|
The regenerative furnace is the greatest single invention of Charles William Siemens. Owing to the large demand for steel for engineering operations, both at home and abroad, it proved exceedingly remunerative. Extensive works for the application of the process were erected at Landore, where Siemens prosecuted his experiments on the subject with unfailing ardour, and, among other things, succeeded in making a basic brick for the lining of his furnaces which withstood the intense heat fairly well.
The process in detail consists in freeing the bath of melted pig-iron from excess of carbon by adding broken lumps of pure hematite or magnetite iron ore. This causes a violent boiling, which is kept up until the metal becomes soft enough, when it is allowed to stand to let the metal clear from the slag which floats in scum upon the top. The separation of the slag and iron is facilitated by throwing in some lime from time to time. Spiegel, or specular iron, is then added; about 1 per cent. more than in the scrap process. From 20 to 24 cwt. of ore are used in a 5-ton charge, and about half the metal is reduced and turned into steel, so that the yield in ingots is from 1 to 2 per cent. more than the weight of pig and spiegel iron in the charge. The consumption of coal is rather larger than in the scrap process, and is from 14 to 15 cwt. per ton of steel. The two processes of Siemens and Martin are often combined, both scrap and ore being used in the same charge, the latter being valuable as a tempering material.
At present there are several large works engaged in manufacturing the Siemens-Martin steel in England, namely, the Landore, the Parkhead Forge, those of the Steel Company of Scotland, of Messrs. Vickers & Co., Sheffield, and others. These produced no less than 340,000 tons of steel during the year 1881, and two years later the total output had risen to half a million tons. In 1876 the British Admiralty built two iron-clads, the Mercury and Iris, of Siemens-Martin steel, and the experiment proved so satisfactory, that this material only is now used in the Royal dockyards for the construction of hulls and boilers. Moreover, the use of it is gradually extending in the mercantile marine. Contemporaneous with his development of the open-hearth process, William Siemens introduced the rotary furnace for producing wrought-iron direct from the ore without the need of puddling.
The fervent heat of the Siemens furnace led the inventor to devise a novel means of measuring high temperatures, which illustrates the value of a broad scientific training to the inventor, and the happy manner in which William Siemens, above all others, turned his varied knowledge to account, and brought the facts and resources of one science to bear upon another. As early as 1860, while engaged in testing the conductor of the Malta to Alexandria telegraph cable, then in course of manufacture, he was struck by the increase of resistance in metallic wires occasioned by a rise of temperature, and the following year he devised a thermometer based on the fact which he exhibited before the British Association at Manchester. Mathiessen and others have since enunciated the law according to which this rise of resistance varies with rise of temperature; and Siemens has further perfected his apparatus, and applied it as a pyrometer to the measurement of furnace fires. It forms in reality an electric thermometer, which will indicate the temperature of an inaccessible spot. A coil of platinum or platinum-alloy wire is enclosed in a suitable fire-proof case and put into the furnace of which the temperature is wanted. Connecting wires, properly protected, lend from the coil to a differential voltameter, so that, by means of the current from a battery circulating in the system, the electric resistance of the coil in the furnace can be determined at any moment. Since this resistance depends on the temperature of the furnace, the temperature call be found from the resistance observed. The instrument formed the subject of the Bakerian lecture for the year 1871.
Siemens's researches on this subject, as published in the JOURNAL OF THE SOCIETY OF TELEGRAPH ENGINEERS (Vol. I., p. 123, and Vol. III., p. 297), included a set of curves graphically representing the relation between temperature and electrical resistance in the case of various metals.
The electric pyrometer, which is perhaps the most elegant and original of all William Siemens's inventions, is also the link which connects his electrical with his metallurgical researches. His invention ran in two great grooves, one based upon the science of heat, the other based upon the science of electricity; and the electric thermometer was, as it were, a delicate cross-coupling which connected both. Siemens might have been two men, if we are to judge by the work he did; and either half of the twin-career he led would of itself suffice to make an eminent reputation.
The success of his metallurgical enterprise no doubt reacted on his telegraphic business. The making and laying of the Malta to Alexandria cable gave rise to researches on the resistance and electrification of insulating materials under pressure, which formed the subject of a paper read before the British Association in 1863. The effect of pressure up to 300 atmospheres was observed, and the fact elicited that the inductive capacity of gutta-percha is not affected by increased pressure, whereas that of india-rubber is diminished. The electrical tests employed during the construction of the Malta and Alexandria cable, and the insulation and protection of submarine cables, also formed the subject of a paper which was read before the Institution of Civil Engineers in 1862.
It is always interesting to trace the necessity which directly or indirectly was the parent of a particular invention; and in the great importance of an accurate record of the sea-depth in which a cable is being laid, together with the tedious and troublesome character of ordinary sounding by the lead-line, especially when a ship is actually paying out cable, we may find the requirements which led to the invention of the 'bathometer,' an instrument designed to indicate the depth of water over which a vessel is passing without submerging a line. The instrument was based on the ingenious idea that the attractive power of the earth on a body in the ship must depend on the depth of water interposed between it and the sea bottom; being less as the layer of water was thicker, owing to the lighter character of water as compared with the denser land. Siemens endeavoured to render this difference visible by means of mercury contained in a chamber having a bottom extremely sensitive to the pressure of the mercury upon it, and resembling in some respects the vacuous chamber of an aneroid barometer. Just as the latter instrument indicates the pressure of the atmosphere above it, so the bathometer was intended to show the pull of the earth below it; and experiment proved, we believe, that for every 1,000 fathoms of sea-water below the ship, the total gravity of the mercury was reduced by 1/3200 part. The bathometer, or attraction-meter, was brought out in 1876, and exhibited at the Loan Exhibition in South Kensington. The elastic bottom of the mercury chamber was supported by volute springs which, always having the same tension, caused a portion of the mercury to rise or fall in a spiral tube of glass, according to the variations of the earth's attraction. The whole was kept at an even temperature, and correction was made for barometric influence. Though of high scientific interest, the apparatus appears to have failed at the time from its very sensitiveness; the waves on the surface of the sea having a greater disturbing action on its readings than the change of depth. Siemens took a great interest in this very original machine, and also devised a form applicable to the measurement of heights. Although he laid the subject aside for some years, he ultimately took it up again, in hopes of producing a practical apparatus which would be of immediate service in the cable expeditions of the s.s. Faraday.
This admirable cable steamer of 5,000 tons register was built for Messrs. Siemens Brothers by Messrs. Mitchell & Co., at Newcastle. The designs were mainly inspired by Siemens himself; and after the Hooper, now the Silvertown, she was the second ship expressly built for cable purposes. All the latest improvements that electric science and naval engineering could suggest were in her united. With a length of 360 feet, a width of 52 feet, and a depth of 36 feet in the hold, she was fitted with a rudder at each end, either of which could be locked when desired, and the other brought into play. Two screw propellers, actuated by a pair of compound engines, were the means of driving the vessel, and they were placed at a slight angle to each other, so that when the engines were worked in opposite directions the Faraday could turn completely round in her own length. Moreover, as the ship could steam forwards or backwards with equal ease, it became unnecessary to pass the cable forward before hauling it in, if a fault were discovered in the part submerged: the motion of the ship had only to be reversed, the stern rudder fixed, and the bow rudder turned, while a small engine was employed to haul the cable back over the stern drum, which had been used a few minutes before to pay it out.
The first expedition of the Faraday was the laying of the Direct United States cable in the winter of 1874 a work which, though interrupted by stormy weather, was resumed and completed in the summer of 1875. She has been engaged in laying several Atlantic cables since, and has been fitted with the electric light, a resource which has proved of the utmost service, not only in facilitating the night operations of paying-out, but in guarding the ship from collision with icebergs in foggy weather off the North American coast.
Mention of the electric light brings us to an important act of the inventor, which, though done on behalf of his brother Werner, was pregnant with great consequences. This was his announcement before a meeting of the Royal Society, held on February 14, 1867, of the discovery of the principle of reinforcing the field magnetism of magneto-electric generators by part or the whole of the current generated in the revolving armature—a principle which has been applied in the dynamo-electric machines, now so much used for producing electric light and effecting the transmission of power to a distance by means of the electric current. By a curious coincidence the same principle was enunciated by Sir Charles Wheatstone at the very same meeting; while a few months previously Mr. S. A. Varley had lodged an application for a British patent, in which the same idea was set forth. The claims of these three inventors to priority in the discovery were, however, anticipated by at least one other investigator, Herr Soren Hjorth, believed to be a Dane by birth, and still remembered by a few living electricians, though forgotten by the scientific world at large, until his neglected specification was unexpectedly dug out of the musty archives of the British Patent Office and brought into the light.
The announcement of Siemens and Wheatstone came at an apter time than Hjorth's, and was more conspicuously made. Above all, in the affluent and enterprising hands of the brothers Siemens, it was not suffered to lie sterile, and the Siemens dynamo-electric machine was its offspring. This dynamo, as is well known, differs from those of Gramme and Paccinotti chiefly in the longitudinal winding of the armature, and it is unnecessary to describe it here. It has been adapted by its inventors to all kinds of electrical work, electrotyping, telegraphy, electric lighting, and the propulsion of vehicles.
The first electric tramway run at Berlin in 1879 was followed by another at Dusseldorf in 1880, and a third at Paris in 1881. With all of these the name of Werner Siemens was chiefly associated; but William Siemens had also taken up the matter, and established at his country house of Sherwood, near Tunbridge Wells, an arrangement of dynamos and water-wheel, by which the power of a neighbouring stream was made to light the house, cut chaff turn washing-machines, and perform other household duties. More recently the construction of the electric railway from Portrush to Bushmills, at the Giant's Causeway, engaged his attention; and this, the first work of its kind in the United Kingdom, and to all appearance the pioneer of many similar lines, was one of his very last undertakings.
In the recent development of electric lighting, William Siemens, whose fame had been steadily growing, was a recognised leader, although he himself made no great discoveries therein. As a public man and a manufacturer of great resources his influence in assisting the introduction of the light has been immense. The number of Siemens machines and Siemens electric lamps, together with measuring instruments such as the Siemens electro-dynamometer, which has been supplied to different parts of the world by the firm of which he was the head, is very considerable, and probably exceeds that of any other manufacturer, at least in this country.
Employing a staff of skilful assistants to develop many of his ideas, Dr. Siemens was able to produce a great variety of electrical instruments for measuring and other auxiliary purposes, all of which bear the name of his firm, and have proved exceedingly useful in a practical sense.
Among the most interesting of Siemens's investigations were his experiments on the influence of the electric light in promoting the growth of plants, carried out during the winter of 1880 in the greenhouses of Sherwood. These experiments showed that plants do not require a period of rest, but continue to grow if light and other necessaries are supplied to them. Siemens enhanced the daylight, and, as it were, prolonged it through the night by means of arc lamps, with the result of forcing excellent fruit and flowers to their maturity before the natural time in this climate.
While Siemens was testing the chemical and life-promoting influence of the electric arc light, he was also occupied in trying its temperature and heating power with an 'electric furnace,' consisting of a plumbago crucible having two carbon electrodes entering it in such a manner that the voltaic arc could be produced within it. He succeeded in fusing a variety of refractory metals in a comparatively short time: thus, a pound of broken files was melted in a cold crucible in thirteen minutes, a result which is not surprising when we consider that the temperature of the voltaic arc, as measured by Siemens and Rosetti, is between 2,000 and 3,000 Deg. Centigrade, or about one-third that of the probable temperature of the sun. Sir Humphry Davy was the first to observe the extraordinary fusing power of the voltaic arc, but Siemens first applied it to a practical purpose in his electric furnace.
Always ready to turn his inventive genius in any direction, the introduction of the electric light, which had given an impetus to improvement in the methods of utilising gas, led him to design a regenerative gas lamp, which is now employed on a small scale in this country, either for street lighting or in class-rooms and public halls. In this burner, as in the regenerative furnace, the products of combustion are made to warm up the air and gas which go to feed the flame, and the effect is a full and brilliant light with some economy of fuel. The use of coal-gas for heating purposes was another subject which he took up with characteristic earnestness, and he advocated for a time the use of gas stoves and fires in preference to those which burn coal, not only on account of their cleanliness and convenience, but on the score of preventing fogs in great cities, by checking the discharge of smoke into the atmosphere. He designed a regenerative gas and coke fireplace, in which the ingoing air was warmed by heat conducted from the back part of the grate; and by practical trials in his own office, calculated the economy of the system. The interest in this question, however, died away after the close of the Smoke Abatement Exhibition; and the experiments of Mr. Aiken, of Edinburgh, showed how futile was the hope that gas fires would prevent fogs altogether. They might indeed ameliorate the noxious character of a fog by checking the discharge of soot into the atmosphere; but Mr. Aiken's experiments showed that particles of gas were in themselves capable of condensing the moisture of the air upon them. The great scheme of Siemens for making London a smokeless city, by manufacturing gas at the coal-pit and leading it in pipes from street to street, would not have rendered it altogether a fogless one, though the coke and gas fires would certainly have reduced the quantity of soot launched into the air. Siemens's scheme was rejected by a Committee of the House of Lords on the somewhat mistaken ground that if the plan were as profitable as Siemens supposed, it would have been put in practice long ago by private enterprise.
From the problem of heating a room, the mind of Siemens also passed to the maintenance of solar fires, and occupied itself with the supply of fuel to the sun. Some physicists have attributed the continuance of solar heat to the contraction of the solar mass, and others to the impact of cometary matter. Imbued with the idea of regeneration, and seeking in nature for that thrift of power which he, as an inventor, had always aimed at, Siemens suggested a hypothesis on which the sun conserves its heat by a circulation of its fuel in space. The elements dissociated in the intense heat of the glowing orb rush into the cooler regions of space, and recombine to stream again towards the sun, where the self-same process is renewed. The hypothesis was a daring one, and evoked a great deal of discussion, to which the author replied with interest, afterwards reprinting the controversy in a volume, ON THE CONSERVATION OF SOLAR ENERGY. Whether true or not—and time will probably decide—the solar hypothesis of Siemens revealed its author in a new light. Hitherto he had been the ingenious inventor, the enterprising man of business, the successful engineer; but now he took a prominent place in the ranks of pure science and speculative philosophy. The remarkable breadth of his mind and the abundance of his energies were also illustrated by the active part he played in public matters connected with the progress of science. His munificent gifts in the cause of education, as much as his achievements in science, had brought him a popular reputation of the best kind; and his public utterances in connection with smoke abatement, the electric light. Electric railways, and other topics of current interest, had rapidly brought him into a foremost place among English scientific men. During the last years of his life, Siemens advanced from the shade of mere professional celebrity into the strong light of public fame.
President of the British Association in 1882, and knighted in 1883, Siemens was a member of numerous learned societies both at home and abroad. In 1854 he became a Member of the Institution of Civil Engineers; and in 1862 he was elected a Fellow of the Royal Society. He was twice President of the Society of Telegraph Engineers and the Institution of Mechanical Engineers, besides being a Member of Council of the Institution of Civil Engineers, and a Vice-President of the Royal Institution. The Society of Arts, as we have already seen, was the first to honour him in the country of his adoption, by awarding him a gold medal for his regenerative condenser in 1850; and in 1883 he became its chairman. Many honours were conferred upon him in the course of his career—the Telford prize in 1853, gold medals at the various great Exhibitions, including that of Paris in 1881, and a GRAND PRIX at the earlier Paris Exhibition of 1867 for his regenerative furnace. In 1874 he received the Royal Albert Medal for his researches on heat, and in 1875 the Bessemer medal of the Iron and Steel Institute. Moreover, a few days before his death, the Council of the Institution of Civil Engineers awarded him the Howard Quinquennial prize for his improvements in the manufacture of iron and steel. At the request of his widow, it took the form of a bronze copy of the 'Mourners,' a piece of statuary by J. G. Lough, originally exhibited at the Great Exhibition of 1851, in the Crystal Palace. In 1869 the University of Oxford conferred upon him the high distinction of D.C.L. (Doctor of Civil Law); and besides being a member of several foreign societies, he was a Dignitario of the Brazilian Order of the Rose, and Chevalier of the Legion of Honour.
Rich in honours and the appreciation of his contemporaries, in the prime of his working power and influence for good, and at the very climax of his career, Sir William Siemens was called away. The news of his death came with a shock of surprise, for hardly any one knew he had been ill. He died on the evening of Monday, November 19, 1883, at nine o'clock. A fortnight before, while returning from a managers' meeting of the Royal Institution, in company with his friend Sir Frederick Bramwell, he tripped upon the kerbstone of the pavement, after crossing Hamilton Place, Piccadilly, and fell heavily to the ground, with his left arm under him. Though a good deal shaken by the fall, he attended at his office in Queen Anne's Gate, Westminster, the next and for several following days; but the exertion proved too much for him, and almost for the first time in his busy life he was compelled to lay up. On his last visit to the office he was engaged most of the time in dictating to his private secretary a large portion of the address which he intended to deliver as Chairman of the Council of the Society of Arts. This was on Thursday, November 8, and the following Saturday he awoke early in the morning with an acute pain about the heart and a sense of coldness in the lower limbs. Hot baths and friction removed the pain, from which he did not suffer much afterwards. A slight congestion of the left lung was also relieved; and Sir William had so far recovered that he could leave his room. On Saturday, the 17th, he was to have gone for a change of air to his country seat at Sherwood; but on Wednesday, the 14th, he appears to have caught a chill which affected his lungs, for that night he was seized with a shortness of breath and a difficulty in breathing. Though not actually confined to bed, he never left his room again. On the last day, and within four hours of his death, we are told, his two medical attendants, after consultation, spoke so hopefully of the future, that no one was prepared for the sudden end which was then so near. In the evening, while he was sitting in an arm-chair, very quiet and calm, a change suddenly came over his face, and he died like one who falls asleep. Heart disease of long standing, aggravated by the fall, was the immediate cause; but the opinion has been expressed by one who knew him well, that Siemens 'literally immolated himself on the shrine of labour.' At any rate he did not spare himself, and his intense devotion to his work proved fatal.
Every day was a busy one with Siemens. His secretary was with him in his residence by nine o'clock nearly every morning, except on Sundays, assisting him in work for one society or another, the correction of proofs, or the dictation of letters giving official or scientific advice, and the preparation of lectures or patent specifications. Later on, he hurried across the Park 'almost at racing speed,' to his offices at Westminster, where the business of the Landore-Siemens Steel Company and the Electrical Works of Messrs. Siemens Brothers and Company was transacted. As chairman of these large undertakings, and principal inventor of the processes and systems carried out by them, he had a hundred things to attend to in connection with them, visitors to see, and inquiries to answer. In the afternoon and evenings he was generally engaged at council meetings of the learned societies, or directory meetings of the companies in which he was interested. He was a man who took little or no leisure, and though he never appeared to over-exert himself, few men could have withstood the strain so long.
Siemens was buried on Monday, November 26, in Kensal Green Cemetery. The interment was preceded by a funeral service held in Westminster Abbey, and attended by representatives of the numerous learned societies of which he had been a conspicuous member, by many leading men in all branches of science, and also by a large body of other friends and admirers, who thus united in doing honour to his memory, and showing their sense of the loss which all classes had sustained by his death.
Siemens was above all things a 'labourer.' Unhasting, unresting labour was the rule of his life; and the only relaxation, not to say recreation, which he seems to have allowed himself was a change of task or the calls of sleep. This natural activity was partly due to the spur of his genius, and partly to his energetic spirit. For a man of his temperament science is always holding out new problems to solve and fresh promises of triumph. All he did only revealed more work to be done; and many a scheme lies buried in his grave.
Though Siemens was a man of varied powers, and occasionally gave himself to pure speculation in matters of science, his mind was essentially practical; and it was rather as an engineer than a discoverer that he was great. Inventions are associated with his name, not laws or new phenomena. Standing on the borderland between pure and applied science, his sympathies were yet with the latter; and as the outgoing President of the British Association at Southport, in 1882, he expressed the opinion that 'in the great workshop of nature there are no lines of demarcation to be drawn between the most exalted speculation and common-place practice.' The truth of this is not to be gain-said, but it is the utterance of an engineer who judges the merit of a thing by its utility. He objected to the pursuit of science apart from its application, and held that the man of science does most for his kind who shows the world how to make use of scientific results. Such a view was natural on the part of Siemens, who was himself a living representative of the type in question; but it was not the view of such a man as Faraday or Newton, whose pure aim was to discover truth, well knowing that it would be turned to use thereafter. In Faraday's eyes the new principle was a higher boon than the appliance which was founded upon it.
Tried by his own standard, however, Siemens was a conspicuous benefactor of his fellow-men; and at the time of his decease he had become our leading authority upon applied science. In electricity he was a pioneer of the new advances, and happily lived to obtain at least a Pisgah view of the great future which evidently lies before that pregnant force.
If we look for the secret of Siemens's remarkable success, we shall assuredly find it in an inventive mind, coupled with a strong commercial instinct, and supported by a physical energy which enabled him to labour long and incessantly. It is told that when a mechanical problem was brought to him for solution, he would suggest six ways of overcoming the difficulty, three of which would be impracticable, the others feasible, and one at least successful. From this we gather that his mind was fertile in expedients. The large works which he established are also a proof that, unlike most inventors, he did not lose his interest in an invention, or forsake it for another before it had been brought into the market. On the contrary, he was never satisfied with an invention until it was put into practical operation.
To the ordinary observer, Siemens did not betray any signs of the untiring energy that possessed him. His countenance was usually serene and tranquil, as that of a thinker rather than a man of action; his demeanour was cool and collected; his words few and well-chosen. In his manner, as well as in his works, there was no useless waste of power.
To the young he was kind and sympathetic, hearing, encouraging, advising; a good master, a firm friend. His very presence had a calm and orderly influence on those about him, which when he presided at a Public meeting insensibly introduced a gracious tone. The diffident took heart before him, and the presumptuous were checked. The virtues which accompanied him into public life did not desert him in private. In losing him, we have lost not only a powerful intellect, but a bright example, and an amiable man.
CHAPTER VI. FLEEMING JENKIN.
The late Fleeming Jenkin, Professor of Engineering in Edinburgh University, was remarkable for the versatility of his talent. Known to the world as the inventor of Telpherage, he was an electrician and cable engineer of the first rank, a lucid lecturer, and a good linguist, a skilful critic, a writer and actor of plays, and a clever sketcher. In popular parlance, Jenkin was a dab at everything.
His father, Captain Charles Jenkin, R.N., was the second son of Mr. Charles Jenkin, of Stowting Court, himself a naval officer, who had taken part in the actions with De Grasse. Stowting Court, a small estate some six miles north of Hythe, had been in the family since the year 1633, and was held of the Crown by the feudal service of six men and a constable to defend the sea-way at Sandgate. Certain Jenkins had settled in Kent during the reign of Henry VIII., and claimed to have come from Yorkshire. They bore the arms of Jenkin ap Phillip of St. Melans, who traced his descent from 'Guaith Voeth,' Lord of Cardigan.
While cruising in the West Indies, carrying specie, or chasing buccaneers and slavers, Charles Jenkin, junior, was introduced to the family of a fellow midshipman, son of Mr. Jackson, Custos Rotulorum of Kingston, Jamaica, and fell in love with Henrietta Camilla, the youngest daughter. Mr. Jackson came of a Yorkshire stock, said to be of Scottish origin, and Susan, his wife, was a daughter of [Sir] Colin Campbell, a Greenock merchant, who inherited but never assumed the baronetcy of Auchinbreck. [According to BURKE'S PEERAGE (1889), the title went to another branch.]
Charles Jenkin, senior, died in 1831, leaving his estate so heavily encumbered, through extravagance and high living, that only the mill-farm was saved for John, the heir, an easy-going, unpractical man, with a turn for abortive devices. His brother Charles married soon afterwards, and with the help of his wife's money bought in most of Stowting Court, which, however, yielded him no income until late in life. Charles was a useful officer and an amiable gentleman; but lacking energy and talent, he never rose above the grade of Commander, and was superseded after forty-five years of service. He is represented as a brave, single-minded, and affectionate sailor, who on one occasion saved several men from suffocation by a burning cargo at the risk of his own life. Henrietta Camilla Jackson, his wife, was a woman of a strong and energetic character. Without beauty of countenance, she possessed the art of pleasing, and in default of genius she was endowed with a variety of gifts. She played the harp, sang, and sketched with native art. At seventeen, on hearing Pasta sing in Paris, she sought out the artist and solicited lessons. Pasta, on hearing her sing, encouraged her, and recommended a teacher. She wrote novels, which, however, failed to make their mark. At forty, on losing her voice, she took to playing the piano, practising eight hours a day; and when she was over sixty she began the study of Hebrew.
The only child of this union was Henry Charles Fleeming Jenkin, generally called Fleeming Jenkin, after Admiral Fleeming, one of his father's patrons. He was born on March 25, 1833, in a building of the Government near Dungeness, his father at that time being on the coast-guard service. His versatility was evidently derived from his mother, who, owing to her husband's frequent absence at sea and his weaker character, had the principal share in the boy's earlier training.
Jenkin was fortunate in having an excellent education. His mother took him to the south of Scotland, where, chiefly at Barjarg, she taught him drawing among other things, and allowed him to ride his pony on the moors. He went to school at Jedburgh, and afterwards to the Edinburgh Academy, where he carried off many prizes. Among his schoolfellows were Clerk Maxwell and Peter Guthrie Tait, the friends of his maturer life.
On the retirement of his father the family removed to Frankfort in 1847, partly from motives of economy and partly for the boy's instruction. Here Fleeming and his father spent a pleasant time together, sketching old castles, and observing the customs of the peasantry. Fleeming was precocious, and at thirteen had finished a romance of three hundred lines in heroic measure, a Scotch novel, and innumerable poetical fragments, none of which are now extant. He learned German in Frankfort; and on the family migrating to Paris the following year, he studied French and mathematics under a certain M. Deluc. While here, Fleeming witnessed the outbreak of the Revolution of 1848, and heard the first shot. In a letter written to an old schoolfellow while the sound still rang in his ears, and his hand trembled with excitement, he gives a boyish account of the circumstances. The family were living in the Rue Caumartin, and on the evening of February 23 he and his father were taking a walk along the boulevards, which were illuminated for joy at the resignation of M. Guizot. They passed the residence of the Foreign Minister, which was guarded with troops, and further on encountered a band of rioters marching along the street with torches, and singing the Marseillaise. After them came a rabble of men and women of all sorts, rich and poor, some of them armed with sticks and sabres. They turned back with these, the boy delighted with the spectacle, 'I remarked to papa' (he writes),'I would not have missed the scene for anything. I might never see such a splendid one; when PONG went one shot. Every face went pale: R—R—R—R—R went the whole detachment [of troops], and the whole crowd of gentlemen and ladies turned and cut. Such a scene!—-ladies, gentlemen, and vagabonds went sprawling in the mud, not shot but tripped up, and those that went down could not rise—they were trampled over.... I ran a short time straight on and did not fall, then turned down a side street, ran fifty yards, and felt tolerably safe; looked for papa; did not see him; so walked on quickly, giving the news as I went.'
Next day, while with his father in the Place de la Concorde, which was filled with troops, the gates of the Tuileries Garden were suddenly flung open, and out galloped a troop of cuirassiers, in the midst of whom was an open carriage containing the king and queen, who had abdicated. Then came the sacking of the Tuileries, the people mounting a cannon on the roof, and firing blank cartridges to testify their joy. 'It was a sight to see a palace sacked' (wrote the boy), 'and armed vagabonds firing out of the windows, and throwing shirts, papers, and dresses of all kinds out.... They are not rogues, the French; they are not stealing, burning, or doing much harm.' [MEMOIR OF FLEEMING JENKIN, by R. L. Stevenson.]
The Revolution obliged the Jenkins to leave Paris, and they proceeded to Genoa, where they experienced another, and Mrs. Jenkin, with her son and sister-in-law, had to seek the protection of a British vessel in the harbour, leaving their house stored with the property of their friends, and guarded by the Union Jack and Captain Jenkin.
At Genoa, Fleeming attended the University, and was its first Protestant student. Professor Bancalari was the professor of natural philosophy, and lectured on electro-magnetism, his physical laboratory being the best in Italy. Jenkin took the degree of M.A. with first-class honours, his special subject having been electro-magnetism. The questions in the examinations were put in Latin, and answered in Italian. Fleeming also attended an Art school in the city, and gained a silver medal for a drawing from one of Raphael's cartoons. His holidays were spent in sketching, and his evenings in learning to play the piano; or, when permissible, at the theatre or opera-house; for ever since hearing Rachel recite the Marseillaise at the Theatre Francaise, he had conceived a taste for acting.
In 1850 Fleeming spent some time in a Genoese locomotive shop under Mr. Philip Taylor, of Marseilles; but on the death of his Aunt Anna, who lived with them, Captain Jenkin took his family to England, and settled in Manchester, where the lad, in 1851, was apprenticed to mechanical engineering at the works of Messrs. Fairbairn, and from half-past eight in the morning till six at night had, as he says, 'to file and chip vigorously, in a moleskin suit, and infernally dirty.' At home he pursued his studies, and was for a time engaged with Dr. Bell in working out a geometrical method of arriving at the proportions of Greek architecture. His stay amidst the smoke and bustle of Manchester, though in striking contrast to his life in Genoa, was on the whole agreeable. He liked his work, had the good spirits of youth, and made some pleasant friends, one of them the authoress, Mrs. Gaskell. Even as a boy he was disputatious, and his mother tells of his having overcome a Consul at Genoa in a political discussion when he was only sixteen, 'simply from being well-informed on the subject, and honest. He is as true as steel,' she writes, 'and for no one will he bend right or left... Do not fancy him a Bobadil; he is only a very true, candid boy. I am so glad he remains in all respects but information a great child.'
On leaving Fairbairn's he was engaged for a time on a survey for the proposed Lukmanier Railway, in Switzerland, and in 1856 he entered the engineering works of Mr. Penn, at Greenwich, as a draughtsman, and was occupied on the plans of a vessel designed for the Crimean war. He did not care for his berth, and complained of its late hours, his rough comrades, with whom he had to be 'as little like himself as possible,' and his humble lodgings, 'across a dirty green and through some half-built streets of two-storied houses.... Luckily,' he adds, 'I am fond of my profession, or I could not stand this life.' There was probably no real hardship in his present situation, and thousands of young engineers go through the like experience at the outset of their career without a murmur,' and even with enjoyment; but Jenkin had been his mother's pet until then, with a girl's delicate training, and probably felt the change from home more keenly on that account. At night he read engineering and mathematics, or Carlyle and the poets, and cheered his drooping spirits with frequent trips to London to see his mother.
Another social pleasure was his visits to the house of Mr. Alfred Austin, a barrister, who became permanent secretary to Her Majesty's Office of Works and Public Buildings, and retired in 1868 with the title of C.B. His wife, Eliza Barron, was the youngest daughter of Mr. E. Barron, a gentleman of Norwich, the son of a rich saddler, or leather-seller, in the Borough, who, when a child, had been patted on the head, in his father's shop, by Dr. Johnson, while canvassing for Mr. Thrale. Jenkin had been introduced to the Austins by a letter from Mrs. Gaskell, and was charmed with the atmosphere of their choice home, where intellectual conversation was happily united with kind and courteous manners, without any pretence or affectation. 'Each of the Austins,' says Mr. Stevenson, in his memoir of Jenkin, to which we are much indebted, 'was full of high spirits; each practised something of the same repression; no sharp word was uttered in the house. The same point of honour ruled them: a guest was sacred, and stood within the pale from criticism.' In short, the Austins were truly hospitable and cultured, not merely so in form and appearance. It was a rare privilege and preservative for a solitary young man in Jenkin's position to have the entry into such elevating society, and he appreciated his good fortune.
Annie Austin, their only child, had been highly educated, and knew Greek among other things. Though Jenkin loved and admired her parents, he did not at first care for Annie, who, on her part, thought him vain, and by no means good-looking. Mr. Stevenson hints that she vanquished his stubborn heart by correcting a 'false quantity' of his one day, for he was the man to reflect over a correction, and 'admire the castigator.' Be this as it may, Jenkin by degrees fell deeply in love with her.
He was poor and nameless, and this made him diffident; but the liking of her parents for him gave him hope. Moreover, he had entered the service of Messrs. Liddell and Gordon, who were engaged in the new work of submarine telegraphy, which satisfied his aspirations, and promised him a successful career. With this new-born confidence in his future, he solicited the Austins for leave to court their daughter, and it was not withheld. Mrs. Austin consented freely, and Mr. Austin only reserved the right to inquire into his character. Neither of them mentioned his income or prospects, and Jenkin, overcome by their disinterestedness, exclaimed in one of his letters, 'Are these people the same as other people?' Thus permitted, he addressed himself to Annie, and was nearly rejected for his pains. Miss Austin seems to have resented his courtship of her parents first; but the mother's favour, and his own spirited behaviour, saved him, and won her consent.
Then followed one of the happiest epochs in Jenkin's life. After leaving Penn's he worked at railway engineering for a time under Messrs. Liddell and Gordon; and, in 1857, became engineer to Messrs. R. S. Newall & Co., of Gateshead, who shared the work of making the first Atlantic cable with Messrs. Glass, Elliott & Co., of Greenwich. Jenkin was busy designing and fitting up machinery for cableships, and making electrical experiments. 'I am half crazy with work,' he wrote to his betrothed; 'I like it though: it's like a good ball, the excitement carries you through.' Again he wrote, 'My profession gives me all the excitement and interest I ever hope for.'... 'I am at the works till ten, and sometimes till eleven. But I have a nice office to sit in, with a fire to myself, and bright brass scientific instruments all round me, and books to read, and experiments to make, and enjoy myself amazingly. I find the study of electricity so entertaining that I am apt to neglect my other work.'... 'What shall I compare them to,' he writes of some electrical experiments, 'a new song? or a Greek play?' In the spring of 1855 he was fitting out the s.s. Elba, at Birkenhead, for his first telegraph cruise. It appears that in 1855 Mr. Henry Brett attempted to lay a cable across the Mediterranean between Cape Spartivento, in the south of Sardinia, and a point near Bona, on the coast of Algeria. It was a gutta-percha cable of six wires or conductors, and manufactured by Messrs. Glass & Elliott, of Greenwich—a firm which afterwards combined with the Gutta-Percha Company, and became the existing Telegraph Construction and Maintenance Company. Mr. Brett laid the cable from the Result, a sailing ship in tow, instead of a more manageable steamer; and, meeting with 600 fathoms of water when twenty-five miles from land, the cable ran out so fast that a tangled skein came up out of the hold, and the line had to be severed. Having only 150 miles on board to span the whole distance of 140 miles, he grappled the lost cable near the shore, raised it, and 'under-run' or passed it over the ship, for some twenty miles, then cut it, leaving the seaward end on the bottom. He then spliced the ship's cable to the shoreward end and resumed his paying-out; but after seventy miles in all were laid, another rapid rush of cable took place, and Mr. Brett was obliged to cut and abandon the line.
Another attempt was made the following year, but with no better success. Mr. Brett then tried to lay a three-wire cable from the steamer Dutchman, but owing to the deep water—in some places 1500 fathoms—its egress was so rapid, that when he came to a few miles from Galita, his destination on the Algerian coast, he had not enough cable to reach the land. He therefore telegraphed to London for more cable to be made and sent out, while the ship remained there holding to the end. For five days he succeeded in doing so, sending and receiving messages; but heavy weather came on, and the cable parted, having, it is said, been chafed through by rubbing on the bottom. After that Mr. Brett went home.
It was to recover the lost cable of these expeditions that the Elba was got ready for sea. Jenkin had fitted her out the year before for laying the Cagliari to Malta and Corfu cables; but on this occasion she was better equipped. She had a new machine for picking up the cable, and a sheave or pulley at the bows for it to run over, both designed by Jenkin, together with a variety of wooden buoys, ropes, and chains. Mr. Liddell, assisted by Mr. F. C. Webb and Fleeming Jenkin, were in charge of the expedition. The latter had nothing to do with the electrical work, his care being the deck machinery for raising the cable; but it entailed a good deal of responsibility, which was flattering and agreeable to a young man of his parts.
'I own I like responsibility,' he wrote to Miss Austin, while fitting up the vessel; 'it flatters one; and then, your father might say, I have more to gain than lose. Moreover, I do like this bloodless, painless combat with wood and iron, forcing the stubborn rascals to do my will, licking the clumsy cubs into an active shape, seeing the child of to-day's thought working to-morrow in full vigour at his appointed task.' Another letter, dated May 17, gives a picture of the start. 'Not a sailor will join us till the last moment; and then, just as the ship forges ahead through the narrow pass, beds and baggage fly on board, the men, half tipsy, clutch at the rigging, the captain swears, the women scream and sob, the crowd cheer and laugh, while one or two pretty little girls stand still and cry outright, regardless of all eyes.'
The Elba arrived at Bona on June 3, and Jenkin landed at Fort Genova, on Cape Hamrah, where some Arabs were building a land line. 'It was a strange scene,' he writes, 'far more novel than I had imagined; the high, steep bank covered with rich, spicy vegetation, of which I hardly knew one plant. The dwarf palm, with fan-like leaves, growing about two feet high, forms the staple verdure.' After dining in Fort Genova, he had nothing to do but watch the sailors ordering the Arabs about under the 'generic term "Johnny."' He began to tire of the scene, although, as he confesses, he had willingly paid more money for less strange and lovely sights. Jenkin was not a dreamer; he disliked being idle, and if he had had a pencil he would have amused himself in sketching what he saw. That his eyes were busy is evident from the particulars given in his letter, where he notes the yellow thistles and 'Scotch-looking gowans' which grow there, along with the cistus and the fig-tree.
They left Bona on June 5, and, after calling at Cagliari and Chia, arrived at Cape Spartivento on the morning of June 8. The coast here is a low range of heathy hills, with brilliant green bushes and marshy pools. Mr. Webb remarks that its reputation for fever was so bad as to cause Italian men-of-war to sheer off in passing by. Jenkin suffered a little from malaria, but of a different origin. 'A number of the SATURDAY REVIEW here,' he writes; 'it reads so hot and feverish, so tomb-like and unhealthy, in the midst of dear Nature's hills and sea, with good wholesome work to do.'
There were several pieces of submerged cable to lift, two with their ends on shore, and one or two lying out at sea. Next day operations were begun on the shore end, which had become buried under the sand, and could not be raised without grappling. After attempts to free the cable from the sand in small boats, the Elba came up to help, and anchored in shallow water about sunset. Curiously enough, the anchor happened to hook, and so discover the cable, which was thereupon grappled, cut, and the sea end brought on board over the bow sheave. After being passed six times round the picking-up drum it was led into the hold, and the Elba slowly forged ahead, hauling in the cable from the bottom as she proceeded. At half-past nine she anchored for the night some distance from the shore, and at three next morning resumed her picking up. 'With a small delay for one or two improvements I had seen to be necessary last night,' writes Jenkin, 'the engine started, and since that time I do not think there has been half an hour's stoppage. A rope to splice, a block to change, a wheel to oil, an old rusted anchor to disengage from the cable, which brought it up—these have been our only obstructions. Sixty, seventy, eighty, a hundred, a hundred and twenty revolutions at last my little engine tears away. The even black rope comes straight out of the blue, heaving water, passes slowly round an open-hearted, good-tempered-looking pulley, five feet in diameter, aft past a vicious nipper, to bring all up should anything go wrong, through a gentle guide on to a huge bluff drum, who wraps him round his body, and says, "Come you must," as plain as drum can speak; the chattering pauls say, "I've got him, I've got him; he can't come back," whilst black cable, much slacker and easier in mind and body, is taken by a slim V-pulley and passed down into the huge hold, where half a dozen men put him comfortably to bed after his exertion in rising from his long bath.
'I am very glad I am here, for my machines are my own children, and I look on their little failings with a parent's eye, and lead them into the path of duty with gentleness and firmness. I am naturally in good spirits, but keep very quiet, for misfortunes may arise at any instant; moreover, to-morrow my paying-out apparatus will be wanted should all go well, and that will be another nervous operation. Fifteen miles are safely in, but no one knows better than I do that nothing is done till all is done.'
JUNE 11.—'It would amuse you to see how cool (in head) and jolly everybody is. A testy word now and then shows the nerves are strained a little, but every one laughs and makes his little jokes as if it were all in fun....I enjoy it very much.'
JUNE 13, SUNDAY.—'It now (at 10.30) blows a pretty stiff gale, and the sea has also risen, and the Elba's bows rise and fall about nine feet. We make twelve pitches to the minute, and the poor cable must feel very sea-sick by this time. We are quite unable to do anything, and continue riding at anchor in one thousand fathoms, the engines going constantly, so as to keep the ship's bows close up to the cable, which by this means hangs nearly vertical, and sustains no strain but that caused by its own weight and the pitching of the vessel. We were all up at four, but the weather entirely forbade work for to-day; so some went to bed, and most lay down, making up our lee-way, as we nautically term our loss of sleep. I must say Liddell is a fine fellow, and keeps his patience and his temper wonderfully; and yet how he does fret and fume about trifles at home!'
JUNE 16.—'By some odd chance a TIMES of June 7 has found its way on board through the agency of a wretched old peasant who watches the end of the line here. A long account of breakages in the Atlantic trial trip. To-night we grapple for the heavy cable, eight tons to the mile. I long to have a tug at him; he may puzzle me; and though misfortunes, or rather difficulties, are a bore at the time, life, when working with cables, is tame without them.—2 p.m. Hurrah! he is hooked—the big fellow—almost at the first cast. He hangs under our bows, looking so huge and imposing that I could find it in my heart to be afraid of him.'
JUNE 17.—'We went to a little bay called Chia, where a fresh-water stream falls into the sea, and took in water. This is rather a long operation, so I went up the valley with Mr. Liddell. The coast here consists of rocky mountains 800 to 1000 feet high, covered with shrubs of a brilliant green. On landing, our first amusement was watching the hundreds of large fish who lazily swam in shoals about the river. The big canes on the further side hold numberless tortoises, we are told, but see none, for just now they prefer taking a siesta. A little further on, and what is this with large pink flowers in such abundance?—the oleander in full flower! At first I fear to pluck them, thinking they must be cultivated and valuable; but soon the banks show a long line of thick tall shrubs, one mass of glorious pink and green, set there in a little valley, whose rocks gleam out blue and purple colours, such as pre-Raphaelites only dare attempt, shining out hard and weird-like amongst the clumps of castor-oil plants, cistus, arbor-vitae, and many other evergreens, whose names, alas! I know not; the cistus is brown now, the rest all deep and brilliant green. Large herds of cattle browse on the baked deposit at the foot of these large crags. One or two half-savage herdsmen in sheepskin kilts, etc., ask for cigars; partridges whirr up on either side of us; pigeons coo and nightingales sing amongst the blooming oleander. We get six sheep, and many fowls too, from the priest of the small village, and then run back to Spartivento and make preparations for the morning.'
JUNE 18.—'The short length (of the big-cable) we have picked up was covered at places with beautiful sprays of coral, twisted and twined with shells of those small fairy animals we saw in the aquarium at home. Poor little things! they died at once, with their little bells and delicate bright tints.'
JUNE 19.—'Hour after hour I stand on the fore-castle-head picking off little specimens of polypi and coral, or lie on the saloon deck reading back numbers of the TIMES, till something hitches, and then all is hurly-burly once more. There are awnings all along the ship, and a most ancient and fish-like smell (from the decaying polypi) beneath.'
JUNE 22.—'Yesterday the cable was often a lovely sight, coming out of the water one large incrustation of delicate net-like corals and long white curling shells. No portion of the dirty black wire was visible; instead we had a garland of soft pink, with little scarlet sprays and white enamel intermixed. All was fragile, however, and could hardly be secured in safety; and inexorable iron crushed the tender leaves to atoms.'
JUNE 24.—'The whole day spent in dredging, without success. This operation consists in allowing the ship to drift slowly across the line where you expect the cable to be, while at the end of a long rope, fast either to the bow or stern, a grapnel drags along the ground. The grapnel is a small anchor, made like four pot-hooks tied back to back. When the rope gets taut the ship is stopped and the grapnel hauled up to the surface in the hopes of finding the cable on its prongs. I am much discontented with myself for idly lounging about and reading WESTWARD HO! for the second time instead of taking to electricity or picking up nautical information.'
During the latter part of the work much of the cable was found to be looped and twisted into 'kinks' from having been so slackly laid, and two immense tangled skeins were raised on board, one by means of the mast-head and fore-yard tackle. Photographs of this ravelled cable were for a long time exhibited as a curiosity in the windows of Messrs. Newall & Co's. shop in the Strand, where we remember to have seen them.
By July 5 the whole of the six-wire cable had been recovered, and a portion of the three-wire cable, the rest being abandoned as unfit for use, owing to its twisted condition. Their work was over, but an unfortunate accident marred its conclusion. On the evening of the 2nd the first mate, while on the water unshackling a buoy, was struck in the back by a fluke of the ship's anchor as she drifted, and so severely injured that he lay for many weeks at Cagliari. Jenkin's knowledge of languages made him useful as an interpreter; but in mentioning this incident to Miss Austin, he writes, 'For no fortune would I be a doctor to witness these scenes continually. Pain is a terrible thing.'
In the beginning of 1859 he made the acquaintance of Sir William Thomson, his future friend and partner. Mr. Lewis Gordon, of Messrs. R. S. Newall & Co., afterwards the earliest professor of engineering in a British University, was then in Glasgow seeing Sir William's instruments for testing and signalling on the first Atlantic cable during the six weeks of its working. Mr. Gordon said he should like to show them to 'a young man of remarkable ability,' engaged at their Birkenhead Works, and Jenkin, being telegraphed for, arrived next morning, and spent a week in Glasgow, mostly in Sir William's class-room and laboratory at the old college. Sir William tells us that he was struck not only with Jenkin's brightness and ability, but with his resolution to understand everything spoken of; to see, if possible, thoroughly into every difficult question, and to slur over nothing. 'I soon found,' he remarks, 'that thoroughness of honesty was as strongly engrained in the scientific as in the moral side of his character.' Their talk was chiefly on the electric telegraph; but Jenkin was eager, too, on the subject of physics. After staying a week he returned to the factory; but he began experiments, and corresponded briskly with Sir William about cable work. That great electrician, indeed, seems to have infected his visitor during their brief contact with the magnetic force of his personality and enthusiasm.
The year was propitious, and, in addition to this friend, Fortune about the same time bestowed a still better gift on Jenkin. On Saturday, February 26, during a four days' leave, he was married to Miss Austin at Northiam, returning to his work the following Tuesday. This was the great event of his life; he was strongly attached to his wife, and his letters reveal a warmth of affection, a chivalry of sentiment, and even a romance of expression, which a casual observer would never have suspected in him. Jenkin seemed to the outside world a man without a heart, and yet we find him saying in the year 1869, 'People may write novels, and other people may write poems, but not a man or woman among them can say how happy a man can be who is desperately in love with his wife after ten years of marriage.' Five weeks before his death he wrote to her, 'Your first letter from Bournemouth gives me heavenly pleasure—for which I thank Heaven and you, too, who are my heaven on earth.'
During the summer he enjoyed another telegraph cruise in the Mediterranean, a sea which for its classical memories, its lovely climate, and diversified scenes, is by far the most interesting in the world. This time the Elba was to lay a cable from the Greek islands of Syra and Candia to Egypt. Cable-laying is a pleasant mode of travel. Many of those on board the ship are friends and comrades in former expeditions, and all are engaged in the same venture. Some have seen a good deal of the world, both in and out of the beaten track; they have curious 'yarns to spin,' and useful hints or scraps of worldly wisdom to bestow. The voyage out is like a holiday excursion, for it is only the laying that is arduous, and even that is lightened by excitement. Glimpses are got of hide-away spots, where the cable is landed, perhaps. on the verge of the primeval forest or near the port of a modern city, or by the site of some ruined monument of the past. The very magic of the craft and its benefit to the world are a source of pleasure to the engineer, who is generally made much of in the distant parts he has come to join. No doubt there are hardships to be borne, sea-sickness, broken rest, and anxiety about the work—for cables are apt suddenly to fail, and the ocean is treacherous; but with all its drawbacks this happy mixture of changing travel and profitable labour is very attractive, especially to a young man.
The following extracts from letters to his wife will illustrate the nature of the work, and also give an idea of Jenkin's clear and graphic style of correspondence:—May 14.—'Syra is semi-eastern. The pavement, huge shapeless blocks sloping to a central gutter; from this base two-storeyed houses, sometimes plaster, many-coloured, sometimes rough-hewn marble, rise, dirty and ill-finished, to straight, plain, flat roofs; shops guiltless of windows, with signs in Greek letters; dogs, Greeks in blue, baggy, Zouave breeches and a fez, a few narghilehs, and a sprinkling of the ordinary continental shop-boys. In the evening I tried one more walk in Syra with A——, but in vain endeavoured to amuse myself or to spend money, the first effort resulting in singing DOODAH to a passing Greek or two, the second in spending—no, in making A—— spend—threepence on coffee for three.'
Canea Bay, in Candia (or Crete), which they reached on May 16, appeared to Jenkin one of the loveliest sights that man could witness.
May 23.—'I spent the day at the little station where the cable was landed, which has apparently been first a Venetian monastery and then a Turkish mosque. At any rate the big dome is very cool, and the little ones hold batteries capitally. A handsome young Bashi-Bazouk guards it, and a still handsomer mountaineer is the servant; so I draw them and the monastery and the hill till I'm black in the face with heat, and come on board to hear the Canea cable is still bad.'
May 23.—'We arrived in the morning at the east end of Candia, and had a glorious scramble over the mountains, which seem built of adamant. Time has worn away the softer portions of the rock, only leaving sharp, jagged edges of steel; sea eagles soaring above our heads—old tanks, ruins, and desolation at our feet. The ancient Arsinoe stood here: a few blocks of marble with the cross attest the presence of Venetian Christians; but now—the desolation of desolations. Mr. Liddell and I separated from the rest, and when we had found a sure bay for the cable, had a tremendous lively scramble back to the boat. These are the bits of our life which I enjoy; which have some poetry, some grandeur in them.
May 29.-'Yesterday we ran round to the new harbour (of Alexandria), landed the shore end of the cable close to Cleopatra's Bath, and made a very satisfactory start about one in the afternoon. We had scarcely gone 200 yards when I noticed that the cable ceased to run out, and I wondered why the ship had stopped.'
The Elba had run her nose on a sandbank. After trying to force her over it, an anchor was put out astern and the rope wound by a steam winch, while the engines were backed; but all in vain. At length a small Turkish steamer, the consort of the Elba, came to her assistance, and by means of a hawser helped to tug her off: The pilot again ran her aground soon after, but she was delivered by the same means without much damage. When two-thirds of this cable was laid the line snapped in deep water, and had to be recovered. On Saturday, June 4, they arrived at Syra, where they had to perform four days' quarantine, during which, however, they started repairing the Canea cable.
Bad weather coming on, they took shelter in Siphano, of which Jenkin writes: 'These isles of Greece are sad, interesting places. They are not really barren all over, but they are quite destitute of verdure; and tufts of thyme, wild mastic, or mint, though they sound well, are not nearly so pretty as grass. Many little churches, glittering white, dot the islands; most of them, I believe, abandoned during the whole year with the exception of one day sacred to their patron saint. The villages are mean; but the inhabitants do not look wretched, and the men are capital sailors. There is something in this Greek race yet; they will become a powerful Levantine nation in the course of time.'
In 1861 Jenkin left the service of Newall & Co., and entered into partnership with Mr. H. C. Forde, who had acted as engineer under the British Government for the Malta-Alexandria cable, and was now practising as a civil engineer. For several years after this business was bad, and with a young family coming, it was an anxious time for him; but he seems to have borne his troubles lightly. Mr. Stevenson says it was his principle 'to enjoy each day's happiness as it arises, like birds and children.'
In 1863 his first son was born, and the family removed to a cottage at Claygate, near Esher. Though ill and poor at this period, he kept up his self-confidence. 'The country,' he wrote to his wife, 'will give us, please God, health and strength. I will love and cherish you more than ever. You shall go where you wish, you shall receive whom you wish, and as for money, you shall have that too. I cannot be mistaken. I have now measured myself with many men. I do not feel weak. I do not feel that I shall fail. In many things I have succeeded, and I will in this.... And meanwhile, the time of waiting, which, please Heaven, shall not be so long, shall also not be so bitter. Well, well, I promise much, and do not know at this moment how you and the dear child are. If he is but better, courage, my girl, for I see light.'
He took to gardening, without a natural liking for it, and soon became an ardent expert. He wrote reviews, and lectured, or amused himself in playing charades, and reading poetry. Clerk Maxwell, and Mr. Ricketts, who was lost in the La Plata, were among his visitors. During October, 1860, he superintended the repairs of the Bona-Spartivento cable, revisiting Chia and Cagliari, then full of Garibaldi's troops. The cable, which had been broken by the anchors of coral fishers, was grapnelled with difficulty. 'What rocks we did hook!' writes Jenkin. 'No sooner was the grapnel down than the ship was anchored; and then came such a business: ship's engines going, deck engine thundering, belt slipping, tear of breaking ropes; actually breaking grapnels. It was always an hour or more before we could get the grapnels down again.'
In 1865, on the birth of his second son, Mrs. Jenkin was very ill, and Jenkin, after running two miles for a doctor, knelt by her bedside during the night in a draught, not wishing to withdraw his hand from hers. Never robust, he suffered much from flying rheumatism and sciatica ever afterwards. It nearly disabled him while laying the Lowestoft to Norderney cable for Mr. Reuter, in 1866. This line was designed by Messrs. Forde & Jenkin, manufactured by Messrs. W. T. Henley & Co., and laid by the Caroline and William Cory. Miss Clara Volkman, a niece of Mr. Reuter, sent the first message, Mr. C. F, Varley holding her hand.
In 1866 Jenkin was appointed to the professorship of Engineering in University College, London. Two years later his prospects suddenly improved; the partnership began to pay, and he was selected to fill the Chair of Engineering, which had been newly established, in Edinburgh University. What he thought of the change may be gathered from a letter to his wife: 'With you in the garden (at Claygate), with Austin in the coach-house, with pretty songs in the little low white room, with the moonlight in the dear room upstairs—ah! it was perfect; but the long walk, wondering, pondering, fearing, scheming, and the dusty jolting railway, and the horrid fusty office, with its endless disappointments, they are well gone. It is well enough to fight, and scheme, and bustle about in the eager crowd here (in London) for awhile now and then; but not for a lifetime. What I have now is just perfect. Study for winter, action for summer, lovely country for recreation, a pleasant town for talk.'
The liberality of the Scotch universities allowed him to continue his private enterprises, and the summer holiday was long enough to make a trip round the globe.
The following June he was on board the Great Eastern while she laid the French Atlantic cable from Brest to St. Pierre. Among his shipmates were Sir William Thomson, Sir James Anderson, C. F. Varley, Mr. Latimer Clark, and Willoughby Smith. Jenkin's sketches of Clark and Varley are particularly happy. At St. Pierre, where they arrived in a fog, which lifted to show their consort, the William Cory, straight ahead, and the Gulnare signalling a welcome, Jenkin made the curious observation that the whole island was electrified by the battery at the telegraph station.
Jenkin's position at Edinburgh led to a partnership in cable work with Sir William Thomson, for whom he always had a love and admiration. Jenkin's clear, practical, and business-like abilities were doubtless an advantage to Sir William, relieving him of routine, and sparing his great abilities for higher work. In 1870 the siphon recorder, for tracing a cablegram in ink, instead of merely flashing it by the moving ray of the mirror galvanometer, was introduced on long cables, and became a source of profit to Jenkin and Varley as well as to Sir William, its inventor.
In 1873 Thomson and Jenkin were engineers for the Western and Brazilian cable. It was manufactured by Messrs. Hooper & Co., of Millwall, and the wire was coated with india-rubber, then a new insulator. The Hooper left Plymouth in June, and after touching at Madeira, where Sir William was up 'sounding with his special toy' (the pianoforte wire) 'at half-past three in the morning,' they reached Pernambuco by the beginning of August, and laid a cable to Para.
During the next two years the Brazilian system was connected to the West Indies and the River Plate; but Jenkin was not present on the expeditions. While engaged in this work, the ill-fated La Plata, bound with cable from Messrs. Siemens Brothers to Monte Video, perished in a cyclone off Cape Ushant, with the loss of nearly all her crew. The Mackay-Bennett Atlantic cables were also laid under their charge.
As a professor Jenkin's appearance was against him; but he was a clear, fluent speaker, and a successful teacher. Of medium height, and very plain, his manner was youthful, and alert, but unimposing. Nevertheless, his class was always in good order, for his eye instantly lighted on any unruly member, and his reproof was keen.
His experimental work was not strikingly original. At Birkenhead he made some accurate measurements of the electrical properties of materials used in submarine cables. Sir William Thomson says he was the first to apply the absolute methods of measurement introduced by Gauss and Weber. He also investigated there the laws of electric signals in submarine cables. As Secretary to the British Association Committee on Electrical Standards he played a leading part in providing electricians with practical standards of measurement. His Cantor lectures on submarine cables, and his treatise on ELECTRICITY AND MAGNETISM, published in 1873, were notable works at the time, and contained the latest development of their subjects. He was associated with Sir William Thomson in an ingenious 'curb-key' for sending signals automatically through a long cable; but although tried, it was not adopted. His most important invention was Telpherage, a means of transporting goods and passengers to a distance by electric panniers supported on a wire or conductor, which supplied them with electricity. It was first patented in 1882, and Jenkin spent his last years on this work, expecting great results from it; but ere the first public line was opened for traffic at Glynde, in Sussex, he was dead.
In mechanical engineering his graphical methods of calculating strains in bridges, and determining the efficiency of mechanism, are of much value. The latter, which is based on Reulaux's prior work, procured him the honour of the Keith Gold Medal from the Royal Society of Edinburgh. Another successful work of his was the founding of the Sanitary Protection Association, for the supervision of houses with regard to health.
In his leisure hours Jenkin wrote papers on a wide variety of subjects. To the question, 'Is one man's gain another man's loss?' he answered 'Not in every case.' He attacked Darwin's theory of development, and showed its inadequacy, especially in demanding more time than the physicist could grant for the age of the habitable world. Darwin himself confessed that some of his arguments were convincing; and Munro, the scholar, complimented him for his paper on Lucretius and the Atomic Theory.' In 1878 he constructed a phonograph from the newspaper reports of this new invention, and lectured on it at a bazaar in Edinburgh, then employed it to study the nature of vowel and consonantal sounds. An interesting paper on Rhythm in English Verse,' was also published by him in the SATURDAY REVIEW for 1883.
He was clever with his pencil, and could seize a likeness with astonishing rapidity. He has been known while on a cable expedition to stop a peasant woman in a shop for a few minutes and sketch her on the spot. His artistic side also shows itself in a paper on 'Artist and Critic,' in which he defines the difference between the mechanical and fine arts. 'In mechanical arts,' he says, 'the craftsman uses his skill to produce something useful, but (except in the rare case when he is at liberty to choose what he shall produce) his sole merit lies in skill. In the fine arts the student uses skill to produce something beautiful. He is free to choose what that something shall be, and the layman claims that he may and must judge the artist chiefly by the value in beauty of the thing done. Artistic skill contributes to beauty, or it would not be skill; but beauty is the result of many elements, and the nobler the art the lower is the rank which skill takes among them.'
A clear and matter-of-fact thinker, Jenkin was an equally clear and graphic writer. He read the best literature, preferring, among other things, the story of David, the ODYSSEY, the ARCADIA, the saga of Burnt Njal, and the GRAND CYRUS. Aeschylus, Sophocles, Shakespeare, Ariosto, Boccaccio, Scott, Dumas, Dickens, Thackeray, and George Eliot, were some of his favourite authors. He once began a review of George Eliot's biography, but left it unfinished. Latterly he had ceased to admire her work as much as before. He was a rapid, fluent talker, with excited utterance at times. Some of his sayings were shrewd and sharp; but he was sometimes aggressive. 'People admire what is pretty in an ugly thing,' he used to say 'not the ugly thing.' A lady once said to him she would never be happy again. 'What does that signify?' cried Jenkin; 'we are not here to be happy, but to be good.' On a friend remarking that Salvini's acting in OTHELLO made him want to pray, Jenkin answered, 'That is prayer.'
Though admired and liked by his intimates, Jenkin was never popular with associates. His manner was hard, rasping, and unsympathetic. 'Whatever virtues he possessed,' says Mr. Stevenson, 'he could never count on being civil.' He showed so much courtesy to his wife, however, that a Styrian peasant who observed it spread a report in the village that Mrs. Jenkin, a great lady, had married beneath her. At the Saville Club, in London, he was known as the 'man who dines here and goes up to Scotland.' Jenkin was conscious of this churlishness, and latterly improved. 'All my life,' he wrote,'I have talked a good deal, with the almost unfailing result of making people sick of the sound of my tongue. It appeared to me that I had various things to say, and I had no malevolent feelings; but, nevertheless, the result was that expressed above. Well, lately some change has happened. If I talk to a person one day they must have me the next. Faces light up when they see me. "Ah! I say, come here." "Come and dine with me." It's the most preposterous thing I ever experienced. It is curiously pleasant.'
Jenkin was a good father, joining in his children's play as well as directing their studies. The boys used to wait outside his office for him at the close of business hours; and a story is told of little Frewen, the second son, entering in to him one day, while he was at work, and holding out a toy crane he was making, with the request, 'Papa you might finiss windin' this for me, I'm so very busy to-day.' He was fond of animals too, and his dog Plate regularly accompanied him to the University. But, as he used to say, 'It's a cold home where a dog is the only representative of a child.'
In summer his holidays were usually spent in the Highlands, where Jenkin learned to love the Highland character and ways of life. He was a good shot, rode and swam well, and taught his boys athletic exercises, boating, salmon fishing, and such like. He learned to dance a Highland reel, and began the study of Gaelic; but that speech proved too stubborn, craggy, and impregnable even for Jenkin. Once he took his family to Alt Aussee, in the Stiermark, Styria, where he hunted chamois, won a prize for shooting at the Schutzen-fest, learned the dialect of the country, sketched the neighbourhood, and danced the STEIERISCH and LANDLER with the peasants. He never seemed to be happy unless he was doing, and what he did was well done.
Above all, he was clear-headed and practical, mastering many things; no dreamer, but an active, business man. Had he confined himself to engineering he might have adorned his profession more, for he liked and fitted it; but with his impulses on other lines repressed, he might have been less happy. Moreover, he was one who believed, with the sage, that all good work is profitable, having its value, if only in exercise and skill.
His own parents and those of his wife had come to live in Edinburgh; but he lost them all within ten months of each other. Jenkin had showed great devotion to them in their illnesses, and was worn out with grief and watching. His telpherage, too, had given him considerable anxiety to perfect; and his mother's illness, which affected her mind, had caused himself to fear.
He was meditating a holiday to Italy with his wife in order to recuperate, and had a trifling operation performed on his foot, which resulted, it is believed, in blood poisoning. There seemed to be no danger, and his wife was reading aloud to him as he lay in bed, when his intellect began to wander. It is doubtful whether he regained his senses before he died, on June 12, 1885.
At one period of his life Jenkin was a Freethinker, holding, as Mr. Stevenson says, all dogmas as 'mere blind struggles to express the inexpressible.' Nevertheless, as time went on he came back to a belief in Christianity. 'The longer I live,' he wrote, 'the more convinced I become of a direct care by God—which is reasonably impossible—but there it is.' In his last year he took the Communion.
CHAPTER VII. JOHANN PHILIPP REIS.
Johann Philipp Reis, the first inventor of an electric telephone, was born on January 7, 1834, at the little town of Gelnhausen, in Cassel, where his father was a master baker and petty farmer. The boy lost his mother during his infancy, and was brought up by his paternal grandmother, a well-read, intelligent woman, of a religious turn. While his father taught him to observe the material world, his grandmother opened his mind to the Unseen.
At the age of six he was sent to the common school of the town, where his talents attracted the notice of his instructors, who advised his father to extend his education at a higher college. Mr. Reis died before his son was ten years old; but his grandmother and guardians afterwards placed him at Garnier's Institute, in Friedrichsdorf, where he showed a taste for languages, and acquired both French and English, as well as a stock of miscellaneous information from the library. At the end of his fourteenth year he passed to Hassel's Institute, at Frankfort-on-the-Main, where he picked up Latin and Italian. A love of science now began to show itself, and his guardians were recommended to send him to the Polytechnic School of Carlsruhe; but one of them, his uncle, wished him to become a merchant, and on March 1, 1850, Reis was apprenticed to the colour trade in the establishment of Mr. J. F Beyerbach, of Frankfort, against his own will. He told his uncle that he would learn the business chosen for him, but should continue his proper studies by-and-by.
By diligent service he won the esteem of Mr. Beyerbach, and devoted his leisure to self-improvement, taking private lessons in mathematics and physics, and attending the lectures of Professor R. Bottger on mechanics at the Trade School. When his apprenticeship ended he attended the Institute of Dr. Poppe, in Frankfort, and as neither history nor geography was taught there, several of the students agreed to instruct each other in these subjects. Reis undertook geography, and believed he had found his true vocation in the art of teaching. He also became a member of the Physical Society of Frankfort.
In 1855 he completed his year of military service at Cassel, then returned to Frankfort to qualify himself as a teacher of mathematics and science in the schools by means of private study and public lectures. His intention was to finish his training at the University of Heidelberg, but in the spring of 1858 he visited his old friend and master, Hofrath Garnier, who offered him a post in Garnier's Institute. In the autumn of 1855 he removed to Friedrichsdorf, to begin his new career, and in September following he took a wife and settled down.
Reis imagined that electricity could be propagated through space, as light can, without the aid of a material conductor, and he made some experiments on the subject. The results were described in a paper 'On the Radiation of Electricity,' which, in 1859, he posted to Professor Poggendorff; for insertion in the well-known periodical, the ANNALEN DER PHYSIK. The memoir was declined, to the great disappointment of the sensitive young teacher.
Reis had studied the organs of hearing, and the idea of an apparatus for transmitting sound by means of electricity had been floating in his mind for years. Incited by his lessons on physics, in the year 1860 he attacked the problem, and was rewarded with success. In 1862 he again tried Poggendorff, with an account of his 'Telephon,' as he called it;[The word 'telephone' occurs in Timbs' REPOSITORY OF SCIENCE AND ART for 1845, in connection With a signal trumpet operated by compressed air.] but his second offering was rejected like the first. The learned professor, it seems, regarded the transmission of speech by electricity as a chimera; but Reis, in the bitterness of wounded feeling, attributed the failure to his being 'only a poor schoolmaster.'
Since the invention of the telephone, attention has been called to the fact that, in 1854, M. Charles Bourseul, a French telegraphist, [Happily still alive (1891).] had conceived a plan for conveying sounds and even speech by electricity. 'Suppose,' he explained, 'that a man speaks near a movable disc sufficiently flexible to lose none of the vibrations of the voice; that this disc alternately makes and breaks the currents from a battery: you may have at a distance another disc which will simultaneously execute the same vibrations.... It is certain that, in a more or less distant future, speech will be transmitted by electricity. I have made experiments in this direction; they are delicate and demand time and patience, but the approximations obtained promise a favourable result.'[See Du Moncel's EXPOSE DES APPLICATIONS, etc.]
Bourseul deserves the credit of being perhaps the first to devise an electric telephone and try to make it; but to Reis belongs the honour of first realising the idea. A writer may plot a story, or a painter invent a theme for a picture; but unless he execute the work, of what benefit is it to the world? True, a suggestion in mechanics may stimulate another to apply it in practice, and in that case the suggester is entitled to some share of the credit, as well as the distinction of being the first to think of the matter. But it is best when the original deviser also carries out the work; and if another should independently hit upon the same idea and bring it into practice, we are bound to honour him in full, though we may also recognise the merit of his predecessor.
Bourseul's idea seems to have attracted little notice at the time, and was soon forgotten. Even the Count du Moncel, who was ever ready to welcome a promising invention, evidently regarded it as a fantastic notion. It is very doubtful if Reis had ever heard of it. He was led to conceive a similar apparatus by a study of the mechanism of the human ear, which he knew to contain a membrane, or 'drum,' vibrating under the waves of sound, and communicating its vibrations through the hammer-bone behind it to the auditory nerve. It therefore occurred to him, that if he made a diaphragm in imitation of the drum, and caused it by vibrating to make and break the circuit of an electric current, he would be able through the magnetic power of the interrupted current to reproduce the original sounds at a distance.
In 1837-8 Professor Page, of Massachusetts, had discovered that' a needle or thin bar of iron, placed in the hollow of a coil or bobbin of insulated wire, would emit an audible 'tick' at each interruption of a current, flowing in the coil, and that if these separate ticks followed each other fast enough, by a rapid interruption of the current, they would run together into a continuous hum, to which he gave the name of 'galvanic music.' The pitch of this note would correspond to the rate of interruption of the current. From these and other discoveries which had been made by Noad, Wertheim, Marrian, and others, Reis knew that if the current which had been interrupted by his vibrating diaphragm were conveyed to a distance by a metallic circuit, and there passed through a coil like that of Page, the iron needle would emit a note like that which had caused the oscillation of the transmitting diaphragm. Acting on this knowledge, he constructed a rude telephone.
Dr. Messel informs us that his first transmitter consisted of the bung of a beer barrel hollowed out in imitation of the external ear. The cup or mouth-piece thus formed was closed by the skin of a German sausage to serve as a drum or diaphragm. To the back of this he fixed, with a drop of sealing-wax, a little strip of platinum, representing the hammer-bone, which made and broke the metallic circuit of the current as the membrane oscillated under the sounds which impinged against it. The current thus interrupted was conveyed by wires to the receiver, which consisted of a knitting-needle loosely surrounded by a coil of wire fastened to the breast of a violin as a sounding-board. When a musical note was struck near the bung, the drum vibrated in harmony with the pitch of the note, the platinum lever interrupted the metallic circuit of the current, which, after traversing the conducting wire, passed through the coil of the receiver, and made the needle hum the original tone. This primitive arrangement, we are told, astonished all who heard it. [It is now in the museum of the Reichs Post-Amt, Berlin.]
Another of his early transmitters was a rough model of the human ear, carved in oak, and provided with a drum which actuated a bent and pivoted lever of platinum, making it open and close a springy contact of platinum foil in the metallic circuit of the current. He devised some ten or twelve different forms, each an improvement on its predecessors, which transmitted music fairly well, and even a word or two of speech with more or less perfection. But the apparatus failed as a practical means of talking to a distance.
The discovery of the microphone by Professor Hughes has enabled us to understand the reason of this failure. The transmitter of Reis was based on the plan of interrupting the current, and the spring was intended to close the contact after it had been opened by the shock of a vibration. So long as the sound was a musical tone it proved efficient, for a musical tone is a regular succession of vibrations. But the vibrations of speech are irregular and complicated, and in order to transmit them the current has to be varied in strength without being altogether broken. The waves excited in the air by the voice should merely produce corresponding waves in the current. In short, the current ought to UNDULATE in sympathy with the oscillations of the air. It appears from the report of Herr Von Legat, inspector of the Royal Prussian Telegraphs, on the Reis telephone, published in 1862, that the inventor was quite aware of this principle, but his instrument was not well adapted to apply it. No doubt the platinum contacts he employed in the transmitter behaved to some extent as a crude metal microphone, and hence a few words, especially familiar or expected ones, could be transmitted and distinguished at the other end of the line. But Reis does not seem to have realised the importance of not entirely breaking the circuit of the current; at all events, his metal spring is not in practice an effective provision against this, for it allows the metal contacts to jolt too far apart, and thus interrupt the current. Had he lived to modify the spring and the form or material of his contacts so as to keep the current continuous—as he might have done, for example, by using carbon for platinum—he would have forestalled alike Bell, Edison, and Hughes in the production of a good speaking telephone. Reis in fact was trembling on the verge of a great discovery, which was, however, reserved for others.
His experiments were made in a little workshop behind his home at Friedrichsdorff; and wires were run from it to an upper chamber. Another line was erected between the physical cabinet at Garnier's Institute across the playground to one of the class-rooms, and there was a tradition in the school that the boys were afraid of creating an uproar in the room for fear Herr Reis should hear them with his 'telephon.'
The new invention was published to the world in a lecture before the Physical Society of Frankfort on October 26, 1861, and a description, written by himself for the JAHRESBERICHT, a month or two later. It excited a good deal of scientific notice in Germany; models of it were sent abroad, to London, Dublin, Tiflis, and other places. It became a subject for popular lectures, and an article for scientific cabinets. Reis obtained a brief renown, but the reaction soon set in. The Physical Society of Frankfort turned its back on the apparatus which had given it lustre. Reis resigned his membership in 1867; but the Free German Institute of Frankfort, which elected him an honorary member, also slighted the instrument as a mere 'philosophical toy.' At first it was a dream, and now it is a plaything. Have we not had enough of that superior wisdom which is another name for stupidity? The dreams of the imagination are apt to become realities, and the toy of to-day has a knack of growing into the mighty engine of to-morrow.
Reis believed in his invention, if no one else did; and had he been encouraged by his fellows from the beginning, he might have brought it into a practical shape. But rebuffs had preyed upon his sensitive heart, and he was already stricken with consumption. It is related that, after his lecture on the telephone at Geissen, in 1854, Professor Poggendorff, who was present, invited him to send a description of his instrument to the ANNALEN. Reis answered him,'Ich danke Ihnen recht Sehr, Herr Professor; es ist zu spaty. Jetzt will ICH nicht ihn schickeny. Mein Apparat wird ohne Beschreibung in den ANNALEN bekannt werden.' ('Thank you very much, Professor, but it is too late. I shall not send it now. My apparatus will become known without any writing in the ANNALEN.')
Latterly Reis had confined his teaching and study to matters of science; but his bad health was a serious impediment. For several years it was only by the exercise of a strong will that he was able to carry on his duties. His voice began to fail as the disease gained upon his lungs, and in the summer of 1873 he was obliged to forsake tuition during several weeks. The autumn vacation strengthened his hopes of recovery, and he resumed his teaching with his wonted energy. But this was the last flicker of the expiring flame. It was announced that he would show his new gravity-machine at a meeting of the Deutscher Naturforscher of Wiesbaden in September, but he was too ill to appear. In December he lay down, and, after a long and painful illness, breathed his last at five o'clock in the afternoon of January 14, 1874. |
|