]

Watt's last patent bears date June 14, 1785, and was

for certain newly improved methods of constructing furnaces or fire-places for heating, boiling, or evaporating of water and other liquids which are applicable to steam engines and other purposes, and also for heating, melting, and smelting of metals and their ores, whereby greater effects are produced from the fuel, and the smoke is in a great measure prevented or consumed.

The principle, "an old one of my own," as Watt says, is in great part acted upon to-day.

So numerous were the improvements made by Watt at various periods, which greatly increased the utility of his engine, it would be in vain to attempt a detailed recital of his endless contrivances, but we may mention as highly important, the throttle-valve, the governor, the steam-gauge and the indicator. Muirhead says:

The throttle-valve is worked directly by the engineer to start or stop the engine, and also to regulate the supply of steam. Watt describes it as a circular plate of metal, having a spindle fixed across its diameter, the plate being accurately fitted to an aperture in a metal ring of some thickness, through the edgeway of which the spindle is fitted steam-tight, and the ring fixed between the two flanches of the joint of the steam-pipe which is next to the cylinder. One end of the spindle, which has a square upon it, comes through the ring, and has a spanner fixed upon it, by which it can be turned in either direction. When the valve is parallel to the outsides of the ring, it shuts the opening nearly perfectly; but when its plane lies at an angle to the ring, it admits more or less steam according to the degree it has opened; consequently the piston is acted upon with more or less force.

Papin preferred gunpowder as a safer source of power than steam, but that was before it had been automatically regulated by the "Governor." The governor has always been the writer's favorite invention, probably because it was the first he fully understood. It is an application of the centrifugal principle adapted and mechanically improved. Two heavy revolving balls swing round an upright rod. The faster the rod revolves the farther from it the balls swing out. The slower it turns the closer the balls fall toward it. By proper attachments the valve openings admitting steam are widened or narrowed accordingly. Thus the higher speed of the engine, the less steam admitted, the slower the speed the more steam admitted. Hence any uniform speed desired can be maintained: should the engine be called upon to perform greater service at one moment than another, as in the case of steel rolling mills, speed being checked when the piece of steel enters the rolls, immediately the valves widen, more steam rushes into the engine, and vice versa. Until the governor came regular motion was impossible—steam was an unruly steed.

Arago describes the steam-gauge thus:

It is a short glass tube with its lower end immersed in a cistern of mercury, which is placed within an iron box screwed to the boiler steam-pipe, or to some other part communicating freely with the steam, which, pressing on the surface of the mercury in the cistern, raises the mercury in the tube (which is open to the air at the upper end), and its altitude serves to show the elastic power of the steam over that of the atmosphere.

The indicator he thus describes:

The barometer being adapted only to ascertain the degree of exhaustion in the condenser where its variations were small, the vibrations of the mercury rendered it very difficult, if not impracticable, to ascertain the state of the exhaustion of the cylinder at the different periods of the stroke of the engine; it became therefore necessary to contrive an instrument for that purpose that should be less subject to vibration, and should show nearly the degree of exhaustion in the cylinder at all periods. The following instrument, called the Indicator, is found to answer the end sufficiently. A cylinder about an inch diameter, and six inches long, exceedingly truly bored, has a solid piston accurately fitted to it, so as to slide easy by the help of some oil; the stem of the piston is guided in the direction of the axis of the cylinder, so that it may not be subject to jam, or cause friction in any part of its motion. The bottom of this cylinder has a cock and small pipe joined to it which, having a conical end, may be inserted in a hole drilled in the cylinder of the engine near one of the ends, so that, by opening the small cock, a communication may be effected between the inside of the cylinder and the indicator.

The cylinder of the indicator is fastened upon a wooden or metal frame, more than twice its own length; one end of a spiral steel spring, like that of a spring steel-yard, is attached to the upper part of the frame, and the other end of the spring is attached to the upper end of the piston-rod of the indicator. The spring is made of such a strength, that when the cylinder of the indicator is perfectly exhausted, the pressure of the atmosphere may force its piston down within an inch of its bottom. An index being fixed to the top of its piston-rod, the point where it stands, when quite exhausted, is marked from an observation of a barometer communicating with the same exhausted vessel, and the scale divided accordingly.

Improvements come in many ways, sometimes after much thought and after many experimental failures. Sometimes they flash upon clever inventors, but let us remember this is only after they have spent long years studying the problem. In the case of the steam engine, however, a quite important improvement came very curiously. Humphrey Potter was a lad employed to turn off and on the stop cocks of a Newcomen engine, a monotonous task, for, at every stroke one had to be turned to let steam into the boiler and another for injecting the cold water to condense it, and this had to be done at the right instant or the engine could not move. How to relieve himself from the drudgery became the question. He wished time to play with the other boys whose merriment was often heard at no great distance, and this set him thinking. Humphrey saw that the beam in its movements might serve to open and shut these stop cocks and he promptly began to attach cords to the cocks and then tied them at the proper points to the beam, so that ascending it pulled one cord and descending the other. Thus came to us perhaps not the first automatic device, but no doubt the first of its kind that was ever seen there. The steam engine henceforth was self-attending, providing itself for its own supply of steam and for its condensation with perfect regularity. It had become in this feature automatic.

The cords of Potter gave place to vertical rods with small pegs which pressed upward or downward as desired. These have long since been replaced by other devices, but all are only simple modifications of a contrivance devised by the mere lad whose duty it was to turn the stop cocks.

It would be interesting to know the kind of man this precocious boy inventor became, or whether he received suitable reward for his important improvement. We search in vain; no mention of him is to be found. Let us, however, do our best to repair the neglect and record that, in the history of the steam engine, Humphrey Potter must ever be honorably associated with famous men as the only famous boy inventor.

In the development of the steam engine, we have one purely accidental discovery. In the early Newcomen engines, the head of the piston was covered by a sheet of water to fill the spaces between the circular contour of the movable piston and the internal surface of the cylinder, for there were no cylinder-boring tools in those days, and surfaces of cylinders were most irregular. To the surprise of the engineer, the engine began one day working at greatly increased speed, when it was found that the piston-head had been pierced by accident and that the cold water had passed in small drops into the cylinder and had condensed the steam, thus rapidly making a more perfect vacuum. From this accidental discovery came the improved plan of injecting a shower of cold water through the cylinder, the strokes of the engine being thus greatly increased.

The year 1783 was one of Watt's most fruitful years of the dozen which may be said to have teemed with his inventions. His celebrated discovery of the composition of water was published in this year. The attempts made to deprive him of the honor of making this discovery ended in complete failure. Sir Humphrey Davy, Henry, Arago, Liebig, and many others of the highest authority acknowledged and established Watt's claims.

The true greatness of the modest Watt was never more finely revealed than in his correspondence and papers published during the controversy. Watt wrote Dr. Black, April 21st, that he had handed his paper to Dr. Priestley to be read at the Royal Society. It contained the new idea of water, hitherto considered an element and now discovered to be a compound. Thus was announced one of the most wonderful discoveries found in the history of science. It was justly termed the beginning of a new era, the dawn of a new day in physical chemistry, indeed the real foundation for the new system of chemistry, and, according to Dr. Young, "a discovery perhaps of greater importance than any single fact which human ingenuity has ascertained either before or since." What Newton had done for light Watt was held to have done for water. Muirfield well says:

It is interesting in a high degree to remark that for him who had so fully subdued to the use of man the gigantic power of steam it was also reserved to unfold its compound natural and elemental principles, as if on this subject there were to be nothing which his researches did not touch, nothing which they touched that they did not adorn.

Arago says:

In his memoir of the month of April, Priestley added an important circumstance to those resulting from the experiments of his predecessors: he proved that the weight of the water which is deposited upon the sides of the vessel, at the instant of the detonation of the oxygen and hydrogen, is precisely the same as the weights of the two gases.

Watt, to whom Priestley communicated this important result, immediately perceived that proof was here afforded that water was not a simple body. Writing to his illustrious friend, he asks:

What are the products of your experiment? They are water, light and heat. Are we not, thence, authorised to conclude that water is a compound of the two gases, oxygen and hydrogen, deprived of a portion of their latent or elementary heat; that oxygen is water deprived of its hydrogen, but still united to its latent heat and light? If light be only a modification of heat, or a simple circumstance of its manifestation, or a component part of hydrogen, oxygen gas will be water deprived of its hydrogen, but combined with latent heat.

This passage, so clear, so precise, and logical, is taken from a letter of Watt's, dated April 26, 1783. The letter was communicated by Priestley to several of the scientific men in London, and was transmitted immediately afterward to Sir Joseph Banks, the President of the Royal Society, to be read at one of the meetings of that learned body.

Watt had for many years entertained the opinion that air was a modification of water. He writes Boulton, December 10, 1782:

You may remember that I have often said, that if water could be heated red-hot or something more, it would probably be converted into some kind of air, because steam would in that case have lost all its latent heat, and that it would have been turned solely into sensible heat, and probably a total change of the nature of the fluid would ensue.

A month after he hears of Priestley's experiments, he writes Dr. Black (April 21, 1783) that he "believes he has found out the cause of the conversion of water into air." A few days later, he writes to Dr. Priestley:

In the deflagration of the inflammable and dephlogisticated airs, the airs unite with violence—become red-hot—and, on cooling, totally disappear. The only fixed matter which remains is water; and water, light, and heat, are all the products. Are we not then authorised to conclude that water is composed of dephlogisticated and inflammable air, or phlogiston, deprived of part of their latent heat; and that dephlogisticated, or pure air, is composed of water deprived of its phlogiston, and united to heat and light; and if light be only a modification of heat, or a component part of phlogiston, then pure air consists of water deprived of its phlogiston and of latent heat?

It appears from the letter to Dr. Black of April 21st, that Mr. Watt had, on that day, written his letter to Dr. Priestley, to be read by him to the Royal Society, but on the 26th he informs Mr. DeLuc, that having observed some inaccuracies of style in that letter, he had removed them, and would send the Doctor a corrected copy in a day or two, which he accordingly did on the 28th; the corrected letter (the same that was afterward embodied verbatim in the letter to Mr. DeLuc, printed in the Philosophical Transactions), being dated April 26th. In enclosing it, Mr. Watt adds, "As to myself, the more I consider what I have said, I am the more satisfied with it, as I find none of the facts repugnant."

Thus was announced for the first time one of the most wonderful discoveries recorded in the history of science, startling in its novelty and yet so simple.

Watt had divined the import of Priestley's experiment, for he had mastered all knowledge bearing upon the question, but even when this was communicated to Priestley, he could not accept it, and, after making new experiments, he writes Watt, April 29, 1783, "Behold with surprise and indignation the figure of an apparatus that has utterly ruined your beautiful hypothesis," giving a rough sketch with his pen of the apparatus employed. Mark the promptitude of the master who had deciphered the message which the experimenter himself could not translate. He immediately writes in reply May 2, 1783:

I deny that your experiment ruins my hypothesis. It is not founded on so brittle a basis as an earthen retort, nor on its converting water into air. I founded it on the other facts, and was obliged to stretch it a good deal before it would fit this experiment.... I maintain my hypothesis until it shall be shown that the water formed after the explosion of the pure and inflammable airs, has some other origin.

He also writes to Mr. DeLuc on May 18th:

I do not see Dr. Priestley's experiment in the same light that he does. It does not disprove my theory.... My assertion was simply, that air (i.e., dephlogisticated air, or oxygen, which was also commonly called vital air, pure air, or simple air) was water deprived of its phlogiston, and united to heat, which I grounded on the decomposition of air by inflammation with inflammable air, the residuum, or product of which, is only water and heat.

Having, by experiments of his own, fully satisfied himself of the correctness of his theory, in November he prepared a full statement for the Royal Society, having asked the society to withhold his first paper until he could prove it for himself by experiment. He never doubted its correctness, but some members of the society advised that it had better be supported by facts.

When the discovery was so daring that Priestley, who made the experiments, could not believe it and had to be convinced by Watt of its correctness, there seems little room left for other claimants, nor for doubt as to whom is due the credit of the revelation.

Watt encountered the difficulties of different weights and measures in his studies of foreign writers upon chemistry, a serious inconvenience which still remains with us.

He wrote Mr. Kirwan, November, 1783:

I had a great deal of trouble in reducing the weights and measures to speak the same language; and many of the German experiments become still more difficult from their using different weights and different divisions of them in different parts of that empire. It is therefore a very desirable thing to have these difficulties removed, and to get all philosophers to use pounds divided in the same manner, and I flatter myself that may be accomplished if you, Dr. Priestley, and a few of the French experimenters will agree to it; for the utility is so evident, that every thinking person must immediately be convinced of it.

Here follows his plan: Let the

Philosophical pound consist of 10 ounces, or 10,000 grains. the ounce " " 10 drachms or 1,000 " the drachm " " 100 grains.

Let all elastic fluids be measured by the ounce measure of water, by which the valuation of different cubic inches will be avoided, and the common decimal tables of specific gravities will immediately give the weights of those elastic fluids.

If all philosophers cannot agree on one pound or one grain, let every one take his own pound or his own grain; it will affect nothing but doses of medicines, which must be corrected as is now done; but as it would be much better that the identical pound was used by all. I would propose that the Amsterdam or Paris pound be assumed as the standard, being now the most universal in Europe: it is to our avoirdupois pound as 109 is to 100. Our avoirdupois pound contains 7,000 of our grains, and the Paris pound 7,630 of our grains, but it contains 9,376 Paris grains, so that the division into 10,000 would very little affect the Paris grain. I prefer dividing the pound afresh to beginning with the Paris grain, because I believe the pound is very general, but the grain local.

Dr. Priestley has agreed to this proposal, and has referred it to you to fix upon the pound if you otherwise approve of it. I shall be happy to have your opinion of it as soon as convenient, and to concert with you the means of making it universal.... I have some hopes that the foot may be fixed by the pendulum and a measure of water, and a pound derived from that; but in the interim let us at least assume a proper division, which from the nature of it must be intelligible as long as decimal arithmetic is used.

He afterward wrote, in a letter to Magellan:

As to the precise foot or pound, I do not look upon it to be very material, in chemistry at least. Either the common English foot may be adopted according to your proposal, which has the advantage that a cubic foot is exactly 1,000 ounces, consequently the present foot and ounce would be retained; or a pendulum which vibrates 100 times a minute may be adopted for the standard, which would make the foot 14.2 of our present inches, and the cubic foot would be very exactly a bushel, and would weigh 101 of the present pounds, so that the present pound would not be much altered. But I think that by this scheme the foot would be too large, and that the inconvenience of changing all the foot measures and things depending on them, would be much greater than changing all the pounds, bushels, gallons, etc. I therefore give the preference to those plans which retain the foot and ounce.

The war of the standards still rages—metric, or decimal, or no change. What each nation has is good enough for it in the opinion of many of its people. Some day an international commission will doubtless assemble to bring order out of chaos. As far as the English-speaking race is concerned, it seems that a decided improvement could readily be affected with very trifling, indeed scarcely perceptible, changes. Especially is this so with money values. Britain could merge her system with those of Canada and America, by simply making her "pound" the exact value of the American five dollars, it being now only ten pence less; her silver coinage one and two shillings equal to quarter- and half-dollars, the present coin to be recoined upon presentation, but meanwhile to pass current. Weights and measures are more difficult to assimilate. Science being world-wide, and knowing no divisions, should use uniform terms. Alas! at the distance of nearly a century and a half we seem no nearer the prospect of a system of universal weights and measures than in Watt's day, but Watt's idea is not to be lost sight of for all that. He was a seer who often saw what was to come.

We have referred to the absence of holidays in Watt's strenuous life, but Birmingham was remarkable for a number of choice spirits who formed the celebrated Lunar Society, whose members were all devoted to the pursuit of knowledge and mutually agreeable to one another. Besides Watt and Boulton, there were Dr. Priestley, discoverer of oxygen gas, Dr. Darwin, Dr. Withering, Mr. Keir, Mr. Galton, Mr. Wedgwood of Wedgwood ware fame, who had monthly dinners at their respective houses—hence the "Lunar" Society. Dr. Priestley, discoverer of oxygen, who arrived in Birmingham in 1780, has repeatedly mentioned the great pleasure he had in having Watt for a neighbor. He says:

I consider my settlement at Birmingham as the happiest event in my life; being highly favourable to every object I had in view, philosophical or theological. In the former respect I had the convenience of good workmen of every kind, and the society of persons eminent for their knowledge of chemistry; particularly Mr. Watt, Mr. Keir, and Dr. Withering. These, with Mr. Boulton and Dr. Darwin, who soon left us by removing from Lichfield to Derby, Mr. Galton, and afterwards Mr. Johnson of Kenilworth and myself, dined together every month, calling ourselves the Lunar Society, because the time of our meeting was near the full-moon—in order,

as he elsewhere says,

to have the benefit of its light in returning home.

Richard Lovell Edgeworth says of this distinguished coterie:

By means of Mr. Keir, I became acquainted with Dr. Small of Birmingham, a man esteemed by all who knew him, and by all who were admitted to his friendship beloved with no common enthusiasm. Dr. Small formed a link which combined Mr. Boulton, Mr. Watt, Dr. Darwin, Mr. Wedgwood, Mr. Day, and myself together—men of very different characters, but all devoted to literature and science. This mutual intimacy has never been broken but by death, nor have any of the number failed to distinguish themselves in science or literature. Some may think that I ought with due modesty to except myself. Mr. Keir, with his knowledge of the world and good sense; Dr. Small, with his benevolence and profound sagacity; Wedgwood, with his increasing industry, experimental variety, and calm investigation; Boulton, with his mobility, quick perception, and bold adventure; Watt, with his strong inventive faculty, undeviating steadiness, and bold resources; Darwin, with his imagination, science, and poetical excellence; and Day with his unwearied research after truth, his integrity and eloquence proved altogether such a society as few men have had the good fortune to live with; such an assemblage of friends, as fewer still have had the happiness to possess, and keep through life.

The society continued to exist until the beginning of the century, 1800. Watt was the last surviving member. The last reference is Dr. Priestley's dedication to it, in 1793, of one of his works "Experiments on the Generation of Air from Water," in which he says:

There are few things that I more regret, in consequence of my removal from Birmingham, than the loss of your society. It both encouraged and enlightened me; so that what I did there of a philosophical kind ought in justice to be attributed almost as much to you as to myself. From our cheerful meetings I never absented myself voluntarily, and from my pleasing recollection they will never be absent. Should the cause of our separation make it necessary for to me remove to a still greater distance from you, I shall only think the more, and with the more regret, of our past interviews.... Philosophy engrossed us wholly. Politicians may think there are no objects of any consequence besides those which immediately interest them. But objects far superior to any of which they have an idea engaged our attention, and the discussion of them was accompanied with a satisfaction to which they are strangers. Happy would it be for the world if their pursuits were as tranquil, and their projects as innocent, and as friendly to the best interests of mankind, as ours.

That the partners, Boulton and Watt, had such pleasure amid their lives of daily cares, all will be glad to know. It was not all humdrum money-making nor intense inventing. There was the society of gifted minds, the serene atmosphere of friendship in the high realms of mutual regard, best recreation of all.

In 1786, quite a break in their daily routine took place. In that year Messrs. Boulton and Watt visited Paris to meet proposals for their erecting steam engines in France under an exclusive privilege. They were also to suggest improvements on the great hydraulic machine of Marly. Before starting, the sagacious and patriotic Watt wrote to Boulton:

I think if either of us go to France, we should first wait upon Mr. Pitt (prime minister), and let him know our errand thither, that the tongue of slander may be silenced, all undue suspicion removed, and ourselves rendered more valuable in his eyes, because others desire to have us!

They had a flattering reception in Paris from the ministry, who seemed desirous that they should establish engine-works in France. This they absolutely refused to do, as being contrary to the interests of their country. It may be feared we are not quite so scrupulous in our day. On the other hand, refusal now would be fruitless, it has become so easy to obtain plans, and even experts, to build machines for any kind of product in any country. Automatic machinery has almost dispelled the need for so-called skilled labor. East Indians, Mexicans, Japanese, Chinese, all become more or less efficient workers with a few month's experience. Manufacturing is therefore to spread rapidly throughout the world. All nations may be trusted to develop, and if necessary for a time protect, their natural resources as a patriotic duty. Only when prolonged trials have been made can it be determined which nation can best and most cheaply provide the articles for which raw material abounds.

The visit to Paris enabled Watt and Boulton to make the acquaintance of the most eminent men of science, with whom they exchanged ideas afterward in frequent and friendly correspondence. Watt described himself as being, upon one occasion, "drunk from morning to night with Burgundy and undeserved praise." The latter was always a disconcerting draught for our subject; anything but reference to his achievements for the modest self-effacing genius.

While in Paris, Berthollet told Watt of his new method of bleaching by chlorine, and gave him permission to communicate it to his father-in-law, who adopted it in his business, together with several improvements of Watt's invention, the results of a long series of experiments. Watt, writing to Mr. Macgregor, April 27, 1787, says:

In relation to the inventor, he is a man of science, a member of the Academy of Sciences at Paris, and a physician, not very rich, a very modest and worthy man, and an excellent chemist. My sole motives in meddling with it were to procure such reward as I could to a man of merit who had made an extensively useful discovery in the arts, and secondly, I had an immediate view to your interest; as to myself, I had no lucrative views whatsoever, it being a thing out of my way, which both my business and my health prevented me from pursuing further than it might serve for amusement when unfit for more serious business. Lately, by a letter from the inventor, he informs me that he gives up all intentions of pursuing it with lucrative views, as he says he will not compromise his quiet and happiness by engaging in business; in which, perhaps, he is right; but if the discovery has real merit, as I apprehend, he is certainly entitled to a generous reward, which I would wish for the honour of Britain, to procure for him; but I much fear, in the way you state it, that nothing could be got worth his acceptance.

France has been distinguished for men of science who have thus refrained from profiting by their inventions. Pasteur, in our day, perhaps the most famous of all, the liver, not only of the simple but of the ideal life, laboring for the good of humanity—service to man—and taking for himself the simple life, free from luxury, palace, estate, and all the inevitable cares accompanying ostentatious living. Berthollet preceded him. Like Agassiz, these gifted souls were "too busy to make money."

In 1792, when Boulton had passed the allotted three score years and ten, and Watt was over three score, they made a momentous decision which brought upon them several years of deep anxiety. Fortunately the sons of the veterans who had recently been admitted to the business proved of great service in managing the affair, and relieved their parents of much labor and many journeys. Fortunate indeed were Watt and Boulton in their partnership, for they became friends first and partners afterward. They were not less fortunate in each having a talented son, who also became friends and partners like their fathers before them. The decision was that the infringers of their patents were to be proceeded against. They had to appeal to the law to protect their rights.

Watt met the apparently inevitable fate of inventors. Rivals arose in various quarters to dispute his right to rank as the originator of many improvements. No reflection need be made upon most rival claimants to inventions. Some wonderful result is conceived to be within the range of possibility, which, being obtained, will revolutionise existing modes. A score of inventive minds are studying the problem throughout the civilised world. Every day or two some new idea flashes upon one of them and vanishes, or is discarded after trial. One day the announcement comes of triumphant success with the very same idea slightly modified, the modification or addition, slight though this may be, making all the difference between failure and success. The man has arrived with the key that opens the door of the treasure-house. He sets the egg on end perhaps by as obvious a plan as chipping the end. There arises a chorus of strenuous claimants, each of whom had thought of that very device long ago. No doubt they did. They are honest in their protests and quite persuaded in their own minds that they, and not the Watt of the occasion, are entitled to the honor of original discovery. This very morning we read in the press a letter from the son of Morse, vindicating his father's right to rank as the father of the telegraph, a son of Vail, one of his collaborators, having claimed that his father, and not Morse, was the real inventor. The most august of all bodies of men, since its decisions overrule both Congress and President, the Supreme Court of the United States, has shown rare wisdom from its inception, and in no department more clearly than in that regarding the rights of inventors. No court has had such experience with patent claims, for no nation has a tithe of the number to deal with. Throughout its history, the court has attached more and more importance to two points: First, is the invention valuable? Second, who proved this in actual practice? These points largely govern its decisions.

The law expenses of their suits seemed to Boulton and Watt exorbitant, even in that age of low prices compared to our own. One solicitors bill was for no less than $30,000, which caused Watt years afterward, when speaking of an enormous charge to say that "it would not have disgraced a London solicitor." When we find however, that this was for four years' services, the London solicitor appears in a different light. "In the whole affair," writes Watt to his friend Dr. Black, January 15, 1797, "nothing was so grateful to me as the zeal of our friends and the activity of our young men, which were unremitting."

The first trial ended June 22, 1793, with a verdict for Watt and Boulton by the jury, subject to the opinion of the court as to the validity of the patent. On May 16, 1795, the case came on for judgment, when unfortunately the court was found divided, two for the patent and two against. Another case was tried December 16, 1796, with a special jury, before Lord Chief Justice Eyre; the verdict was again for the plaintiffs. Proceedings on a writ of error had the effect of affirming the result by the unanimous opinion of the four judges, before whom it was ably and fully argued on two occasions.

The testimony of Professor Robison, Watt's intimate friend of youth in Glasgow, was understood to have been deeply impressive, and to have had a decisive effect upon judges and jury.

All the claims of Watt were thus triumphantly sustained. The decision has always been considered of commanding importance to the law of patents in Britain, and was of vast consequence to the firm of Watt and Boulton pecuniarily. Heavy damages and costs were due from the actual defendants, and the large number of other infringers were also liable for damages. As was to have been expected, however, the firm remembered that to be merciful in the hour of victory and not to punish too hard a fallen foe, was a cardinal virtue. The settlements they made were considered most liberal and satisfactory to all. Watt used frequently long afterward to refer to his specifications as his old and well-tried friends. So indeed they proved, and many references to their wonderful efficiency were made.

With the beginning of the new century, 1800, the original partnership of the famous firm of Boulton and Watt expired, after a term of twenty-five years, as did the patents of 1769 and 1775. The term of partnership had been fixed with reference to the duration of the patents. Young men in their prime, Watt at forty and Boulton about fifty when they joined hands, after a quarter-century of unceasing and anxious labor, were disposed to resign the cares and troubles of business to their sons. The partnership therefore was not renewed by them, but their respective shares in the firm were agreed upon as the basis of a new partnership between their sons, James Watt, Jr., Matthew Robinson Boulton and Gregory Watt, all distinguished for abilities of no mean order, and in a great degree already conversant with the business, which their wise fathers had seen fit for some years to entrust more and more to them.

In nothing done by either of these two wise fathers is more wisdom shown than in their sagacious, farseeing policy in regard to their sons. As they themselves had been taught to concentrate their energies upon useful occupation, for which society would pay as for value received, they had doubtless often conferred, and concluded that was the happiest and best life for their sons, instead of allowing them to fritter away the precious years of youth in aimless frivolity, to be followed in later years by a disappointing and humiliating old age.

So the partnership of Boulton and Watt was renewed in the union of the sons. Gregory Watt's premature death four years later was such a blow to his father that some think he never was quite himself again. Gregory had displayed brilliant talents in the higher pursuits of science and literature, in which he took delight, and great things had been predicted from him. With the other two sons the business connection continued without change for forty years, until, when old men, they also retired like their fathers. They proved to be great managers, for notwithstanding the cessation of the patents which opened engine-building free to all, the business of the firm increased and became much more profitable than it had ever been before; indeed toward the close of the original partnership, and upon the triumph gained in the patent suits, the enterprise became so profitable as fully to satisfy the moderate desire of Watt, and to provide a sure source of income for his sons. This met all his wishes and removed the fears of becoming dependent that had so long haunted him.

The continued and increasing success of the Soho works was obviously owing to the new partners. They had some excellent assistants, but in the foremost place among all of them stands Murdoch, Watt's able, faithful and esteemed assistant for many years, who, both intellectually and in manly independence, was considered to exhibit no small resemblance to his revered master and friend. Never formally a partner in Soho (for he declined partnership as we have seen), he was placed on the footing of a partner by the sons in 1810, without risk, and received $5,000 per annum. From 1830 he lived in peaceful retirement and passed away in 1839. His remains were deposited in Handsworth Church near those of his friends and employers, Watt and Boulton (the one spot on earth he could have most desired). "A bust by Chantrey serves to perpetuate the remembrance of his manly and intelligent features, and of the mind of which these were a pleasing index." We may imagine the shades of Watt and Boulton, those friends so appropriately laid together, greeting their friend and employee: "Well done, thou good and faithful servant!" If ever there was one, Murdoch was the man, and Captain Jones his fellow.

We have referred to Watt's suggestion of the screw-propeller, and of the sketch of it sent to Dr. Small, September 30, 1770. The only record of any earlier suggestion of steam is that of Jonathan Hulls, in 1736, and which he set forth in a pamphlet entitled "A Description and Draught of a Newly Invented Machine for carrying vessels or ships out of or into any Harbour, Port or River, against Wind or Tide or in a Calm"; London, 1737. He described a large barge equipped with a Newcomen engine to be employed as a tug, fitted with fan (or paddle) wheels, towing a ship of war, but nothing further appears to have been done. Writing on this subject, Mr. Williamson says:

During his last visit to Greenock in 1816, Mr. Watt, in company with his friend, Mr. Walkinshaw—whom the author some years afterward heard relate the circumstance—made a voyage in a steamboat as far as Rothsay and back to Greenock—an excursion, which, in those days, occupied a greater portion of a whole day. Mr. Watt entered into conversation with the engineer of the boat, pointing out to him the method of "backing" the engine. With a footrule he demonstrated to him what was meant. Not succeeding, however, he at last, under the impulse of the ruling passion, threw off his overcoat, and, putting his hand to the engine himself, showed the practical application of his lecture. Previously to this, the "back-stroke" of the steamboat engine was either unknown, or not generally known. The practice was to stop the engine entirely a considerable time before the vessel reached the point of mooring, in order to allow for the gradual and natural diminution of her speed.

The naval review at Spithead, upon the close of the Crimean war in 1856, was the greatest up to that time. Ten vessels out of two hundred and fifty still had not steam power, but almost all the others were propelled by the screw—the spiral oar of Watt's letter of 1770—a red-letter day for the inventor.

Watt's early interest in locomotive steam-carriages, dating from Robison's having thrown out the idea to him, was never lost. On August 12, 1768, Dr. Small writes Watt, referring to the "peculiar improvements in them" the latter had made previous to that date. Seven months later he apprises Watt that "a patent for moving wheel-carriages by steam has been taken out by one Moore," adding "this comes of thy delays; do come to England with all possible speed." Watt replied "If linen-draper Moore does not use my engine to drive his chaises he can't drive them by steam." Here Watt hit the nail on the head; as with the steamship, so with the locomotive, his steam-engine was the indispensable power. In 1786 he states that he has a carriage model of some size in hand "and am resolved to try if God will work a miracle in favor of these carriages." Watt's doubt was based on the fact that they would take twenty pounds of coal and two cubic feet of water per horse-power on the common roads.

Another of Watt's recreations in his days of semi-retirement was the improvement of lamps. He wrote the famous inventor of the Argand burner fully upon the subject in August, 1787, and constructed some lamps which proved great successes.

The following year he invented an instrument for determining the specific gravities of liquids, which was generally adopted.

One of Watt's inventions was a new method of readily measuring distances by telescope, which he used in making his various surveys for canals. Such instruments are in general use to-day. Brough's treatise on "Mining" (10th ed., p. 228) gives a very complete account of them, and states that "the original instrument of this class is that invented by James Watt in 1771."

In his leisure hours, Watt invented an ingenious machine for drawing in perspective, using the double parallel ruler, then very little known and not at all used as far as Watt knew. Watt reports having made from fifty to eighty of these machines, which went to various parts of the world.

In 1810 Watt informs Berthollet that for several years he had felt unable, owing to the state of his health, to make chemical experiments. But idle he could not be; he must be at work upon something. As he often said, "without a hobby-horse, what is life?" So the saying is reported, but we may conclude that the "horse" is here an interpolation, for the difference between "a horse" and "a hobby" is radical—a man can get off a horse.

Watt's next "hobby" fortunately became an engrossing occupation and kept him alert. This was a machine for copying sculpture. A machine he had seen in Paris for tracing and multiplying the dies of medals, suggested the other. After much labor and many experiments he did get some measure of success, and made a large head of Locke in yellow wood, and a small head of his friend Adam Smith.

Long did Watt toil at the new hobby in the garret where it had been created, but the garret proved too hot in summer and too cold in winter. March 14, 1810, he writes Berthollet and Leveque:

I still do a little in mechanics: a part of which, if I live to complete it, I shall have the honor of communicating to my friends in France.

He went steadily forward and succeeded in making some fine copies in 1814. For one of Sappho he gives dates and the hours required for various parts, making a total of thirty-nine. Some censorious Sabbatarians discovered that the day he was employed one hour "doing her breast with 1/8th drill" was Sabbath, which in one who belonged to a strict Scottish Covenanter family, betokened a sad fall from grace. When we consider that his health was then precarious, that he was debarred from chemical experiments, and depended solely upon mechanical subjects; that in all probability it was a stormy day (Sunday, February 3, 1811), knowing also that "Satan finds mischief still for idle hands to do," we hope our readers will pardon him for yielding to the irresistible temptation, even if on the holy Sabbath day for once he could not "get off" his captivating hobby.

The historical last workshop of the great worker with all its contents remains open to the public to-day just as it was when he passed away. Pilgrims from many lands visit it, as Shakespeare's birthplace, Burns' cottage, and Scott's Abbottsford attract their many thousands yearly. We recommend our readers to add to these this garret of Watt in their pilgrimages.

[1] Sinclair's "Development of the Locomotive" tends to deprive Stephenson of some part of his fame as inventor. Much importance is attached to Hedley's "Puffing Billy," 1813, which is pronounced to have been a commercial success. Sinclair, however, credits Stephenson with doing most of all men to introduce the Locomotive. As the final verdict may admit Hedley and cannot expel Stephenson from the temple of fame, we pass the sentence as written, leaving to future disputants to adjust rival claims.



CHAPTER VIII

THE RECORD OF THE STEAM ENGINE

The Soho works, up to January, 1824, had completed 1164 steam engines, of a nominal horse-power of 25,945; from January, 1824, to 1854, 441 engines, nominal horse-power, 25,278, making the total number 1605, of nominal horse-power, 51,223, and real horse-power, 167,319. Mulhall gives the total steam-power of the world as 50,150,000 horse-power in 1888. In 1880 it was only 34,150,000. Thus in eight years it increased, say, fifty per cent. Assuming the same rate of increase from 1888 to 1905, a similar period, it is to-day 75,000,000 nominal, which Engel says may be taken as one-half the effective power (vide Mulhall, "Steam," p. 546), the real horse-power in 1905 being 150,000,000. One horse-power raises ten tons a height of twelve inches per minute. Working eight hours, this is about 5,000 tons daily, or twelve times a man's work, and as the engine never tires, and can be run constantly, it follows that each horse-power it can exert equals thirty-six men's work; but, allowing for stoppages, let us say thirty men. The engines of a large ocean greyhound of 35,000 horse-power, running constantly from port to port, equal to three relays of twelve men per horse-power, is daily exerting the power of 1,260,000 men, or 105,000 horses. Assuming that all the steam engines in the world upon the average work double the hours of men, then the 150,000,000 horse-power in the world, each equal to two relays of twelve men per horse-power, exerts the power of 3,600,000,000 of men. There are only one-tenth as many male adults in the world, estimating one in five of the population.

If we assume that all steam engines work an average of only eight hours in the twenty-four, as men and horses do (those on duty longer hours are not under continuous exertion), it still follows that the 150,000,000 of effective steam-power, each doing the work of twelve men, equals the work of 1,800,000,000 of men, or of 150,000,000 of horses.

Engel estimated that in 1880 the value of world industries dependent upon steam was thirty-two thousand millions of dollars, and that in 1888 it had reached forty-three thousand millions of dollars. It is to-day doubtless more than sixty thousand millions of dollars, a great increase no doubt over 1880, but the one figure is as astounding as the other, for both mean nothing that can be grasped.

The chief steam-using countries are America, 14,400,000 horse-power in 1888; Britain, 9,200,000 horse-power nominal. If we add the British colonies and dependencies, 7,120,000 horse-power, the English-speaking race had three-fifths of all the steam-power of the world.

In 1840 Britain had only 620,000 horse-power nominal; the United States 760,000; the whole world had only 1,650,000 horse-power. To-day it has 75,000,000 nominal. So rapidly has steam extended its sway over most of the earth in less than the span of a man's life. There has never been any development in the world's history comparable to this, nor can we imagine that such a rapid transformation can ever come in the future. What the future is finally to bring forth even imagination is unable to conceive. No bounds can be set to its forthcoming possible, even probable, wonders, but as such a revolution as steam has brought must come from a superior force capable of displacing steam, this would necessarily be a much longer task than steam had in occupying an entirely new field without a rival.

The contrast between Newcomen and Watt is interesting. The Newcomen engine consumed twenty-eight pounds of coal per horse-power and made not exceeding three to four strokes per minute, the piston moving about fifty feet per minute. To-day, steam marine engines on one and one-third pounds of coal per horse-power—the monster ships using less—make from seventy to ninety revolutions per minute. "Destroyers" reach 400 per minute. Small steam engines, it is stated, have attained 600 revolutions per minute. The piston to-day is supposed to travel moderately when at 1,000 feet per minute, in a cylinder three feet long. This gives 166 revolutions per minute. With coal under the boilers costing one dollar per net ton, from say five pounds of coal for one cent there is one horse-power for three hours, or a day and a night of continuous running for eight cents.

Countless millions of men and of horses would be useless for the work of the steam-engine, for the seemingly miraculous quality steam possesses, that permits concentration, is as requisite as its expansive powers. One hundred thousand horse-power, or several hundred thousand horse-power, is placed under one roof and directed to the task required. Sixty-four thousand horse-power is concentrated in the hold of the great steamships now building. All this stupendous force is evolved, concentrated and regulated by science from the most unpromising of substances, cold water. Nothing man has discovered or imagined is to be named with the steam engine. It has no fellow. Franklin capturing the lightning, Morse annihilating space with the telegraph, Bell transmitting speech through the air by the telephone, are not less mysterious—being more ethereal, perhaps in one sense they are even more so—still, the labor of the world performed by heating cold water places Watt and his steam engine in a class apart by itself. Many are the inventions for applying power; his creates the power it applies.

Whether the steam engine has reached its climax, and gas, oil, or other agents are to be used extensively for power, in the near future, is a question now debated in scientific circles. Much progress has been made in using these substitutes, and more is probable, as one obstacle after another is overcome. Gas especially is coming forward, and oil is freely used. For reasons before stated, it seems to the writer that, where coal is plentiful, the day is distant when steam will not continue to be the principal source of power. It will be a world surpriser that beats one horse-power developed by one pound of coal. The power to do much more than this, however, lies theoretically in gas, but there come these wise words of Arago to mind: "Persons whose whole lives have been devoted to speculative labours are not aware how great the distance is between a scheme, apparently the best concerted, and its realisation." So true! Watt's ideas in the brain, and the steam engine that he had to evolve during nine long years, are somewhat akin to the great gulf between resolve and performance, the "good resolution" that soothes and the "act" that exalts.

The steam engine is Scotland's chief, tho not her only contribution to the material progress of the world. Watt was its inventor, we might almost write Creator, so multiform were the successive steps. Symington by the steamship stretched one arm of it over the water; Stephenson by the locomotive stretched the other over the land. Thus was the world brought under its sway and conditions of human life transformed. Watt and Symington were born in Scotland within a few miles of each other. Stephenson's forbears moved from Scotland south of the line previous to his birth, as Fulton's parents removed from Scotland to America, so that both Stephenson and Fulton could boast with Gladstone that the blood in their veins was Scotch.

The history of the world has no parallel to the change effected by the inventions of these three men. Strange that little Scotland, with only 1,500,000 people, in 1791, about one-half the population of New York City, should have been the mother of such a triad, and that her second "mighty three" (Wallace, Bruce and Burns always first), should have been of the same generation, working upon the earth near each other at the same time. The Watt engine appeared in 1782; the steamship in 1801; the locomotive thirteen years later, in 1814. Thus thirty-two years after its appearance Watt's steam-engine had conquered both sea and land.

The sociologist may theorise, but plain people will remember that men do not gather grapes from thorns, nor figs from thistles. There must be something in the soil which produces such men; something in the poverty that compels exertion; something in the "land of the mountain and the flood" that stirs the imagination; something in the history of centuries of struggle for national and spiritual independence; much in the system of compulsory and universal free education; something of all these elements mingling in the blood that tells, and enables Scotland to contribute so largely to the progress of the world.

Strange reticence is shown by all Watt's historians regarding his religious and political views. Williamson, the earliest author of his memoirs, is full of interesting facts obtained from people in Greenock who had known Watt well. The hesitation shown by him as to Watt's orthodoxy in his otherwise highly eulogistic tribute, attracts attention. He says:

We could desire to know more of the state of those affections which are more purely spiritual by their nature and origin—his disposition to those supreme truths of Revelation, which alone really elevate and purify the soul. In the absence of much information of a very positive kind in regard to such points of character and life, we instinctively revert in a case like this to the principles and maxims of an infantile and early training. Remembering the piety portrayed in the ancestors of this great man, one cannot but cling to the hope that his many virtues reposed on a substratum of more than merely moral excellence. Let us cherish the hope that the calm which rested on the spirit of the pilgrim ... was one that caught its radiance from a far higher sphere than that of the purest human philosophy.

Watt's breaking of the Sabbath before recorded must have seemed to that stern Calvinist a heinous sin, justifying grave doubts of Watt's spiritual condition, his "moral excellence" to the contrary notwithstanding. Williamson's estimate of moral excellence had recently been described by Burns:

But then, nae thanks to him for a' that, Nae godly symptom ye can ca' that, It's naething but a milder feature Of our poor sinfu' corrupt nature. Ye'll get the best o' moral works, Many black gentoos and pagan works, Or hunters wild on Ponotaxi Wha never heard of orthodoxy.

Williamson's doubts had much stronger foundation in Watt's non-attendance at church, for, as we shall see from his letter to DeLuc, July, 1788, he had never attended the "meeting-house" (dissenting church) in Birmingham altho he claimed to be still a member of the Presbyterian body in declining the sheriffalty.

It seems probable that Watt, in his theological views, like Priestley and others of the Lunar Society, was in advance of his age, and more or less in accord with Burns, who was then astonishing his countrymen. Perhaps he had forstalled Dean Stanley's advice in his rectorial address to the students of St. Andrew's University: "go to Burns for your theology," yet he remained a deeply religious man to the end, as we see from his letter (page 216), at the age of seventy-six.

We know that politically Watt was in advance of his times for the prime minister pronounced him "a sad radical." He was with Burns politically at all events. Watt's eldest son, then in Paris, was carried away by the French Revolution, and Muirhead suggests that the prime minister must have confounded father and son, but it seems unreasonable to suppose that he could have been so misled as to mistake the doings of the famous Watt in Birmingham for those of his impulsive son in France.

The French Revolution exerted a powerful influence in Britain, especially in the north of England and south of Scotland, which have much in common. The Lunar Society of Birmingham was intensely interested. At one of the meetings in the summer of 1788, held at her father's house, Mrs. Schimmelpenniack records that Mr. Boulton presented to the company his son, just returned from a long sojourn in Paris, who gave a vivid account of proceedings there, Watt and Dr. Priestly being present. A few months later the revolution broke out. Young Harry Priestley, a son of the Doctor's, one evening burst into the drawing-room, waving his hat and crying, "Hurrah! Liberty, Reason, Brotherly Love forever! Down with kingcraft and priestcraft! The majesty of the people forever! France is free!" Dr. Priestley was deeply stirred and became the most prominent of all in the cause of the rights of man. He hailed the acts of the National Assembly abolishing monarchy, nobility and church. He was often engaged in discussions with the local clergy on theological dogmas. He wrote a pamphlet upon the French Revolution, and Burke attacked him in the House of Commons. All this naturally concentrated local opposition upon him as leader. The enthusiasts mistakenly determined to have a public dinner to celebrate the anniversary of the Revolution, and no less than eighty gentlemen attended, altho many advised against it. Priestley himself was not present. A mob collected outside and demolished the windows. The cry was raised, "To the new meeting-house!" the chapel in which Priestley ministered. The chapel was set on fire. Thence the riot proceeded to Priestley's house. The doctor and his family, being warned, had left shortly before. The house was at the mercy of the mob, which broke in, destroyed furniture, chemical laboratory and library, and finally set fire to the house. Some of the very best citizens suffered in like manner. Mr. Ryland, one of the most munificent benefactors of the town, Mr. Taylor, the banker, and Hutton, the estimable book-seller, were among the number. The home of Dr. Withering, member of the Lunar Society, was entered, but the timely arrival of troops saved it from destruction. The members of the Lunar Society, or the "lunatics," as they were popularly called, were especially marked for attack. The mob cried, "No philosophers!" "Church and King forever!" All this put Boulton and Watt upon their guard, for they were prominent members of the society. They called their workmen together, explained the criminally of the rioters, and placed arms in their hands on their promise to defend them if attacked. Meanwhile everything portable was packed up ready to be removed.

Watt wrote to Mr. DeLuc, July 19, 1791:

Though our principles, which are well known, as friends to the established government and enemies of republican principles, should have been our protection from a mob whose watchword was Church and King, yet our safety was principally owing to most of the Dissenters living south of the town; for after the first moment they did not seem over-nice in their discrimination of religion and principles. I, among others, was pointed out as a Presbyterian, though I never was in a meeting-house (Dissenting Church) in Birmingham, and Mr. Boulton is well-known as a Churchman. We had everything most portable packed up, fearing the worst. However, all is well with us.

From all this we gather the impression that Radical principles had permeated the leading minds of Birmingham to a considerable extent, probably around the Lunar Society district in greater measure than in other quarters, altho clubs of ardent supporters were formed in London and the principal provincial cities.

In the political field, we have only one appearance of Watt reported. Early in 1784, we find him taking the lead in getting up a loyal address to the king on the appointment as prime minister of Pitt, who proposed to tax coal, iron, copper and other raw materials of manufacture to the amount of $5,000,000 per year, a considerable sum in those days when manufacturing was in its infancy. Boulton also joined in opposition. They wisely held that for a manufacturing nation "to tax raw materials was suicidal: let taxes be laid upon luxuries, upon vices, and, if you like, upon property; tax riches when got, but not the means of getting them. Of all things don't cut open the hen that lays the golden eggs."

Watt's services were enlisted and he drew up a paper for circulation upon the subject. The policy failed, and soon after Pitt was converted to sounder doctrines by Adam Smith's "Wealth of Nations." Free trade has ruled Britain ever since, and, being the country that could manufacture cheapest, and indeed, the only manufacturing country for many years, this policy has made her the richest, per capita, of all nations. The day may be not far distant when America, soon to be the cheapest manufacturing country for many, as it already is for a few, staple articles, will be crying for free trade, and urging free entrance to the markets of the world. To tax the luxuries and vices, to tax wealth got and not in the making, as proposed by Watt and Boulton, is the policy to follow. Watt shows himself to have been a profound economist.

Watt had cause for deep anxiety for his eldest son, James, who had taken an active part in the agitation. He and his friend, Mr. Cooper of Manchester, were appointed deputies by the "Constitutional Society," to proceed to Paris and present an address of congratulation to the Jacobin Club. Young Watt was carried away, and became intimate with the leaders. Southey says he actually prevented a duel between Danton and Robespierre by appearing on the ground and remonstrating with them, pointing out that if either fell the cause must suffer.

Upon young Watt's return, king's messengers arrived in Birmingham and seized persons concerned in seditious correspondence. Watt suggests that Boulton should see his son and arrange for his leaving for America, or some foreign land, for a time. This proved to be unnecessary; his son was not arrested, and in a short time all was forgotten. He entered the works with Boulton's son as partner, and became an admirable manager. To-day we regard his mild republicanism, his alliance with Jacobin leaders, and especially his bold intervention in the quarrel between two of the principal actors in the tragedy of the French Revolution, as "a ribbon in the cap of youth." That his douce father did the same and was proud of his eldest born seems probable. Our readers will also judge for themselves whether the proud father had not himself a strong liking for democratic principles, "the rights of the people," "the royalty of man," which Burns was then blazing forth, and held such sentiments as quite justified the prime minister's accusation that he was "a sad radical."

In Britain, since Watt's day, all traces of opposition to monarchy aroused by the French Revolution have disappeared, as completely as the monarchy of King George. The "limited monarchy" of to-day, developed during the admirable reign of Queen Victoria, has taken its place. The French abolished monarchy by a frontal attack upon the citadel, involving serious loss. Not such the policy of the colder Briton. He won his great victory, losing nothing, by flanking the position. That the king "could do no wrong," is a doctrine almost coeval with modern history, flowing from the "divine right" of kings, and, as such, was quietly accepted. It needed only to be properly harnessed to become a very serviceable agent for registering the people's will.

It was obvious that the acceptance of the doctrine that the king could do no wrong involved the duty of proving the truth of the axiom, and it was equally obvious that the only possible way of doing this was that the king should not be allowed to do anything. Hence he was made the mouthpiece of his ministers, and it is not the king, but they, who, being fallible men, may occasionally err. The monarch, in losing power to do anything has gained power to influence everything. The ministers hold office through the approval of the House of Commons. Members of that house are elected by the people. Thus stands government in Britain "broad-based upon the people's will."

All that the revolutionists of Watt's day desired has, in substance, been obtained, and Britain has become in truth a "crowned republic," with "government of the people, for the people, and by the people." This steady and beneficent development was peaceably attained. The difference between the French and British methods is that between revolution and evolution.

In America's political domain, a similar evolution has been even more silently at work than in Britain during the past century, and is not yet exhausted—the transformation of a loose confederacy of sovereign states, with different laws, into one solid government, which assumes control and insures uniformity over one department after another. The centripetal forces grow stronger with the years; power leaves the individual states and drifts to Washington, as the necessity for each successive change becomes apparent. In the regulation of interstate commerce, of trusts, and in other fields, final authority over the whole land gravitates more and more to Washington. It is a beneficent movement, likely to result in uniform national laws upon many subjects in which present diversity creates confusion. Marriage and divorce laws, bankruptcy laws, corporation charter privileges, and many other important questions may be expected to become uniform under this evolutionary process. The Supreme Court decision that the Union was an indissoluble union of indissoluble states, carries with it finally uniform regulation of many interstate problems, in every respect salutary, and indispensable for the perfect union of the American people.



CHAPTER IX

WATT IN OLD AGE

Watt gracefully glided into old age. This is the great test of success in life. To every stage a laurel, but to happy old age the crown. It was different with his friend Boulton, who continued to frequent the works and busy himself in affairs much as before, altho approaching his eightieth year. Watt could still occupy himself in his garret, where his "mind to him a Kingdom was," upon the scientific pursuits which charmed him. He revisited Paris in 1802 and renewed acquaintances with his old friends, with whom he spent five weeks. He frequently treated himself to tours throughout England, Scotland and Wales. In the latter country, he purchased a property which attracted him by its beauties, and which he greatly improved. It became at a later date, under his son, quite an extensive estate, much diversified, and not lacking altogether the stern grandeur of his native Scotland. He planted trees and took intense delight in his garden, being very fond of flowers. The farmhouse gave him a comfortable home upon his visits. The fine woods which now richly clothe the valley and agreeably diversify the river and mountain scenery were chiefly planted under his superintendence, many by his own hand. In short, the blood in his veins, the lessons of his childhood that made him a "child of the mist," happy in roaming among the hills, reasserted their power in old age as the Celtic element powerfully does. He turned more and more to nature.

"That never yet betrayed the heart that loved her—"

We see him strolling through his woods, and imagine him crooning to himself from that marvellous memory that forgot no gem:

For I have learned To look on nature, not as in the hour Of thoughtless youth; but hearing oftentimes The still, sad music of humanity, Nor harsh, nor grating, though of ample power To chasten and subdue. And I have felt A presence that disturbs me with the joy Of elevated thoughts; a sense sublime Of something far more deeply interfused, Whose dwelling is the light of setting suns, And the round ocean and the living air, And the blue sky, and in the mind of man: A motion and a spirit, that impels All thinking things, all objects of all thought, And rolls through all things. Therefore am I still A lover of the meadows and the woods, And mountains; and of all that we behold From this green earth.

Twice Watt was requested to undertake the honor of the shrievalty; in 1803 that of Staffordshire, and in 1816 that of Radnorshire, both of which were positively declined.

Previous Part     1  2  3  4     Next Part
Home - Random Browse