p-books.com
Fungi: Their Nature and Uses
by Mordecai Cubitt Cooke
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

Although the larger number of esculent agarics are white-spored, some few, worthy of note, will be found in the other sections, and notably amongst these the common mushroom and its congener the meadow, or horse mushroom. In addition to those already enumerated, might be included also the Agaricus pudicus, Bull, which is certainly wholesome, as well as its ally, Agaricus leochromus, Cooke,[T] both of which have rusty spores.

The late Dr. Curtis,[U] in a letter to the Rev. M. J. Berkeley, enumerates several of the fungi which are edible amongst those found in the United States. Of these, he says, Agaricus amygdalinus, Curt., can scarcely be distinguished when cooked from the common mushroom. Agaricus frumentaceus, Bull, and three allied new species, peculiar to the United States, are commended. Agaricus caespitosus, Curt., he says, is found in enormous quantities, a single cluster containing from fifty to one hundred stems, and might well be deemed a valuable species in times of scarcity. It would not be highly esteemed where other and better species can be had, but it is generally preferred to Agaricus melleus, Fr. It is suitable for drying for winter use. In the same communication, he observes that the imperial (Agaricus caesarius, Scop.), grows in great quantities in oak forests, and may be obtained by the cart-load in its season; but to his taste, and that of his family, it is the most unpalatable of fungi, nor could he find any of the most passionate mycophagists who would avow that they liked it. There is a disagreeable saline flavour that they could not remove nor overlay. In addition to these, the same authority enumerates Agaricus russula, Schaeff., Agaricus hypopithyus, Curt., and Agaricus consociatus, Curt., the latter two being confined to the United States; Agaricus columbetta, Fr., found in Britain, but not eaten, as well as Agaricus radicatus, Bull. Agaricus bombycinus, Schaeff., and Agaricus speciosus, Fr., are found in Britain, but by no means common; Agaricus squarrosus, Mull., has always been regarded with great suspicion in this country, where it is by no means uncommon; Agaricus cretaceus, Fr., and Agaricus sylvaticus, Schaeff., are close allies of the common mushroom.

Dr. Curtis says that hill and plain, mountain and valley, woods, fields, and pastures, swarm with a profusion of good nutritious fungi, which are allowed to decay where they spring up, because people do not know how, or are afraid, to use them. By those of us who know their use, their value was appreciated, as never before, during the late war, when other food, especially meat, was scarce and dear. Then such persons as I have heard express a preference for mushrooms over meat had generally no need to lack grateful food, as it was easily had for the gathering, and within easy distance of their homes if living in the country. Such was not always the case, however. I remember once, during the gloomy period when there had been a protracted drought, and fleshy fungi were to be found only in damp shaded woods, and but few even there, I was unable to find enough of any one species for a meal, so, gathering of every kind, I brought home thirteen different kinds, had them all cooked together in one grand pot pourri, and made an excellent supper.

One important use to which several species of fungi can be applied, is the manufacture of ketchup. For this purpose, not only is the mushroom, Agaricus campestris, and the horse mushroom, Agaricus arvensis, available, but also Agaricus rubescens is declared to be excellent for the purpose, and a delicious, but pale, extract is to be obtained from Marasmius oreades. Other species, as Coprinus comatus, and Coprinus atramentarius, are also available, together with Fistulina hepatica, and Morchella esculenta. In some districts, when mushrooms are scarce, it is stated that almost any species that will yield a dark juice is without scruple mixed with the common mushroom, and it should seem without any bad consequence except the deterioration of the ketchup.[V] There is an extensive manufacture of ketchup conducted at Lubbenham, near Market Harborough, but the great difficulty appears to be the prevention of decomposition. Messrs. Perkins receive tons of mushrooms from every part of the kingdom, and they find, even in the same species, an immense difference in the quality and quantity of the produce. The price of mushrooms varies greatly with the season, ranging between one penny and sixpence per pound. Messrs. Perkins are very careful in their selection, but little discrimination is used by country manufacturers on a small scale, who use such doubtful species as Agaricus lacrymabundus, with Agaricus spadiceus, and a host of allied species, which they characterize as nonpareils and champignons. In the eastern counties Agaricus arvensis has the preference for ketchup.

The generic distinctions between the genuine Agarics and some of the allied genera can hardly be appreciated by the non-botanical reader, but we have nevertheless preferred grouping the edible species together in a somewhat botanical order; and, pursuing this plan, the next species will be those of Coprinus, in which the gills are deliquescent after the plant has arrived at maturity. The maned mushroom (Coprinus comatus, Fr.)[W] is the best of edible species in this group. It is very common here by roadsides and other places, and whilst still young and cylindrical, and the gills still whitish or with a roseate tint, it is highly to be commended. Similar, but perhaps somewhat inferior, is Coprinus atramentarius, Fr.,[X] equally common about old stumps and on the naked soil. Both species are also found and eaten in the United States.

In Cortinarius, the veil is composed of arachnoid threads, and the spores are rusty. The number of edible species are few. Foremost is the really handsome Cortinarius violaeus, Fr.,[Y] often nearly four inches in diameter, and of a beautiful violet colour; and the smaller Cortinarius castaneus, Fr.,[Z] scarcely exceeding an inch in diameter, both being found in woods, and common alike to Britain and the United States. Cortinarius cinnamomeus, Fr., is also a lover of woods, and in northern latitudes is found inhabiting them everywhere. It has a cinnamon-coloured pileus, with yellowish flesh, and its odour and flavour is said to partake of the same spice. In Germany it is held in high esteem. Cortinarius emodensis, B., is eaten in Northern India.

The small genus Lepista of Smith, (which, however, is not adopted by Fries in his now edition of the "Epicrisis") includes one esculent species in Lepista personata, the Agaricus personatus of Fries.[a] It is by no means uncommon in Northern Europe or America, frequently growing in large rings; the pileus is pallid, and the stem stained with lilac. Formerly it was said to be sold in Covent Garden Market under the name of "blewits," but we have failed to see or hear of it during many years in London.

Small fungi of ivory-whiteness are very common amongst grass on lawns in autumn. These are chiefly Hygrophorus virgineus, Fr.,[b] and although not much exceeding an inch in diameter, with a short stem, and wide decurrent gills, they are so plentiful in season that quantity soon compensates for the small size. Except that it is occasionally eaten in France, it does not enjoy much reputation abroad. A larger species, varying from buff to orange, Hygrophorus pratensis, Fr.,[c] is scarcely less common in open pastures. This is very gregarious in habit, often growing in tufts, or portions of rings. The pileus is fleshy in the centre, and the gills thick and decurrent. In France, Germany, Bohemia, and Denmark, it is included with esculent species. In addition may be mentioned Hygrophorus eburneus, Fr., another white species, as also Hygrophorus niveus, Fr., which grows in mossy pastures. Paxillus involutus, Fr.,[d] though very common in Europe, is not eaten, yet it is included by Dr. Curtis with the esculent species of the United States.

The milky agarics, belonging to the genus Lactarius, are distinguished by the milky juice which is exuded when they are wounded. The spores are more or less globose, and rough or echinulate, at least in many species. The most notable esculent is Lactarius deliciosus, Fr.,[e] in which the milk is at first saffron-red, and afterwards greenish, the plant assuming a lurid greenish hue wherever bruised or broken. Universal commendation seems to fall upon this species, writers vying with each other to say the best in its praise, and mycophagists everywhere endorsing the assumption of its name, declaring it to be delicious. It is found in the markets of Paris, Berlin, Prague, and Vienna, as we are informed, and in Sweden, Denmark, Switzerland, Russia, Belgium; in fact, in nearly all countries in Europe it is esteemed.

Another esculent species, Lactarius volemum, Fr.,[f] has white milk, which is mild to the taste, whilst in deleterious species with white milk it is pungent and acrid. This species has been celebrated from early times, and is said to resemble lamb's kidney.

Lactarius piperatus, Fr., is classed in England with dangerous, sometimes poisonous species, whereas the late Dr. Curtis, of North Carolina, has distinctly informed us that it is cooked and eaten in the United States, and that he has partaken of it. He includes Lactarius insulsus, Fr., and Lactarius subdulcis, Fr.,[g] amongst esculent species; both are also found in this country, but not reputed as edible; and Lactarius angustissimus, Lasch, which is not British. Species of Lactarius seem to be eaten almost indiscriminately in Russia when preserved in vinegar and salt, in which condition they form an important item in the kinds of food allowed in their long fasts, some Boleti in the dried state entering into the same category.

The species of Russula in many respects resemble Lactarii without milk. Some of them are dangerous, and others esculent. Amongst the latter may be enumerated Russula heterophylla, Fr., which is very common in woods. Vittadini pronounces it unsurpassed for fineness of flavour by even the notable Amanita caesarea.[h] Roques gives also an account in its favour as consumed in France. Both these authors give favourable accounts of Russula virescens, P.,[i] which the peasants about Milan are in the habit of putting over wood embers to toast, and eating afterwards with a little salt. Unfortunately it is by no means common in England. A third species of Russula, with buff-yellow gills, is Russula alutacea, Fr., which is by no means to be despised, notwithstanding that Dr. Badham has placed it amongst species to be avoided. Three or four others have also the merit of being harmless, and these recorded as esculent by some one or more mycological authors: Russula lactea, Fr., a white species, found also in the United States; Russula lepida, Fr., a roseate species, found also in lower Carolina, U.S.; and another reddish species, Russula vesca, Fr., as well as Russula decolorans, Fr. Whilst writing of this genus, we may observe, by way of caution, that it includes also one very noxious red species, Russula emetica, Fr., with white gills, with which some of the foregoing might be confounded by inexperienced persons.

The chantarelle Cantharellus cibarius, Fr., has a most charming and enticing appearance and odour. In colour, it is of a bright golden yellow, and its smell has been compared to that of ripe apricots. It is almost universally eaten in all countries where it is found, England excepted, where it is only to be met with at the "Freemason's Tavern" on state occasions, and at the tables of pertinacious mycophagists.[j] Trattinnick says: "Not only this same fungus never did any one harm, but might even restore the dead."[k]

The fairy-ring champignon Marasmius oreades, Fr., though small, is plentiful, and one of the most delicious of edible fungi. It grows in exposed pastures, forming rings, or parts of rings. This champignon possesses the advantage of drying readily, and preserving its aroma for a long time. We have often regretted that no persistent attempts and experiments have been made with the view of cultivating this excellent and useful species. Marasmius scorodonius, Fr.,[l] a small, strong-scented, and in all respects inferior species, found on heaths and dry pastures, extending even to the United States, is consumed in Germany, Austria, and other continental countries, where, perhaps its garlic odour has been one of its recommendations as an ingredient in sauces. In this enumeration we have not exhausted all the gill-bearing species which might be eaten, having included only those which have some reputation as esculents, and of these more particularly those found in Great Britain and the United States.

Amongst the Polyporei, in which the gill plates are represented by pores or tubes, fewer esculent species are to be met with than in the Agaricini, and the majority of these belong to the genus Boletus. Whilst in Vienna and Hanover, we were rather surprised to find Boletus edulis, Fr., cut into thin slices and dried, exposed for sale in almost every shop where meal, peas, and other farinaceous edibles were sold. This species is common enough in England, but as a rule it does not seem to please the English palate, whereas on the continent no fungus is more commonly eaten. This is believed to be the suillus eaten by the ancient Romans,[m] who obtained it from Bithynia. The modern Italians dry them on strings for winter use, and in Hungary a soup is made from them when fresh. A more excellent species, according to our judgment, is Boletus aestivalis, Fr.,[n] which appears in early summer, and has a peculiar nutty flavour when raw, reminding one more of a fresh mushroom. Boletus scaber, Fr.,[o] is also common in Britain, as well as the continent, but does not enjoy so good a reputation as B. edulis. Krombholz says that Boletus bovinus, Fr., a gregarious species, found on heaths and in fir woods, is much sought after abroad as a dish, and is good when dried. Boletus castaneus, Fr.,[p] is a small species with a mild, pleasant taste when raw, and very good when properly cooked. It is not uncommonly eaten on the continent. Boletus chrysenteron, Fr.,[q] and Boletus subtomentosus, Fr., are said to be very poor eating, and some authors have considered them injurious; but Mr. W. G. Smith states that he has on more than one occasion eaten the former, and Trattinnick states that the latter is eaten in Germany. The late Mr. Salter informed us that, when employed on the geological staff, he at one time lived almost entirely on different species of Boleti, without using much discrimination. Sir W. C. Trevelyan also informs us that he has eaten Boletus luridus without any unpleasant consequences, but we confess that we should be sorry to repeat the experiment. Dr. Badham remarks that he has eaten Boletus Grevillei, B., Boletus flavus, With., and Boletus granulatus, L., the latter being recognized also as edible abroad. Dr. Curtis experimented, in the United States, on Boletus collinitus, and although he professes not to be particularly fond of the Boleti, he recognizes it as esculent, and adds that it had been pronounced delicious by some to whom he had sent it. He also enumerates as edible Boletus luteus, Fr., Boletus elegans, Fr., Boletus flavidus, Fr., Boletus versipellis, Fr., Boletus leucomelas, Tr., and Boletus ovinus, Sch. Two Italian species of Polyporus must not be forgotten. These are Polyporus tuberaster, Pers., which is procured by watering the pietra funghaia, or fungus stone, a kind of tufa, in which the mycelium is embedded. It is confined to Naples. The other species is Polyporus corylinus, Mauri., procured artificially in Rome from charred stumps of the cob-nut tree.[r]

Of true Polyporus, only two or three species have been regarded favourably as esculents. These are—Polyporus intybaceus, Fr., which is of very large size, sometimes attaining as much as forty pounds; Polyporus giganteus, Fr., also very large, and leathery when old. Both these species are natives of Britain. Only young and juicy specimens must be selected for cooking. Polyporus umbellatus, Fr., is stated by Fries to be esculent, but it is not found in Britain. Polyporus squamosus, Fr., has been also included; but Mrs. Hussey thinks that one might as well think of eating saddle-flaps. None of these receive very much commendation. Dr. Curtis enumerates, amongst North American species, the Polyporus cristatus, Fr., Polyporus poripes, Fr., which, when raw, tastes like the best chestnuts or filberts, but is rather too dry when cooked. Polyporus Berkeleii, Fr., is intensely pungent when raw, but when young, and before the pores are visible, it may be eaten with impunity, all its pungency being dissipated by cooking. Polyporus confluens, Fr., he considers superior, and, in fact, quite a favourite. Polyporus sulfureus, Fr., which is not eaten in Europe, he considers just tolerably safe, but not to be coveted. It is by no means to be recommended to persons with weak stomachs. In his catalogue, Dr. Curtis enumerates one hundred and eleven species of edible fungi found in Carolina.[s]

With Fistulina hepatica, Fr., it is different; for here we encounter a fleshy, juicy fungus, resembling beefsteak a little in appearance, and so much more in its uses, that the name of "beefsteak fungus" has been given to it. Some authors are rapturous in their praise of Fistulina. It sometimes attains a very large size, Dr. Badham quoting[t] one found by himself nearly five feet in circumference, and weighing eight pounds; whilst another found by Mr. Graves weighed nearly thirty pounds. In Vienna it is sliced and eaten with salad, like beetroot, which it then much resembles. On the continent it is everywhere included amongst the best of edible species.

The Hydnei, instead of pores or tubes, are characterized by spines or warts, over which the fructifying surface is expanded. The most common is Hydnum repandum, Fr., found in woods and woody places in England, and on the continent, extending into the United States. When raw, it is peppery to the taste, but when cooked is much esteemed. From its drier nature, it can readily be dried for winter use. Less common in England is Hydnum imbricatum, Fr., although not so uncommon on the continent. It is eaten in Germany, Austria, Switzerland, France, and elsewhere. Hydnum laevigatum, Swartz, is eaten in Alpine districts.[u] Of the branched species, Hydnum coralloides, Scop.,[v] and Hydnum Caput Medusae, Bull,[w] are esculent, but very rare in England. The latter is not uncommon in Austria and Italy, the former in Germany, Switzerland, and France. Hydnum erinaceum, Bull, is eaten in Germany[x] and France.

The Clavarioid fungi are mostly small, but of these the majority of the white-spored are edible. Clavaria rugosa, Bull, is a common British species, as also is Clavaria coralloides, L., the former being found also in the United States. Clavaria fastigiata, D. C., is not uncommon; but Clavaria amethystina, Bull, a beautiful violet species, is rare. In France and Italy, Clavaria cinerea, Bull, is classed with esculents; and it is not uncommon in Britain. Clavaria botrytis, P., and Clavaria aurea, Schaeff., are large and beautiful species, but rare with us; they extend also into the United States. Others might be named (Dr. Curtis enumerates thirteen species eaten in Carolina), which are certainly wholesome, but they are of little importance as edible species. Sparassis crispa, Fr., is, on the contrary, very large, resembling in size,[y] and somewhat in appearance, a cauliflower; it has of late years been found several times in this country. In Austria it is fricasseed with butter and herbs.

Of the true Tremellae, none merit insertion here. The curious Jew's ear (Hirneola auricula-Judae, Fr.), with one or two other species of Hirneola, are collected in great quantities in Tahiti, and shipped in a dried state to China, where they are used for soup. Some of these find their way to Singapore.

The false truffles (Hypogaei) are of doubtful value, one species (Melanogaster variegatus, Tul.) having formerly been sold in the markets of Bath as a substitute for the genuine truffle.[z] Neither amongst the Phalloidei do we meet with species of any economic value. The gelatinous volva of a species of Ileodictyon is eaten by the New Zealanders, to whom it is known as thunder dirt; whilst that of Phallus Mokusin is applied to a like purpose in China;[AA] but these examples would not lead us to recommend a similar use for Phallus impudicus, Fr., in Britain, or induce us to prove the assertion of a Scotch friend that the porous stem is very good eating.

One species of puff-ball, Lycoperdon giganteum, Fr,[AB] has many staunch advocates, and whilst young and cream-like, it is, when well manipulated, an excellent addition to the breakfast-table. A decided advantage is possessed by this species, since one specimen is often found large enough to satisfy the appetites of ten or twelve persons. Other species of Lycoperdon have been eaten when young, and we have been assured by those who have made the experiment, that they are scarcely inferior to their larger congener. Bovista nigrescens, Fr., and Bovista plumbea, Fr., are also eaten in the United States. More than one species of Lycoperdon and Bovista appear in the bazaars of India, as at Secunderabad and Rangoon; while the white ant-hills, together with an excellent Agaric, produce one or more species of Podaxon which are esculent when young. A species of Scleroderma which grows abundantly in sandy districts, is substituted for truffles in Perigord pies, of which, however, it does not possess any of the aroma.



Passing over the rest of the sporiferous fungi, we find amongst the Ascomycetous group several that are highly esteemed. Amongst these may first be named the species of morel, which are regarded as delicacies wherever they are found. Morchella esculenta, Pers., is the most common species, but we have also Morchella semilibera, D. C., and the much larger Morchella crassipes, Pers. Probably all the species of Morchella are esculent, and we know that many besides the above are eaten in Europe and other places; Morchella deliciosa, Fr., in Java; Morchella bohemica, Kromb., in Bohemia; Morchella gigaspora, Cooke, and Morchella deliciosa, Fr., in Kashmere.[AC] Morchella rimosipes, D. C., occurs in France and Bohemia; Morchella Caroliniana, Bosc., in the Southern United States of America. W. G. Smith records the occurrence in Britain of specimens of Morchella crassipes, P., ten inches in height, and one specimen was eleven inches high, with a diameter of seven and a half inches.[AD]

Similar in uses, though differing in appearance, are the species of Helvella, of which several are edible. In both these genera, the individuals can be dried so readily that they are the more valuable on that account, as they can be used for flavouring in winter when fresh specimens of any kind of fungus are difficult to procure. The most common English species is Helvella crispa, Fr., but Helvella lacunosa, Fr., is declared to be equally good, though not so large and somewhat rare. Helvella infula, Fr., is also a large species, but is not British, although it extends to North America, as also does Helvella sulcata, Afz. Intermediate between the morel and Helvella is the species which was formerly included with the latter, but now known as Gyromitra esculenta, Fr.[AE] It is rarely found in Great Britain, but is more common on the continent, where it is held in esteem. A curious stipitate fungus, with a pileus like a hood, called Verpa digitaliformis, Pers.,[AF] is uncommon in England, but Vittadini states that it is sold in the Italian markets, although only to be recommended when no other esculent fungus offers, which is sometimes the case in spring.[AG]

Two or three species of Peziza have the reputation of being esculent, but they are of very little value; one of these is Peziza acetabulum, L., another is Peziza cochleata, Huds., and a third is Peziza venosa, Pers.[AH] The latter has the most decided nitrous odour, and also fungoid flavour, whilst the former seem to have but little to recommend them; we have seen whole baskets full of Peziza cochleata gathered in Northamptonshire as a substitute for morels.

A very interesting genus of edible fungi, growing on evergreen beech trees in South America, has been named Cyttaria. One of these, Cyttaria Darwinii, B., occurs in Terra del Fuego, where it was found by Mr. C. Darwin[AI] growing in vast numbers, and forming a very essential article of food for the natives. Another is Cyttaria Berteroi, B., also seen by Mr. Darwin in Chili, and eaten occasionally, but apparently not so good as the preceding.[AJ] Another species is Cyttaria Gunnii, B., which abounds in Tasmania, and is held in repute amongst the settlers for its esculent properties.[AK]



It remains for us only to note the subterranean fungi, of which the truffle is the type, to complete our enumeration of esculent species. The truffle which is consumed in England is Tuber aestivum, Vitt.; but in France the more highly-flavoured Tuber melanospermum, Vitt.,[AL] and also Tuber magnatum, Pico, with some other species. In Italy they are very common, whilst some are found in Algeria. One species at least is recorded in the North-west of India, but in Northern Europe and North America they appear to be rare, and Terfezia Leonis is used as an esculent in Damascus. A large species of Mylitta, sometimes several inches in diameter, occurs plentifully in some parts of Australia. Although often included with fungi, the curious production known under the name of Pachyma cocos, Fr., is not a fungus, as proved by the examinations made by the Rev. M. J. Berkeley. It is eaten under the name of "Tuckahoe" in the United States, and as it consists almost entirely of pectic acid, it is sometimes used in the manufacture of jelly.

In the Neilgherries (S. India), a substance is occasionally found which is allied to the native bread of southern latitudes. It is found at an elevation of 5,000 feet. The natives call it "a little man's bread," in allusion to the tradition that the Neilgherries were once peopled by a race of dwarfs.[AM] At first it was supposed that these were the bulbs of some orchid, but later another view was held of their character. Mr. Scott, who examined the specimens sent down to him, remarks that, instead of being the product of orchids, it is that of an underground fungus of the genus Mylitta. It indeed seems, he says, very closely allied to, if really distinct from, the so-called native bread of Tasmania.[AN]

Of the fungi employed in medicine, the first place must be assigned to ergot, which is the sclerotioid condition of a species of Claviceps. It occurs not only on rye but on wheat, and many of the wild grasses. On account of its active principle, this fungus still holds its place in the Materia Medica. Others which formerly had a reputation are now discarded, as, for instance, the species of Elaphomyces; and Polyporus officinalis, Fr., which has been partly superseded as a styptic by other substances, was formerly employed as a purgative. The ripe spongy capillitium of the great puff-ball Lycoperdon giganteum, Fr., has been used for similar purposes, and also recommended as an anodyne; indeed formidable surgical operations have been performed under its influence, and it is frequently used as a narcotic in the taking of honey. Langsdorf gives a curious account of its employment as a narcotic; and in a recent work on Kamtschatka it is said to obtain a very high price in that country. Dr. Porter Smith writes of its employment medicinally by the Chinese, but from his own specimens it is clearly a species of Polysaccum, which he has mistaken for Lycoperdon. In China several species are supposed to possess great virtue, notably the Torrubia sinensis, Tul.,[AO] which is developed on dead caterpillars; as it is, however, recommended to administer it as a stuffing to roast duck, we may be sceptical as to its own sanitary qualities. Geaster hygrometricus, Fr., we have also detected amongst Chinese drugs, as also a species of Polysaccum, and the small hard Mylitta lapidescens, Horn. In India, a large but imperfect fungus, named provisionally Sclerotium stipitatum, Curr., found in nests of the white ant, is supposed to possess great medicinal virtues.[AP] A species of Polyporus (P. anthelminticus, B.), which grows at the root of old bamboos, is employed in Burmah as an anthelmintic.[AQ] In former times the Jew's ear (Hirneola auricula Judae, Fr.) was supposed to possess great virtues, which are now discredited. Yeast is still included amongst pharmaceutical substances, but could doubtless be very well dispensed with. Truffles are no longer regarded as aphrodisiacs.

For other uses, we can only allude to amadou, or German tinder, which is prepared in Northern Europe from Polyporus fomentarius, Fr., cut in slices, dried, and beaten until it is soft. This substance, besides being used as tinder, is made into warm caps, chest protectors, and other articles. This same, or an allied species of Polyporus, probably P. igniarius, Fr., is dried and pounded as an ingredient in snuff by the Ostyacks on the Obi. In Bohemia some of the large Polyporei, such as P. igniarius and P. fomentarius, have the pores and part of the inner substance removed, and then the pileus is fastened in an inverted position to the wall, by the part where originally it adhered to the wood. The cavity is then filled with mould, and the fungus is used, with good effect, instead of flower-pots, for the cultivation of such creeping plants as require but little moisture.[AR]

The barren mycelioid condition of Penicillium crustaceum, Fr., is employed in country districts for the domestic manufacture of vinegar from saccharine liquor, under the name of the "vinegar plant." It is stated that Polysaccum crassipes, D. C.,[AS] is employed in the South of Europe to produce a yellow dye; whilst recently Polyporus sulfureus, Fr., has been recommended for a similar purpose. Agaricus muscarius, Fr., the fly-agaric, known to be an active poison, is used in decoction in some parts of Europe for the destruction of flies and bugs. Probably Helotium aeruginosum, Fr.,[AT] deserves mention here, because it stains the wood on which it grows, by means of its diffuse mycelium, of a beautiful green tint, and the wood thus stained is employed for its colour in the manufacture of Tonbridge ware.

This completes the list, certainly of the most important, of the fungi which are of any direct use to humanity as food, medicine, or in the arts. As compared with lichens, the advantage is certainly in favour of fungi; and even when compared with algae, the balance appears in their favour. In fact, it may be questioned whether, after all, fungi do not present a larger proportion of really useful species than any other of the cryptogams; and without any desire to disparage the elegance of ferns, the delicacy of mosses, the brilliancy of some algae, or the interest which attaches to lichens, it may be claimed for fungi that in real utility (not uncombined with injuries as real) they stand at the head of the cryptogams, and in closest alliance with the flowering plants.

[A] Badham, Dr. C. D., "A Treatise on the Esculent Funguses of England," 1st edition (1847), p. 81, pl. 4; 2nd edition, edited by F. Currey, M.A. (1863), p. 94, pl. 4; Cooke, M. C., "A Plain and Easy Account of British Fungi," 1st edition (1862), p. 44.

[B] Mr. Worthington Smith has published, on two sheets, coloured figures of the most common esculent and poisonous fungi (London, Hardwicke), which will be found more useful than mere description in the discrimination of the species.

[C] Roques, J., "Hist. des Champignons Comestibles et Veneneux," Paris (1832), p. 130.

[D] Lenz, Dr. H. 0., "Die Nuetzlichen und Schaedlichen Schwaemme," Gotha (1831), p. 32, pl. 2.

[E] Bull, H. G., in "Transactions of Woolhope Club" (1869). Fries admits them as distinct species in the new edition of his "Epicrisis."

[F] Hussey's "Illustrations of Mycology," ser. i. pl. 79.

[G] Sowerby's "British Fungi," pl. 244.

[H] Favre-Guillarmod, "Les Champignons Comestibles du Canton de Neuchatel" (1861), p. 27.

[I] Sowerby, "English Fungi," pl. 122; Smith, in "Seemann's Journ. Bot." (1866), t. 46, f. 45.

[J] Klotsch, "Flora Borussica," t. 374; Smith, in "Seem. Journ. Bot." (1869), t. 95, f. 1-4.

[K] Krombholz, "Abbildungen der Schwaemme," pl. 41, f. 1-7.

[L] Tratinnick, L., "Fungi Austriaci," p. 47, pl. 4, f. 8.

[M] Vittadini, "Fungi Mangerecci," pl. 23.

[N] Cooke, in "Journal of Botany," vol. viii. p. 352.

[O] Cooke, M. C., "A Plain and Easy Guide," &c., p. 38, pl. 6, fig. 1.

[P] Krombholz, "Schwaemme," t. 8. Vittadini, "Mang." t. 1.

[Q] Vittadini, "Mangerecci," t. 9.

[R] Berkeley, "Outlines," pl. 3, fig. 5.

[S] Saunders and Smith, "Mycological Illustr." pl. 23.

[T] Cooke, M. C., "Handbook of British Fungi," vol. i. pl. 1, fig. 2.

[U] "Gardener's Chronicle" (1869), p. 1066.

[V] Berkeley, "Outlines of British Fungology," p. 64.

[W] Cooke, "Easy Guide to British Fungi," pl. 11.

[X] Ibid., pl. 12.

[Y] Hussey, "Mycol. Illust." pl. 12.

[Z] Bulliard, "Champ." t. 268.

[a] Cooke, "Easy Guide," pl. 4, fig. 1; Hussey, "Illust." vol. ii. pl. 40.

[b] Greville, "Scot. Crypt. Flora," t. 166.

[c] Ibid., t. 91.

[d] Sowerby, "Fungi," pl. 56; Schaeffer, "Icones Bav." t. 72.

[e] Trattinnick, L., "Die Essbaren Schwaemme" (1809), p. 82, pl. M; Barla, J. B., "Champignons de la Nice" (1859), p. 34, pl. 19.

[f] Smith, "Edible Mushrooms," fig. 26.

[g] Barla, "Champ. Nice," t. 20, f. 4-10.

[h] Vittadini, C., "Funghi Mangerecci" (1835), p. 209; Barla, "Champ. Nice," pl. i.

[i] Vittadini, C., "Funghi Mangerecci," p. 245; Roques, "Champ. Comest." p. 86.

[j] Badham, Dr., "Esculent Funguses of Britain," 2nd ed. p. 110; Hussey, "Illust. Brit. Mycol." 1st ser. pl. 4; Barla, "Champ." pl. 28, f. 7-15.

[k] Trattinnick, L., "Essbaren Schwaemme," p. 98.

[l] Lenz, "Die Nuetzlichen und Schaedlichen Schwaemme," p. 49.

[m] Badham, "Esculent Funguses of Great Britain," 2 ed. p. 91.

[n] Hussey, "Myc. Illus." ii. pl. 25; Paulet, "Champ." t. 170.

[o] Barla, J. B., "Champ. de la Nice," p. 71, pl. 35, f. 1-5.

[p] Hussey, "Illustr." ii. t. 17; Barla, "Champ. Nice," t. 32, f. 11-15.

[q] Hussey, "Illustr." i. t. 5; Krombholz, "Schwaemme," t. 76.

[r] Badham's "Esculent Funguses," 1st ed. pp. 116 and 120.

[s] Catalogue of Plants of Carolina, U.S.

[t] Badham, Dr., "Esculent Funguses," 2nd ed. p. 128; Hussey, "Illustrations," 1st ser. pl. 65; Berkeley, in "Gard. Chron." (1861), p. 121; Bull, in "Trans. Woolhope Club" (1869).

[u] Barla, "Champ. Nice," p. 79, pl. 38, f. 5, 6.

[v] Roques, I. c. p. 48.

[w] Lenz, p. 93; Roques, I. c. p. 47, pl. 2, fig. 5.

[x] Lenz, H. O., "Die Nuetzlichen und Schaedlichen Schwaemme," p. 93.

[y] Berkeley, M. J., in "Intellectual Observer," No. 25, pl. 1.

[z] Berkeley, M. J., "Outlines of British Fungology," p. 293.

[AA] Berkeley, M. J., "Introduction to Crypt. Bot." p. 347.

[AB] Cooke, M. C., "A Plain and Easy Guide," &c., p. 96.

[AC] Cooke, M. C., "On Kashmir Morels," in "Trans. Bot. Soc. Edin." vol. x. p. 439, with figs.

[AD] Smith, "Journ. Bot." vol. ix. p. 214.

[AE] Cooke, "Handbook," fig. 322.

[AF] Cooke, "Handbook," fig. 324.

[AG] Vittadini, C., "Funghi Mangerecci," p. 117.

[AH] Greville, "Sc. Crypt. Fl." pl. 156.

[AI] Berkeley, in "Linn Trans." xix. p. 37; Cooke, in "Technologist" (1864), p. 387.

[AJ] Berkeley, M. J., in "Linn. Trans." xix. p. 37.

[AK] Berkeley, M. J., in "Hooker, Flora Antarctica," p. 147; in "Hooker's Journ. Bot." (1848), 576, t. 20, 21.

[AL] Vittadini, C., "Monographia Tuberacearum" (1831), pp. 36, &c.

[AM] "Proceedings Agri. Hort. Soc. India" (Dec. 1871), p. lxxix.

[AN] Ibid. (June, 1872), p. xxiii.

[AO] Lindley, "Vegetable Kingdom," fig. xxiv.

[AP] Currey, F., in "Linn. Trans." vol. xxiii. p. 93.

[AQ] "Pharmacopoeia of India," p. 258.

[AR] "Gard. Chron." (1862), p. 21.

[AS] Barla, "Champ. de la Nice," p. 126, pl. 47, fig. 11.

[AT] Greville, "Scott. Crypt. Flora," pl. 241.



V.

NOTABLE PHENOMENA.

There are no phenomena associated with fungi that are of greater interest than those which relate to luminosity. The fact that fungi under some conditions are luminous has long been known, since schoolboys in our juvenile days were in the habit of secreting fragments of rotten wood penetrated by mycelium, in order to exhibit their luminous properties in the dark, and thus astonish their more ignorant or incredulous fellows Rumphius noted its appearance in Amboyna, and Fries, in his Observations, gives the name of Thelephora phosphorea to a species of Corticium now known as Corticium caeruleum, on account of its phosphorescence under certain conditions. The same species is the Auricularia phosphorea of Sowerby, but he makes no note of its phosphorescence. Luminosity in fungi "has been observed in various parts of the world, and where the species has been fully developed it has been generally a species of Agaricus which has yielded the phenomenon."[A] One of the best-known species is the Agaricus olearius of the South of Europe, which was examined by Tulasne with especial view to its luminosity.[B] In his introductory remarks, he says that four species only of Agaricus that are luminous appear at present to be known. One of them, A. olearius, D. C., is indigenous to Central Europe; another, A. igneus, Rumph., comes from Amboyna; the third, A. noctileucus, Lev., has been discovered at Manilla by Gaudichaud, in 1836; the last, A. Gardneri, Berk., is produced in the Brazilian province of Goyaz, upon dead leaves. As to the Dematium violaceum, Pers., the Himantia candida, Pers., cited once by Link, and the Thelephora caerulea, D. C. (Corticium caeruleum, Fr.), Tulasne is of opinion that their phosphorescent properties are still problematical; at least no recent observation confirms them.

The phosphorescence of A. olearius, D. C., appears to have been first made known by De Candolle, but it seems that he was in error in stating that these phosphorescent properties manifest themselves only at the time of its decomposition. Fries, describing the Cladosporium umbrinum, which lives upon the Agaric of the olive-tree, expressed the opinion that the Agaric only owes its phosphorescence to the presence of the mould. This, however, Tulasne denies, for he writes, "I have had the opportunity of observing that the Agaric of the olive is really phosphorescent of itself, and that it is not indebted to any foreign production for the light it emits." Like Delile, he considers that the fungus is only phosphorescent up to the time when it ceases to grow; thus the light which it projects, one might say, is a manifestation of its vegetation.

"It is an important fact," writes Tulasne, "which I can confirm, and which it is important to insist upon, that the phosphorescence is not exclusively confined to the hymenial surface. Numerous observations made by me prove that the whole of the substance of the fungus participates very frequently, if not always, in the faculty of shining in the dark. Among the first Agarics which I examined, I found many, the stipe of which shed here and there a light as brilliant as the hymenium, and led me to think that it was due to the spores which had fallen on the surface of the stipe. Therefore, being in the dark, I scraped with my scalpel the luminous parts of the stipe, but it did not sensibly diminish their brightness; then I split the stipe, bruised it, divided it into small fragments, and I found that the whole of this mass, even in its deepest parts, enjoyed, in a similar degree to its superficies, the property of light. I found, besides, a phosphorescence quite as brilliant in all the cap, for, having split it vertically in the form of plates, I found that the trama, when bruised, threw out a light equal to that of their fructiferous surfaces, and there is really only the superior surface of the pileus, or its cuticle, which I have never seen luminous.

"As I have said, the Agaric of the olive-tree, which is itself very yellow, reflects a strong brilliant light, and remains endowed with this remarkable faculty whilst it grows, or, at least, while it appears to preserve an active life, and remains fresh. The phosphorescence is at first, and more ordinarily, recognizable at the surface of the hymenium. I have seen a great number of young fungi which were very phosphorescent in the gills, but not in any other part. In another case, and amongst more aged fungi, the hymenium of which had ceased to give light, the stipe, on the contrary, threw out a brilliant glare. Habitually, the phosphorescence is distributed in an unequal manner upon the stipe, and the same upon the gills. Although the stipe is luminous at its surface, it is not always necessarily so in its interior substance, if one bruises it, but this substance frequently becomes phosphorescent after contact with the air. Thus, I had irregularly split and slit a large stipe in its length, and I found the whole flesh obscure, whilst on the exterior were some luminous places. I roughly joined the lacerated parts, and the following evening, on observing them anew, I found them all flashing a bright light. At another time, I had with a scalpel split vertically many fungi in order to hasten their dessication; the evening of the same day, the surface of all these cuts was phosphorescent, but in many of these pieces of fungi the luminosity was limited to the cut surface which remained exposed to the air; the flesh beneath was unchanged.

"I have seen a stipe opened and lacerated irregularly, the whole of the flesh of which remained phosphorescent during three consecutive evenings, but the brightness diminished in intensity from the exterior to the interior, so that on the third day it did not issue from the inner part of the stipe. The phosphorescence of the gills is in no way modified at first by immersing the fungus in water; when they have been immersed they are as bright as in the air, but the fungi which I left immersed until the next evening lost all their phosphorescence, and communicated to the water an already sensible yellow tint; alcohol put upon the phosphorescent gills did not at once completely obliterate the light, but visibly enfeebled it. As to the spores, which are white, I have found many times very dense coats of them thrown down on porcelain plates, but I have never seen them phosphorescent.

"As to the observation made by Delile that the Agaric of the olive does not shine during the day when placed in total darkness, I think that it could not have been repeated. From what I have said of the phosphorescence of A. olearius, one naturally concludes that there does not exist any necessary relation between this phenomenon and the fructification of the fungus; the luminous brightness of the hymenium shows, says Delile, 'the greater activity of the reproductive organs,' but it is not in consequence of its reproductive functions, which may be judged only as an accessory phenomenon, the cause of which is independent of, and more general than these functions, since all the parts of the fungus, its entire substance, throws forth at one time, or at successive times, light. From these experiments Tulasne infers that the same agents, oxygen, water, and warmth, are perfectly necessary to the production of phosphorescence as much in living organized beings as in those which have ceased to live. In either case, the luminous phenomena accompany a chemical reaction which consists principally in a combination of the organized matter with the oxygen of the air; that is to say, in its combustion, and in the discharge of carbonic acid which thus shows itself."

We have quoted at considerable length from these observations of Tulasne on the Agaric of the olive, as they serve very much to illustrate similar manifestations in other species, which doubtless resemble each other in their main features.

Mr. Gardner has graphically described his first acquaintance in Brazil with the phosphorescent species which now bears his name. It was encountered on a dark night of December, while passing through the streets of Villa de Natividate. Some boys were amusing themselves with some luminous object, which at first he supposed to be a kind of large fire-fly, but on making inquiry he found it to be a beautiful phosphorescent Agaric, which he was told grew abundantly in the neighbourhood on the decaying fronds of a dwarf palm. The whole plant gives out at night a bright light somewhat similar to that emitted by the larger fire-flies, having a pale greenish hue. From this circumstance, and from growing on a palm, it was called by the inhabitants "flor de coco."[C]

The number of recognized phosphorescent species of Agaricus is not large, although two or three others may be enumerated in addition to those cited by Tulasne. Of these, Agaricus lampas, and some others, are found in Australia.[D] In addition to the Agaricus noctileucus, discovered by Gaudichaud, and the Agaricus igneus of Rumphius, found in Amboyna, Dr. Hooker speaks of the phenomenon as common in Sikkim, but he seems never to have been able to ascertain with what species it was associated.

Dr. Cuthbert Collingwood has communicated some further information relative to the luminosity of a species of Agaricus in Borneo (supposed to be A. Gardneri), in which he says, "The night being dark, the fungi could be very distinctly seen, though not at any great distance, shining with a soft pale greenish light. Here and there spots of much more intense light were visible, and these proved to be very young and minute specimens. The older specimens may more properly be described as possessing a greenish luminous glow, like the glow of the electric discharge, which, however, was quite sufficient to define its shape, and, when closely examined, the chief details of its form and appearance. The luminosity did not impart itself to the hand, and did not appear to be affected by the separation from the root on which it grew, at least not for some hours. I think it probable that the mycelium of this fungus is also luminous, for, upon turning up the ground in search of small luminous worms, minute spots of light were observed, which could not be referred to any particular object or body when brought to the light and examined, and were probably due to some minute portions of its mycelium."[E] The same writer also adds, "Mr. Hugh Low has assured me that he saw the jungle all in a blaze of light (by which he could see to read) as, some years ago, he was riding across the island by the jungle road; and that this luminosity was produced by an Agaric."

Similar experiences were detailed by Mr. James Drummond in a letter from Swan River, in which two species of Agaric are concerned. They grew on the stumps of trees, and had nothing remarkable in their appearance by day, but by night emitted a most curious light, such as the writer never saw described in any book. One species was found growing on the stump of a Banksia in Western Australia. The stump was at the time surrounded by water. It was on a dark night, when passing, that the curious light was first observed. When the fungus was laid on a newspaper, it emitted by night a phosphorescent light, enabling persons to read the words around it, and it continued to do so for several nights with gradually decreasing intensity as the plant dried up. In the other instance, which occurred some years after, the author, during one of his botanical trips, was struck by the appearance of a large Agaric, measuring sixteen inches in diameter, and weighing about five pounds. This specimen was hung up to dry in the sitting-room, and on passing through the apartment in the dark it was observed to give out the same remarkable light. The luminous property continued, though gradually diminishing, for four or five nights, when it ceased on the plant becoming dry. "We called some of the natives," he adds, "and showed them this fungus when emitting light, and the poor creatures cried out 'chinga,' their name for a spirit, and seemed much afraid of it."[F]

Although the examples already cited are those of species of Agaric, luminosity is not by any means wholly confined to that genus. Mr. Worthington Smith has recorded his experiences of some specimens of the common Polyporus annosus which were found on some timbers in the Cardiff coal mines. He remarks that the colliers are well acquainted with phosphorescent fungi, and the men state that sufficient light is given "to see their hands by." The specimens of Polyporus were so luminous that they could be seen in the dark at a distance of twenty yards. He observes further, that he has met with specimens of Polyporus sulfureus which were phosphorescent. Some of the fungi found in mines, which emit light familiar to the miners, belong to the incomplete genus Rhizomorpha, of which Humboldt amongst others gives a glowing account. Tulasne has also investigated this phenomenon in connection with the common Rhizomorpha subterranea, Pers. This species extends underneath the soil in long strings, in the neighbourhood of old tree stumps, those of the oak especially, which are becoming rotten, and upon these it is fixed by one of its branches. These are cylindrical, very flexible, branching, and clothed with a hard bark, encrusting and fragile, at first smooth and brown, becoming later very rough and black. The interior tissue, at first whitish, afterwards of a more or less deep brown colour, is formed of extremely long parallel filaments from .0035 to .015 mm. in diameter.

On the evening of the day when I received the specimens,[G] he writes, the temperature being about 22 deg. Cent., all the young branches brightened with an uniform phosphoric light the whole of their length; it was the same with the surface of some of the older branches, the greater number of which were still brilliant in some parts, and only on their surface. I split and lacerated many of these twigs, but their internal substance remained dull. The next evening, on the contrary, this substance, having been exposed to contact with the air, exhibited at its surface the same brightness as the bark of the branches. I made this observation upon the old stalks as well as upon the young ones. Prolonged friction of the luminous surfaces reduced the brightness and dried them to a certain degree, but did not leave on the fingers any phosphorescent matter. These parts continued with the same luminous intensity after holding them in the mouth so as to moisten them with saliva; plunged into water, held to the flame of a candle so that the heat they acquired was very appreciable to the touch, they still emitted in the dark a feeble light; it was the same after being held in water heated to 30 deg. C.; but putting them in water bearing a temperature of 55 deg. C. extinguished them entirely. They are equally extinguished if held in the mouth until they catch the temperature; perhaps, still, it might be attributed less to the heat which is communicated to them than to the deficiency of sufficient oxygen, because I have seen some stalks, having become dull in the mouth, recover after a few instants a little of their phosphorescence. A young stalk which had been split lengthwise, and the internal substance of which was very phosphorescent, could imbibe olive oil many times and yet continue for a long time to give a feeble light. By preserving these Rhizomorphae in an adequate state of humidity, I have been able for many evenings to renew the examination of their phosphorescence; the commencement of dessication, long before they really perish, deprives them of the faculty of giving light. Those which had been dried for more than a month, when plunged into water, commenced to vegetate anew and send forth numerous branches in a few days; but I could only discover phosphorescence at the surface of these new formations, or very rarely in their immediate neighbourhood, the mother stalks appearing to have lost by dessication their luminous properties, and did not recover them on being recalled to life. These observations prove that what Schmitz has written was not true, that all parts of these fungi were seldom phosphorescent.

The luminous phenomenon in question is without doubt more complicated than it appears, and the causes to which we attribute it are certainly powerfully modified by the general character of the objects in which they reside. Most of the German botanists give this explanation, others suppose that it forms at first or during its continuance a special matter, in which the luminous property resides; this matter, which is said to be mucilaginous in the luminous wood, appears to be in the Rhizomorpha only a kind of chemical combination between the membrane and some gummy substance which they contain. Notwithstanding this opinion, I am assured that all external mucous matter was completely absent from the Agaricus olearius, and I neither discovered it upon the branches of Rhizomorpha subterranea nor upon the dead leaves which I have seen phosphorescent; in all these objects the luminous surfaces were nothing else than their proper tissue.

It may be remarked here that the so-called species of Rhizomorpha are imperfect fungi, being entirely devoid of fructification, consisting in fact only of a vegetative system—a sort of compact mycelium—(probably of species of Xylaria) with some affinity to Sclerotium.

Recently an extraordinary instance of luminosity was recorded as occurring in our own country.[H] "A quantity of wood had been purchased in a neighbouring parish, which was dragged up a very steep hill to its destination. Amongst them was a log of larch or spruce, it is not quite certain which, 24 feet long and a foot in diameter. Some young friends happened to pass up the hill at night, and were surprised to find the road scattered with luminous patches, which, when more closely examined, proved to be portions of bark or little fragments of wood. Following the track, they came to a blaze of white light which was perfectly surprising. On examination, it appeared that the whole of the inside of the bark of the log was covered with a white byssoid mycelium of a peculiarly strong smell, but unfortunately in such a state that the perfect form could not be ascertained. This was luminous, but the light was by no means so bright as in those parts of the wood where the spawn had penetrated more deeply, and where it was so intense that the roughest treatment scarcely seemed to check it. If any attempt was made to rub off the luminous matter it only shone the more brightly, and when wrapped up in five folds of paper the light penetrated through all the folds on either side as brightly as if the specimen was exposed; when, again, the specimens were placed in the pocket, the pocket when opened was a mass of light. The luminosity had now been going on for three days. Unfortunately we did not see it ourselves till the third day, when it had, possibly from a change in the state of electricity, been somewhat impaired; but it was still most interesting, and we have merely recorded what we observed ourselves. It was almost possible to read the time on the face of a watch even in its less luminous condition. We do not for a moment suppose that the mycelium is essentially luminous, but are rather inclined to believe that a peculiar concurrence of climatic conditions is necessary for the production of the phenomenon, which is certainly one of great rarity. Observers as we have been of fungi in their native haunts for fifty years, it has never fallen to our lot to witness a similar case before, though Prof. Churchill Babington once sent us specimens of luminous wood, which had, however, lost their luminosity before they arrived. It should be observed that the parts of the wood which were most luminous were not only deeply penetrated by the more delicate parts of the mycelium, but were those which were most decomposed. It is probable, therefore, that this fact is an element in the case as well as the presence of fungoid matter."

In all cases of phosphorescence recorded, the light emitted is described as of the same character, varying only in intensity. It answers well to the name applied to it, as it seems remarkably similar to the light emitted by some living insects and other animal organisms, as well as to that evolved, under favourable conditions, by dead animal matter—a pale bluish light, resembling that emitted by phosphorus as seen in a dark room.

Another phenomenon worthy of note is the change of colour which the bruised or cut surface of some fungi undergo. Most prominent amongst these are certain poisonous species of Boletus, such, for instance, as Boletus luridus, and some others, which, on being bruised, cut, or divided, exhibit an intense, and in some cases vivid, blue. At times this change is so instantaneous that before the two freshly-cut portions of a Boletus can be separated, it has already commenced, and proceeds rapidly till the depth of intensity has been gained. This blue colour is so universally confined to dangerous species that it is given as a caution that all species which exhibit a blue colour when cut or bruised, should on no account be eaten. The degree of intensity varies considerably according to the condition of the species. For example, Boletus caerulescens is sometimes only very slightly, if at all, tinged with blue when cut, though, as the name implies, the peculiar phenomenon is generally highly developed. It cannot be said that this change of colour has as yet been fully investigated. One writer some time since suggested, if he did not affirm, that the colour was due to the presence of aniline, others have contented themselves with the affirmation that it was a rapid oxidization and chemical change, consequent upon exposure of the surfaces to the air. Archdeacon Robinson examined this phenomenon in different gases, and arrived at the conclusion that the change depends on an alteration of molecular arrangement.[I]

One of the best of the edible species of Lactarius, known as Lactarius deliciosus, changes, wherever cut or bruised, to a dull livid green. This fungus is filled with an orange milky fluid, which becomes green on exposure to the air, and it is consequently the juice which oxidizes on exposure. Some varieties more than others of the cultivated mushroom become brownish on being cut, and a similar change we have observed, though not recorded, in other species.

The presence of a milky juice in certain fungi has been alluded to. This is by no means confined to the genus Lactarius, in which such juice is universal, sometimes white, sometimes yellow, and sometimes colourless. In Agarics, especially in the subgenus Mycena, the gills and stem are replete with a milky juice. Also in some species of Peziza, as for instance in Peziza succosa, B., sometimes found growing on the ground in gardens, and in Peziza saniosa, Schrad., also a terrestrial species, the same phenomenon occurs. To this might be added such species as Stereum spadiceum, Fr., and Stereum sanguinolentum, Fr., both of which become discoloured and bleeding when bruised, while Corticium lactescens distils a watery milk.

Fungi in general have not a good repute for pleasant odours, and yet it must be conceded that they are not by any means devoid of odour, sometimes peculiar, often strong, and occasionally very offensive. There is a peculiar odour common to a great many forms, which has come to be called a fungoid odour; it is the faint smell of a long-closed damp cellar, an odour of mouldiness and decay, which often arises from a process of eremocausis. But there are other, stronger, and equally distinct odours, which, when once inhaled, are never to be forgotten. Amongst these is the fetid odour of the common stinkhorn, which is intensified in the more beautiful and curious Clathrus. It is very probable that, after all, the odour of the Phallus would not be so unpleasant if it were not so strong. It is not difficult to imagine, when one encounters a slight sniff borne on a passing breeze, that there is the element of something not by any means unpleasant about the odour when so diluted; yet it must be confessed that when carried in a vasculum, in a close carriage, or railway car, or exposed in a close room, there is no scruple about pronouncing the odour intensely fetid. The experience of more than one artist, who has attempted the delineation of Clathrus from the life, is to the effect that the odour is unbearable even by an enthusiastic artist determined on making a sketch.

Perhaps one of the most fetid of fungi is Thelephora palmata. Some specimens were on one occasion taken by Mr. Berkeley into his bedroom at Aboyne, when, after an hour or two, he was horrified at finding the scent far worse than that of any dissecting room. He was anxious to save the specimens, but the scent was so powerful that it was quite intolerable till he had wrapped them in twelve thick folds of the strongest brown paper. The scent of Thelephora fastidiosa is bad enough, but, like that of Coprinus picaceus, it is probably derived from the imbibition of the ordure on which it is developed. There needs no stronger evidence that the scent must not only be powerful, but unpleasant, when an artist is compelled, before a rough sketch is more than half finished, to throw it away, and seek relief in the open air. A great number of edible Agarics have the peculiar odour of fresh meal, but two species, Agaricus odorus and Agaricus fragrans, have a pleasant anise-like odour. In two or three species of tough Hydnum, there is a strong persistent odour somewhat like melilot or woodruffe, which does not pass away after the specimen has been dried for years. In some species of Marasmius, there is a decidedly strong odour of garlic, and in one species of Hygrophorus, such a resemblance to that of the larva of the goat moth, that it bears the name of Hygrophorus cossus. Most of the fleshy forms exhale a strong nitrous odour during decay, but the most powerful we remember to have experienced was developed by a very large specimen of Choiromyces meandriformis, a gigantic subterranean species of the truffle kind, and this specimen was four inches in diameter when found, and then partially decayed. It was a most peculiar, but strong and unpleasantly pungent nitrous odour, such as we never remember to have met with in any other substance. Peziza venosa is remarkable when fresh for a strong scent like that of aquafortis.

Of colour, fungi exhibit an almost endless variety, from white, through ochraceous, to all tints of brown until nearly black, or through sulphury yellow to reds of all shades, deepening into crimson, or passing by vinous tints into purplish black. These are the predominating gradations, but there are occasional blues and mineral greens, passing into olive, but no pure or chlorophyllous green. The nearest approach to the latter is found in the hymenium of some Boleti. Some of the Agarics exhibit bright colours, but the larger number of bright-coloured species occur in the genus Peziza. Nothing can be more elegant than the orange cups of Peziza aurantia, the glowing crimson of Peziza coccinea, the bright scarlet of Peziza rutilans, the snowy whiteness of Peziza nivea, the delicate yellow of Peziza theleboloides, or the velvety brown of Peziza repanda. Amongst Agarics, the most noble Agaricus muscarius, with its warty crimson pileus, is scarcely eclipsed by the continental orange Agaricus caesarius. The amethystine variety of Agaricus laccatus is so common and yet so attractive; whilst some forms and species Russula are gems of brilliant colouring. The golden tufts of more than one species of Clavaria are exceedingly attractive, and the delicate pink of immature Lycogala epidendrum is sure to command admiration. The minute forms which require the microscope, as much to exhibit their colour as their structure, are not wanting in rich and delicate tints, so that the colour-student would find much to charm him, and good practice for his pencil in these much despised examples of low life.

Amongst phenomena might be cursorily mentioned the peculiar sarcodioid mycelium of Myxogastres, the development of amoeboid forms from their spores, and the extraordinary rapidity of growth, as the well-known instance of the Reticularia which Schweinitz observed running over iron a few hours after it had been red hot. Mr. Berkeley has observed that the creamy mycelium of Lycogala will not revive after it has become dry for a few hours, though so active before.

[A] M. J. Berkeley, "Introduction to Cryptogamic Botany," p. 265.

[B] Tulasne, "Sur la Phosphorescence des Champignons," in "Ann. des Sci. Nat." (1848), vol. ix, p. 338.

[C] In "Hooker's Journal of Botany" (1840), vol. ii. p. 426.

[D] Berkeley, "Introduction to Crypt. Bot." t. 265.

[E] Dr. Collingwood, in "Journal of Linnaean Society (Botany)," vol. x. p. 469.

[F] In "Hooker's Journal of Botany" for April, 1842.

[G] Tulasne, "Sur la Phosphorescence," in "Ann. des Sci. Nat." (1848), vol ix. p. 340, &c.

[H] Rev. M. J. Berkeley, in "Gardener's Chronicle" for 1872, p. 1258.

[I] Berkeley, "Introduction to Crypt. Bot." p. 266.



VI.

THE SPORE AND ITS DISSEMINATION.

A work of this character would hardly be deemed complete without some reference to the above subject, which has moreover a relation to some of the questions discussed, and particularly of spore diffusion in the atmosphere. The largest spore is microscopic, and the smallest known scarcely visible under a magnifying power of 360 diameters. Taking into account the large number of species of fungi, probably scarcely less numerous than all the flowering plants, and the immense number of spores which some of the individuals produce, they must be exceedingly plentiful and widely diffused, though from their minuteness not easy to be discerned. It has been attempted to estimate the number of spores which might be produced by one single plant of Lycoperdon, but the number so far exceeds that which the mind is accustomed to contemplate that it seems scarcely possible to realize their profusion. Recent microscopic examinations of the common atmosphere[A] show the large quantity of spores that are continually suspended. In these investigations it was found that spores and similar cells were of constant occurrence, and were generally present in considerable numbers. That the majority of the cells were living, and ready to undergo development on meeting with suitable conditions, was very manifest, as in those cases in which preparations were retained under observation for any length of time, germination rapidly took place in many of the cells. In few instances did any development take place, beyond the formation of networks of mycelium, or masses of toruloid cells, but, in one or two, distinct sporules were developed on the filaments arising from some of the larger septate spores; and in a few others, Penicillium and Aspergillus produced their characteristic heads of fructification. With regard to the precise nature of the spores, and other cells present in various instances, little can be said, as, unless their development were to be carefully followed out through all its stages, it is impossible to refer them to their correct species or even genera. The greater number of them are apparently referable to the old orders of fungi, Sphaeronemei, Melanconei, Torulacei, Dematiei and Mucedines, while some probably belonged to the Pucciniaei and Caeomacei.

Hence it is demonstrated that a large number of the spores of fungi are constantly present in the atmosphere, which is confirmed by the fact that whenever a suitable pabulum is exposed it is taken possession of by floating spores, and soon converted into a forest of fungoid vegetation. It is admitted that the spores of such common moulds as Aspergillus and Penicillium are so widely diffused, that it is almost impossible to exclude them from closed vessels, or the most carefully guarded preparations. Special contrivances for the dispersion of the spores in the different groups follow a few general types, and it is only rarely that we meet with any method that is confined only to a species or genus. Some of the more significant forms of spores may be illustrated, with their modes of dissemination.

BASIDIOSPORES is a term which we may employ here to designate all spores borne at the tips of such supports as are found in the Hymenomycetes and Gasteromycetes, to which the name of basidia has been given. In fact, under this section we may include all the spores of those two orders, although we may be ignorant of the precise mode in which the fruit of most of the Myxogastres is developed. Guarding ourselves at the outset against any misinterpretation as to the use of this term, which, in fact, we employ simply to designate the fruit of Hymenomycetes, we may have excuse in our desire to limit special terms as much as possible. In the Agaricini the spores are plentiful, and are distributed over the hymenium or gill plates, the surface of which is studded with basidia, each of which normally terminates with four short, erect, delicate, thread-like processes, each of which is surmounted by a spore. These spores are colourless or coloured, and it is upon this fact that primary divisions in the genus Agaricus are based, inasmuch as colour in the spores appears to be a permanent feature. In white-spored species the spores are white in all the individuals, not mutable as the colour of the pileus, or the corolla in phanerogamic plants. So also with the pink spored, rusty spored, black spored, and others. This may serve to explain why colour, which is so little relied upon in classification amongst the higher plants, should be introduced as an element of classification in one of the largest genera of fungi.



There are considerable differences in size and form amongst the spores of the Agaricini, although at first globose; when mature they are globose, oval, oblong, elliptic, fusiform, and either smooth or tuberculated, often maintaining in the different genera or subgenera one particular characteristic, or typical form. It is unnecessary here to particularize all the modifications which the form and colour of the spores undergo in different species, as this has already been alluded to. The spores in the Polyporei, Hydnei, &c., are less variable, of a similar character, as in all the Hymenomycetes, except perhaps the Tremellini.



When an Agaric is mature, if the stem is cut off close to the gills, and the pileus inverted, with the gills downwards on a sheet of black paper (one of the pale-spored species is best for this purpose), and left for a few hours, or all night, in that position, the paper will be found imprinted in the morning with a likeness of the under side of the pileus with its radiating gills, the spores having been thrown down upon the paper in such profusion, from the hymenium, and in greater numbers from the opposed surfaces of the gills. This little experiment will be instructive in two or three points. It will illustrate the facility with which the spores are disseminated, the immense number in which they are produced, and the adaptability of the gill structure to the economy of space, and the development of the largest number of basidiospores from a given surface. The tubes or pores in Polyporei, the spines in Hydnei, are modifications of the same principles, producing a like result.

In the Gasteromycetes the spores are produced in many cases, probably in most, if not all, at the tips of sporophores; but the hymenium, instead of being exposed, as in the Hymenomycetes, is enclosed within an outer peridium or sac, which is sometimes double. The majority of these spores are globose in form, some of them extremely minute, variously coloured, often dark, nearly black, and either externally smooth or echinulate. In some genera, as Enerthenema, Badhamia, &c., a definite number of spores are at first enclosed in delicate cysts, but these are exceptions to the general rule: this also is the case in at least one species of Hymenogaster. As the spores approach maturity, it may be observed in such genera as Stemonitis, Arcyria, Diachea, Dictydium, Cribraria, Trichia, &c., that they are accompanied by a sort of reticulated skeleton of threads, which remain permanent, and served in earlier stages, doubtless, as supports for the spores; being, in fact, the skeleton of the hymenium. It has been suggested that the spiral character of the threads in Trichia calls to mind the elaters in the Hepaticae, and like them may, by elasticity, aid in the dispersion of the spores. There is nothing known, however, which will warrant this view. When the spores are mature, the peridium ruptures either by an external orifice, as in Geaster, Lycoperdon, &c., or by an irregular opening, and the light, minute, delicate, spores are disseminated by the slightest breath of air. Specimens of Geaster and Bovista are easily separated from the spot on which they grew; when rolling from place to place, the spores are deposited over a large surface. In the Phalloidei the spores are involved in a slimy mucus which would prevent their diffusion in such a manner. This gelatinous substance has nevertheless a peculiar attraction for insects, and it is not altogether romantic to believe that in sucking up the fetid slime, they also imbibe the spores and transfer them from place to place, so that even amongst fungi insects aid in the dissemination of species. Whether or not the Myxogastres should be included here is matter of opinion, since the mode in which the spores are developed is but little known; analogy with the Trichogastres in other points alone leading to the conclusion that they may produce basidiospores. The slender, elastic stems which support the peridia in many species are undoubted aids to the dissemination of the spores.[B]



Under the name of STYLOSPORES may be classed those spores which in some orders of Coniomycetes are produced at the apex of short threads, either enclosed in a perithecium, or seated upon a kind of stroma. These are exceedingly variable, sometimes large, and multiseptate, at other times minute, resembling spermatia. In such genera as are chiefly epiphytal, in Septoria, Phyllosticta, and their allies, the minute spores are enclosed within membranaceous perithecia, and when mature these are ejected from the orifice at the apex, or are exposed by the breaking off of the upper portion of the perithecia. In Diplodia and Hendersonia the spores are larger, mostly coloured, often very fine in the latter genus, and multiseptate, escaping from the perithecia by a terminal pore. Probably the species are only pycnidia of Sphaeriacei, but that is of no consequence in relation to our present inquiry. Of stylospores which deserve mention on account of their singularity of form, we may note those of Dilophospora graminis, which are straight, and have two or three hair-like appendages at each extremity. In Discosia there is a single oblique bristle at each end, or at the side of the septate spores, whilst in Neottiospora a tuft of delicate hairs is found at one extremity only. The appendages in Dinemasporium are similar to those of Discosia. The spores in Prosthemium may be said in some sort to resemble compound Hendersonia, being fusiform and multiseptate, often united at the base in a stellate manner. In this genus, as in Darluca, Cytispora, and the most of those belonging to the Melanconiei, the spores when mature are expelled from the orifice of the perithecium or spurious perithecium, either in the form of tendrils, or in a pasty mass. In these instances the spores are more or less involved in gelatine, and when expelled lie spread over the matrix, around the orifice; their ultimate diffusion being due to moisture washing them over other parts of the same tree, since it is probable that their natural area of dissemination is not large, the higher plants, of which they are mostly conditions, being developed on the same branches. More must be known of the relations between Melanconium and Tulasne's sphaeriaceous genus Melanconis before we can appreciate entirely the advantage to Melanconium and some other genera, that the wide diffusion of their spores should be checked by involving them in mucus, or their being agglutinated to the surface of the matrix, only to be softened and diffused by rain. The spores in many species amongst the Melanconiei are remarkably fine; those of Stegonosporium have the endochrome partite and cellular. In Stilbospora and Coryneum the spores are multiseptate, large, and mostly coloured. In Asterosporium the spores are stellate, whilst in Pestalozzia they are septate, with a permanent peduncle, and crested above with two or three hyaline appendages.



The Torulacei externally, and to the naked eye, are very similar to the black moulds, and the mode of dissemination will be alike in both. The spores are chiefly compound, at first resembling septate threads, and at length breaking up into joints, each joint of which possesses the function of a spore. In some instances the threads are connate, side by side, as in Torula hysterioides, and in Speira, being concentrically arranged in laminae in the latter genus. The structure in Sporochisma is very peculiar, the joints breaking up within an external tube or membrane. The spores in Sporidesmium appear to consist of irregular masses of cells, agglomerated into a kind of compound spore. Most of the species become pulverulent, and the spores are easily diffused through the air like an impalpable dust. They form a sort of link between the stylospores of one section of the Coniomycetes, and the pseudospores of the parasitical section.

PSEUDOSPORE is, perhaps, the most fitting name which can be applied to the so-called spores of the parasitical Coniomycetes. Their peculiar germination, and the production of reproductive bodies on the germ tubes, prove their analogy to some extent with the prothallus of other cryptogams, and necessitate the use of some term to distinguish them from such spores as are reproductive without the intervention of a promycelium. The differences between these pseudospores in the several genera are confined in some instances to their septation, in others to their mode of development. In the AEcidiacei the pseudospores are more or less globose, produced in chains within an external cellular peridium. In the Caeomacei they are simple, sometimes produced in chains, and sometimes free, with or without a caduceous peduncle. In the Ustilaginei they are simple, dark coloured, and occasionally attached in subglobose masses, as in Urocystis and Thecaphora, which, are more or less compact. In the Pucciniaei the distinctive features of the genera are based upon the more or less complex nature of the pseudospores, which are bilocular in Puccinia, trilocular in Triphragmium, multilocular in Phragmidium, &c. In the curious genus Podisoma the septate pseudospores are involved in a gelatinous element. The diffusion of these fruits is more or less complete according to their compact or pulverulent nature. In some species of Puccinia the sori are so compact that they remain attached to the leaves long after they are dead and fallen. In the genus Melampsora, the wedge-shaped winter-pseudospores are not perfected until after the dead leaves have for a long time remained and almost rotted on the ground. It is probable that their ultimate diffusion is only accomplished by the rotting and disintegration of the matrix. In the Caeomacei, Ustilaginei, and AEcidiacei the pseudospores are pulverulent, as in some species of Puccinia, and are easily diffused by the motion of the leaves in the wind, or the contact of passing bodies. Their diffusion in the atmosphere seems to be much less than in the case of the Hyphomycetes. By what means such a species as Puccinia malvacearum, which has very compact sori, has become within so short a period diffused over such a wide area, is a problem which in the present state of our knowledge must remain unsolved. It may be through minute and plentiful secondary spores.



SPERMATIA are very minute delicate bodies found associated with many of the epiphyllous Coniomycetes, and it has been supposed are produced in conjunction with some of the Sphaeriacei, but their real function is at present obscure, and the name is applied rather upon conjecture than knowledge. It is by no means improbable that spermatia do exist extensively amongst fungi, but we must wait in patience for the history of their relationship.

TRICHOSPORES might be applied better, perhaps, than conidia to the spores which are produced on the threads of the Hyphomycetes. Some of them are known to be the conidia of higher plants; but as this is by no means the case with all, it would be assuming too much to give the name of conidia to the whole. By whatever name they may be called, the spores of the Hyphomycetes are of quite a different type from any yet mentioned, approximating, perhaps, most closely to the basidiospores of the Hymenomycetes in some, and Gasteromycetes in others; as, for instance, in the Sepedoniei and the Trichodermacei. The form of the spores and their size differ materially, as well as the manner in which they are produced on the threads. In many they are very minute and profuse, but larger and less plentiful in the Dematiei than in the Mucedines. The spores of some species of Helminthosporium are large and multiseptate, calling to mind the spores of the Melanconiei. Others are very curious, being stellate in Triposporium, circinate in Helicoma and Helicocoryne, angular in Gonatosporium, and ciliate in Menispora ciliata. Some are produced singly and some in chains, and in some the threads are nearly obsolete. In Peronospora, it has been demonstrated that certain species produce minute zoospores from the so-called spores. The dissemination of the minute spores of the Mucedines through the air is undoubted; rain also certainly assists not only in the dispersion of the spores in this as in other groups, but also in the production of zoospores which require moisture for that purpose. The form of the threads, and the mode of attachment of the spores, is far more variable amongst the Mucedines than the form of the spores, but the latter are in all instances so slightly attached to their supports as to be dissevered by the least motion. This aids also in the diffusion of the spores through the atmosphere.



SPORANGIA are produced in the Physomycetes usually on the tips or branches of delicate threads, and these when mature dehisce and set free the minute sporidia. These are so small and uniform in their character that they require but a passing mention. The method of diffusion agrees much with that of the Mucedines, the walls of the sporangia being usually so thin and delicate as to be easily ruptured. Other modes of fructification prevail in some species by the production of cysts, which are the result of conjugation of the threads. These bodies are for the most part furnished with thicker and more resistant walls, and the diffusion of their contents will be regulated by other circumstances than those which influence the dispersion of the minute sporidia from the terminal cysts. Probably they are more perennial in their character, and are assimilated more to the oogonia of Cystopus and Peronospora, being rather of the nature of resting spores, inasmuch as the same threads usually bear the terminal fruits.



THECASPORES is a term which may be applied generally to all sporidia produced in asci, but these are in turn so innumerable and variable that it will be necessary to treat of some of the groups individually. The Thecaspores, for instance, of the Tuberacei offer several features whereby they may be distinguished from other thecaspores. The asci in which these sporidia are generated mostly partake of a broadly saccate, ovate form. The number of sporidia contained in an individual ascus is usually less than in the majority of the Ascomycetes, and the sporidia approximate more nearly to the globose form. Usually, also, they are comparatively large. Many have been figured by Corda[C] and Tulasne.[D] Three types of spores may be said to prevail in the Tuberacei: the smooth spored, the warted or spinulose, and the areolate. The first of these may be represented by the Stephensia bombycina, in which the globose sporidia are quite smooth and colourless. The warted sporidia may be observed in Genea verrucosa, the spinulose in Tuber nitidum, and the areolate are present in Tuber aestivum and Tuber excavatum, in which the epispore is divided into polygonal alveoli, bounded by thin, membranaceous, prominent partitions. This form of sporidium is very beautiful. In all no special provision is made for the dissemination of the sporidia, as, from their subterranean habit, none would be available save the ultimate dissolution of the external integuments. As they are greedily devoured by several animals, it is possible that they may be dispersed through the excrements.

In the Perisporiacei the perithecium has no proper orifice, or ostiolum, for the discharge of the mature sporidia, which are usually small, and are disseminated by the irregular rupture of the somewhat fragile conceptacles. The asci are usually more or less saccate, and the sporidia approximate to a globose form. The asci are often very diffluent. In Perisporium vulgare the ovate brown sporidia are at first, and for some time, attached together in fours in a concatenate or beaded manner. In some species of Erysiphei the conceptacle encloses but a single sporangium, in others several, which are attached together at the base. In some species the sporangia contain two, in others four, in others eight, and in others numerous sporidia. In Chaetomium the asci are cylindrical, and in most cases the coloured sporidia are lemon-shaped. When the conceptacles are fully matured, it is commonly the case that the asci are absorbed and the sporidia are free in the interior of the conceptacles.



Of the fleshy Discomycetes the genus Peziza may be taken as the type. If the structure which prevails in this genus be brought to mind, it will be remembered that the hymenium lines an expanded cup, and that the asci are packed together, side by side, with their apices outwards, and their bases attached to a substratum of cells which form the inner layer of the receptacle. The sporidia are usually eight in each ascus, either arranged in single or double rows, or irregularly grouped together. The asci are produced in succession; the later, pressing themselves upwards between those previously developed, cause the rupture of the mature asci at the apex and the ejection of the sporidia with considerable force. When a large Peziza is observed for a time a whitish cloud will be seen to rise suddenly from the surface of the disc, which is repeated again and again whenever the specimen is moved. This cloud consists of sporidia ejected simultaneously from several asci. Sometimes the ejected sporidia lie like frost on the surface of the disc. Theories have been devised to account for this sudden extrusion of the sporidia, in Ascobolus, and a few species of Peziza, of the asci also, the most feasible one being the successive growth of the asci; contraction of the cup may also assist, as well as some other less potent causes. It may be remarked here that the sporidia in Peziza and Helotium are mostly colourless, whilst in Ascobolus they pass through pink to violet, or dark brown, and the epispore, which is of a waxy nature, becomes fissured in a more or less reticulated manner.



The sporidia in Hysterium proper are usually coloured, often multiseptate, sometimes fenestrate, and occasionally of considerable size. There is no evidence that the sporidia are ever excluded in the same manner as in Peziza, the lips closing over the disc so much as to prevent this. The diffusion of the sporidia probably depends on the dissolution of the asci, and hence they will not be widely dispersed, unless, perhaps, by the action of rain.

In Tympanis, asci of two kinds have been observed in some species; one kind containing an indefinite number of very minute bodies resembling spermatia, and the other octosporous, containing sporidia of the usual type.

The Sphaeriacei include an almost infinite variety in the form and character of the sporidia. Some of these are indefinite in the number contained in an ascus, although the majority are eight, and a few less. In the genera Torrubia and Hypocrea the structure differs somewhat from other groups, inasmuch as in the former the long thread-like sporidia break up into short joints, and in the latter the ascus contains sixteen subglobose or subquadrate sporidia. Other species contain linear sporidia, which are often the length of the ascus, and may either be simple or septate. In Sphaeria ulnaspora the sporidia are abruptly bent at the second joint. Shorter fusiform sporidia are by no means uncommon, varying in the number of septa, and in constriction at the joints in different species. Elliptic or ovate sporidia are common, as are those of the peculiar form which may be termed sausage-shaped. These are either hyaline or coloured of some shade of brown. Coloured sporidia of this kind are common in Xylaria and Hypoxylon, as well as in certain species of the section Superficiales. Coloured sporidia are often large and beautiful: they are mostly of an elongated, elliptical form, or fusiform. As noteworthy may be mentioned the sporidia of Melanconis lanciformis, those of Valsa profusa, and some species of Massaria, the latter being at first invested with a hyaline coat. Some coloured sporidia have hyaline appendages at each extremity, as in Melanconis Berkeleii, and an allied species, Melanconis bicornis, from the United States, also some dung Sphaeriae, as S. fimiseda, included under the proposed genus Sordaria.[E] Hyaline sporidia occasionally exhibit a delicate bristle-like appendage at each extremity, as in the Valsa thelebola, or with two additional cilia at the central constriction, as in Valsa taleola. A peculiar form of sporidium is present in certain species of Sphaeria found on dung, for which the generic name of Sporormia has been proposed, in which the sporidium (as in Perisporium vulgare) consists of four coloured ovate joints, which ultimately separate. Multiseptate fenestrate sporidia are not uncommon in Cucurbitaria and Pleospora, as well as in Valsa fenestrata and some other species. In the North American Sphaeria putaminum the sporidia are extraordinarily large.



The dissemination of the sporidia may, from identity of structure in the perithecium, be deemed to follow a like method in all. When mature, they are in a great measure expelled from the mouth of the perithecia, as is evident in species with large dark sporidia, such as exist in the genera Hypoxylon, Melanconis, and Massaria. In these genera the sporidia, on maturity, may be observed blackening the matrix round the mouths of the perithecia. As moisture has an evident effect in producing an expulsion of sporidia by swelling the gelatinous nucleus, it may be assumed that this is one of the causes of expulsion, and therefore of aids to dissemination. When Sphaeriae are submitted to extra moisture, either by placing the twig which bears them on damp sand, or dipping one end in a vessel of water, the sporidia will exude and form a gelatinous bead at the orifice. There may be other methods, and possibly the successive production of new asci may also be one, and the increase in bulk by growth of the sporidia another; but of this the evidence is scanty.

Finally, OOGONIA may be mentioned as occurring in such genera as Peronospora amongst moulds, Cystopus amongst Uredines, and the Saprolegniaceae amongst the Physomycetes. The zoospores being furnished with vibratile cilia, are for some time active, and need only water in which to disseminate themselves, and this is furnished by rain.

We have briefly indicated the characteristics of some of the more important types of spores to be found in fungi, and some of the modes by which it is known, or presumed, that their dissemination takes place. In this summary we have been compelled to rest content with suggestions, since an exhaustive essay would have occupied considerable space. The variability in the fruit of fungi, in so far as we have failed to demonstrate, will be found exhibited in the illustrated works devoted more especially to the minute species.[F]

[A] Cunningham, in "Ninth Annual Report of the Sanitary Commissioner with the Government of India." Calcutta, 1872.

[B] See "Corda Icones," tab. 2.

[C] Corda, "Icones Fungorum," vol. vi. Prague.

[D] Tulasne, "Fungi Hypogaei." Paris.

[E] Winter, "Die Deutschen Sordarien" (1873).

[F] Corda, "Icones Fungorum," 6 vols. (1837-1842); Sturm, "Deutschlands Flora," Pilze (1841); Tulasne, "Selecta Fungorum Carpologia;" Bischoff, "Kryptogamenkunde" (1860); Corda, "Anleitung zum Studium der Mykologie" (1842); Fresenius, "Beitraege zur Mykologie" (1850); Nees Ton Esenbeck, "Das System der Pilze" (1816); Bonorden, "Handbuch der Allgemeinen Mykologie" (1851).



VII.

GERMINATION AND GROWTH.

In describing the structure of these organisms in a previous chapter, the modes of germination and growth from the spores have been purposely excluded and reserved for the present. It may be assumed that the reader, having followed us to this point, is prepared for our observations by some knowledge of the chief features of structure in the principal groups, and of the main distinctions in the classification, or at least sufficient to obviate any repetition here. In very many species it is by no means difficult to induce germination of the spores, whilst in others success is by no means certain.

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse