p-books.com
Hygienic Physiology
by Joel Dorman Steele
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

The season should modify our diet. In winter, we need highly carbonaceous food, plenty of meat, fat, etc.; but in summer we should temper the heat in our corporeal stoves with fruits and vegetables.

The climate also has its necessities. The inhabitants of the frigid north have an almost insatiable longing for fat. [Footnote: Dr. Hayes, the arctic explorer, says, that the daily ration of the Esquimaux was from twelve to fifteen pounds of meat, one third being fat. On one occasion, he saw a man eat ten pounds of walrus flesh and blubber at a single meal. The low temperature had a remarkable effect on the members of his own party, and some of them were in the habit of drinking the contents of the oil kettle with evident relish. Other travelers narrate the most incredible stories of the voracity of the inhabitants of arctic regions. Saritcheff, a Russian admiral, tells of a man who in his presence ate, at a meal, a mess of twenty-eight pounds of boiled rice and butter, although he had already partaken of his breakfast. Captain Cochrane further adds, in narrating this statement, that he has himself seen three of the savages consume a reindeer at a sitting.] Thus, in 1812, when the Allies entered Paris, the Cossacks drank all the oil from the lamps, and left the streets in darkness. In tropical regions, a low, unstimulating diet of fruits forms the chief dependence. [Footnote: A natural appetite for a particular kind of food is an expression not only of desire, but of fitness. Thus the craving of childhood for sugar indicates a need of the system. It is questionable how far it is proper to force or persuade one to eat that which he disrelishes, or his stomach loathes. Life within is linked with life without. Each organ requires its peculiar nutriment, and there is often a peculiar influence demanded of which we can have no notice except by natural instinct. Yet, as we are creatures of habit and impulse, we need common sense and good judgment to correct the too often wayward promptings of an artificial craving.]

WHEN FOOD SHOULD BE TAKEN.—On taking food, the blood sets at once to the alimentary canal, and the energies are fixed upon the proper performance of this work. We should not, therefore, undertake hard study, labor, or exercise directly after a hearty meal. We should give the stomach at least half an hour. He who toils with brain or muscle, and thus centers the blood in any particular organ, before eating should allow time for the circulation to become equalized. There should be an interval of four to five hours between our regular meals, and there should be no lunching between times. With young children, where the vital processes are more rapid, less time may intervene. As a general rule, nothing should be eaten within two or three hours of retiring. (See p 336.)

HOW FOOD SHOULD BE TAKEN.—A good laugh is the best of sauces. The mealtime should be the happiest hour of the day. Care and grief are the bitter foes of digestion. A cheerful face and a light heart are friends to long life, and nowhere do they serve us better than at the table. God designed that we should enjoy eating, and that, having stopped before satiety was reached, we should have the satisfaction always attendant on a good work well done.

NEED OF VARIETY.—Careful investigations have shown that any one kind of food, however nutritious in itself, fails after a time to preserve the highest working power of the body. Our appetite palls when we confine our diet to a regular routine. Nature demands variety, and she has furnished the means of gratifying it. [Footnote: She opens her hand, and pours forth to man the treasures of every land and every sea, because she would give to him a wide and vigorous life, participant of all variety. For him the cornfields wave their golden grain—wheat, rye, oats, maize, or rice, each different, but alike sufficing. Freely for him the palm, the date, the banana, the breadfruit tree, the pine, spread out a harvest on the air; and pleasant apple, plum, or peach solicit his ready hand. Beneath his foot lie stored the starch of the potato, the gluten of the turnip, the sugar of the beet; while all the intermediate space is rich with juicy herbs.

Nature bids him eat and be merry; adding to his feast the solid flesh of bird, and beast, and fish, prepared as victims for the sacrifice: firm muscle to make strong the arm of toil, in the industrious temperate zone; and massive ribs of fat to kindle inward fires for the sad dwellers under arctic skies.—Health and its Conditions.—HINTON.]

THE WONDERS OF DIGESTION.—We can understand much of the process of digestion. We can look into the stomach and trace its various steps. Indeed, the chemist can reproduce in his laboratory many of the operations; "a step further," as Fontenelle has said, "and he would surprise nature in the very act." Just here, when he seems so successful, he is compelled to pause. At the threshold of life the wisest physiologist reverently admires, wonders, and worships.

How strange is this transformation of food to flesh! We make a meal of meat, vegetables, and drink. Ground by the teeth, mixed by the stomach, dissolved by the digestive fluids, it is swept through the body. Each organ, as it passes, snatches its particular food. Within the cells of the tissues [Footnote: As the body is composed of individual organs, and each organ of separate tissues, so each tissue is made up of minute cells. Each cell is a little world by itself, too small to be seen by the naked eye, but open to the microscope. It has its own form and constitution as much as a special organ in the body. It absorbs from the blood such food as suits its purposes. Moreover, the number of cells in an organ is as constant as the number of organs. As the organs expand with the growth of the body, so the cells of each tissue enlarge, but shrink again with age and the decline of life. Life begins and ends in a cell.—See Appletons' Cyclopedia, Art. "Absorption."] it is transformed into the soft, sensitive brain, or the hard, callous bone; into briny tears, or bland saliva, or acrid perspiration; bile for digestion, oil for the hair, nails for the fingers, and flesh for the cheek.

Within us is an Almighty Architect, who superintends a thousand builders, which make in a way past all human comprehension, here a fiber of a muscle, there a filament of a nerve; here constructing a bone, there uniting a tendon,—fashioning each with scrupulous care and unerring nicety. [Footnote: See COOKE'S Religion and Chemistry, page 236.] So, without sound of builder or stroke of hammer, goes up, day by day, the body—the glorious temple of the soul.

DISEASES ETC.—1. Dyspepsia, or indigestion of food, is generally caused by an overtaxing of the digestive organs. Too much food is used, and the entire system is burdened by the excess. Meals are taken at irregular hours, when the fluids are not ready. A hearty supper is eaten when the body, wearied with the day's labor, demands rest. The appetite craves no food when the digestion is enfeebled, but stimulants and condiments excite it, and the unwilling organs are oppressed by that which they can not properly manage.

Strong tea, alcoholic drinks, and tobacco derange the alimentary function.

Too great variety of dishes, rich food, tempting flavors,—all lead to an overloading of the stomach. This patient, long-suffering member at last wears out. Pain, discomfort, diseases of the digestive organs, and insufficient nutrition are the penalties of violated laws. (See p. 328.)

2. The Mumps are an inflammation of the parotid and submaxillary glands (see p. 159). The disease is generally epidemic, and is believed to be contagious; the patient should therefore be carefully secluded for the sake of others as well as himself. The swelling may be allowed to take its course. Relief from pain is often experienced by applying flannels wrung out of hot water. Great care should be used not to check the inflammation, and, on first going out after recovery, not to take cold.

ALCOHOLIC DRINKS AND NARCOTICS.

1. ALCOHOL (Continued from p. 147).

RELATION OF ALCOHOL TO THE DIGESTIVE ORGANS.—Is Alcohol a Food? To answer this question, let us make a comparison. If you receive into your stomach a piece of bread or beef, Nature welcomes its presence. The juices of the system at once take hold of it, dissolve it, and transform it for the uses of the body. A million tiny fingers (lacteals and veins) reach out to grasp it, work it over, and carry it into the circulation. The blood bears it onward wherever it is needed to mend or to build "The house you live in." Soon, it is no longer bread or beef; it is flesh on your arm; its chemical energy is imparted to you, and it becomes your strength.

If, on the other hand, you take into your stomach a little alcohol, it receives no such welcome. Nature treats it as a poison, and seeks to rid herself of the intruder as soon as possible. [Footnote: Food is digested, alcohol is not. Food warms the blood, directly or indirectly; alcohol lowers the temperature. Food nourishes the body, in the sense of assimilating itself to the tissues; alcohol does not. Food makes blood; alcohol never does anything more innocent than mixing with it. Food feeds the blood cells; alcohol destroys them. Food excites, in health, to normal action only; alcohol tends to inflammation and disease. Food gives force to the body; alcohol excites reaction and wastes force, in the first place, and in the second, as a true narcotic, represses vital action and corresponding nutrition.—If alcohol does not act like food, neither does it behave like water. Water is the subtle but innocent vehicle of circulation, which dissolves the solid food, holds in play the chemical and vital reactions of the tissues, conveys the nutritive solutions from cell to cell, from tube to tube, and carries off and expels the effete matter. Water neither irritates tissue, wastes force, nor suppresses vital action: whereas alcohol does all three. Alcohol hardens solid tissue, thickens the blood, narcotizes the nerves, and in every conceivable direction antagonizes the operation and function of water—LEES.] The juices of the system will flow from every pore to dilute and weaken it, and to prevent its shriveling up the delicate membranes with which it comes in contact. The veins will take it up and bear it rapidly through the system. Every organ of elimination, all the scavengers of the body— the lungs, the kidneys, the perspiration glands, at once set to work to throw off the enemy. So surely is this the case, that the breath of a person who has drunk only a single glass of the lightest beer will betray the fact.

The alcohol thus eliminated is entirely unchanged. Nature apparently makes no effort to appropriate it. [Footnote: It was formerly a question considerably discussed, whether alcohol exists in the brain, or in the fluid found in the ventricles, in intoxicated persons. This was settled by Percy, who found alcohol in the brain and liver of dogs poisoned with alcohol, and of men who had died after excessive drinking. In these experiments, the presence of alcohol was determined by distillation, and the distilled substance burned with a blue flame, and dissolved camphor.— FLINT'S Physiology of Man.] It courses everywhere through the circulation, and into the great organs, with all its properties unmodified.

Alcohol, then, is not, like bread or beef, taken hold of, broken up by the mysterious process of digestion, and used by the body. [Footnote: Because of the difficulties of such an experiment, we have not yet been able to account satisfactorily by the excretions for all the alcohol taken into the stomach. This remains as yet one of the unsolved problems of physiological chemistry. To collect the whole of the insensible perspiration, for example, is well-nigh impossible. It was supposed at one time that a part of the alcohol is oxidized—i. e., burned, in the system. But such a process would impart heat, and it is now proved that alcohol cools, instead of warms, the blood. Moreover, the closest analysis fails to detect in the circulation any trace of the products of alcoholic combustion, such as aldehyde and acetic acid. "The fact," says Flint, "that alcohol is always eliminated, even when drunk in minute quantity, and that its elimination continues for a considerable time, gradually diminishing, renders it probable that all that is taken into the body is removed."] "It can not therefore be regarded as an aliment," or food.— FLINT. "Beer, wine, and spirits," says Liebig, "contain no element capable of entering into the composition of the blood or the muscular fiber." [Footnote: The small amount of nutritive substance, chiefly sugar derived from the grain or fruit used in the manufacture of beer or wine, can not, of course, be compared with that contained in bread or beef at the same cost. Liebig says, in his Letters on Chemistry, "We can prove, with mathematical certainty, that as much flour as can lie on the point of a table knife is more nutritious than eight quarts of the best Bavarian beer."] "That alcohol is incapable of forming any part of the body," remarks Cameron, "is admitted by all physiologists. It can not be converted into brain, nerve, muscle, or blood."

EFFECT UPON THE DIGESTION. [Footnote: The medical value of alcohol in its relations to digestion is not discussed in this book. The experiments of Dr. Henry Munroe, of Hull, published in the London Medical Journal, are here summarized as showing that the tendency to retard digestion is common to all forms of alcoholic drinks.

Finely Minced Beef 2d Hour 4th Hour 6th Hour I. Digesting Gastric Juice Beef and Beef much and water. opaque. separating. loosened. Slightly Slight II. No alteration opaque, but coating on Gastric Juice perceptible. beef beef. with alcohol. unchanged. III. Cloudy, beef Gastric Juice No change. with fur partly and pale ale. on beef. loosened. Finely Minced Beef 8th Hour 10th Hour I. Gastric Juice Beef Broken up and water. opaque. into shreds. Solid on II. No visible cooling Gastric Juice change. Pepsin with alcohol. precipitated. III. No digestion Gastric Juice No further Pepsin and pale ale. change. precipitated. ]

—Experiments tend to prove that alcohol coagulates and precipitates the pepsin from the gastric juice, and so puts a stop to its great work in the process of digestion.

The greed of alcohol for water causes it to imbibe moisture from the tissues and juices, and to inflame the delicate mucous membrane. It shows the power of Nature to adapt herself to circumstances, that the soft, velvety lining of the throat and stomach should come at length to endure the presence of a fiery liquid which, undiluted, would soon shrivel and destroy it. In self-defense, the juices pour in to weaken the alcohol, and it is soon hurried into the circulation. Before this can be done, "it must absorb about three times its bulk of water"; hence, very strong liquor may be retained in the stomach long enough to interfere seriously with the digestion, and to injure the lining coat. Habitual use of alcohol permanently dilates the blood vessels; thickens and hardens the membranes; in some cases, ulcerates the surface; and, finally, "so weakens the assimilation that the proper supply of food can not be appropriated." —FLINT. [Footnote: The case of St. Martin (p. 168) gave an excellent opportunity to watch the action of alcohol upon the stomach. Dr. Beaumont summarized his experiments thus: "The free, ordinary use of any intoxicating liquor, when continued for some days, invariably produced inflammation, ulcerous patches, and, finally, a discharge of morbid matter tinged with blood." Yet St. Martin never complained of pain in his stomach, the narcotic influence of the alcohol preventing the signal of danger that Nature ordinarily gives.]

EFFECT UPON THE LIVER.—Alcohol is carried by the portal vein directly to the liver. This organ, after the brain, holds the largest share. The influence of the poison is here easily traced. "The color of the bile is soon changed from yellow to green, and even to black;" the connective tissue between the lobules becomes inflamed; and, in the case of a confirmed drunkard, hardened and shrunk, the surface often assuming a nodulated appearance known as the "hobnailed liver." Morbid matter is sometimes deposited, causing what is called "Fatty degeneration," so that the liver is increased to twice or thrice its natural size.

EFFECT UPON THE KIDNEYS.—The kidneys, like the liver, are liable in time to undergo, through the influence of alcohol, a "Fatty degeneration," in which the cells become filled with particles of fat; [Footnote: Disabled by the fatty deposits, the kidneys are unable to separate the waste matter coming to them for elimination from the system. The poisonous material is poured back into the circulation, and often delirium ensues.—HUBBARD. Richardson states that his experience "is to the effect that seven out of every eight instances of kidney disease are attributable to alcohol."] the vessels lose their contractility; and, worst of all, the membranes may be so modified as to allow the albuminous part of the blood to filter through them, and so to rob the body of one of its most valuable constituents. [Footnote: This deterioration of structure frequently gives rise to what is known as "Bright's Disease."—RICHARDSON.]

DOES ALCOHOL IMPART HEAT?—During the first flush after drinking wine, for example, a sense of warmth is felt. This is due to the tides of warm blood that are being sent to the surface of the body, owing to the vascular enlargement and to the rapid pumping of the heart. There is, however, no fresh heat developed. On the contrary, the bringing the blood to the surface causes it to cool faster, reaction sets in, a chilliness is experienced as one becomes sober, and a delicate thermometer placed under the tongue of the inebriate may show a fall of even two degrees below the standard temperature of the body. Several hours are required to restore the usual heat.

As early as 1850, Dr. N. S. Davis, of Chicago, ex-President of the American Medical Association, instituted an extensive series of experiments to determine the effect of the different articles of food and drinks on the temperature of the system. He conclusively proved that, during the digestion of all kinds of food, the temperature of the body is increased, but when alcohol is taken, either in the form of fermented or distilled beverages, the temperature begins to fall within a half hour, and continues to decrease for two or three hours, and that the reduction of temperature, in extent as well as in duration, is in exact proportion to the amount of alcohol taken.

It naturally follows that, contrary to the accepted opinion, liquor does not fortify against cold. The experience of travelers at the North coincides with that of Dr. Hayes, the Arctic explorer, who says: "While fat is absolutely essential to the inhabitants and travelers in arctic countries, alcohol is, in almost any shape, not only completely useless, but positively injurious. I have known strong, able-bodied men to become utterly incapable of resisting cold in consequence of the long-continued use of alcoholic drink."

DOES ALCOHOL IMPART STRENGTH?—Experience shows that alcohol weakens the power of undergoing severe bodily exertion. [Footnote: Dr. McRae, in speaking of Arctic exploration, at the meeting of the American Association for the Advancement of Science, held at Montreal in 1856, said: "The moment that a man had swallowed a drink of spirits, it was certain that his day's work was nearly at an end. It was absolutely necessary that the rule of total abstinence be rigidly enforced, if we would accomplish our day's task. The use of liquor as a beverage when we had work on hand, in that terrific cold, was out of the question."] Men who are in training for running, rowing, and other contests where great strength is required, deny themselves all liquors, even when they are ordinarily accustomed to their use.

Dr. Richardson made some interesting experiments to show the influence of alcohol upon muscular contraction. He carefully weighted the hind leg of a frog, and, by means of electricity, stimulating the muscle to its utmost power of contraction, he found out how much the frog could lift. Then administering alcohol, he discovered that the response of the muscle to the electrical current became feebler and feebler, as the narcotic began to take effect, until, at last, the animal could raise less than half the amount it lifted by the natural contraction when uninfluenced by alcohol.

EFFECT UPON THE WASTE OF THE BODY.—The tendency of alcohol is to cause a formation of an unstable substance resembling fat, [Footnote: The molecular deposits equalizing the waste of the system do not go on regularly under the influence of alcohol; the tissues are not kept up to their standard; and, in time, their composition is changed by a deposit of an amorphous matter resembling fat. This is an unstable substance, and the functions of animal life all retrograde.—HUBBARD, The Opium Habit and Alcoholism.] and so the use of liquor for even a short time will increase the weight. But a more marked influence is to check the ordinary waste of the system, so that "the amount of carbonic acid exhaled from the lungs may be reduced as much as thirty to fifty per cent."—HINTON. The life process is one of incessant change. Its rapidity is essential to vigor and strength. When the functions are in full play, each organ is being constantly torn down, and as constantly rebuilt with the materials furnished from our food. Anything that checks this oxidation of the tissues, or hinders the deposition of new matter, disturbs the vital functions. Both these results are the inevitable effects of alcohol; for, since the blood contains less oxygen and more carbonic acid, and the power of assimilating the food is decreased, it follows that every process of waste and repair must be correspondingly weakened. The person using liquor consequently needs less bread and beef, and so alcohol seems to him a food—a radical error, as we have shown.

ALCOHOL CREATES A PROGRESSIVE APPETITE FOR ITSELF.—When liquor is taken, even in the most moderate quantity, it soon becomes necessary, and then arises a craving demand for an increased amount to produce the original effect. No food creates this constantly augmenting want. A cup of milk drank at dinner does not lead one to go on, day by day, drinking more and more milk, until to get milk becomes the one great longing of the whole being. Yet this is the almost universal effect of alcohol. Hunger is satisfied by any nutritious food: the dram-drinker's thirst demands alcohol. The common experience of mankind teaches us the imminent peril that attends the formation of this progressive poison habit. A single glass taken as a tonic may lead to the drunkard's grave.

Worse than this, the alcoholic craving may be transmitted from father to son, and young persons often find themselves cursed with a terrible disease known as alcoholism—a keen, morbid appetite for liquor that demands gratification at any cost—stamped upon their very being through the reckless indulgence of this habit on the part of some one of their ancestors. [Footnote: The American Medical Association, at their meeting in St. Paul, Minnesota (1883), restated in a series of resolutions their conviction, that "alcohol should be classed with other powerful drugs; that when prescribed medically, it should be done with conscientious caution and a sense of great responsibility; that used as a beverage it is productive of a large amount of physical and mental disease; that it entails diseased and enfeebled constitutions upon offspring, and that it is the cause of a large percentage of the crime and pauperism of our large cities and country."]

THE LAW OF HEREDITY is, in this connection, well worth consideration. "The world is beginning to perceive," says Francis Galton, "that the life of each individual is, in some real sense, a continuation of the lives of his ancestors." "Each of us is the footing up of a double column of figures that goes back to the first pair." "We are omnibuses," remarks Holmes, "in which all our ancestors ride." We inherit from our parents our features, our physical vigor, our mental faculties, and even much of our moral character. Often, when one generation is skipped, the qualities will reappear in the following one. The virtues, as well as the vices, of our forefathers, have added to, or subtracted from, the strength of our brain and muscle. The evil tendencies of our natures, which it is the struggle of our lives to resist, constitute a part of our heirlooms from the past. Our descendants, in turn, will have reason to bless us only if we hand down to them a pure healthy physical, mental, and moral being.

"There is a marked tendency in nature to transmit all diseased conditions. Thus, the children of consumptive parents are apt to be consumptives. But of all agents, alcohol is the most potent in establishing a heredity that exhibits itself in the destruction of mind and body. [Footnote: Nearly all the diseases springing from indulgence in distilled and fermented liquors are liable to become hereditary, and to descend to at least three or four generations, unless starved out by uncompromising abstinence. But the distressing aspect of the heredity of alcohol is the transmitted drink- crave. This is no dream of an enthusiast, but the result of a natural law. Men and women upon whom this dread inheritance has been forced are everywhere around us, bravely struggling to lead a sober life.—DR. NORMAN KERR.] Its malign influence was observed by the ancients long before the production of whiskey or brandy, or other distilled liquors, and when fermented liquors or wines only were known. Aristotle says, 'Drunken women have children like unto themselves,' and Plutarch remarks, 'One drunkard is the father of another.' The drunkard by inheritance is a more helpless slave than his progenitor, and his children are more helpless still, unless on the mother's side there is an untainted blood. For there is not only a propensity transmitted, but an actual disease of the nervous system."—DR. WILLARD PARKER. [Footnote: The subject of alcohol is continued in the chapter on the Nervous System.]

PRACTICAL QUESTIONS.

1. How do clothing and shelter economize food?

2. Is it well to take a long walk before breakfast?

3. Why is warm food easier to digest than cold?

4. Why is salt beef less nutritious than fresh? [Footnote: The French Academicians found that flesh soaked in water so as to deprive it of its mineral matter and juices, lost its nutritive value, and that animals fed on it soon died. Indeed, for all purposes of nutrition, Liebig said it was no better than stones, and the utmost torments of hunger were hardly sufficient to induce them to continue the diet. There was plenty of nutritive food, but there was no medium for its solution and absorption, and hence it was useless.] 5. What should be the food of a man recovering from a fever?

6. Is a cup of black coffee a healthful close to a hearty dinner?

7. Should iced water be used at a meal?

8. Why is strong tea or coffee injurious?

9. Should food or drink be taken hot?

10. Are fruitcakes, rich pastry, and puddings wholesome?

11. Why are warm biscuit and bread hard of digestion?

12. Should any stimulants be used in youth?

13. Why should bread be made spongy?

14. Which should remain longer in the mouth, bread or meat?

15. Why should cold water be used in making soup, and hot water in boiling meat?

16. Name the injurious effects of overeating.

17. Why do not buckwheat cakes, with syrup and butter, taste as well in July as in January?

18. Why is a late supper injurious?

19. What makes a man "bilious"?

20. What is the best remedy? Ans. Diet to give the organs rest, and active exercise to arouse the secretions and the circulation.

21. What is the practical use of hunger?

22. How can jugglers drink when standing on their heads?

23. Why do we relish butter on bread?

24. What would you do if you had taken arsenic by mistake? (See Appendix.)

25. Why should ham and sausage be thoroughly cooked?

26. Why do we wish butter on fish, eggs with tapioca, oil on salad, and milk with rice?

27. Explain the relation of food to exercise.

28. How do you explain the difference in the manner of eating between carnivorous and herbivorous animals?

29. Why is a child's face plump and an old man's wrinkled?

30. Show how life depends on repair and waste.

31. What is the difference between the decay of the teeth and the constant decay of the body?

32. Should biscuit and cake containing yellow spots of soda be eaten?

33. Tell how the body is composed of organs, how organs are made up of tissues, and how tissues consist of cells.

34. Why do we not need to drink three pints of water per day?

35. Why, during a pestilence, are those who use liquors as a beverage the first, and often the only victims?

36. What two secretions seem to have the same general use?

37. How may the digestive organs be strengthened?

38. Is the old rule, "after dinner sit awhile," a good one?

39. What would you do if you had taken laudanum by mistake? Paris Green? Sugar of lead? Oxalic acid? Phosphorus from matches? Ammonia? Corrosive sublimate? (See p. 265.)

40. What is the simplest way to produce vomiting, so essential in case of accidental poisoning?

41. In what way does alcohol interfere with the digestion?

42. Is alcohol assimilated?

43. What is the effect of alcohol on the albuminous substances?

44. Is there any nourishment in beer?

45. Show how the excessive use of alcohol may first increase, and, afterward, decrease, the size of the liver.

46. Will liquor help one to endure cold and exposure?

47. What is a fatty degeneration of the kidneys?

48. Contrast the action of alcohol and water in the body.

49. Is alcohol, in any proper sense of the term, a food?

50. Does liquor strengthen the muscles of a working man?

51. Is liquor a wholesome "tonic"?

52. Is it a good plan to take a glass of liquor before dinner?



VII.

THE NERVOUS SYSTEM.

"Mark then the cloven sphere that holds All thoughts in its mysterious folds, That feels sensation's faintest thrill, And flashes forth the sovereign will; Think on the stormy world that dwells Lock'd in its dim and clustering cells; The lightning gleams of power it sheds Along its hollow, glassy threads!"

"As a king sits high above his subjects upon his throne, and from it speaks behests that all obey, so from the throne of the brain cells is all the kingdom of a man directed, controlled, and influenced. For this occupant, the eyes watch, the ears hear, the tongue tastes, the nostrils smell, the skin feels. For it, language is exhausted of its treasures, and life of its experience; locomotion is accomplished, and quiet insured. When it wills, body and spirit are goaded like overdriven horses. When it allows, rest and sleep may come for recuperation. In short, the slightest penetration may not fail to perceive that all other parts obey this part, and are but ministers to its necessities."—Odd Hours of a Physician. ANALYSIS OF THE NERVOUS SYSTEM.

_ 1. THE STRUCTURE _ _ 1. _Description._ 1. The Brain........ 2. _The Cerebrum._ _3. _The Cerebellum._ _ 2. The Spinal Cord.. 1. _Its Composition._ _2. _Medulla Oblongata._ _ 2. ORGANS OF 1. _Description._ THE NERV- 2. _Motory and Sensory._ OUS SYSTEM.. 3. _Transfer of Pain._ 4. _The Spinal Nerves 31 Pairs._ _3. The Nerves....... 5. _The Cranial Nerves 12 Pairs._ 6. _Sympathetic System._ 7. _Crossing of Cords._ 8. _Reflex Action._ 9. _Uses of Reflex _ Action_ _ 1. Brain Exercise. 2. Connection between Brain Growth and Body Growth. 3. HYGIENE..... 3. Sleep. 4. Effect of Sleeping Draughts. _5. Sunlight. 4. WONDERS OF THE BRAIN. _ 1. Alcohol (Con'd.) _ 1. _Stage of Excitement._ 2. _Stage of Muscular Weakness._ 1. Effect of Alco- 3. _Stage of Mental hol upon the Weakness._ Nervous System 4. _Stage of Unconscious- _ ness._ 2. Effect upon the Brain _3. Effect upon the Mental and Moral Powers. 2. Tobacco. _ 1. Constituents of Tobacco. 5. ALCOHOLIC 2. Physiological Effects. DRINKS AND 3. Possible Disturbances produced by Smoking. _ NARCOTICS. 4. Influence upon the Nervous System. 5. Is Tobacco a Food? _6. Influence of Tobacco on Youth. _ 1. _Description._ 3. Opium............ 2. _Physiological _ Effects._ 4. Chloral Hydrate. 5. Chloroform. _6. Cocaine.

THE NERVOUS SYSTEM. [Footnote: The organs of circulation, respiration, and digestion, of which we have already spoken, are often called the vegetative functions, because they belong also to the vegetable kingdom. Plants have a circulation of sap through their cells corresponding to that of the blood through the capillaries. They breathe the air through their leaves, which act the part of lungs, and they take in food which they change into their own structure by a process which answers to that of digestion. The plant, however, is a mere collection of parts incapable of any combined action. On the other hand, the animal has a nervous system which binds all the organs together.]

STRUCTURE.—The nervous system includes the brain, the spinal cord, and the nerves. It is composed of two kinds of matter— the white, and the gray. The former consists of minute, milk-white, glistening fibers, sometimes as small as 1/25000 of an inch in diameter; the latter is made up of small, ashen-colored cells, forming a pulp-like substance of the consistency of blancmange. [Footnote: In addition to the cells, the gray substance contains also nerve fibers continuous with the white fibers, but generally much smaller. These form half the bulk of the gray substance of the spinal cord, and a large part of the deeper layer of the gray matter in the brain.—LEIDY'S Anatomy, p. 507.] This is often gathered in little masses, termed ganglions (ganglion, a knot), because, when a nerve passes through a group of the cells, they give it the appearance of a knot. The nerve fibers are conductors, while the gray cells are generators, of nervous force. [Footnote: What this force is we do not know. In some respects it is like electricity, but, in others, it differs materially. Its velocity is about thirty three meters per second.—Popular Physics, p. 244, Note.] The ganglia, or nervous centers, answer to the stations along a telegraphic line, where messages are received and transmitted, and the fibers correspond to the wires that communicate between different parts.

FIG. 50.



The BRAIN is the seat of the mind. [Footnote: In proportion to the rest of the nervous matter in the body, it is larger in man than in any of the lower animals. It is the function which the brain performs that distinguishes man from all other animals, and it is by the action of his brain that he becomes a conscious, intelligent, and responsible being. The brain is the seat of that knowledge which we express when we say I. I know it, I feel it, I saw it, are expressions of our individual consciousness, the seat of which is the brain. It is when the brain is at rest in sleep that there is least consciousness. The brain may be put under the influence of poisons, such as alcohol and chloroform, and then the body is without consciousness. From these and other facts the brain is regarded as the seat of consciousness.—LANKESTER.] Its average weight is about fifty ounces. [Footnote: Cuvier's brain weighed 64 1/2 ounces; Webster's, 53 1/2 ounces; James Fisk's, 58 ounces; Ruloff's, 59 ounces; an idiot's, 19 ounces. See Table in FLINT'S Nervous System.] It is egg-shaped, and, soft and yielding, fills closely the cavity of the skull. It reposes securely on a water bed, being surrounded by a double membrane (arachnoid), delicate as a spider's web, which forms a closed sac filled, like the spaces in the brain itself, with a liquid resembling water. Within this, and closely investing the brain, is a fine tissue (pia mater), with a mesh of blood vessels which dips down into the hollows, and bathes them so copiously that it uses one fifth of the entire circulation of the body. Around the whole is wrapped a tough membrane (dura mater), which lines the bony box of the skull, and separates the various parts of the organ by strong partitions. The brain consists of two parts—the cerebrum, and the cerebellum.

The CEREBRUM fills the front and upper part of the skull, and comprises about seven eighths of the entire weight of the brain. As animals rise in the scale of life, this higher part makes its appearance. It is a mass of white fibers, with cells of gray matter sprinkled on the outside, or lodged here and there in ganglia. It is so curiously wrinkled and folded as strikingly to resemble the meat of an English walnut. This structure gives a large surface for the gray matter,—sometimes as much as six hundred and seventy square inches. The convolutions are not noticeable in an infant, but increase with the growth of the mind, their depth and intricacy being characteristic of high mental power.

FIG. 51.



The cerebrum is divided into two hemispheres, connected beneath by fibers of white matter. Thus we have two brains, [Footnote: This doubleness has given rise to some curious speculations. In the case of the hand, eye, etc, we know that the sensation is made more sure. Thus we can see with one eye, but not so well as with both. It is perhaps the same with the brain. We may sometimes carry on a train of thought, "build an air castle" with one half of our brain, while the other half looks on and watches the operation; or, we may read and at the same time think of something else. So in delirium, a patient often imagines himself two persons, thus showing a want of harmony between the two halves.—DRAPER, Human Physiology, p. 320.] as well as two hands and two eyes. This provides us with a surplus of brains, as it were, which can be drawn upon in an emergency. A large part of one hemisphere has been destroyed without particularly injuring the mental powers, [Footnote: A pointed iron bar, three and a half feet long and one inch and a quarter in diameter, was driven by the premature blasting of a rock completely through the side of the head of a man who was present. It entered below the temple, and made its exit at the top of the forehead, just about the middle line. The man was at first stunned, and lay in a delirious, semistupefied state for about three weeks. At the end of sixteen months, however, he was in perfect health, with wounds healed and mental and bodily functions unimpaired, except that sight was lost in the eye of the injured side.— DALTON. It is noticeable, however, that the man became changed in disposition, fickle, impatient of restraint, and profane, which he was not before. He died epileptic, nearly thirteen years after the injury. The tamping iron and the skull are preserved in the Warren Anatomical Museum, Boston.]—just as a person has been blind in one eye for a long time without having discovered his loss. The cerebrum is the center of intelligence and thought. [Footnote: In man, the cerebrum presents an immense preponderance in weight over other portions of the brain; in some of the lower animals, the cerebrum is even less in weight than the cerebellum. Another interesting point is the development of cerebral convolutions in certain animals, by which the relative amount of gray matter is increased. In fishes, reptiles, and birds, the surface of the hemispheres is smooth; but, in many mammalia, especially in those remarkable for intelligence, the cerebrum presents a greater or less number of convolutions, as it does in the human subject.—FLINT. The average weight of the human brain in proportion to the entire body is about 1 to 36. The average of mammalia is 1 to 186; of birds, 1 to 212; of reptiles, 1 to 1,321; and of fishes, 1 to 5,668. There are some animals in which the weight of the brain bears a higher proportion to the body than it does in man; thus in the blue-headed tit, the proportion is as 1 to 12; in the goldfinch, as 1 to 24; and in the field mouse, as 1 to 31. "It does not hence follow, however, that the cerebrum is larger in proportion; in fact, it is probably not nearly so large; for in birds and rodent animals the sensory ganglia form a very considerable portion of the entire brain. M. Baillarger has shown that the surface and the bulk of the cerebral hemispheres are so far from bearing any constant proportion to each other in different animals that, notwithstanding the depth of the convolutions in the human cerebrum, its bulk is two and a half times as great in proportion to its surface as it is in the rabbit, the surface of whose cerebrum is smooth. The size of the cerebrum, considered alone, is not, however, a fair test of its intellectual power. This depends upon the quantity of vesicular matter which it contains, as evinced not only by superficial area, but by the number and depth of the convolutions and by the thickness of the cortical layer."—CARPENTER.] Persons in whom it is seriously injured or diseased often become unable to converse intelligently, both from inability to remember words and from loss of power to articulate them.

THE CEREBELLUM lies below the cerebrum, and in the back part of the head (Fig. 50). It is about the size of a small fist. Its structure is similar to that of the brain proper, but instead of convolutions it has parallel ridges, which, letting the gray matter down deeply into the white matter within, give it a peculiar appearance, called the arbor vite, or tree of life (Fig. 55). This part of the brain is the center for the control of the voluntary muscles, [Footnote: The exact nature of the functions of the cerebellum is one of those problems concerning which there is no unanimity of opinion amongst physiologists. It may be premised, however, that the knowledge we at present possess does enable us to come to one very important conclusion with respect to the functions of the cerebellum,—it enables us to say that this organ has no independent function either in the province of mind or in the province of motility. And we may perhaps safely affirm still further, that the cerebellum is much more intimately concerned with the production of bodily movements than with the evolution of mental phenomena. The anatomical distinctness of the cerebellum from the larger brain and other parts of the nervous system is more apparent than real....That there is an habitual community of action between the cerebellum and the spinal cord is, I believe, doubted by none, and the fact that an intimate functional relationship exists between the cerebrum and the cerebellum is shown by the circumstance that atrophy of one cerebral hemisphere entails a corresponding atrophy of the opposite half of the cerebellum. The subordinate or supplementary nature of the cerebellar function, however, in this latter relation seems equally well shown by the fact that atrophy of one side of the cerebellum (when it occurs as the primary event) does not entail any appreciable wasting in the opposite half of the cerebrum. What other conclusion can be drawn? If the cutting off of certain cerebral stimuli leads to a wasting of the opposite half of the cerebellum, this would seem to show that each half of the cerebellum is naturally called into activity in response to, or conjointly with, the opposite cerebral hemisphere. Whilst conversely, if atrophy of one half of the cerebellum does not entail a relative diminution in the opposite cerebral hemisphere, this would go to show that the cerebral hemispheres do not act in response to cerebellar stimuli, since their nutrition does not suffer when such stimuli are certainly absent. The action of the cerebrum is therefore shown to be primary, whilst that of the cerebellum is secondary or subordinate in the performance of those functions in which they are both concerned.—H. CHARLTON BASTIAN, Paralysis from Brain Disease.] particularly those of locomotion. Persons in whom it is injured or diseased walk with tottering and uncertain movements as if intoxicated, and can not perform any orderly work.

THE SPINAL CORD occupies the cavity of the backbone. It is protected by the same membranes as the brain, but, unlike it, the white matter is on the outside, and the gray matter is within. Deep fissures separate it into halves (Fig. 50), which are, however, joined by a bridge of the same substance. Just as it starts from the brain, there is an expansion called the medulla oblongata (Fig. 55).

THE NERVES are glistening, silvery threads, composed, like the spinal cord, of white matter without and gray within. They ramify to all parts of the body. Often they are very near each other, yet are perfectly distinct, each conveying its own impression. [Footnote: Press two fingers together, and, closing the eyes, let some one pass the point of a pin lightly from one to the other; you will be able to tell which is touched, yet if the nerves came in contact with each other anywhere in their long route to the brain, you could not thus distinguish.] Those which carry the orders of the mind to the different organs are called the motory nerves; while those which bring back impressions which they receive are styled sensory nerves. If the sensory nerve leading to any part be cut, all sensation in that spot will be lost, while motion will remain; if the motory nerve be cut, all motion will be destroyed, while sensation will exist as before.

TRANSFER OF PAIN.—Strictly speaking, pain is not in any organ, but in the mind, since only that can feel. When any nerve brings news to the brain of an injury, the mind refers the pain to the end of the nerve. A familiar illustration is seen in the "funny bone" behind the elbow. Here the nerve (ulnar) gives sensation to the third and fourth fingers, in which, if this bone be struck, the pain will seem to be. Long after a limb has been amputated, pain will be felt in it, as if it still formed a part of the body—any injury in the stump being referred to the point to which the nerve formerly led. [Footnote: Only about five per cent. of those who suffer amputation lose the feeling of the part taken away. There is something tragical, almost ghastly, in the idea of a spirit limb haunting a man through his life, and betraying him in unguarded moments into some effort, the failure of which suddenly reminds him of his loss. A gallant fellow, who had left an arm at Shiloh, once, when riding, attempted to use his lost hand to grasp the reins while with the other he struck his horse. A terrible fall was the result of his mistake. When the current of a battery is applied to the nerves of an arm stump, the irritation is carried to the brain, and referred to all the regions of the lost limb. On one occasion a man's shoulder was thus electrized three inches above the point where the limb was cut off. For two years he had ceased to be conscious of his limb. As the electric current passed through, the man, who had been profoundly ignorant of its possible effects, started up, crying, "Oh, the hand! the hand!" and tried to seize it with the living grasp of the sound fingers. No resurrection of the dead could have been more startling.—DR. MITCHELL on "Phantom Limbs" in Lippincott's Magazine.]

The nerves are divided into three general classes—the spinal, the cranial, and the sympathetic.

FIG. 54.



THE SPINAL NERVES, of which there are thirty-one pairs, issue from the spinal cord through apertures provided for them in the backbone. Each nerve arises by two roots; the anterior is the motory, and the posterior the sensory one. The posterior alone connects directly with the gray matter of the cord, and has a small ganglion of gray matter of its own at a little distance from its origin. These roots soon unite, i. e., are bound up in one sheath, though they preserve their special functions. When the posterior root of a nerve is cut, the animal loses the power of feeling, and when the anterior root is cut, that of motion.

THE CRANIAL NERVES, twelve pairs in number, spring from the lower part of the brain and the medulla oblongata.

1. The olfactory, or first pair of nerves, ramify through the nostrils, and are the nerves of smell.

2. The optic, or second pair of nerves, pass to the eyeballs, and are the nerves of vision.

3, 4, 6. The motores oculi (eye movers) are three pairs of nerves used to move the eyes.

5. The trifacial, or fifth pair of nerves, divide each into three branches—hence the name—the first to the upper part of the face, eyes, and nose; the second to the upper jaw and teeth; the third to the lower jaw and the mouth, where it forms the nerve of taste. These nerves are implicated when we have the toothache or neuralgia.

7. The facial, or seventh pair of nerves, are distributed over the face, and give it expression. [Footnote: If it is palsied, on one side there will be a blank, while the other side will laugh or cry, and the whole face will look funny indeed. There were some cruel people in the middle ages who used to cut the nerve and deform children's faces in this way, for the purpose of making money of them at shows. When this nerve was wrongly supposed to be the seat of neuralgia, or tic douloureux, it was often cut by surgeons. The patient suffered many dangers, and no relief of pain was gained.—MAPOTHER.]

FIG. 55.



8. The auditory, or eighth pair of nerves, go to the ears, and are the nerves of hearing.

9. The glos-so-pha-ryn'-ge-al, or ninth pair of nerves, are distributed over the mucous membrane of the pharynx, tonsils, etc.

10. The pneu-mo-gas'-tric, or tenth pair of nerves, preside over the larynx, lungs, liver, stomach, and one branch extends to the heart. This is the only nerve which goes so far from the head.

11. The accessory, or eleventh pair of nerves, rise from the spinal cord, run up to the medulla oblongata, and thence leave the skull at the same opening with the ninth and tenth pairs. They regulate the vocal movements of the larynx.

12. The hyp-o-glos'-sal, or twelfth pair of nerves, give motion to the tongue.

FIG. 56.



THE SYMPATHETIC SYSTEM contains the nerves of organic life. It consists of a double chain of ganglia on either side of the backbone, extending into the chest and abdomen. From, these, delicate nerves, generally soft and of a grayish color, run to the organs on which life depends—the heart, lungs, stomach, etc.—to the blood vessels, and to the spinal and cranial nerves over the body. Thus the entire system is bound together with cords of sympathy, so that, "if one member suffers, all the members suffer with it."

Here lies the secret of the control exercised by the brain over all the vital operations. Every organ responds to its changing moods, especially those of respiration, circulation, digestion, and secretion,—processes intimately linked with this system, and controlled by it. (See p. 330.)

CROSSING OF CORDS.—Each half of the body is presided over, not by its own half of the brain, but that of the opposite side. The motory nerves, as they descend from the brain, in the medulla oblongata, cross each other to the opposite side of the spinal cord. So the motor nerves of the right side of the body are connected with the left side of the brain, and vice versa. Thus a derangement in one half of the brain may paralyze the opposite half of the body. The nerves going to the face do not thus cross, and therefore the face may be motionless on one side, and the limbs on the other. Each of the sensory fibers of the spinal nerves crosses over to the opposite side of the spinal cord, and so ascends to the brain; an injury to the spinal cord may, therefore, cause a loss of motion in one leg and of feeling in the other.

REFLEX ACTION.—Since the gray matter generates the nervous force, a ganglion is capable of receiving an impression, and of sending back or reflecting it so as to excite the muscles to action. This is done without the consciousness of the mind. [Footnote: Instances of an unconscious working of the mind are abundant. An illustration, often quoted, is given, as follows, by Dr. Abercrombie, in his Intellectual Powers:

"A lawyer had been excessively perplexed about a very complicated question. An opinion was required from him, but the question was one of such difficulty that he felt very uncertain how he should render it. The decision had to be given at a certain time, and he awoke in the morning of that day with a feeling of great distress. He said to his wife, 'I had a dream, and the whole thing was clearly arranged before my mind, and I would give anything to recover the train of thought.' His wife said to him, 'Go and look on your table.' She had seen him get up in the night and go to his table and sit down and write. He did so, and found there the opinion which he had been most earnestly endeavoring to recover, lying in his own handwriting. There was no doubt about it whatever."

In this case the action of the brain was clearly automatic, i. e., reflex. The lawyer had worried his brain by his anxiety, and thus prevented his mind from doing its best. But it had received an impulse in a certain direction, and when left to itself, worked out the result. (See Appendix for other illustrations.)] Thus we wink involuntarily at a flash of light or a threatened blow. [Footnote: A very eminent chemist a few years ago was making an experiment upon some extremely explosive compound which he had discovered. He had a small quantity of this compound in a bottle, and was holding it up to the light, looking at it intently; and whether it was a shake of the bottle or the warmth of his hand, I do not know, but it exploded in his hand, and the bottle was shivered into a million of minute fragments, which were driven in every direction. His first impression was that they had penetrated his eyes, but to his intense relief he found presently that they had only struck the outside of his eyelids. You may conceive how infinitesimally short the interval was between the explosion of the bottle and the particles reaching his eyes; and yet in that interval the impression had been made upon his sight, the mandate of the reflex action, so to speak, had gone forth, the muscles of his eyelids had been called into action, and he had closed his eyelids before the particles had reached them, and in this manner his eyes were saved. You see what a wonderful proof this is of the way in which the automatic action of our nervous apparatus enters into the sustenance of our lives, and the protection of our most important organs from injury.— DR. CARPENTER.] We start at a sudden sound. We jump back from a precipice before the mind has time to reason upon the danger. The spinal cord conducts certain impressions to the brain, but responds to others without troubling that organ. [Footnote: There is a story told of a man, who, having injured his spinal cord, had lost feeling and motion in his lower extremities. Dr. John Hunter experimented upon him. Tickling his feet, he asked him if he felt it; the man, pointing to his limbs, which were kicking vigorously about, answered, "No, but you see my legs do." Illustrations of this independent action of the spinal cord are common in animals. A headless wasp will ply its sting energetically. A fowl, after its head is cut off, will flap its wings and jump about as if in pain, although, of course, all sensation has ceased. "A water beetle, having had its head removed, remained motionless as long as it rested on a dry surface, but when cast into water, it executed the usual swimming motions with great energy and rapidity, striking all its comrades to one side by its violence, and persisting in these for more than half an hour."] The medulla oblongata carries on the process of respiration. The great sympathetic system binds together all the organs of the body.

USES OF REFLEX ACTION.—We breathe eighteen times every minute; we stand erect without a consciousness of effort; [Footnote: In this way we account for the perilous feats performed by the somnambulist. He is not conscious, as his operations are not directed by the cerebrum, but by the other nervous centers. Were he to attempt their repetition when awake, the emotion of fear might render it impossible.] we walk, eat, digest, and at the same time carry on a train of thought. Our brain is thus emancipated from the petty detail of life. If we were obliged to attend to every breath, every pulsation of the heart, every wink of the eye, our time would be wasted in keeping alive. Mere standing would require our entire attention. Besides, an act which at first demands all our thought soon requires less, and at last becomes mechanical, [Footnote: "As every one knows," says Huxley, "it takes a soldier a long time to learn his drill— for instance, to put himself into the attitude of 'attention' at the instant the word of command is heard. But, after a time, the sound of the word gives rise to the act, whether the soldier be thinking of it or not. There is a story, which is credible enough, though it may not be true, of a practical joker, who, seeing a discharged veteran carrying home his dinner, suddenly called out 'Attention!' whereupon the man instantly brought his hands down and lost his mutton and potatoes in the gutter. The drill had been thorough, and its effects had become embodied in the man's nervous structure."] as we say, i. e., reflex. Thus we play a familiar tune upon an instrument and carry on a conversation at the same time. All the possibilities of an education and the power of forming habits are based upon this principle. No act we perform ends with itself. It leaves behind it in the nervous centers a tendency to do the same thing again. Our physical being thus conspires to fix upon us the habits of a good or an evil life. Our very thoughts are written in our muscles, so that the expression of our face and even our features grow into harmony with the life we live.

BRAIN EXERCISE.—The nervous system demands its life and activity. The mind grows by what it feeds on. One who reads mainly light literature, who lolls on the sofa or worries through the platitudes of an idle or fashionable life, decays mentally; his system loses tone, and physical weakness follows mental poverty. On the other hand, an excessive use of the mind withdraws force from the body, whose weakness, reacting on the brain, produces gradual decay and serious diseases. (See p. 331.)

The brain grows by the growth of the body. The body grows through good food, fresh air, and work and rest in suitable proportion. For the full development and perfect use of a strong mind, a strong body is essential. Hence, in seeking to expand and store the intellect, we should be equally thoughtful of the growth and health of the body.

SLEEP [Footnote: Sleep procured by medicine is rarely as beneficial as that secured naturally. The disturbance to the nervous system is often sufficient to counterbalance all the good results. The habit of seeking sleep in this way, without the advice of a physician, is to be most earnestly deprecated. The dose must be constantly increased to produce the effect, and thus great injury may be caused. Often, too, where laudanum or morphine is used, the person unconsciously comes into a terrible and fatal bondage. (See p. 342.) Especially should infants never be dosed with cordials, as is a common family practice. The damage done to helpless childhood by the ignorant and reckless use of soothing syrups is frightful to contemplate. All the ordinary sleeping draughts have life-destroying properties, as is proved by the fatal effects of an overdose. At the best, they paralyze the nerve centers, disorder the digestion, and poison the blood. Their promiscuous use is therefore full of danger.] is as essential as food. During the day, the process of tearing down goes on; during the night, the work of building up should make good the loss. In youth more sleep is needed than in old age, when nature makes few permanent repairs, and is content with temporary expedients. The number of hours required for sleep must be decided by each person. Napoleon took only five hours, but most people need from six to eight hours,—brain workers even more. In general, one should sleep until he naturally wakes. If one's rest be broken, it should be made up as soon as possible. (See p. 334.)

SUNLIGHT.—The influence of the sun's rays upon the nervous system is very marked. [Footnote: The necessity of light for young children is not half appreciated. Many of their diseases, and nearly all the cadaverous looks of those brought up in great cities, are ascribable to the deficiency of light and air. When we see the glass room of the photographers in every street, in the topmost story, we grudge them their application to what is often a mere personal vanity. Why should not a nursery be constructed in the same manner? If parents knew the value of light to the skin, especially to children of a scrofulous tendency, we should have plenty of these glass house nurseries, where children might run about in a proper temperature, free from much of that clothing which at present seals up the skin—that great supplementary lung—against sunlight and oxygen. They would save many a weakly child who now perishes from lack of these necessaries of infant life.—DR. WINTER.] It is said also to have the effect of developing red disks in the blood. All vigor and activity come from the sun. Vegetables grown in subdued light have a bleached and faded look. An infant kept in absolute darkness would grow into a shapeless idiot. That room is the healthiest to which the sun has the freest access. Epidemics frequently attack the inhabitants of the shady side of a street, and exempt those on the sunny side. If, on a slight indisposition, we should go out into the open air and bright sunlight, instead of shutting ourselves up in a close, dark chamber, we might often avoid a serious illness. The sun bath is doubtless a most efficient remedy for many diseases. Our window blinds and curtains should be thrown back and open, and we should let the blessed air and sun stream in to invigorate and cheer. No house buried in shade, and no room with darkened windows, is fit for human habitation. In damp and darkness, lies in wait almost every disease to which flesh is heir. The sun is their only successful foe. (See p. 336.)

WONDERS OF THE BRAIN.—After having seen the beautiful contrivances and the exquisite delicacy of the lower organs, it is natural to suppose that when we come to the brain we should find the most elaborate machinery. How surprising, then, it is to have revealed to us only cells and fibers! The brain is the least solid and most unsubstantial looking organ in the body. Eighty per cent of water, seven of albumen, some fat, and a few minor substances constitute the instrument which rules the world. Strangest of all, the brain, which is the seat of sensation, is itself without sensation. Every nerve, every part of the spinal cord, is keenly alive to the slightest touch, yet "the brain may be cut, burned, or electrified without producing pain."

ALCOHOLIC DRINKS AND NARCOTICS.

ALCOHOL (Continued from p. 187).

EFFECT UPON THE NERVOUS SYSTEM.—In the progressive influence of alcohol upon the nervous system, there are, according to the researches of Dr. Richardson, four successive stages.

1. THE STAGE OF EXCITEMENT. [Footnote: The pupil should be careful to note here that alcohol does not act upon the heart directly, and cause it to contract with more force. The idea that alcohol gives energy and activity to the muscles is entirely false. It really, as we have seen (p. 183), weakens muscular contraction. The enfeeblement begins in the first stage, and continues in the other stages with increased effect. The heart beats quickly merely because the resistance of the minute controlling vessels is taken off, and it works without being under proper regulation. What is called a stimulation or excitement is, in absolute fact, a relaxation, a partial paralysis of one of the most important mechanisms in the animal body. Alcohol should be ranked among the narcotics.—RICHARDSON.]— The first effect of alcohol, as we have already described on page 144, is to paralyze the nerves that lead to the extreme and minute blood vessels, and so regulate the passage of the blood through the capillary system. The vital force, thus drawn into the nervous centers, drives the machinery of life with tremendous energy. The heart jumps like the mainspring of a watch when the resistance of the wheels is removed. The blood surges through the body with increased force. Every capillary tube in the system is swollen and flushed, like the reddened nose and cheek.

In all this there is exhilaration, but no nourishment; there is animation, but no permanent power conferred on brain or muscle. Alcohol may cheer for the moment. It may set the sluggish blood in motion, start the flow of thought, and excite a temporary gayety. "It may enable a wearied or feeble organism to do brisk work for a short time. It may make the brain briefly brilliant. It may excite muscle to quick action, but it does nothing at its own cost, fills up nothing it has destroyed, and itself leads to destruction." Even the mental activity it has excited is an unsafe state of mind, for that just poise of the faculties so essential to good judgment is disturbed by the presence of the intruder. Johnson well remarked, "Wine improves conversation by taking the edge off the understanding."

2. THE STAGE OF MUSCULAR WEAKNESS.—If the action of the alcohol be still continued, the spinal cord is next affected by this powerful narcotic. The control of some of the muscles is lost. Those of the lower lip usually fail first, then those of the lower limbs, and the staggering, uncertain steps betray the result. The muscles themselves, also, become feebler as the power of contraction diminishes. The temperature, which, for a time, was slightly increased, soon begins to fall as the heat is radiated; the body is cooled, and the well-known "alcoholic chill" is felt.

3. THE STAGE OF MENTAL WEAKNESS.—The cerebrum is now implicated. The ideal and emotional faculties are quickened, while the will is weakened. The center of thought being overpowered, the mind is a chaos. Ideas flock in thick and fast. The tongue is loosened. The judgment loses its hold on the acts. The reason giving way, the animal instincts generally assume the mastery of the man. The hidden nature comes to the surface. All the gloss of education and social restraint falls off, and the lower nature stands revealed. The coward shows himself more craven, the braggart more boastful, the bold more daring, and the cruel more brutal. The inebriate is liable to become the perpetrator of any outrage that the slightest provocation may suggest.

4. THE STAGE OF UNCONSCIOUSNESS.—At last, prostration ensues, and the wild, mad revel of the drunkard ends with utter senselessness. In common speech, the man is "dead drunk." Brain and spinal cord are both benumbed. Fortunately, the two nervous centers which supply the heart and the diaphragm are the slowest to be influenced. So, even in this final stage, the breathing and the circulation still go on, though the other organs have stopped. Were it not for this, every person thoroughly intoxicated would die. [Footnote: Cold has a wonderful influence in hastening this stage, so that a person, previously only in the first stage of excitement, on going outdoors on a winter night, may rapidly sink into a lethargy (become comatose), fall, and die. He is then commonly said to have perished with cold. The signs of this coma are of great practical importance, since so many persons die in police stations and elsewhere who are really comatose, when they are supposed to be only sound asleep. The pulse is slow, and almost imperceptible. The face is pale, and the skin cold. "If the arm be pinched, it is not moved; if the eyeballs are touched, the lids will not sink." The respiration becomes slower and slower, and, if the person dies, it is because liquid collects in the bronchial tubes, and stops the passage of the air. The man then actually drowns in his own secretions.]

EFFECT UPON THE BRAIN.—Alcohol seems to have a special affinity for the brain. This organ absorbs more than any other, and its delicate structure is correspondingly affected. The "Vascular enlargement" here reaches its height. The tiny vessels become clogged with blood that is unfitted to nourish, because loaded with carbonic acid, and deprived of the usual quantity of the life-giving oxygen.—HINTON. The brain is, in the language of the physiologist, malfunctioned. The mind but slowly rallies from the stupor of the fourth stage, and a sense of dullness and depression remains to show with what difficulty the fatigued organ recovers its normal condition. So marked is the effect of the narcotic poison, that some authorities hold that "a once thoroughly intoxicated brain never fully becomes what it was before."

In time, the free use of liquor hardens and thickens the membrane enveloping the nervous matter; the nerve corpuscles undergo a "Fatty degeneration"; the blood vessels lose their elasticity; and the vital fluid, flowing less freely through the obstructed channels, fails to afford the old-time nourishment. The consequent deterioration of the nervous substance—the organ of thought—shows itself in the weakened mind [Footnote: The habitual use of fermented liquors, even to an extent far short of what is necessary to produce intoxication, injures the body, and diminishes the mental power.—Sir Henry Thompson.] that we so often notice in a person accustomed to drink, and at last lays the foundation of various nervous disorders—epilepsy, paralysis, and insanity. [Footnote: Casper, the great statistician of Berlin, says: "So far as that city is concerned, one third of the insane coming from the poorer classes, were made so by spirit drinking."] The law of heredity here again asserts itself, and the inebriate's children often inherit the disease which he has escaped.

Chief among the consequences of this perverted and imperfect nutrition of the brain is that intermediate state between intoxication and insanity, well known as Delirium Tremens. "It is characterized by a low, restless activity of the cerebrum, manifesting itself in muttering delirium, with occasional paroxysms of greater violence. The victim almost always apprehends some direful calamity; he imagines his bed to be covered with loathsome reptiles; he sees the walls of his apartment crowded with foul specters; and he imagines his friends and attendants to be fiends come to drag him down to a fiery abyss beneath."—CARPENTER. (See p. 287.)

INFLUENCE UPON THE MENTAL AND MORAL POWERS.—So intimate is the relation between the body and the mind, that an injury to one harms the other. The effect of alcoholized blood is to weaken the will. The one habitually under its influence often shocks us by his indecision and his readiness to break a promise to reform. The truth is, he has lost, in a measure, his power of self-control. At last, he becomes physically unable to resist the craving demand of his morbid appetite.

Other faculties share in this mental wreck. The intellectual vision becomes less penetrating, the decisions of the mind less reliable, and the grasp of thought less vigorous. The logic grows muddy. A thriftless, reckless feeling is developed. Ere long, self-respect is lost, and then ambition ceases to allure, and the high spirit sinks.

Along with this mental deterioration comes also a failure of the moral sense. The fine fiber of character undergoes a "degeneration" as certain as that of the muscles themselves. Broken promises tell of a lowered standard of veracity, and a dulled sense of honor, quite as much as of an impaired will. Under the subtle influence of the ever-present poison, signs of spiritual weakness multiply fast. Conscience is lulled to rest. Reason is enfeebled. Customary restraints are easily thrown off. The sensibilities are blunted. There is less ability to appreciate nice shades of right and wrong. Great moral principles and motives lose their power to influence. The judgment fools with duty. The future no longer reaches back its hand to guide the present. The better nature has lost its supremacy.

The wretched victim of appetite will now gratify his tyrannical passion for drink at any expense of deceit or crime. He becomes the blind instrument of his insane impulses, and commits acts from which he would once have shrunk with horror. [Footnote: Richardson sums up the various diseases caused by alcohol, as follows: "(a). Diseases of the brain and nervous system, indicated by such names as apoplexy, epilepsy, paralysis, vertigo, softening of the brain, delirium tremens, dipsomania or inordinate craving for drink, loss of memory, and that general failure of the mental power, called dementia. (b). Diseases of the lungs: one form of consumption, congestion, and subsequent bronchitis. (c). Diseases of the heart: irregular beat, feebleness of the muscular walls, dilatation, disease of the valves. (d). Diseases of the blood: scurvy, excess of water or dropsy, separation of fibrin. (e). Diseases of the stomach: feebleness of the stomach, indigestion, flatulency, irritation, and sometimes inflammation. (f). Diseases of the bowels: relaxation or purging, irritation. (g). Diseases of the liver: congestion, hardening and shrinking, cirrhosis. (h). Diseases of the kidneys: change of structure into fatty or waxy-like condition and other results leading to dropsy, or sometimes to fatal sleep. (i). Diseases of the muscles: fatty change in the muscles, by which they lose their power for proper active contraction. (j). Diseases of the membranes of the body: thickening and loss of elasticity, by which the parts wrapped up in the membrane are impaired for use, and premature decay is induced."] Sometimes he even takes a malignant pleasure in injuring those whom Nature has ordained he should protect. [Footnote: It has been argued that a man should not be punished for any crime he may commit during intoxication, but rather for knowingly giving up the reins of reason and conscience, and thus subjecting himself to the rule of his evil passions. Voluntarily to stimulate the mind and put it into a condition where it may drive one to ruin, is very like the act of an engineer who should get up steam in his engine, and then, having opened the valves, desert his post, and let the monster go thundering down the track to sure destruction. Certain persons are thrown into the stage of mental weakness by a single glass of liquor. How can they be excused when the fact of their peculiar liability lends additional force to the argument of abstemiousness, and they know that their only safety lies in total abstinence?—CARPENTER'S Physiology.]

2. TOBACCO.

The Constituents of Tobacco Smoke are numerous, but the prominent ones are carbonic-acid, carbonic-oxide, and ammonia gases; carbon, or soot; and nicotine. The proportion of these substances varies with different kinds of tobacco, the pipe used, and the rapidity of the combustion. Carbonic acid tends to produce sleepiness and headache. Carbonic oxide, in addition, causes a tremulous movement of the muscles, and so of the heart. Ammonia bites the tongue of the smoker, excites the salivary glands, and causes dryness of the mouth and throat. Nicotine is a powerful poison. The amount contained in one or two strong cigars, if thrown directly into the blood, would cause death. Nicotine itself is complex, yielding a volatile substance that gives the odor to the breath and clothing; and also a bitter extract which produces the sickening taste of an old pipe. In smoking, some of the nicotine is decomposed, forming pyridine, picoline, and other poisonous alkaloids. [Footnote: The analysis of tobacco as given by different authorities varies greatly. The one stated in the text suffices for the purposes of this chapter. Von Eulenberg names several other products of the combustion. One hundred pounds of the dry leaf may yield as high as seven pounds of nicotine. Havana tobacco contains about two per cent, and Virginia about six per cent.—See JOHNSTON & CHURCH'S Chemistry of Common Life, and MILLER'S Organic Chemistry.]

PHYSIOLOGICAL EFFECTS.—The poison of tobacco, set free by the process either of chewing or smoking, when for the first time it is swept through the system by the blood, powerfully affects the body. Nausea is felt, and the stomach seeks to throw off the offending substance. The brain is inflamed, and headache follows. The motor nerves becoming irritated, giddiness ensues. Thus Nature earnestly protests against the formation of this habit. But, after repeated trials, the system adjusts itself to the new conditions. A "tolerance" of the poison is finally established, and smoking causes none of the former symptoms. Such powerful substances can not, however, be constantly inhaled without producing marked changes. The three great eliminating organs—the lungs, the skin, and the kidneys— throw off a large part of the products, but much remains in the system. When the presence of the poison is constant, and especially when the smoking or chewing is excessive, the disturbance that at first is merely functional, must necessarily, in many cases at least, lead to a chronic derangement.

Probably in this, as in the case of other deleterious articles of diet, the strong and healthy will seem to escape entirely, while the weak and those predisposed to disease will be injured in direct proportion to the extent of the indulgence. Those whose employment leads to active, outdoor work, will show no sign of nicotine poisoning, while the man of sedentary habits will sooner or later be the victim of dyspepsia, sleeplessness, nervousness, paralysis, or other organic difficulties. Even where the user of tobacco himself escapes harm, the law of heredity asserts itself, and the innocent offspring only too often inherit an impaired constitution, and a tendency to nervous complaints.

THE VARIOUS DISTURBANCES produced in different individuals and constitutions by smoking have been summed up by Dr. Richardson as follows: "(a) In the blood, it causes undue fluidity, and change in the red corpuscles; (b) in the stomach, it gives rise to debility, nausea, and vomiting; (c) in the mucous membrane of the mouth, it produces enlargement and soreness of the tonsils—smoker's sore throat—redness, dryness, and occasional peeling of the membrane, and either unnatural firmness and contraction, or sponginess of the gums; and, where the pipe rests on the lips, oftentimes 'epithelial cancer'; (d) in the heart, it causes debility of the organ, and irregular action; (e) in the bronchial surface of the lungs, when that is already irritable, it sustains irritation, and increases the cough; (f) in the organs of sense, it produces dilation of the pupils of the eye, confusion of vision, bright lines, luminous or cobweb specks, and long retention of images on the retina, with analogous symptoms affecting the ear, viz., inability to define sounds clearly, and the occurrence of a sharp, ringing noise like a whistle; (g) in the brain, it impairs the activity of the organ, oppressing it if it be nourished, but soothing it if it be exhausted; (h) it leads to paralysis in the motor and sympathetic nerves, and to over-secretion from the glands which the sympathetic nerves control."

IS TOBACCO A FOOD?—Here, as in the case of alcohol, the reply is a negative one. Tobacco manifests no characteristic of a food. It can not impart to the blood an atom of nutritive matter for building up the body. It does not add to, but rather subtracts from, the total vital force. It confers no potential power upon muscle or brain. It stimulates by cutting off the nervous supply from the extremities and concentrating it upon the centers. But stimulation is not nourishment; it is only a rapid spending of the capital stock. There is no greater error than to mistake the exciting of an organ for its strengthening.

THE INFLUENCE UPON YOUTH.—Here, too, science utters no doubtful voice. Experience asserts only one conviction. Tobacco retards the development of mind and body. [Footnote: Cigarettes are especially injurious from the irritating smoke of the paper covering, taken into the lungs, and also because the poison fumes of the tobacco are more directly inhaled. In case of the cheap cigarettes often smoked by boys the ingredients used are harmful, while one revolts at the thought of the filthy materials, refuse cigar stumps, etc., employed in their manufacture.] The law of nature is that of steady growth. It can not admit of a daily, even though it be merely a functional, disturbance that weakens the digestion, that causes the heart to labor excessively, that prevents the perfect oxidation of the blood, that interferes with the assimilation, and that deranges the nervous system. [Footnote: There is one influence of tobacco that every young man should understand. In many cases, like alcohol, it seems to blunt the sensibilities, and to make its user careless of the rights and feelings of others. This is often noticed in common life. We meet everywhere "devotees of the weed," who, ignoring the fact that tobacco is disagreeable to many persons, think only of the gratification of their selfish appetite. They smoke or chew in any place or company. They permit the cigar fumes to blow into the faces of passers-by. They sit where the wind carries the smoke of their pipes so that others must inhale it. They expectorate upon the floor of cars, hotels, and even private homes. They take no pains to remove the odor that lingers about their person and clothing. They force all who happen to be near, their companions, their fellow-travelers, to inhale the nauseating odor of tobacco. Everything must be sacrificed to the one primal necessity of such persons—a smoke. Now, a young man just beginning life, with his fortune to make, and his success to achieve, can not afford to burden himself with a habit that is costly, that will make his presence offensive to many persons, and that may perhaps render him less sensitive to the best influences and perceptions of manhood.] No one has a right thus to check and disturb continually the regular processes of his physical and mental progress. Hence, the young man (especially if he be of a nervous, sensitive organization) who uses tobacco deliberately diminishes the possible energy with which he might commence the work of life; [Footnote: In the Polytechnic School at Paris, the pupils were divided into two classes—the smokers, and the non-smokers. The latter not only excelled on the entrance examinations, but during the entire course of study. Dr. Decaisne examined thirty-eight boys who smoked, and found twenty-seven of them diseased from nicotine poisoning. So long ago as 1868, in consequence of these results, the Minister of Public Instruction forbade the use of tobacco by the pupils.

Dr. Gihon, medical director of the Naval Academy at Annapolis, in his report for 1881, says: "The most important matter in the health history of the students is that relating to tobacco, and its interdiction is absolutely essential to their future health and usefulness. In this view I have been sustained by my colleagues, and by all sanitarians in civil and military life whose views I have been able to obtain."] while he comes under the bondage of a habit that may become stronger than his will, and under the influence of a narcotic that may beguile his faculties and palsy his strength at the very moment when every power should be awake.

Another peril still lies in the wake of this masterful poison habit. Tobacco causes thirst and depression that only too often and naturally lead to the use of liquor. (See p. 338.)

3. OPIUM.

Opium is the dried juice of the poppy. In Eastern countries, this flower is cultivated in immense fields for the sake of this product. When a cut is made in the poppy head, a tiny tear of milky juice exudes, and hardens. These little drops are gathered and prepared for the market, an acre yielding, it is said, about twenty-five pounds. Throughout the East, opium is generally smoked; but in Western countries laudanum and paregoric (tinctures of opium), and morphine—a powerful alkaloid contained in opium, are generally used. The drug itself is also eaten.

PHYSIOLOGICAL EFFECT.—Opium, in its various forms, acts directly upon the nerves, a small dose quieting pain, and a larger one soothing to sleep. It arouses the brain, and fires the imagination to a wonderful pitch. [Footnote: So far as its effects are concerned, it matters little in what form opium is taken, whether solid as in pills, liquid as in laudanum, or vaporized, as when inhaled from a pipe. The opium slave is characterized by trembling steps, a curved spine, sunken glassy eyes, sallow withered features, and often by contraction of the muscles of the neck and fingers. In the East, when the drug ceases its influence, the opium eater renews it with corrosive sublimate till, finally, this also fails of effect, and he gradually sinks into the grave.] The reaction from this unnatural excitant is correspondingly depressing; and the melancholy, the "overwhelming horror" that ensues, calls for a renewal of the stimulus. The dose must be gradually increased to produce the original exhilaration. [Footnote: The victim of opium is bound to a drug from which he derives no benefits, but which slowly deprives him of health and happiness, finally to end in idiocy or premature death. Whatever the victim's condition or surroundings may be, the opium must be taken at certain times with inexorable regularity. The liquor or tobacco user can, for a time, go without the use of these agents, and no regular hours are necessary. During sickness, and more especially during the eruptive fevers, he does not desire tobacco or liquor. The opium eater has no such reprieves; his dose must be taken, and, in painful complications affecting the stomach, a large increase is demanded to sustain the system. If, in forming the habit, two doses are taken each day, the victim is obliged to maintain that number. It is the unceasing, everlasting slavery of regularity that humiliates opium eaters by a sense of their own weakness.—HUBBARD on The Opium Habit and Alcoholism.] The seductive nature of the drug leads the unfortunate victim on step by step until he finds himself fast bound in the fetters of one of the most tyrannical habits known to man.

To go on is to wreck all one's powers—physical and mental. To throw off the habit, requires a determination that but few possess. Yet even when the custom is broken, the system is long in recovering from the shock. There seems to be a failure of every organ. The digestion is weakened, food is no longer relished, the muscles waste, the skin shrivels, the nervous centers are paralyzed, and a premature old age comes on apace. De Quincey, four months after he had cast away the opium bonds, wrote, "Think of me as one still agitated, writhing, throbbing, palpitating, shattered."

No person can be too careful in the use of laudanum, paregoric, and morphine. They may be taken on a physician's prescription as a sedative from racking pain, [Footnote: Many persons learn to inject morphine beneath the skin by means of a "hypodermic syringe." The operation is painless, and seems an innocent one. It throws the narcotic directly into the circulation, and relief from pain is often almost instantaneous. But the danger of forming the opium habit is not lessened, and the effect of using the drug in this form for a long time is just as injurious as opium smoking itself. Opium in one of its forms enters largely into the composition of many of the painkillers and patent medicines so freely advertised for domestic use in the present day, and for this reason the greatest care is needed in having recourse to any of them. Taken, perhaps, in the first instance, to alleviate the torments of neuralgia or toothache, what proves to be a remedy soon becomes a source of gratification, which the wretchedness that follows on abstinence renders increasingly difficult to lay aside. The same must be said of bromide of potassium and hydrate of chloral, frequently resorted to as a remedy for sleeplessness: the system quickly becomes habituated to their use, and they can then be relinquished only at the cost of much suffering. Indeed, the last mentioned of these two drugs obtains over the mind a power which may be compared to that of opium, and is, moreover, liable to occasion the disease known as chloralism, by which the system ultimately becomes a complete wreck. Looking at the whole question of the medicinal use of narcotics, it is perhaps not too much to say that they should never be employed except with the authority of a competent medical adviser.— Chambers's Journal.] but if followed up for any length of time, the powerful habit may be formed ere one is aware. Then comes the opium eater's grave, or the opium eater's struggle for life!

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse