p-books.com
General Science
by Bertha M. Clark
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

Then, too, there are more uses for food than the production of heat. Teeth and bones and nails need a constant supply of mineral matter, and mineral matter is frequently found in greatest abundance in foods of low fuel value, such as lettuce, watercress, etc., though practically all foods yield at least a small mineral constituent. When fuel values alone are considered, fruits have a low value, but because of the flavor they impart to other foods, and because of the healthful influence they exercise in digestion, they cannot be excluded from the diet.

Care should be constantly exercised to provide substantial foods of high fuel value. But the nutritive foods should be wisely supplemented by such foods as fruits, whose real value is one of indirect rather then direct service.

58. Our Bodies. Somewhat as a house is composed of a group of bricks, or a sand heap of grains of sand, the human body is composed of small divisions called cells. Ordinarily we cannot see these cells because of their minuteness, but if we examine a piece of skin, or a hair of the head, or a tiny sliver of bone under the microscope, we see that each of these is composed of a group of different cells. A merchant, watchful about the fineness of the wool which he is purchasing, counts with his lens the number of threads to the inch; a physician, when he wishes, can, with the aid of the microscope, examine the cells in a muscle, or in a piece of fat, or in a nerve fiber. Not only is the human body composed of cells, but so also are the bodies of all animals from the tiny gnat which annoys us, and the fly which buzzes around us, to the mammoth creatures of the tropics. These cells do the work of the body, the bone cells build up the skeleton, the nail cells form the finger and toe nails, the lung cells take care of breathing, the muscle cells control motion, and the brain cells are responsible for thought.

59. Why we eat so Much. The cells of the body are constantly, day by day, minute by minute, breaking down and needing repair, are constantly requiring replacement by new cells, and, in the case of the child, are continually increasing in number. The repair of an ordinary machine, an engine, for example, is made at the expense of money, but the repair and replacement of our human cell machinery are accomplished at the expense of food. More than one third of all the food we eat goes to maintain the body cells, and to keep them in good order. It is for this reason that we consume a large quantity of food. If all the food we eat were utilized for energy, the housewife could cook less, and the housefather could save money on grocer's and butcher's bills. If you put a ton of coal in an engine, its available energy is used to run the engine, but if the engine were like the human body, one third of the ton would be used up by the engine in keeping walls, shafts, wheels, belts, etc., in order, and only two thirds would go towards running the engine. When an engine is not working, fuel is not consumed, but the body requires food for mere existence, regardless of whether it does active work or not. When we work, the cells break down more quickly, and the repair is greater than when we are at rest, and hence there is need of a larger amount of food; but whether we work or not, food is necessary.

60. The Different Foods. The body is very exacting in its demands, requiring certain definite foods for the formation and maintenance of its cells, and other foods, equally definite, but of different character, for heat; our diet therefore must contain foods of high fuel value, and likewise foods of cell-forming power.

Although the foods which we eat are of widely different character, such as fruits, vegetables, cereals, oils, meats, eggs, milk, cheese, etc., they can be put into three great classes: the carbohydrates, the fats, and the proteids.

61. The Carbohydrates. Corn, wheat, rye, in fact all cereals and grains, potatoes, and most vegetables are rich in carbohydrates; as are also sugar, molasses, honey, and maple sirup. The foods of the first group are valuable because of the starch they contain; for example, corn starch, wheat starch, potato starch. The substances of the second group are valuable because of the sugar they contain; sugar contains the maximum amount of carbohydrate. In the sirups there is a considerable quantity of sugar, while in some fruits it is present in more or less dilute form. Sweet peaches, apples, grapes, contain a moderate amount of sugar; watermelons, pears, etc., contain less. Most of our carbohydrates are of plant origin, being found in vegetables, fruits, cereals, and sirups.

Carbohydrates, whether of the starch group or the sugar group, are composed chiefly of three elements: carbon, hydrogen, and oxygen; they are therefore combustible, and are great energy producers. On the other hand, they are worthless for cell growth and repair, and if we limited our diet to carbohydrates, we should be like a man who had fuel but no engine capable of using it.

62. The Fats. The best-known fats are butter, lard, olive oil, and the fats of meats, cheese, and chocolate. When we test fats for fuel values by means of a calorimeter (Fig. 26), we find that they yield twice as much heat as the carbohydrates, but that they burn out more quickly. Dwellers in cold climates must constantly eat large quantities of fatty foods if they are to keep their bodies warm and survive the extreme cold. Cod liver oil is an excellent food medicine, and if taken in winter serves to warm the body and to protect it against the rigors of cold weather. The average person avoids fatty foods in summer, knowing from experience that rich foods make him warm and uncomfortable. The harder we work and the colder the weather, the more food of that kind do we require; it is said that a lumberman doing heavy out-of-door work in cold climates needs three times as much food as a city clerk. Most of our fats, like lard and butter, are of animal origin; some of them, however, like olive oil, peanut butter, and coconut oil, are of plant origin.



63. The Proteids. The proteids are the building foods, furnishing muscle, bone, skin cells, etc., and supplying blood and other bodily fluids. The best-known proteids are white of egg, curd of milk, and lean of fish and meat; peas and beans have an abundant supply of this substance, and nuts are rich in it. Most of our proteids are of animal origin, but some protein material is also found in the vegetable world. This class of foods contains carbon, oxygen, and hydrogen, and in addition, two substances not found in carbohydrates or fats—namely, sulphur and nitrogen. Proteids always contain nitrogen, and hence they are frequently spoken of as nitrogenous foods. Since the proteids contain all the elements found in the two other classes of foods, they are able to contribute, if necessary, to the store of bodily energy; but their main function is upbuilding, and the diet should be chosen so that the proteids do not have a double task.

For an average man four ounces of dry proteid matter daily will suffice to keep the body cells in normal condition.

It has been estimated that 300,000,000 blood cells alone need daily repair or renewal. When we consider that the blood is but one part of the body, and that all organs and fluids have corresponding requirements, we realize how vast is the work to be done by the food which we eat.

64. Mistakes in Buying. The body demands a daily ration of the three classes of food stuffs, but it is for us to determine from what meats, vegetables, fruits, cereals, etc., this supply shall be obtained (Figs. 28 and 29).



Generally speaking, meats are the most expensive foods we can purchase, and hence should be bought seldom and in small quantities. Their place can be taken by beans, peas, potatoes, etc., and at less than a quarter of the cost. The average American family eats meat three times a day, while the average family of the more conservative and older countries rarely eats meat more than once a day. The following tables indicate the financial loss arising from an unwise selection of foods:—

FOOD CONSUMED ONE WEEK ========================== ====================================== FAMILY No. 1 FAMILY No. 2 - - 20 loaves of bread $1.00 15 lb. flour, bread 10 to 12 lb. loin steak home made (skim milk used) $.45 or meat of similar cost 2.00 Yeast, shortening, and 20 to 25 lb. rib roast skim milk .10 or similar meat 4.40 10 lb. steak (round, Hamburger 4 lb. high-priced cereal and some loin) 1.50 breakfast food, 20c .80 10 lb. other meats, boiling Cake and pastry purchased 3.00 pieces, rump roast, etc. 1.00 8 lb. butter, 30c 2.40 5 lb. cheese, 16c .80 Tea, coffee, spices, etc. .75 5 lb. oatmeal (bulk) .15 Mushrooms .75 5 lb. beans .25 Celery 1.00 Home-made cake and pastry 1.00 Oranges 2.00 6 lb. butter, 30c 1.80 Potatoes .25 3 lb. home-made shortening .25 Miscellaneous canned goods 2.00 Tea, coffee, and spices .40 Milk .50 Apples .50 Miscellaneous foods 2.00 Prunes .25 3 doz. eggs .60 Potatoes .25 - Milk 1.00 $23.45 Miscellaneous foods 1.00 3 doz. eggs .60 - - $ 11.30 - - - - - -

"The tables show that one family spends over twice as much in the purchase of foods as the other family, and yet the one whose food costs the less actually secures the larger amount of nutritive material and is better fed than the family where more money is expended."—From Human Foods, Snyder.

The Source of the Different Foods. All of our food comes from either the plant world or the animal world. Broadly speaking, plants furnish the carbohydrates, that is, starch and sugar; animals furnish the fats and proteids. But although vegetable foods yield carbohydrates mainly, some of them, like beans and peas, contain large quantities of protein and can be substituted for meat without disadvantage to the body. Other plant products, such as nuts, have fat as their most abundant food constituent. The peanut, for example, contains 43% of fat, 30% of proteids, and only 17% of carbohydrates; the Brazil nut has 65% of fat, 17% of proteids, and only 9% of carbohydrates. Nuts make a good meat substitute, and since they contain a fair amount of carbohydrates besides the fats and proteins, they supply all of the essential food constituents and form a well-balanced food.



CHAPTER VI

WATER

65. Destructive Action of Water. The action of water in stream and sea, in springs and wells, is evident to all; but the activity of ground water—that is, rain water which sinks into the soil and remains there—is little known in general. The real activity of ground water is due to its great solvent power; every time we put sugar into tea or soap into water we are using water as a solvent. When rain falls, it dissolves substances floating in the atmosphere, and when it sinks into the ground and becomes ground water, it dissolves material out of the rock which it encounters (Fig. 30). We know that water contains some mineral matter, because kettles in which water is boiled acquire in a short time a crust or coating on the inside. This crust is due to the accumulation in the kettle of mineral matter which was in solution in the water, but which was left behind when the water evaporated. (See Section 25.)



The amount of dissolved mineral matter present in some wells and springs is surprisingly great; the famous springs of Bath, England, contain so much mineral matter in solution, that a column 9 feet in diameter and 140 feet high could be built out of the mineral matter contained in the water consumed yearly by the townspeople.



Rocks and minerals are not all equally soluble in water; some are so little soluble that it is years before any change becomes apparent, and the substances are said to be insoluble, yet in reality they are slowly dissolving. Other rocks, like limestone, are so readily soluble in water that from the small pores and cavities eaten out by the water, there may develop in long centuries, caves and caverns (Fig. 30). Most rock, like granite, contains several substances, some of which are readily soluble and others of which are not readily soluble; in such rocks a peculiar appearance is presented, due to the rapid disappearance of the soluble substance, and the persistence of the more resistant substance (Fig. 31).

We see that the solvent power of water is constantly causing changes, dissolving some mineral substances, and leaving others practically untouched; eating out crevices of various shapes and sizes, and by gradual solution through unnumbered years enlarging these crevices into wonderful caves, such as the Mammoth Cave of Kentucky.

66. Constructive Action of Water. Water does not always act as a destructive agent; what it breaks down in one place it builds up in another. It does this by means of precipitation. Water dissolves salt, and also dissolves lead nitrate, but if a salt solution is mixed with a lead nitrate solution, a solid white substance is formed in the water (Fig. 32). This formation of a solid substance from the mingling of two liquids is called precipitation; such a process occurs daily in the rocks beneath the surface of the earth. (See Laboratory Manual.)



Suppose water from different sources enters a crack in a rock, bringing different substances in solution; then the mingling of the waters may cause precipitation, and the solid thus formed will be deposited in the crack and fill it up. Hence, while ground water tends to make rock porous and weak by dissolving out of it large quantities of mineral matter, it also tends under other conditions to make it more compact because it deposits in cracks, crevices, and pores the mineral matter precipitated from solution.

These two forces are constantly at work; in some places the destructive action is more prominent, in other places the constructive action; but always the result is to change the character of the original substance. When the mineral matter precipitated from the solutions is deposited in cracks, veins are formed (Fig. 33), which may consist of the ore of different metals, such as gold, silver, copper, lead, etc. Man is almost entirely dependent upon these veins for the supply of metal needed in the various industries, because in the original condition of the rocks, the metallic substances are so scattered that they cannot be profitably extracted.



Naturally, the veins themselves are not composed of one substance alone, because several different precipitates may be formed. But there is a decided grouping of valuable metals, and these can then be readily separated by means of electricity.

67. Streams. Streams usually carry mud and sand along with them; this is particularly well seen after a storm when rivers and brooks are muddy. The puddles which collect at the foot of a hill after a storm are muddy because of the particles of soil gathered by the water as it runs down the hill. The particles are not dissolved in the water, but are held there in suspension, as we call it technically. The river made muddy after a storm by suspended particles usually becomes clear and transparent after it has traveled onward for miles, because, as it travels, the particles drop to the bottom and are deposited there. Hence, materials suspended in the water are borne along and deposited at various places (Fig. 34). The amount of deposition by large rivers is so great that in some places channels fill up and must be dredged annually, and vessels are sometimes caught in the deposit and have to be towed away.

Running water in the form of streams and rivers, by carrying sand particles, stones, and rocks from high slopes and depositing them at lower levels, wears away land at one place and builds it up at another, and never ceases in its work of changing the nature of the earth's surface (Fig. 35).



68. Relation of Water to Human Life. Water is one of the most essential of food materials, and whether we drink much or little water, we nevertheless get a great deal of it. The larger part of many of our foods is composed of water; more than half of the weight of the meat we eat is made up of water; and vegetables are often more than nine tenths water. (See Laboratory Manual.) Asparagus and tomatoes have over 90 per cent. of water, and most fruits are more than three fourths water; even bread, which contains as little water as any of our common foods, is about one third water (Fig. 36).



Without water, solid food material, although present in the body, would not be in a condition suitable for bodily use. An abundant supply of water enables the food to be dissolved or suspended in it, and in solution the food material is easily distributed to all parts of the body.

Further, water assists in the removal of the daily bodily wastes, and thus rids the system of foul and poisonous substances.

The human body itself consists largely of water; indeed, about two thirds of our own weight is water. The constant replenishing of this large quantity is necessary to life, and a considerable amount of the necessary supply is furnished by foods, particularly the fruits and vegetables.

But while the supply furnished by the daily food is considerable, it is by no means sufficient, and should be supplemented by good drinking water.

69. Water and its Dangers. Our drinking water comes from far and near, and as it moves from place to place, it carries with it in solution or suspension anything which it can find, whether it be animal, vegetable, or mineral matter. The power of water to gather up matter is so great that the average drinking water contains 20 to 90 grains of solid matter per gallon; that is, if a gallon of ordinary drinking water is left to evaporate, a residue of 20 to 90 grains will be left. (See Laboratory Manual.) As water runs down a hill slope (Fig. 37), it carries with it the filth gathered from acres of land; carries with it the refuse of stable, barn, and kitchen; and too often this impure surface water joins the streams which supply our cities. Lakes and rivers which furnish drinking water should be carefully protected from surface draining; that is, from water which has flowed over the land and has thus accumulated the waste of pasture and stable and, it may be, of dumping ground.



It is not necessary that water should be absolutely free from all foreign substances in order to be safe for daily use in drinking; a limited amount of mineral matter is not injurious and may sometimes be really beneficial. It is the presence of animal and vegetable matter that causes real danger, and it is known that typhoid fever is due largely to such impurities present in the drinking water.

70. Methods of Purification. Water is improved by any of the following methods:—

(a) Boiling. The heat of boiling destroys animal and vegetable germs. Hence water that has been boiled a few minutes is safe to use. This is the most practical method of purification in the home, and is very efficient. The boiled water should be kept in clean, corked bottles; otherwise foreign substances from the atmosphere reenter the water, and the advantage gained from boiling is lost.

(b) Distillation. By this method pure water is obtained, but this method of purification cannot be used conveniently in the home (Section 25).

(c) Filtration. In filtration, the water is forced through porcelain or other porous substances which allow the passage of water, but which hold back the minute foreign particles suspended in the water. (See Laboratory Manual.) The filters used in ordinary dwellings are of stone, asbestos, or charcoal. They are often valueless, because they soon become choked and cannot be properly cleaned.

The filtration plants owned and operated by large cities are usually safe; there is careful supervision of the filters, and frequent and effective cleanings are made. In many cities the filtration system is so good that private care of the water supply is unnecessary.

71. The Source of Water. In the beginning, the earth was stored with water just as it was with metal, rock, etc. Some of the water gradually took the form of rivers, lakes, streams, and wells, as now, and it is this original supply of water which furnishes us all that we have to-day. We quarry to obtain stone and marble for building, and we fashion the earth's treasures into forms of our own, but we cannot create these things. We bore into the ground and drill wells in order to obtain water from hidden sources; we utilize rapidly flowing streams to drive the wheels of commerce, but the total amount of water remains practically unchanged.

The water which flows on the earth is constantly changing its form; the heat of the sun causes it to evaporate, or to become vapor, and to mingle with the atmosphere. In time, the vapor cools, condenses, and falls as snow or rain; the water which is thus returned to the earth feeds our rivers, lakes, springs, and wells, and these in turn supply water to man. When water falls upon a field, it soaks into the ground, or collects in puddles which slowly evaporate, or it runs off and drains into small streams or into rivers. That which soaks into the ground is the most valuable because it remains on the earth longest and is the purest.



Water which soaks into the ground moves slowly downward and after a longer or shorter journey, meets with a non-porous layer of rock through which it cannot pass, and which effectually hinders its downward passage. In such regions, there is an accumulation of water, and a well dug there would have an abundant supply of water. The non-porous layer is rarely level, and hence the water whose vertical path is obstructed does not "back up" on the soil, but flows down hill parallel with the obstructing non-porous layer, and in some distant region makes an outlet for itself, forming a spring (Fig. 38). The streams originating in the springs flow through the land and eventually join larger streams or rivers; from the surface of streams and rivers evaporation occurs, the water once more becomes vapor and passes into the atmosphere, where it is condensed and again falls to the earth.

Water which has filtered through many feet of earth is far purer and safer than that which fell directly into the rivers, or which ran off from the land and joined the surface streams without passing through the soil.

72. The Composition of Water. Water was long thought to be a simple substance, but toward the end of the eighteenth century it was found to consist of two quite different substances, oxygen (O) and hydrogen (H.)



If we send an electric current through water (acidulated to make it a good conductor), as shown in Figure 39, we see bubbles of gas rising from the end of the wire by which the current enters the water, and other bubbles of gas rising from the end of the wire by which the current leaves the water. These gases have evidently come from the water and are the substances of which it is composed, because the water begins to disappear as the gases are formed. If we place over each end of the wire an inverted jar filled with water, the gases are easily collected. The first thing we notice is that there is always twice as much of one gas as of the other; that is, water is composed of two substances, one of which is always present in twice as large quantities as the other.

73. The Composition of Water. On testing the gases into which water is broken up by an electric current, we find them to be quite different. One proves to be oxygen, a substance with which we are already familiar. The other gas, hydrogen, is new to us and is interesting as being the lightest known substance, being even "lighter than a feather."

An important fact about hydrogen is that in burning it gives as much heat as five times its weight of coal. Its flame is blue and almost invisible by daylight, but intensely hot. If fine platinum wire is placed in an ordinary gas flame, it does not melt, but if placed in a flame of burning hydrogen, it melts very quickly.

74. How to prepare Hydrogen. There are many different methods of preparing hydrogen, but the easiest laboratory method is to pour sulphuric acid, or hydrochloric acid, on zinc shavings and to collect in a bottle the gas which is given off. This gas proves to be colorless, tasteless, and odorless. (See Laboratory Manual.)



CHAPTER VII

AIR

75. The Instability of the Air. We are usually not conscious of the air around us, but sometimes we realize that the air is heavy, while at other times we feel the bracing effect of the atmosphere. We live in an ocean of air as truly as fish inhabit an ocean of water. If you have ever been at the seashore you know that the ocean is never still for a second; sometimes the waves surge back and forth in angry fury, at other times the waves glide gently in to the shore and the surface is as smooth as glass; but we know that there is perpetual motion of the water even when the ocean is in its gentlest moods. Generally our atmosphere is quiet, and we are utterly unconscious of it; at other times we are painfully aware of it, because of its furious winds. Then again we are oppressed by it because of the vast quantity of vapor which it holds in the form of fog, or mist. The atmosphere around us is as restless and varying as is the water of the sea. The air at the top of a high tower is very different from the air at the base of the tower. Not only does the atmosphere vary greatly at different altitudes, but it varies at the same place from time to time, at one period being heavy and raw, at another being fresh and invigorating.

Winds, temperature, and humidity all have a share in determining atmospheric conditions, and no one of these plays a small part.

76. The Character of the Air. The atmosphere which envelops us at all times extends more than fifty miles above us, its height being far greater than the greatest depths of the sea. This atmosphere varies from place to place; at the sea level it is heavy, on the mountain top less heavy, and far above the earth it is so light that it does not contain enough oxygen to permit man to live. Figure 40 illustrates by a pile of pillows how the pressure of the air varies from level to level.



Sea level is a low portion of the earth's surface, hence at sea level there is a high column of air, and a heavy air pressure. As one passes from sea level to mountain top a gradual but steady decrease in the height of the air column occurs, and hence a gradual but definite lessening of the air pressure.



77. Air Pressure. If an empty tube (Fig. 41) is placed upright in water, the water will not rise in the tube, but if the tube is put in water and the air is then drawn out of the tube by the mouth, the water will rise in the tube (Fig. 42). This is what happens when we take lemonade through a straw. When the air is withdrawn from the straw by the mouth, the pressure within the straw is reduced, and the liquid is forced up the straw by the air pressure on the surface of the liquid in the glass. Even the ancient Greeks and Romans knew that water would rise in a tube when the pressure within the tube was reduced, and hence they tried to obtain water from wells in this fashion, but the water could never be raised higher than 34 feet. Let us see why water could rise 34 feet and no more. If an empty pipe is placed in a cistern of water, the water in the pipe does not rise above the level of the water in the cistern. If, however, the pressure in the tube is removed, the water in the tube will rise to a height of 34 feet approximately. If now the air pressure in the tube is restored, the water in the tube sinks again to the level of that in the cistern. The air pressing on the liquid in the cistern tends to push some liquid up the tube, but the air pressing on the water in the tube pushes downwards, and tends to keep the liquid from rising, and these two pressures balance each other. When, however, the pressure within the tube is reduced, the liquid rises because of the unbalanced pressure which acts on the water in the cistern.



The column of water which can be raised this way is approximately 34 feet, sometimes a trifle more, sometimes a trifle less. If water were twice as heavy, just half as high a column could be supported by the atmosphere. Mercury is about thirteen times as heavy as water and, therefore, the column of mercury supported by the atmosphere is about one thirteenth as high as the column of water supported by the atmosphere. This can easily be demonstrated. Fill a glass tube about a yard long with mercury, close the open end with a finger, and quickly insert the end of the inverted tube in a dish of mercury (Fig. 43). When the finger is removed, the mercury falls somewhat, leaving an empty space in the top of the tube. If we measure the column in the tube, we find its height is about one thirteenth of 34 feet or 30 inches, exactly what we should expect. Since there is no air pressure within the tube, the atmospheric pressure on the mercury in the dish is balanced solely by the mercury within the tube, that is, by a column of mercury 30 inches high. The shortness of the mercury column as compared with that of water makes the mercury more convenient for both experimental and practical purposes. (See Laboratory Manual.)

78. The Barometer. Since the pressure of the air changes from time to time, the height of the mercury will change from day to day, and hour to hour. When the air pressure is heavy, the mercury will tend to be high; when the air pressure is low, the mercury will show a shorter column; and by reading the level of the mercury one can learn the pressure of the atmosphere. If a glass tube and dish of mercury are attached to a board and the dish of mercury is inclosed in a case for protection from moisture and dirt, and further if a scale of inches or centimeters is made on the upper portion of the board, we have a mercurial barometer (Fig. 44).



If the barometer is taken to the mountain top, the column of mercury falls gradually during the ascent, showing that as one ascends, the pressure decreases in agreement with the statement in Section 76. Observations similar to these were made by Torricelli as early as the sixteenth century. Taking a barometric reading consists in measuring the height of the mercury column.

79. A Portable Barometer. The mercury barometer is large and inconvenient to carry from place to place, and a more portable form has been devised, known as the aneroid barometer (Fig. 45). This form of barometer is extremely sensitive; indeed, it is so delicate that it shows the slight difference between the pressure at the table top and the pressure at the floor level, whereas the mercury barometer would indicate only a much greater variation in atmospheric pressure. The aneroid barometers are frequently made no larger than a watch and can be carried conveniently in the pocket, but they get out of order easily and must be frequently readjusted. The aneroid barometer is an air-tight box whose top is made of a thin metallic disk which bends inward or outward according to the pressure of the atmosphere. If the atmospheric pressure increases, the thin disk is pushed slightly inward; if, on the other hand, the atmospheric pressure decreases, the pressure on the metallic disk decreases and the disk is not pressed so far inward. The motion of the disk is small, and it would be impossible to calculate changes in atmospheric pressure from the motion of the disk, without some mechanical device to make the slight changes in motion perceptible.



In order to magnify the slight changes in the position of the disk, the thin face is connected with a system of levers, or wheels, which multiplies the changes in motion and communicates them to a pointer which moves around a graduated circular face. In Figure 45 the real barometer is scarcely visible, being securely inclosed in a metal case for protection; the principle, however, can be understood by reference to Figure 46.



80. The Weight of the Air. We have seen that the pressure of the atmosphere at any point is due to the weight of the air column which stretches from that point far up into the sky above. This weight varies slightly from time to time and from place to place, but it is equal to about 15 pounds to the square inch as shown by actual measurement. It comes to us as a surprise sometimes that air actually has weight; for example, a mass of 12 cubic feet of air at average pressure weighs 1 pound, and the air in a large assembly hall weighs more than 1 ton.

We are practically never conscious of this really enormous pressure of the atmosphere, which is exerted over every inch of our bodies, because the pressure is exerted equally over the outside and the inside of our bodies; the cells and tissues of our bodies containing gases under atmospheric pressure. If, however, the finger is placed over the open end of a tube and the air is sucked out of the tube by the mouth, the flesh of the finger bulges into the tube because the pressure within the finger is no longer equalized by the usual atmospheric pressure (Fig. 47).



Aeronauts have never ascended much higher than 7 miles; at that height the barometer stands at 7 inches instead of at 30 inches, and the internal pressure in cells and tissues is not balanced by an equal external pressure. The unequalized internal pressure forces the blood to the surface of the body and causes rupture of blood vessels and other physical difficulties.

81. Use of the Barometer. Changes in air pressure are very closely connected with changes in the weather. The barometer does not directly foretell the weather, but a low or falling pressure, accompanied by a simultaneous fall of the mercury, usually precedes foul weather, while a rising pressure, accompanied by a simultaneous rise in the mercury, usually precedes fair weather. The barometer is not an infallible prophet, but it is of great assistance in predicting the general trend of the weather. There are certain changes in the barometer which follow no known laws, and which allow of no safe predictions, but on the other hand, general future conditions for a few days ahead can be fairly accurately determined. Figure 48 shows a barograph or self-registering barometer which automatically registers air pressure.



Seaport towns in particular, but all cities, large or small, and villages too, are on request notified by the United States Weather Bureau ten hours or more in advance, of probable weather conditions, and in this way precautions are taken which annually save millions of dollars and hundreds of lives.

I recollect a summer spent on a New Hampshire farm, and know that an old farmer started his farm hands haying by moonlight at two o'clock in the morning, because the Special Farmer's Weather Forecast of the preceding evening had predicted rain for the following day. His reliance on the weather report was not misplaced, since the storm came with full force at noon. Sailing vessels, yachts, and fishing dories remain within reach of port if the barometer foretells storms.



82. Isobaric and Isothermal Lines. If a line were drawn through all points on the surface of the earth having an equal barometric pressure at the same time, such a line would be called an isobar. For example, if the height of barometers in different localities is observed at exactly the same time, and if all the cities and towns which have the same pressure are connected by a line, the curved lines will be called isobars. By the aid of these lines the barometric conditions over a large area can be studied. The Weather Bureau at Washington relies greatly on these isobars for statements concerning local and distant weather forecasts, any shift in isobaric lines showing change in atmospheric pressure.

If a line is drawn through all points on the surface of the earth having the same temperature at the same instant, such a line is called an isotherm (Fig. 49).

83. Weather Maps. Scattered over the United States are about 125 Government Weather Stations, at each of which three times a day, at the same instant, accurate observations of the weather are made. These observations, which consist of the reading of barometer and thermometer, the determination of the velocity and direction of the wind, the determination of the humidity and of the amount of rain or snow, are telegraphed to the chief weather official at Washington. From the reports of wind storms, excessive rainfall, hot waves, clearing weather, etc., and their rate of travel, the chief officials predict where the storms, etc., will be at a definite future time. In the United States, the general movement of weather conditions, as indicated by the barometer, is from west to east, and if a certain weather condition prevails in the west, it is probable that it will advance eastward, although with decided modifications. So many influences modify atmospheric conditions that unfailing predictions are impossible, but the Weather Bureau predictions prove true in about eight cases out of ten.

The reports made out at Washington are telegraphed on request to cities in this country, and are frequently published in the daily papers, along with the forecast of the local office. A careful study of these reports enables one to forecast to some extent the probable weather conditions of the day.

The first impression of a weather map (Fig. 50) with its various lines and signals is apt to be one of confusion, and the temptation comes to abandon the task of finding an underlying plan of the weather. If one will bear in mind a few simple rules, the complexity of the weather map will disappear and a glance at the map will give one information concerning general weather conditions just as a glance at the thermometer in the morning will give some indication of the probable temperature of the day. (See Laboratory Manual.)



On the weather map solid lines represent isobars and dotted lines represent isotherms. The direction of the wind at any point is indicated by an arrow which flies with the wind; and the state of the weather—clear, partly cloudy, cloudy, rain, snow, etc.—is indicated by symbols.

84. Components of the Air. The best known constituent of the air is oxygen, already familiar to us as the feeder of the fire without and within the body. Almost one fifth of the air which envelops us is made up of the life-giving oxygen. This supply of oxygen in the air is constantly being used up by breathing animals and glowing fires, and unless there were some constant source of additional supply, the quantity of oxygen in the air would soon become insufficient to support animal life. The unfailing constant source of atmospheric oxygen is plant life (Section 48). The leaves of plants absorb carbon dioxide from the air, and break it up into oxygen and carbon. The plant makes use of the carbon but it rejects the oxygen, which passes back into the atmosphere through the pores of the leaves.

Although oxygen constitutes only one fifth of the atmosphere, it is one of the most abundant and widely scattered of all substances. Almost the whole earth, whether it be rich loam, barren clay, or granite boulder, contains oxygen in some form or other; that is, in combination with other substances. But nowhere, except in the air around us, do we find oxygen free and uncombined with other substances.

A less familiar but more abundant constituent of the atmosphere is the nitrogen. Almost four fifths of the air around us is made up of nitrogen. If the atmosphere were composed of oxygen alone, the merest flicker of a match would set the whole world ablaze. The fact that the oxygen of the air is diluted as it were with so large a proportion of nitrogen, prevents fires from sweeping over the world and destroying everything in their path. Nitrogen does not support combustion, and a burning match placed in a corked bottle goes out as soon as it has used up the oxygen in the bottle. The nitrogen in the bottle, not only does not assist the burning of the match, but it acts as a damper to the burning.

Free nitrogen, like oxygen, is a colorless, odorless gas. It is not poisonous; but one would die if surrounded by nitrogen alone, just as one would die if surrounded by water. The vast supply of nitrogen in the atmosphere would be useless if the smaller amount of oxygen were not present to keep the body alive. Nitrogen is so important a factor in daily life that an entire chapter will be devoted to it later.

Another constituent of the air with which we are familiar is carbon dioxide. In pure air, carbon dioxide is present in very small proportion, being continually taken from the air by plants in the manufacture of their food.

Various other substances are present in the air in very minute proportions, but of all the substances in the air, oxygen, nitrogen, and carbon dioxide are the most important.



CHAPTER VIII

GENERAL PROPERTIES OF GASES

85. Bicycle Tires. We know very well that we cannot put more than a certain amount of water in a tube, but we know equally well that the amount of air which can be pumped into a bicycle or automobile tire depends largely upon our muscular energy. A gallon of water remains a gallon of water and requires a perfectly definite amount of space, but air can be compressed and compressed, and made to occupy less and less space. While it is true that air is easily compressed, it is also true that air is elastic and capable of very rapid and easy expansion. If a puncture occurs in a tire, the compressed air escapes very quickly; that is, the compressed air within the tube has taken the first opportunity offered for expansion.



The fact that air is elastic has added materially to the comfort of the world. Transportation by bicycles and automobiles has been greatly facilitated by the use of air tires. In many hospitals, air mattresses are used in place of hair, feather, or cotton mattresses, and in this way the bed is kept fresher and cleaner, and can be moved with less danger of discomfort to the patient. Every time we squeeze the bulb of an atomizer, we force compressed or condensed air through the atomizer, and the condensed air pushes the liquid out of the nozzle (Fig. 51). Thus we see that in the necessities and conveniences of life compressed air plays an important part.

86. The Danger of Compression. Air under ordinary atmospheric conditions exerts a pressure of 15 pounds to the square inch. If, now, large quantities of air are compressed into a small space, the pressure exerted becomes correspondingly greater. If too much air is blown into a toy balloon, the balloon bursts because it cannot support the great pressure exerted by the compressed air within. What is true of air is true of all gases. Dangerous boiler explosions have occurred because the boiler walls were not strong enough to withstand the pressure of the steam (which is water in the form of gas). The pressure within the boilers of engines is frequently several hundred pounds to the square inch, and such a pressure needs a strong boiler.

87. How Pressure is Measured in Buildings. In the preceding Section we saw that undue pressure of a gas may cause explosion. It is important, therefore, that authorities keep strict watch on gases confined within pipes and reservoirs, never allowing the pressure to exceed that which the walls of the reservoir will safely bear.



Pressure in a gas pipe may be measured by a simple instrument called the pressure gauge: The gauge consists of a bent glass tube containing mercury, and so made that one end can be fitted to a gas jet (Fig. 52). When the gas cock is closed, the mercury stands at the same level in both arms, but when the cock is opened, the gas whose pressure is being measured forces the mercury up the opposite arm. If the pressure of the gas is small, the mercury changes its level but very little. It is clear that the height of a column of mercury is a measure of the gas pressure. Now it is known that one cubic inch of mercury weighs about half a pound. Hence a column of mercury one inch high indicates a pressure of about one half pound to the square inch; a column two inches high indicates a pressure of about one pound to the square inch, and so on.

This is a very convenient way to measure the pressure of the illuminating gas in our homes and offices. The gauge is attached to the gas burner and the pressure is read by means of a scale attached to the gauge. (See Laboratory Manual.)

In order to have satisfactory illumination, the pressure must be strong enough to give a steady, broad flame. If the flame from any gas jet is flickering and weak, it is usually an indication of insufficient pressure and the gas company should investigate conditions and see to it that the consumer receives his proper value.

87. The Gas Meter. Most householders are deeply interested in the actual amount of gas which they consume (gas is charged for according to the number of cubic feet used), and therefore they should be able to read the gas meter which indicates their consumption of gas. Such gas meters are furnished by the companies, and can be read easily.



The instrument itself is somewhat complex. It will suffice to say that within the meter box are thin disks which are moved by the stream of gas that passes them. This movement of the disks is recorded by clockwork devices on a dial face. In this way, the number of cubic feet of gas which pass through the meter is automatically registered.

89. The Relation between Pressure and Volume. It was long known that as the pressure of a gas increases, that is, as it becomes compressed, its volume decreases, but Robert Boyle was the first to determine the exact relation between the volume and the pressure of a gas. He did this in a very simple manner.

Pour mercury into a U-shaped tube until the level of the mercury in the closed end of the tube is the same as the level in the open end. The air in the long arm is pressing upon the mercury in that arm, and is tending to force it up the short arm. The air in the short closed arm is pressing down upon the mercury in that arm and tending to send it up the long arm. Since the mercury is at the same level in the two arms, the pressure in the long arm must be equal to the pressure in the short arm. But the long arm is open, and the pressure in that arm is the pressure of the atmosphere. Therefore the pressure in the short arm must be one atmosphere. Measure the distance bc between the top of the mercury and the closed end of the tube.



Pour more mercury into the open end of the tube, and as the mercury rises higher and higher in the long arm, note carefully the decrease in the volume of the air in the short arm. Pour mercury into the tube until the difference in level bd is just equal to the barometric height, approximately 32 inches. The pressure of the air in the closed end now supports the pressure of one atmosphere, and in addition, a column of mercury equal to another atmosphere. If now the air column in the closed end is measured, its volume will be only one half of its former volume. By doubling the pressure we have reduced the volume one half. Similarly, if the pressure is increased threefold, the volume will be reduced to one third of the original volume.

90. Heat due to Compression. We saw in Section 89 that whenever the pressure exerted upon a gas is increased, the volume of the gas is decreased; and that whenever the pressure upon a gas is decreased, the volume of the gas is increased. If the pressure is changed very slowly, the change in the temperature of the gas is imperceptible; if, however, the pressure is removed suddenly, the temperature falls rapidly, or if the pressure is applied suddenly, the temperature rises rapidly. When bicycle tires are being inflated, the pump becomes hot because of the compression of the air.

The amount of heat resulting from compression is surprisingly large; for example, if a mass of gas at 0 deg. C. is suddenly compressed to one half its original volume, its temperature rises 87 deg. C.

91. Cooling by Expansion. If a gas expands suddenly, its temperature falls; for example, if a mass of gas at 87 deg. C. is allowed to expand rapidly to twice its original volume, its temperature falls to 0 deg. C. If the compressed air of a bicycle tire is allowed to expand and a sensitive thermometer is held in the path of the escaping air, the thermometer will show a decided drop in temperature.

The low temperature obtained by the expansion of air or other gases is utilized commercially on a large scale. By means of powerful pistons air is compressed to one third or one fourth its original volume, is passed through a coil of pipe surrounded with cold water, and is then allowed to escape into large refrigerating vaults, which thereby have their temperatures noticeably lowered, and can be used for the permanent storage of meats, fruits, and other perishable material. In summer, when the atmospheric temperature is high, the storage and preservation of foods is of vital importance to factories and cold storage houses, and but for the low temperature obtainable by the expansion of compressed gases, much of our food supply would be lost to use.

92. Unexpected Transformations. If the pressure on a gas is greatly increased, a sudden transformation sometimes occurs and the gas becomes a liquid. Then, if the pressure is reduced, a second transformation occurs, and the liquid evaporates or returns to its original form as a gas.

In Section 23 we saw that a fall of temperature caused water vapor to condense or liquefy. If temperature alone were considered, most gases could not be liquefied, because the temperature at which the average gas liquefies is so low as to be out of the range of possibility; it has been calculated, for example, that a temperature of 252 deg. C. below zero would have to be obtained in order to liquefy hydrogen.

Some gases can be easily transformed into liquids by pressure alone, some gases can be easily transformed into liquids by cooling alone; on the other hand, many gases are so difficult to liquefy that both pressure and low temperature are needed to produce the desired result. If a gas is cooled and compressed at the same time, liquefaction occurs much more surely and easily than though either factor alone were depended upon. The air which surrounds us, and of whose existence we are scarcely aware, can be reduced to the form of a liquid, but the pressure exerted upon the portion to be liquefied must be thirty-nine times as great as the atmospheric pressure, and the temperature must have been reduced to a very low point.

93. Artificial Ice. Ammonia gas is liquefied by strong pressure and low temperature and is then allowed to flow into pipes which run through tanks containing salt water. The reduction of pressure causes the liquid to evaporate or turn to a gas, and the fall of temperature which always accompanies evaporation means a lowering of the temperature of the salt water to 16 deg. or 18 deg. below zero. But immersed in the salt water are molds containing pure water, and since the freezing point of water is 0 deg. C, the water in the molds freezes and can be drawn from the mold as solid cakes of ice.



Ammonia gas is driven by the pump C into the coil D (Fig. 56) under a pressure strong enough to liquefy it, the heat generated by this compression being carried off by cold water which constantly circulates through B. The liquid ammonia flows through the regulating valve V into the coil E, in which the pressure is kept low by the pump C. The accompanying expansion reduces the temperature to a very low degree, and the brine which circulates around the coil E acquires a temperature below the freezing point of pure water. The cold brine passes from A to a tank in which are immersed cans filled with water, and within a short time the water in the cans is frozen into solid cakes of ice.



CHAPTER IX

INVISIBLE OBJECTS

94. Very Small Objects. We saw in Section 84 that gases have a tendency to expand, but that they can be compressed by the application of force. This observation has led scientists to suppose that substances are composed of very minute particles called molecules, separated by small spaces called pores; and that when a gas is condensed, the pores become smaller, and that when a gas expands, the pores become larger.

The fact that certain substances are soluble, like sugar in water, shows that the molecules of sugar find a lodging place in the spaces or pores between the molecules of water, in much the same way that pebbles find lodgment in the chinks of the coal in a coal scuttle. An indefinite quantity of sugar cannot be dissolved in a given quantity of liquid, because after a certain amount of sugar has been dissolved all the pores become filled, and there is no available molecular space. The remainder of the sugar settles at the bottom of the vessel, and cannot be dissolved by any amount of stirring.

If a piece of potassium permanganate about the size of a grain of sand is put into a quart of water, the solid disappears and the water becomes a deep rich red. The solid evidently has dissolved and has broken up into minute particles which are too small to be seen, but which have scattered themselves and lodged in the pores of the water, thus giving the water its rich color.

There is no visible proof of the existence of molecules and molecular spaces, because not only are our eyes unable to see them directly, but even the most powerful microscope cannot make them visible to us. They are so small that if one thousand of them were laid side by side, they would make a speck too small to be seen by the eye and too small to be visible under the most powerful microscope.

We cannot see molecules or molecular pores, but the phenomena of compression and expansion, solubility and other equally convincing facts, have led us to conclude that all substances are composed of very minute particles or molecules separated by spaces called pores.

95. Journeys Made by Molecules. If a gas jet is turned on and not lighted, an odor of gas soon becomes perceptible, not only throughout the room, but in adjacent halls and even in distant rooms. An uncorked bottle of cologne scents an entire room, the odor of a rose or violet permeates the atmosphere near and far. These simple everyday occurrences seem to show that the molecules of a gas must be in a state of continual and rapid motion. In the case of the cologne, some molecules must have escaped from the liquid by the process of evaporation and traveled through the air to the nose. We know that the molecules of a liquid are in motion and are continually passing into the air because in time the vessel becomes empty. The only way in which this could happen would be for the molecules of the liquid to pass from the liquid into the surrounding medium; but this is really saying that the molecules are in motion.

From these phenomena and others it is reasonably clear that substances are composed of molecules, and that molecules are not inert, quiet particles, but that they are in incessant motion, moving rapidly hither and thither, sometimes traveling far, sometimes near. Even the log of wood which lies heavy and motionless on our woodpile is made up of countless billions of molecules each in rapid incessant motion. The molecules of solid bodies cannot escape so readily as those of liquids and gases, and do not travel far. The log lies year after year in an apparently motionless condition, but if one's eyes were keen enough, the molecules would be seen moving among themselves, even though they cannot escape into the surrounding medium and make long journeys as do the molecules of liquids and gases.

96. The Companions of Molecules. Common sense tells us that a molecule of water is not the same as a molecule of vinegar; the molecules of each are extremely small and in rapid motion, but they differ essentially, otherwise one substance would be like every other substance. What is it that makes a molecule of water differ from a molecule of vinegar, and each differ from all other molecules? Strange to say, a molecule is not a simple object, but is quite complex, being composed of one or more smaller particles, called atoms, and the number and kind of atoms in a molecule determine the type of the molecule, and the type of the molecule determines the substance. For example, a glass of water is composed of untold millions of molecules, and each molecule is a company of three still smaller particles, one of which is called the oxygen atom and two of which are alike in every particular and are called hydrogen atoms.

97. Simple Molecules. Generally molecules are composed of atoms which are different in kind. For example, the molecule of water has two different atoms, the oxygen atom and the hydrogen atoms; alcohol has three different kinds of atoms, oxygen, hydrogen, and carbon. Sometimes, however, molecules are composed of a group of atoms all of which are alike. Now there are but seventy or eighty different kinds of atoms, and hence there can be but seventy or eighty different substances whose molecules are composed of atoms which are alike. When the atoms comprising a molecule are all alike, the substance is called an element, and is said to be a simple substance. Throughout the length and breadth of this vast world of ours there are only about eighty known elements. An element is the simplest substance conceivable, because it has not been separated into anything simpler. Water is a compound substance. It can be separated into oxygen and hydrogen.

Gold, silver, and lead are examples of elements, and water, alcohol, cider, sand, and marble are complex substances, or compounds, as we are apt to call them. Everything, no matter what its size or shape or character, is formed from the various combinations into molecules of a few simple atoms, of which there exist about eighty known different kinds. But few of the eighty known elements play an important part in our everyday life. The elements in which we are most interested are given in the following table, and the symbols by which they are known are placed in columns to the right:

Oxygen O Copper Cu Phosphorus P Hydrogen H Iodine I Potassium K Carbon C Iron Fe Silver Ag Aluminium Al Lead Pb Sodium Na Calcium Ca Nickel Ni Sulphur S Chlorine Cl Nitrogen N Tin Sn

We have seen in an earlier experiment that twice as much hydrogen as oxygen can be obtained from water. Two atoms of the element hydrogen unite with one atom of the element oxygen to make one molecule of water. In symbols we express this H_2O. A group of symbols, such as this, expressing a molecule of a compound is called a _formula_. NaCl is the formula for sodium chloride, which is the chemical name of common salt.



CHAPTER X

LIGHT

98. What Light Does for Us. Heat keeps us warm, cooks our food, drives our engines, and in a thousand ways makes life comfortable and pleasant, but what should we do without light? How many of us could be happy even though warm and well fed if we were forced to live in the dark where the sunbeams never flickered, where the shadows never stole across the floor, and where the soft twilight could not tell us that the day was done? Heat and light are the two most important physical factors in life; we cannot say which is the more necessary, because in the extreme cold or arctic regions man cannot live, and in the dark places where the light never penetrates man sickens and dies. Both heat and light are essential to life, and each has its own part to play in the varied existence of man and plant and animal.

Light enables us to see the world around us, makes the beautiful colors of the trees and flowers, enables us to read, is essential to the taking of photographs, gives us our moving pictures and our magic lanterns, produces the exquisite tints of stained-glass windows, and brings us the joy of the rainbow. We do not always realize that light is beneficial, because sometimes it fades our clothing and our carpets, and burns our skin and makes it sore. But we shall see that even these apparently harmful effects of light are in reality of great value in man's constant battle against disease.

99. The Candle. Natural heat and light are furnished by the sun, but the absence of the sun during the evening makes artificial light necessary, and even during the day artificial light is needed in buildings whose structure excludes the natural light of the sun. Artificial light is furnished by electricity, by gas, by oil in lamps, and in numerous other ways. Until modern times candles were the main source of light, and indeed to-day the intensity, or power, of any light is measured in candle power units, just as length is measured in yards; for example, an average gas jet gives a 10 candle power light, or is ten times as bright as a candle; an ordinary incandescent electric light gives a 16 candle power light, or furnishes sixteen times as much light as a candle. Very strong large oil lamps can at times yield a light of 60 candle power, while the large arc lamps which flash out on the street corners are said to furnish 1200 times as much light as a single candle. Naturally all candles do not give the same amount of light, nor are all candles alike in size. The candles which decorate our tea tables are of wax, while those which serve for general use are of paraffin and tallow.



100. Fading Illumination. The farther we move from a light, the less strong, or intense, is the illumination which reaches us; the light of the street lamp on the corner fades and becomes dim before the middle of the block is reached, so that we look eagerly for the next lamp. The light diminishes in brightness much more rapidly than we realize, as the following simple experiment will show. Let a single candle (Fig. 57) serve as our light, and at a distance of one foot from the candle place a photograph. In this position the photograph receives a definite amount of light from the candle and has a certain brightness.

If now we place a similar photograph directly behind the first photograph and at a distance of two feet from the candle, the second photograph receives no light because the first one cuts off all the light. If, however, the first photograph is removed, the light which fell on it passes outward and spreads itself over a larger area, until at the distance of the second photograph the light spreads itself over four times as large an area as formerly. At this distance, then, the illumination on the second photograph is only one fourth as strong as it was on a similar photograph held at a distance of one foot from the candle.

The photograph or object placed at a distance of one foot from a light is well illuminated; if it is placed at a distance of two feet, the illumination is only one fourth as strong, and if the object is placed three feet away, the illumination is only one ninth as strong. This fact should make us have thought and care in the use of our eyes. We think we are sixteen times as well off with our incandescent lights as our ancestors were with simple candles, but we must reflect that our ancestors kept the candle near them, "at their elbow," so to speak, while we sit at some distance from the light and unconcernedly read and sew.

As an object recedes from a light the illumination which it receives diminishes rapidly, for the strength of the illumination is inversely proportional to the square of distance of the object from the light. Our ancestors with a candle at a distance of one foot from a book were as well off as we are with an incandescent light four feet away.

101. Money Value of Light. Light is bought and sold almost as readily as are the products of farm and dairy; many factories, churches, and apartments pay a definite sum for electric light of a standard strength, and naturally full value is desired. An instrument for measuring the strength of a light is called a photometer, and there are many different varieties, just as there are varieties of scales which measure household articles. One light-measuring scale depends upon the law that the intensity of illumination decreases with the square of the distance of the object from the light. Suppose we wish to measure the strength of the electric light bulbs in our homes, in order to see whether we are getting the specified illumination. In front of a screen place a black rod (Fig. 58) which is illuminated by two different lights; namely, a standard candle and an incandescent bulb whose strength is to be measured. Two shadows of the rod will fall on the screen, one caused by the candle and the other caused by the incandescent light. The shadow due to the latter source is not so dark as that due to the candle. Now let the incandescent light be moved away from the screen until the two shadows are of equal darkness. If the incandescent light is four times as far away from the screen as the candle, and the shadows are equal, we know, by Section 100, that its strength is sixteen candle power. If the incandescent light is four times as far away from the screen as the candle is, its power must be sixteen times as great, and we know the company is furnishing the standard amount of light for a sixteen candle power electric bulb. If, however, the bulb must be moved nearer to the rod in order that the two shadows may be similar then the light given by the bulb is less than sixteen candle power, and less than that due the consumer.



102. How Light Travels. We never expect to see around a corner, and if we wish to see through pinholes in three separate pieces of cardboard, we place the cardboards so that the three holes are in a straight line. When sunlight enters a dark room through a small opening, the dust particles dancing in the sun show a straight ray. If a hole is made in a card, and the card is held in front of a light, the card casts a shadow, in the center of which is a bright spot. The light, the hole, and the bright spot are all in the same straight line. These simple observations lead us to think that light travels in a straight line.



We can always tell the direction from which light comes, either by the shadow cast or by the bright spot formed when an opening occurs in the opaque object casting the shadow. If the shadow of a tree falls towards the west, we know the sun must be in the cast; if a bright spot is on the floor, we can easily locate the light whose rays stream through an opening and form the bright spot. We know that light travels in a straight line, and following the path of the beam which comes to our eyes, we are sure to locate the light.

103. Good and Bad Mirrors. As we walk along the street, we frequently see ourselves reflected in the shop windows, in polished metal signboards, in the metal trimmings of wagons and automobiles; but in mirrors we get the best image of ourselves. We resent the image given by a piece of tin, because the reflection is distorted and does not picture us as we really are; a rough surface does not give a fair representation; if we want a true image of ourselves, we must use a smooth surface like a mirror as a reflector. If the water in a pond is absolutely still, we get a clear, true image of the trees, but if there are ripples on the surface, the reflection is blurred and distorted. A metal roof reflects so much light that the eyes are dazzled by it, and a whitewashed fence injures the eyes because of the glare which comes from the reflected light. Neither of these could be called mirrors, however, because although they reflect light, they reflect it so irregularly that not even a suggestion of an image can be obtained.

Most of us are sufficiently familiar with mirrors to know that the image is a duplicate of ourselves with regard to size, shape, color, and expression, but that it appears to be back of the mirror, while we are actually in front of the mirror. The image appears not only behind the mirror, but it is also exactly as far back of the mirror as we are in front of it; if we approach the mirror, the image also draws nearer; if we withdraw, it likewise recedes.

104. The Path of Light. If a mirror or any other polished surface is held in the path of a sunbeam, some of the light is reflected, and by rotating the mirror the reflected sunbeam may be made to take any path. School children amuse themselves by reflecting sunbeams from a mirror into their companions' faces. If the companion moves his head in order to avoid the reflected beam, his tormentor moves or inclines the mirror and flashes the beam back to his victim's face.

If a mirror is held so that a ray of light strikes it in a perpendicular direction, the light is reflected backward along the path by which it came. If, however, the light makes an angle with the mirror, its direction is changed, and it leaves the mirror along a new path. By observation we learn that when a beam strikes the mirror and makes an angle of 30 deg. with the perpendicular, the beam is reflected in such a way that its new path also makes an angle of 30 deg. with the perpendicular. If the sunbeam strikes the mirror at an angle of 32 deg. with the perpendicular, the path of the reflected ray also makes an angle of 32 deg. with the perpendicular. The ray (AC, Fig. 60) which falls upon the mirror is called the incident ray, and the angle which the incident ray (AC) makes with the perpendicular (BC) to the mirror, at the point where the ray strikes the mirror, is called the angle of incidence. The angle formed by the reflected ray (CD) and this same perpendicular is called the angle of reflection. Observation and experiment have taught us that light is always reflected in such a way that the angle of reflection equals the angle of incidence. Light is not the only illustration we have of the law of reflection. Every child who bounces a ball makes use of this law, but he uses it unconsciously. If an elastic ball is thrown perpendicularly against the floor, it returns to the sender; if it is thrown against the floor at an angle (Fig. 61), it rebounds in the opposite direction, but always in such a way that the angle of reflection equals the angle of incidence.



105. Why the Image seems to be behind the Mirror. If a candle is placed in front of a mirror, as in Figure 62, one of the rays of light which leaves the candle will fall upon the mirror as AB and will be reflected as BC (in such a way that the angle of reflection equals the angle of incidence). If an observer stands at C, he will think that the point A of the candle is somewhere along the line CB extended. Such a supposition would be justified from Section 102. But the candle sends out light in all directions; one ray therefore will strike the mirror as AD and will be reflected as DE, and an observer at E will think that the point A of the candle is somewhere along the line ED. In order that both observers may be correct, that is, in order that the light may seem to be in both these directions, the image of the point A must seem to be at the intersection of the two lines. In a similar manner it can be shown that every point of the image of the candle seems to be behind the mirror.



It can be shown by experiment that the distance of the image behind the mirror is equal to the distance of the object in front of the mirror.

106. Why Objects are Visible. If the beam of light falls upon a sheet of paper, or upon a photograph, instead of upon a smooth polished surface, no definite reflected ray will be seen, but a glare will be produced by the scattering of the beam of light. The surface of the paper or photograph is rough, and as a result, it scatters the beam in every direction. It is hard for us to realize that a smooth sheet of paper is by no means so smooth as it looks. It is rough compared with a polished mirror. The law of reflection always holds, however, no matter what the reflecting surface is,—the angle of reflection always equals the angle of incidence. In a smooth body the reflected beams are all parallel; in a rough body, the reflected beams are inclined to each other in all sorts of ways, and no two beams leave the paper in exactly the same direction.



Hot coals, red-hot stoves, gas flames, and candles shine by their own light, and are self-luminous. Objects like chairs, tables, carpets, have no light within themselves and are visible only when they receive light from a luminous source and reflect that light. We know that these objects are not self-luminous, because they are not visible at night unless a lamp or gas is burning. When light from any luminous object falls upon books, desks, or dishes, it meets rough surfaces, and hence undergoes diffuse reflection, and is scattered irregularly in all directions. No matter where the eye is, some reflected rays enter it, and the various objects are clearly seen.



CHAPTER XI

REFRACTION

107. Bent Rays of Light. A straw in a glass of lemonade seems to be broken at the surface of the liquid, the handle of a teaspoon in a cup of water appears broken, and objects seen through a glass of water may seem distorted and changed in size. When light passes from air into water, or from any transparent substance into another of different density, its direction is changed, and it emerges along an entirely new path (Fig. 64). We know that light rays pass through glass, because we can see through the window panes and through our spectacles; we know that light rays pass through water, because we can see through a glass of clear water; on the other hand, light rays cannot pass through wood, leather, metal, etc.



Whenever light meets a transparent substance obliquely, some of it is reflected, undergoing a change in its direction; and some of it passes onward through the medium, but the latter portion passes onward along a new path. The ray RO (Fig. 65) passes obliquely through the air to the surface of the water, but, on entering the water, it is bent or refracted and takes the new path OS. The angle AOR is called the angle of incidence. The angle POS is called the angle of refraction.



The angle of refraction is the angle formed by the refracted ray and the perpendicular to the surface at the point where the light strikes it.

When light passes from air into water or glass, the refracted ray is bent toward the perpendicular, so that the angle of refraction is smaller than the angle of incidence. When a ray of light passes from water or glass into air, the refracted ray is bent away from the perpendicular so that the angle of refraction is greater than the angle of incidence.

The bending or deviation of light in its passage from one substance to another is called refraction.

108. How Refraction Deceives us. Refraction is the source of many illusions; bent rays of light make objects appear where they really are not. A fish at A (Fig. 66) seems to be at B. The end of the stick in Figure 64 seems to be nearer the surface of the water than it really is.



The light from the sun, moon, and stars can reach us only by passing through the atmosphere, but in Section 76, we learned that the atmosphere varies in density from level to level; hence all the light which travels through the atmosphere is constantly deviated from its original path, and before the light reaches the eye it has undergone many changes in direction. Now we learned in Section 102, that the direction of the rays of light as they enter the eye determines the direction in which an object is seen; hence the sun, moon, and stars seem to be along the lines which enter the eye, although in reality they are not.

109. Uses of Refraction. If it were not for refraction, or the deviation of light in its passage from medium to medium, the wonders and beauties of the magic lantern and the camera would be unknown to us; sun, moon, and stars could not be made to yield up their distant secrets to us in photographs; the comfort and help of spectacles would be lacking, spectacles which have helped unfold to many the rare beauties of nature, such as a clear view of clouds and sunset, of humming bee and flying bird. Books with their wealth of entertainment and information would be sealed to a large part of mankind, if glasses did not assist weak eyes.

By refraction the magnifying glass reveals objects hidden because of their minuteness, and enlarges for our careful contemplation objects otherwise barely visible. The watchmaker, unassisted by the magnifying glass, could not detect the tiny grains of dust or sand which clog the delicate wheels of our watches. The merchant, with his lens, examines the separate threads of woolen and silk fabrics to determine the strength and value of the material. The physician, with his invaluable microscope, counts the number of infinitesimal corpuscles in the blood and bases his prescription on that count; he examines the sputum of a patient to determine whether tuberculosis wastes the system. The bacteriologist with the same instrument scrutinizes the drinking water and learns whether the dangerous typhoid germs are present. The future of medicine will depend somewhat upon the additional secrets which man is able to force from nature through the use of powerful lenses, because as lenses have, in the past, been the means of revealing disease germs, so in the future more powerful lenses may serve to bring to light germs yet unknown. How refraction accomplishes these results will be explained in the following Sections.

110. The Window Pane. We have seen that light is bent when it passes from one medium to another of different density, and that objects viewed by refracted light do not appear in their proper positions.

When a ray of light passes through a piece of plane glass, such as a window pane (Fig. 67), it is refracted at the point B toward the perpendicular, and continues its course through the glass in the new direction BC. On emerging from the glass, the light is refracted away from the perpendicular and takes the direction CD, which is clearly parallel to its original direction. Hence, when we view objects through the window, we see them slightly displaced in position, but otherwise unchanged. The deviation or displacement caused by glass as thin as window panes is too slight to be noticed, and we are not conscious that objects are out of position.



111. Chandelier Crystals and Prisms. When a ray of light passes through plane glass, like a window pane, it is shifted somewhat, but its direction does not change; that is, the emergent ray is parallel to the incident ray. But when a beam of light passes through a triangular glass prism, such as a chandelier crystal, its direction is greatly changed, and an object viewed through a prism is seen quite out of its true position.

Whenever light passes through a prism, it is bent toward the base of the prism, or toward the thick portion of the prism, and emerges from the prism in quite a different direction from that in which it entered (Fig. 68). Hence, when an object is looked at through a prism, it is seen quite out of place. In Figure 68, the candle seems to be at S, while in reality it is at A.



112. Lenses. If two prisms are arranged as in Figure 69, and two parallel rays of light fall upon the prisms, the beam A will be bent downward toward the thickened portion of the prism, and the beam B will be bent upward toward the thick portion of the prism, and after passing through the prism the two rays will intersect at some point F, called a focus.



If two prisms are arranged as in Figure 70, the ray A will be refracted upward toward the thick end, and the ray B will be refracted downward toward the thick end; the two rays, on emerging, will therefore be widely separated and will not intersect.



Lenses are very similar to prisms; indeed, two prisms placed as in Figure 69, and rounded off, would make a very good convex lens. A lens is any transparent material, but usually glass, with one or both sides curved. The various types of lenses are shown in Figure 71.



The first three types focus parallel rays at some common point F, as in Figure 69. Such lenses are called convex or converging lenses. The last three types, called concave lenses, scatter parallel rays so that they do not come to a focus, but diverge widely after passage through the lens.

113. The Shape and Material of a Lens. The main or principal focus of a lens, that is, the point at which rays parallel to the base line AB meet (Fig. 71), depends upon the shape of the lens. For example, a thick lens, such as A (Fig. 72), focuses the rays very near to the lens; B, which is not so thick, focuses the rays at a greater distance from the lens; and C, which is a very thin lens, focuses the rays at a considerable distance from the lens. The distance of the principal focus from the lens is called the focal length of the lens, and from the diagrams we see that the more convex the lens, the shorter the focal length.



The position of the principal focus depends not only on the shape of the lens, but also on the refractive power of the material composing the lens. A lens made of ice would not deviate the rays of light so much as a lens of similar shape composed of glass. The greater the refractive power of the lens, the greater the bending, and the nearer the principal focus to the lens.

There are many different kinds of glass, and each kind of glass refracts the light differently. Flint glass contains lead; the lead makes the glass dense, and gives it great refractive power, enabling it to bend and separate light in all directions. Cut glass and toilet articles are made of flint glass because of the brilliant effects caused by its great refractive power, and imitation gems are commonly nothing more than polished flint glass.

114. How Lenses Form Images. Suppose we place an arrow, A, in front of a convex lens (Fig. 73). The ray AC, parallel to the principal axis, will pass through the lens and emerge as DE. The ray is always bent toward the thick portion of the lens, both at its entrance into the lens and its emergence from the lens.



In Section 105, we saw that two rays determine the position of any point of our image; hence in order to locate the image of the top of the arrow, we need to consider but one more ray from the top of the object. The most convenient ray to choose would be one passing through O, the optical center of the lens, because such a ray passes through the lens unchanged in direction, as is clear from Figure 74. The point where AC and AO meet after refraction will be the position of the top of the arrow. Similarly it can be shown that the center of the arrow will be at the point T, and we see that the image is larger than the object. This can be easily proved experimentally. Let a convex lens be placed near a candle (Fig. 75); move a paper screen back and forth behind the lens; for some position of the screen a clear, enlarged image of the candle will be made.



If the candle or arrow is placed in a new position, say at MA (Fig. 76), the image formed is smaller than the object, and is nearer to the lens than it was before. Move the lens so that its distance from the candle is increased, and then find the image on a piece of paper. The size and position of the image depend upon the distance of the object from the lens (Fig. 77). By means of a lens one can easily get on a visiting card a picture of a distant church steeple.



115. The Value of Lenses. If it were not for the fact that a lens can be held at such a distance from an object as to make the image larger than the object, it would be impossible for the lens to assist the watchmaker in locating the small particles of dust which clog the wheels of the watch. If it were not for the opposite fact—that a lens can be held at such a distance from the object as to make an image smaller than the object, it would be impossible to have a photograph of a tall tree or building unless the photograph were as large as the tree itself. When a photographer takes a photograph of a person or a tree, he moves his camera until the image formed by the lens is of the desired size. By bringing the camera (really the lens of the camera) near, we obtain a large-sized photograph; by increasing the distance between the camera and the object, a smaller photograph is obtained. The mountain top may be so far distant that in the photograph it will not appear to be greater than a small stone.



Many familiar illustrations of lenses, or curved refracting surfaces, and their work, are known to all of us. Fish globes magnify the fish that swim within. Bottles can be so shaped that they make the olives, pickles, and peaches that they contain appear larger than they really are. The fruit in bottles frequently seems too large to have gone through the neck of the bottle. The deception is due to refraction, and the material and shape of the bottle furnish a sufficient explanation.

By using combinations of two or more lenses of various kinds, it is possible to have an image of almost any desired size, and in practically any desired position.

116. The Human Eye. In Section 114, we obtained on a movable screen, by means of a simple lens, an image of a candle. The human eye possesses a most wonderful lens and screen (Fig. 78); the lens is called the crystalline lens, and the screen is called the retina. Rays of light pass from the object through the pupil P, go through the crystalline lens L, where they are refracted, and then pass onward to the retina R, where they form a distinct image of the object.



We learned in Section 114 that a change in the position of the object necessitated a change in the position of the screen, and that every time the object was moved the position of the screen had to be altered before a clear image of the object could be obtained. The retina of the eye cannot be moved backward and forward, as the screen was, and the crystalline lens is permanently located directly back of the iris. How, then, does it happen that we can see clearly both near and distant objects; that the printed page which is held in the hand is visible at one second, and that the church spire on the distant horizon is visible the instant the eyes are raised from the book? How is it possible to obtain on an immovable screen by means of a simple lens two distinct images of objects at widely varying distances?

The answer to these questions is that the crystalline lens changes shape according to need. The lens is attached to the eye by means of small muscles, m, and it is by the action of these muscles that the lens is able to become small and thick, or large and thin; that is, to become more or less curved. When we look at near objects, the muscles act in such a way that the lens bulges out, and becomes thick in the middle and of the right curvature to focus the near object upon the screen. When we look at an object several hundred feet away, the muscles change their pull on the lens and flatten it until it is of the proper curvature for the new distance. The adjustment of the muscles is so quick and unconscious that we normally do not experience any difficulty in changing our range of view. The ability of the eye to adjust itself to varying distances is called accommodation. The power of adjustment in general decreases with age.

117. Farsightedness and Nearsightedness. A farsighted person is one who cannot see near objects so distinctly as far objects, and who in many cases cannot see near objects at all. The eyeball of a farsighted person is very short, and the retina is too close to the crystalline lens. Near objects are brought to a focus behind the retina instead of on it, and hence are not visible. Even though the muscles of accommodation do their best to bulge and thicken the lens, the rays of light are not bent sufficiently to focus sharply on the retina. In consequence objects look blurred. Farsightedness can be remedied by convex glasses, since they bend the light and bring it to a closer focus. Convex glasses, by bending the rays and bringing them to a nearer focus, overbalance a short eyeball with its tendency to focus objects behind the retina.



A nearsighted person is one who cannot see objects unless they are close to the eye. The eyeball of a nearsighted person is very wide, and the retina is too far away from the crystalline lens. Far objects are brought to a focus in front of the retina instead of on it, and hence are not visible. Even though the muscles of accommodation do their best to pull out and flatten the lens, the rays are not separated sufficiently to focus as far back as the retina. In consequence objects look blurred. Nearsightedness can be remedied by wearing concave glasses, since they separate the light and move the focus farther away. Concave glasses, by separating the rays and making the focus more distant, overbalance a wide eyeball with its tendency to focus objects in front of the retina.



118. Headache and Eyes. Ordinarily the muscles of accommodation adjust themselves easily and quickly; if, however, they do not, frequent and severe headaches occur as a result of too great muscular effort toward accommodation. Among young people headaches are frequently caused by over-exertion of the crystalline muscles. Glasses relieve the muscles of the extra adjustment, and hence are effective in eliminating this cause of headache.

An exact balance is required between glasses, crystalline lens, and muscular activity, and only those who have studied the subject carefully are competent to treat so sensitive and necessary a part of the body as the eye. The least mistake in the curvature of the glasses, the least flaw in the type of glass (for example, the kind of glass used), means an improper focus, increased duty for the muscles, and gradual weakening of the entire eye, followed by headache and general physical discomfort.

119. Eye Strain. The extra work which is thrown upon the nervous system through seeing, reading, writing, and sewing with defective eyes is recognized by all physicians as an important cause of disease. The tax made upon the nervous system by the defective eye lessens the supply of energy available for other bodily use, and the general health suffers. The health is improved when proper glasses are prescribed.

Possibly the greatest danger of eye strain is among school children, who are not experienced enough to recognize defects in sight. For this reason, many schools employ a physician who examines the pupils' eyes at regular intervals.

The following general precautions are worth observing:—

1. Rest the eyes when they hurt, and as far as possible do close work, such as writing, reading, sewing, wood carving, etc., by daylight.

2. Never read in a very bright or a very dim light.

3. If the light is near, have it shaded.

4. Do not rub the eyes with the fingers.

5. If eyes are weak, bathe them in lukewarm water in which a pinch of borax has been dissolved.



CHAPTER XII

PHOTOGRAPHY

120. The Magic of the Sun. Ribbons and dresses washed and hung in the sun fade; when washed and hung in the shade, they are not so apt to lose their color. Clothes are laid away in drawers and hung in closets not only for protection against dust, but also against the well-known power of light to weaken color.

Many housewives lower the window shades that the wall paper may not lose its brilliancy, that the beautiful hues of velvet, satin, and plush tapestry may not be marred by loss in brilliancy and sheen. Bright carpets and rugs are sometimes bought in preference to more delicately tinted ones, because the purchaser knows that the latter will fade quickly if used in a sunny room, and will soon acquire a dull mellow tone. The bright and gay colors and the dull and somber colors are all affected by the sun, but why one should be affected more than another we do not know. Thousands of brilliant and dainty hues catch our eye in the shop and on the street, but not one of them is absolutely permanent; some may last for years, but there is always more or less fading in time.

Sunlight causes many strange, unexplained effects. If the two substances, chlorine and hydrogen, are mixed in a dark room, nothing remarkable occurs any more than though water and milk were mixed, but if a mixture of these substances is exposed to sunlight, a violent explosion occurs and an entirely new substance is formed, a compound entirely different in character from either of its components.

By some power not understood by man, the sun is able to form new substances. In the dark, chlorine and hydrogen are simply chlorine and hydrogen; in the sunlight they combine as if by magic into a totally different substance. By the same unexplained power, the sun frequently does just the opposite work; instead of combining two substances to make one new product, the sun may separate or break down some particular substance into its various elements. For example, if the sun's rays fall upon silver chloride, a chemical action immediately begins, and as a result we have two separate substances, chlorine and silver. The sunlight separates silver chloride into its constituents, silver and chlorine.

121. The Magic Wand in Photography. Suppose we coat one side of a glass plate with silver chloride, just as we might put a coat of varnish on a chair. We must be very careful to coat the plate in the dark room,[B] otherwise the sunlight will separate the silver chloride and spoil our plan. Then lay a horseshoe on the plate for good luck, and carry the plate out into the light for a second. The light will separate the silver chloride into chlorine and silver, the latter of which will remain on the plate as a thin film. All of the plate was affected by the sun except the portion protected by the horseshoe which, because it is opaque, would not allow light to pass through and reach the plate. If now the plate is carried back to the dark room and the horseshoe is removed, one would expect to see on the plate an impression of the horseshoe, because the portion protected by the horseshoe would be covered by silver chloride and the exposed unprotected portion would be covered by metallic silver. But we are much disappointed because the plate, when examined ever so carefully, shows not the slightest change in appearance. The change is there, but the unaided eye cannot detect the change. Some chemical, the so-called "developer," must be used to bring out the hidden change and to reveal the image to our unseeing eyes. There are many different developers in use, any one of which will effect the necessary transformation. When the plate has been in the developer for a few seconds, the silver coating gradually darkens, and slowly but surely the image printed by the sun's rays appears. But we must not take this picture into the light, because the silver chloride which was protected by the horseshoe is still present, and would be strongly affected by the first glimmer of light, and, as a result, our entire plate would become similar in character and there would be no contrast to give an image of the horseshoe on the plate.

[Footnote B: That is, a room from which ordinary daylight is excluded.]

But a photograph on glass, which must be carefully shielded from the light and admired only in the dark room, would be neither pleasurable nor practical. If there were some way by which the hitherto unaffected silver chloride could be totally removed, it would be possible to take the plate into any light without fear. To accomplish this, the unchanged silver chloride is got rid of by the process technically called "fixing"; that is, by washing off the unreduced silver chloride with a solution such as sodium thiosulphite, commonly known as hypo. After a bath in the hypo the plate is cleansed in clear running water and left to dry. Such a process gives a clear and permanent picture on the plate.



122. The Camera. A camera (Fig. 82) is a light-tight box containing a movable convex lens at one end and a screen at the opposite end. Light from the object to be photographed passes through the lens, falls upon the screen, and forms an image there. If we substitute for the ordinary screen a plate or film coated with silver chloride or any other silver salt, the light which falls upon the sensitive plate and forms an image there will change the silver chloride and produce a hidden image. If the plate is then removed from the camera in the dark, and is treated as described in the preceding Section, the image becomes visible and permanent. In practice some gelatin is mixed with the silver salt, and the mixture is then poured over the plate or film in such a way that a thin, even coating is made. It is the presence of the gelatin that gives plates a yellowish hue. The sensitive plates are left to dry in dark rooms, and when the coating has become absolutely firm and dry, the plates are packed in boxes and sent forth for sale.

Glass plates are heavy and inconvenient to carry, so that celluloid films have almost entirely taken their place, at least for outdoor work.

123. Light and Shade. Let us apply the above process to a real photograph. Suppose we wish to take the photograph of a man sitting in a chair in his library. If the man wore a gray coat, a black tie, and a white collar, these details must be faithfully represented in the photograph. How can the almost innumerable lights and shades be produced on the plate?

The white collar would send through the lens the most light to the sensitive plate; hence the silver chloride on the plate would be most changed at the place where the lens formed an image of the collar. The gray coat would not send to the lens so much light as the white collar, hence the silver chloride would be less affected by the light from the coat than by that from the collar, and at the place where the lens produced an image of the coat the silver chloride would not be changed so much as where the collar image is. The light from the face would produce a still different effect, since the light from the face is stronger than the light from the gray coat, but less than that from a white collar. The face in the image would show less changed silver chloride than the collar, but more than the coat, because the face is lighter than the coat, but not so light as the collar. Finally, the silver chloride would be least affected by the dark tie. The wall paper in the background would affect the plate according to the brightness of the light which fell directly upon it and which reflected to the camera. When such a plate has been developed and fixed, as described in Section 121, we have the so-called negative (Fig. 83). The collar is very dark, the black tie and gray coat white, and the white tidy very dark.

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse