|
How and when Tablets should be introduced.
As to the introduction of the tablets, the square is first of all of course given to the child. A small cube of the third gift may be taken and surrounded on all its faces by square tablets, and then each one "peeled off," disclosing, as it were, the hidden solid. We may also mould cubes of clay and have the children slice off one of the square faces, as both processes show conclusively the relation the square plane bears to the cube whose faces are squares. If the first tablets introduced are of pasteboard, as probably will be the case, the new material should be noted and some idea given of the manufacture of paper.
There is a vast difference in opinion concerning the introduction of this seventh gift, and it is used by the child in the various kindergartens at all times, from the beginning of his ball plays up to his laying aside of the fifth gift. It seems very clear, however, that he should not use the square plane until after he has received some impression of the three dimensions as they are shown in solid bodies, and this Mr. Hailmann tells us he has no proper means of gaining, save through the fourth gift.[63]
[63] "The perception of the difference between a surface-extension and an extension in three dimensions begins late and is established slowly."—W. Preyer, The Mind of the Child, page 180.
As to the triangular tablets, it is evident enough they should not be dealt with until after the child has seen the triangular plane on the solid forms of the fifth gift. Mr. Hailmann says that a clear idea of the extension of solids in three dimensions can only come from a familiarity with the bricks, and again that the abstractions of the tablet should not be obtruded on the child's notice until he has that clear idea.
Though the six tablets which surround the cube may be given to the child at the first exercise, it is better to dictate simple positions of one or two squares first, and let him use the six in dictation and many more in invention.
Order of introducing Triangles.
The first triangle given is the right isosceles, showing the angle of forty-five degrees, and formed by bisecting the square with a diagonal line. The child should be given a square of paper and scissors and allowed to discover the new form for himself, letting him experiment until the desired triangle is obtained. He should then study the new form, its edges and angles, and then join his two right-angled triangles into a square, a larger triangle, etc. Then let him observe how many positions these triangles may assume by moving one round the other. He will find them acting according to the law of opposites already familiar to him, and if not comprehended,[64] yet furnishing him with an infallible criterion for his inventive work.
[64] "With this law I give children a guide for creating, and because it is the law according to which they, as creatures of God, have themselves been created, they can easily apply it. It is born with them."—Reminiscences of Froebel, page 73.
The equilateral is then taken up, is compared with the half-square, and then studied by itself, its three equal sides and angles (each sixty degrees) being noted as well as the obtuse angles made by all possible combinations of the equilateral.
Next, as we have said, comes the right-angled scalene triangle, with its inequality of sides and angles, which must be studied and compared with the equilateral; and last of all, the obtuse isosceles triangle, which is dealt with in the same way.
Here, again, it should be noted that the two last forms should always be discovered by the child in his play with the equilateral, and that he should cut them himself from paper before he is given the regular pasteboard or wooden triangles for study. If presented for the first time in this latter form, they can never mean as much to him as if he had found them out for himself.
Dictations.
The dictations should invariably be given so that opposites and their intermediates may be readily seen. The different triangles may be studied each in the same way, introducing them one at a time in the order named, afterwards allowing as free a combination as will produce symmetrical figures. It is best always to study one of a new kind, then two, then gradually give larger numbers.
Great possibilities undoubtedly lie in this gift, but it is well to remember that with young children it must not be made the vehicle of too abstract instruction. In order to make the dictations simple, the child must be perfectly familiar with the terms of direction, up, down, right, left, centre; with the simple names of the planes (squares, half-squares, equal-sided, blunt and sharp-angled triangles, etc.); and he must learn to know the longest edge of each triangle, that he may be able to place it according to direction.
The children should be encouraged to invent, to give the dictation exercises to one another, and to copy the simpler forms of the lesson on blackboard or paper. Some duplicate copies in colored papers may be made from their inventions, and the walls of the schoolroom ornamented with them. It will be a pleasure to the little ones themselves, and demonstrate to others how wonderful a gift this is and how charmingly the children use it.
No exercise should be given without previous study, and in the first year's teaching it is wiser to draw or make the figures before giving the dictations. The materials, too, should be prepared beforehand, in such a form that they can be given out readily and quietly by the children at the opening of the exercise. To require a class of a dozen or more pupils to wait while the kindergartner assorts and counts the various colors and shapes of tablets to be used is positively to invite loss of interest on the children's part, and to produce in the teacher a hurry and worry and nervous tension which will infallibly ruin the play.
Life Forms.
The Life forms are no longer absolute representations, but only more or less suggestive images of certain objects, and thus show still more clearly the orderly movement from concrete to abstract.
Hitherto in Life forms the child has produced more or less real objects,—for instance, he built a miniature house, a fountain, a chair, or a sofa. They were not absolutely real, and therefore in one way merely images; but they were bodily images. He could place a little dish on the table, a tiny cup on the edge of the fountain, a doll could sit in the chair, and therefore they were all real for purposes of play, at least.
With the tablets, however, the child can no longer make a chair, though by a certain arrangement of them he can make an image of it.
The child will notice that many of the forms made with squares are flat pictures of those made with the third gift, and with the addition of the right isosceles triangles he can reproduce the facades of many of the elaborate object forms of the fifth. The various triangles differ greatly in their capabilities of producing Life forms, the equilateral and the obtuse isosceles being especially deficient in this regard and requiring to be combined with the other tablets. The fact that both the right isosceles and right scalene triangles produce Life forms in great variety seems to prove that, as Goldammer says, "the right angle predominates in the products of human activity."
Symmetrical Forms.
The symmetrical forms are more varied and innumerable than those of any other gift, and with the addition of the brilliant colors of the pasteboard, or the soft shades of the wooden tablets, make figures which are undeniably beautiful, and which are mosaic-like in their effect.
The whirling figures are interesting and new, and the child with developed eye and growing artistic taste will delight in their oddity, and yet be able to find opposites and their intermediates and make them as correctly as in the more methodical figures, where the exact right and left balanced the upper and lower extremes. Here we note that the equilateral and obtuse isosceles triangles, so ill fitted to produce Life forms, lend themselves to forms of symmetry in great variety. The various sequences of the latter in the third and fifth gifts may of course be faithfully reproduced in surface-extension with the tablets, and thus gain an added charm.
The amount of material given to the child is now a matter for the decision of the kindergartner, and is dependent only on the ability of the child to use it to advantage. This increase of material presents a further difficulty, and it is time for us to add still another, that is, to expect more of the child, and to require that he produce not only something original, but something which shall, though simple, be really beautiful.
Inventions in borders are a new and charming feature of this gift, and the circular and oblong tablets as well as the squares and various triangles are well adapted to produce them. The various borders laid horizontally across the tablets may be divided by lines of sticks, and thus make an effect altogether different from anything we have had before.
Mathematical Forms.
The work with forms of knowledge, as has been fully shown, will be in geometry than in arithmetic, to which indeed the gift is not especially well adapted. In addition to the study and comparison of the various forms, their lines and angles, we have a great variety of figures to be produced by combination. We can make the nine regular forms already mentioned in the introduction in a variety of ways, and thus give new charm to the old truths. We must allow the child to experiment by himself very frequently, and interpret to him his discoveries when he makes them.
The Seventh Gift in Weaving.
The square tablets afford a valuable aid to the occupation of weaving, as all the simple patterns can be formed with them, the child laying them upon his table until he has mastered the numerical principle upon which they are constructed. We can easily see how these same patterns may be further utilized as designs for inlaid tiles, or parquetry floors. Thus the seventh gift may introduce children to subsequent practical life, and serve as a useful preparation for various branches of art-work.
Seventh Gift Parquetry.
It is easy to see when we begin the practical use of the tablets that the essential characteristics of the gifts in their progress from solid to point are now becoming less marked, and that they begin to merge into the occupations, which develop from point to solid. The meeting-place of the two series is close at hand, and, like drops of water fallen near each other, they tremble with impatience to rush into one.
The inventions which the child makes with tablets he now very commonly expresses a desire to give away, or to take home with him,—a thought which he seldom had with the gifts, wishing rather to show them in their place upon the tables. As this is a natural and legitimate desire, a supplement to the seventh gift has been devised, consisting of paper substitutes for the various forms, of the same size and appropriate coloring, and to be had either plain or gummed on the back. After the inventions have been made, they are easily transferred to paper with parquetry, and so can be bestowed according to the will of the inventor.
Group Work.
The parquetry of the seventh gift lends an added grace to cooperative work, for the children can now combine all their material in one form to decorate the room, or perhaps to send as a gift to an absent playmate. They may make an inlaid floor for the doll's house, a brightly colored windowpane for the sun to stream through, and with larger forms may even design an effective border for the wainscoting of the schoolroom.[65]
[65] "The utility of this united action is not to be overlooked. The children all proceed according to one and the same law, they all work to produce one and the same result, the same purpose unites them all; in short, we see here in the children's play all that forms the base of every human society, all that renders it possible for men to act together in organized communities, such as are the family, the state, and the church. And to prepare for the future, to be mindful even amidst play of that which a child will afterwards require in order worthily to fill his place in the world, ought surely not to be among the least important ends of an education claiming to be in conformity with nature and reason."—H. Goldammer, The Kindergarten, page 135.
The group work at the square tables is also carried on very fully with the tablets, the symmetrical figures when the colors are well combined being quite dazzling in beauty.
Color with Seventh Gift.
In this connection, a danger may be noted in the treatment of the gifts, both by kindergartner and children. Color appears again here in almost bewildering profusion after its long absence in the series, and is another straw to prove that the wind is blowing strongly toward the occupations. Many of the pasteboard tablets are of different colors on the opposite sides, and though this is of great use in Beauty forms, when properly treated, it is quite often unfortunate in forms of life, unless careful attention is given to arranging the material beforehand. The effect of a barn, for instance, with its front view checkered with violet, red, and yellow squares, may be imagined, or of a pigeon-house with a parti-colored green and blue roof, an orange standard, and red supports. Yet these are no fancy pictures I have painted, and if the child places the tablets in this fashion, they are often allowed so to remain without criticism from the purblind kindergartner. She even sometimes dictates, herself, extravagant and vulgar combinations of color, such as a violet centre-piece with green corners and an orange border.
There needs no reasoning to prove that such a person is radically unfit to handle the subject of color-teaching, and is sure to corrupt the children under her charge; for in general, if ordinarily well trained, they should now be far beyond the stage in which they would be satisfied with such crudity of combination. They have had their season of "playing with brightness," as Mr. Hailmann calls it, and should now begin to have really good ideas as to harmonious arrangement of hues. If they have not, if they really seem to prefer the pigeon-house or barn above mentioned, then they are viciously ill-taught, or altogether deficient in color sense.
It has been noted that the older children often choose the light and dark wooden tablets, for invention, rather than the gay pasteboard forms; but this may be on account of the high polish of the wood, and its novelty in this guise, rather than because, as has been suggested, they have been surfeited with brightness.
READINGS FOR THE STUDENT.
Paradise of Childhood. Edward Wiebe. Pages 30-38. Law of Childhood. W. N. Hailmann. 38, 39. Kindergarten Guide. Kraus-Boelte. 145-237. Koehler's Kindergarten Practice. Tr. by Mary Gurney. 6-9. The Kindergarten. H. Goldammer. 116-54. Kindergarten Culture. W. N. Hailmann. 68-70. Kindergarten and Child-Culture. Henry Barnard. 210, 255, 257. Prang Primary Course in Art Education. Part I. Mary D. Hicks, Josephine C. Locke. Color in the School-Room. Milton Bradley. Elementary Color. Milton Bradley. Color Teaching in Public Schools. Louis Prang, J. S. Clark, Mary D. Hicks. Color, an Elementary Manual for Students. A. H. Church. The Principles of Harmony and Contrasts of Colors. M. E. Chevreul. Students' Text-Book of Color. O. N. Rood. Suggestions with Regard to the Use of Color. Prang Ed. Co.
FROEBEL'S EIGHTH GIFT
THE STRAIGHT LINE.
The Single and Jointed Slats and Staff or Stick.
"The knowledge of the linear lies at the foundation of the knowledge of each form; the forms are viewed and recognized by the intermediation of the straight-lined." FRIEDRICH FROEBEL.
"Froebel's laths, wherewith the child can form letters, correspond to the beech-staves (buchenen Staebchen, now contracted to Buchstaben, i. e., letters of the alphabet), whereon were carved the runes and magic symbols of our primitive ancestors." HERMANN POESCHE.
"It will be readily seen how useful stick-laying may become in perspective drawing, in the study of planes and solids, in crystallography; how, while it insures an enjoyable familiarity with geometrical forms and secures ever-increasing manual skill and delicacy of touch, it develops at the same time the artistic sense of the children in a high degree." W. N. HAILMANN.
1. The wooden staffs of the eighth gift (sometimes called the tenth) are of various lengths, but have for their uniform thickness the tenth of an inch.
They present, as now made, flat sides and square ends, are sometimes uncolored and sometimes dyed in the six primary colors.
2. The previous gifts dealt with solids and plane surfaces, wholes or divided wholes, while this one illustrates the edge or line.
The previous gifts more definitely suggested their uses by their prominent characteristics; this depends for its value largely upon the ingenuity of the teacher.
We have contrasts of size in the preceding gifts, both in the units themselves and in the component parts of which the divided units are made; but in this gift the dimension length is alone emphasized.
3. The most important characteristic of the gift is the representation of the line. The relations of position and form enter as essential elements of usefulness.
4. The laying of sticks may be used as an occupation very early in the kindergarten course, and thus serve as a preparation for the first drawing exercises, but there should be no attempt at this time to give them their legitimate connection with the cube as the edge of the solid and with the tablet as a portion of the surface.
Later they may be introduced in their proper place in the sequence of gifts, and thus assume their true relation in the child's mind. This relation is made more evident as we can and should reproduce the lessons with the solids in outline with the sticks. When the child is more advanced, the connection of the sticks with the preceding objects will be more clearly explained and intelligently comprehended, and then they may be used in connection with softened peas or tiny corks, which serve to illustrate the points of contact of the sides of surfaces and edges of solids whose skeletons the child can then construct with these materials.
5. The geometrical forms illustrated in this gift are:—
Angles of every degree. Triangles, quadrilaterals, and additional polygons. Skeletons of solids by means of corks or peas.
6. The law of the mediation of contrasts is shown in the fact that every line is a connection between opposite points. As in the other gifts, the law governs the use of the line in the formation of all outlines of objects and all symmetrical designs.
* * * * *
As we have already noted, the gifts of Froebel are thus far solids, divided solids, planes and divided planes.
Relation of the Single and Jointed Slats to the other Gifts. How both are used.
With the single and jointed slats we shall not deal separately, merely stating that they form a transition between the surface and the line, having more breadth and relation to the surface itself than to the edge, but manifestly tending towards the embodied line of which the little stick given by Froebel is the realization.
The jointed slats, generally ruled in half and quarter inches for measuring, may be used to show how one form is developed from another,—for instance, the rhombus from the square, the rhomboid from the oblong, and they are very useful also for explaining and illustrating the different kinds of angles, as the opening between the joints may be made narrower or wider at pleasure.
The disconnected slats are used for the occasional play or exercise of interlacing, forming a variety of figures, geometrical and artistic, which hold together when carefully treated.[66]
[66] "The slats form, in some sort, the transition from the surface-pictures of the laying-tablets to the lineal representations of the laying-sticks, but have this advantage over both tablets and sticks, that the forms constructed with them are not bound down to the surface of the table, but possess sufficient solidity to bear being removed from it."—H. Goldammer, The Kindergarten, page 155.
Materials of Froebel's Gifts.
As to the unpretentious little sticks themselves, the use of these bits of waste wood is entirely unique and characteristic. No one else would have deemed them worthy of a place in school apparatus or among educational appliances; but Froebel had the eye and mind of a true philosopher, ever seeing the great in the small,—ever bringing out of the commonplace material, which lies unused on every hand, all its inherent possibilities and capabilities of usefulness. Froebel was no destructive reformer, but the most conservative of philosophers.
How the Stick is to be regarded.
The stick of course is to be regarded in its relation to what comes before and after it,—as the embodied edge of the cube, as the tablet was its embodied face. The child should at last identify his stick, the embodiment of the straight line, with the axis of the sphere, the edge of the cube, and the side of the square.[67] The sticks and rings are, properly speaking, one gift, contrasting the curved and straight lines.
[67] "Just as we obtained the tablets from the cubes, of which they are the embodied faces, so now we obtain also the laying-sticks from the cube, whose edges they represent. But they are contained also in the laying-tablets, for one may regard the surface as produced by the progressive movement of a line, and this may be made clear to the child by slicing a square tablet into a number of sticks."—H. Goldammer, The Kindergarten, page 161.
Method and Manner of Lessons.
Although the stick exercises should make their appearance at least once every week after their introduction, they may always be varied by stories, and when occasionally connected with other objects, cut from paper to illustrate some point, are among the pleasantest and most fruitful exercises of the kindergarten.
The sticks may be used for teaching number and elementary geometry, both in the kindergarten and school, or for reviewing and fixing knowledge already gained in these directions, for practice in the elements of designing, for giving a correct idea of outlines of familiar objects, and should constantly serve as an introduction to drawing and sewing lessons, to which they are the natural prelude.
They should be used strictly after the manner of the other gifts, beginning with careful dictations, in which the various positions of one stick should be exhausted before proceeding to a greater number, with cooperative work, and with free invention. These exercises and original designs may be put into permanent form in parquetry, which is furnished for this gift in the various colored papers, as well as for the tablets. The inventions may also be transferred to paper by drawing, and to card-board by sewing.
The exercises may continue from the various simple positions which one stick may assume to really complex dictations requiring from fifteen to twenty-five sticks, and introducing many difficult positions and outlines of new geometrical figures.
Forms of Knowledge and Number Work.
When we consider that the length of the sticks varies from one to six inches, and that the number given to the child is limited only by his capacity for using them successfully, we can see that the outlines of all the rectilinear plane figures can easily be made by their use. Of course in these exercises there must be a great deal of incidental arithmetic, but the gift may also be used for definite number work, and is far better adapted to this purpose than any other in the series, since it presents a number of separate units which may be grouped or combined to suit any simple arithmetical process. Representing the line as it does, it has less bodily substance than any previous gift, and hence comes nearest to the numerical symbols, as the next step to using a line would obviously be making one. It also offers very much the same materials for calculation as were used by the race in its childhood, and hence fits in with the inherited instincts of the undeveloped human being.[68]
[68] "Each following generation and each following individual man is to pass through the whole earlier development and cultivation of the human race,—and he does pass it; otherwise he would not understand the world past and present,—but not by the dead way of imitation, of copying, but by the living way of individual, free, active development and cultivation."—Friedrich Froebel, Education of Man, page 11.
Who has not seen him arranging twigs and branches in his play, counting them over and over or simulating the process, and delighting to divide them into groups? So the cave-dweller used them, doubtless, not in play, but in serious earnest, for some such purpose as keeping tally of the wild beasts he had killed, or the number of his enemies vanquished.
"With a few packets of Froebel's sticks," as has been very well said, "the child is provided with an excellent calculating machine." The use of this machine in the primary school in word making as well as in number work is practically unlimited; but in the kindergarten it may very well give a clear, practical understanding of the first four rules of arithmetic,—an understanding which will be based on personal activity and experience.[69]
[69] "Thus the child's sphere of knowledge, the world of his life, is again extended by the observation and recognition, by the development and cultivation, of the capacity of number; and an essential need of his inner nature, a certain yearning of his spirit, are thereby satisfied.... The knowledge of the relations of quantity extraordinarily heightens the life of the child."—Friedrich Froebel, Education of Man, page 45.
Evolution of the Kindergarten Stick.
It is well by way of prelude to the first few lessons to draw from the children the origin and history of the tiny bit of wood given them for their play, and they will henceforth regard it in a new light and treat it with greater respect and care.
Let us trace it carefully from its baby beginnings in the seed, its germination and growth, the influences which surround and foster it from day to day, its steady increase in size and strength, its downward grasp and its upward reach, the hardening of the tender stem and slender cylindrical trunk into the massive oak or pine, the growth of its tough, strong garment of bark, its winter times of rest and spring times of renewal, until from the tender green twig so frail and pliant it has become too large to clasp with the arms, and high enough to swing its dry leaves into the church tower.
Then let us follow out its usefulness; for instance, we might first paint a glowing word-picture of the logging-camp, the chopping and hewing and felling, the life of the busy woodcutter in the leafy woods in autumn, or in the dense forests in winter time, when the snow, cold and white and dazzling, covers the ground with its fleecy carpet. Again, let us depict the road and the busy teamsters driving their yokes of strong oxen with their heavy loads of logs to the towns and cities where they are to be sold. A scene, a perfect word-picture, should be painted of everything concerning the trip,—the crunching of the oxen's hoofs on the pressed snow, the creaking of the heavy truck as its runners slip along the smooth surface, the breath of the men and animals rising like steam into the clear, cold air. All these things rise in image before the child's eye and are not soon forgotten, you may be sure. The work and life of the river-drivers might also be described, and their manner of floating the logs down river in springtime when the water is high and the current strong. Then perhaps the children will help to tell us about the mill of which they doubtless know something,—where the sawmills are built, how the water helps in turning the great wheel, the buzzing and hissing of the big saws, and the way in which they quickly make boards of the long, strong logs. This and much more may be said, and if it is well said, no child can ever look at the tiny stick afterwards and entirely forget the charm which once surrounded it.[70]
[70] "These terse graphic descriptions of objects will be found very serviceable in sharpening and intensifying the powers of observation, as well as securing clearness, distinctness, accuracy, and life in verbal description. Here the pupil learns practically to give due prominence to essentials, and to appreciate the full value of accessories; to look for and discover the fundamental ideas of which things are the modified, adorned, garbled, or stunted expression; to seek and find the very soul of things."—W. N. Hailmann, Primary Helps, page 17.
Group Work with Sticks.
The sticks are especially serviceable for group work of various kinds, either at the long or square tables. As the children have now an abundance of material they can make all the objects, perhaps, which may be mentioned in a story the kindergartner tells. If it is about the origin of Thanksgiving Day, for instance, Abby, who sits at one end of the line, may make a picture of the Mayflower, and John, her neighbor, make the Speedwell. The next child may construct a cradle for Oceanus, the little Pilgrim baby born on shipboard; the next use his material for the Indian huts the settlers saw after landing; and so on, each child making a different object, which remains upon his table until the close of the story. When this is completed, it will have been fully illustrated by the children with their sticks, and they will be delighted to inspect the different pictures which they will plainly see are much more varied and beautiful than any one of them could have made alone. Thus the value of cooperation will be plainly shown, without a word from the kindergartner.[71]
[71] "In this group work it is desirable that the common aims should be fully within the comprehension of each little worker, yet sufficiently beyond his powers of execution and endurance to make him sensible of the need of assistance. The former secures the possibility of individual enjoyment, and hence the only reliable incentive to persistence; the latter insures free subordination to the will of the whole, the essential condition of success."—W. N. Hailmann, Primary Helps, page 18.
Forms of Life.
As to Life forms in general, their number is practically unlimited, though as they are only line-pictures, and heavy lines at that, they are not as real as those made in the Building Gifts. They are easily made, however, and the veriest baby in the kindergarten who handles the sticks as a prelude to his drawing exercises invents with them all sorts of rude forms which he calls by appropriate names.
The question of color as it enters into these forms needs, perhaps, a moment's consideration here. As the gift includes both white and colored sticks, would it not be well to use the former for all dictations in Life forms, reserving the brilliant hues for the forms of symmetry whose charms they would greatly enhance?
Connection of other Objects with Stick Dictations.
We may sometimes connect simple, inexpensive objects with stick dictations, with a view to making them more realistic and delightful. When the little ones are just getting the various positions and corresponding terms into their minds, and when therefore it is advisable to keep them amused and happy with one to three sticks as long as possible,—that is, until the fundamental principles have become very familiar,—these objects are most invaluable.
Innumerable lessons may be practiced with one stick only, calling it at last a whipstock and giving it a bit of curly paper for a lash. Far from being an instrument of punishment, it makes every child laugh with the glee of possession.
With two sticks laid horizontally we may give a little paper horse-car, or when one is vertical and the other runs horizontally across its end, we may call it a candlestick and snip a half-circle of paper into the semblance of a flame. The effect is electrical, though the light be only one candle-power.
And so on, ad infinitum; it is enough to give the hint for the play. We can cut little paper birds for the bird-cages, tumblers for the rude little tables, green leaves for the trees, etc., making the stick exercise, even in its first more difficult details, a time of great satisfaction and gladness.
Complete sets of these card-board objects, one for each child, should always be kept on hand; if well made they will last a year.
Forms of Beauty.
Enough has already been said of the possibilities of the sticks to show that they are most valuable for symmetrical forms. They may be combined with the tablets, and thus very pretty effects be made, and when four children unite their material at the group work tables, the dictations and inventions produced are of course very large, and may be really beautiful if constructed on artistic principles.
Border work may be very fully carried out with the sticks, and another charming feature of the gift is the way in which it lends itself to the making of snow crystals. These are symmetrical combinations and modifications of familiar geometrical forms around the hexagon. Mr. W. N. Hailmann says regarding them: "At first, it is best to give each child only six or twelve sticks, and to dictate the central figure (a hexagon or hexagonal star) verbally or by means of a drawing on the blackboard. They may then receive a number of additional sticks, and let the central figure grow, all obeying the teacher's dictation, or each following his own inventive genius."[72]
[72] "These forms are invaluable even as silent teachers of geometrical and numerical relations. Used judiciously in conversational lessons, leading to partial or complete analysis of the figures in spoken or written descriptions, their teaching power is inexhaustible."—W. N. Hailmann's Primary Helps, page 21.
In this gift, as well as in the seventh, the child's imitative and inventive powers are obviously more greatly taxed than in the others, and the danger will be, if he is not well trained, that, as he apparently can do anything with the material, he will end by doing nothing. The greater the freedom given to the child, the greater the necessity of teaching him to use that liberty in and through the law, and not to abuse it by failing to reach with its aid the highest ends.
Connection of Sticks with Drawing.
We may make the laying of one-inch sticks in vertical and horizontal positions, in angles and squares, a prelude to the drawing of similar lines; and the copying of stick dictations, either from the table, or from memory, into drawing, is a most excellent exercise, calling into requisition great correctness and good judgment, besides an unusual amount of calculation, since the stick dictation will be on a scale of one inch, and the drawing on a scale of one fourth inch, reducing the original design to one in miniature. The child will almost always begin by attempting to make the picture exactly like his model in size without counting the inches and trying to make it mathematically correct; but after the idea is carefully explained and fully illustrated, he will have no further difficulty excepting, perhaps, with the more complicated figures containing slanting lines.
Ambidexterity.
We should encourage in all possible ways the use of both hands in all the exercises with gifts and occupations, not only that one may be as skillful as the other, but also to avoid a one-sided position of the body which frequently leads to curvature of the spine. The well-known physiologist, Professor Brown-Sequard, insists on the equal use of both hands, in order to induce the necessary equal flow of blood to the brain. Through the effect of our irregular and abnormal development, the cause of which is the too persistent use of the right hand, one lobe of our brains and one side of our bodies are in a neglected and weakened condition, and the evils resulting from this weakness are many and widespread. Dr. Daniel Wilson says: "In the majority of cases the defect, though it cannot be wholly overcome, may be in great part cured by early training, which will strengthen at once both the body and mind."[73]
[73] "Whenever the early and persistent cultivation of the full use of both hands has been accomplished, the result is greater efficiency, without any corresponding awkwardness or defect. In certain arts and professions, both hands are necessarily called into play. The skillful surgeon finds an enormous advantage in being able to transfer his instrument from one hand to the other. The dentist has to multiply instruments to make up for the lack of such acquired power. The fencer who can transfer his weapon to the left hand places his adversary at a disadvantage. The lumberer finds it indispensable, in the operation of his woodcraft, to learn to chop timber right-and-left-handed; and the carpenter may be frequently seen using the saw and hammer in either hand, and thereby not only resting his arm, but greatly facilitating his work. In all the fine arts the mastery of both hands is advantageous. The sculptor, the carver, the draughtsman, the engraver, the cameo-cutter, each has recourse at times to the left hand for special manipulative dexterity; the pianist depends little less on the left hand than on the right; and as for the organist, with the numerous pedals and stops of the modern grand organ, a quadrumanous musician would still find reason to envy the ampler scope which a Briareus could command."—Dr. Daniel Wilson, Left-Handedness. A Hint for Educators.
Abuse of Eighth Gift.
No materials of the kindergarten (save the beans, lentils, etc., which serve to represent the point) have been so over-used and so abused as the sticks. When no other work was prepared for the children, when helpers were few, and it was desirable to give something which needed no supervision, when inexperienced students were to take charge of classes, when the kindergartner was weary and wanted a quiet moment to rest, when everybody was in a hurry, when the weather was very cold, or oppressively warm, when there was a torrent of rain, or had been a long drought, the sticks were hastily brought forth from the closet and as hastily thrust upon the children. These small sufferers, being thus provided with work-materials in which it was obvious that superior grown people took no interest, immediately lost interest themselves. In riotous kindergartens the sticks were broken, poked into pockets, and thrown on the floor; in the orderly ones they were gazed at apathetically, no one deeming it worth while to stir a hand to arrange them, save under pressure. Sticks had been presented so often and in so tiresome a manner that they produced a kind of mental atrophy in the child,—they were arresting his development instead of forwarding it.
Such an abuse of material is entirely unnecessary in the kindergarten, where so many ways are provided of presenting the same truths in all sorts of different and charming guises. It is unnecessary and most unfortunate, for it has frequently thrown undeserved contempt on an innocent and attractive gift, which, when properly treated, is one of the most pleasing and useful which Froebel has bequeathed to us.
READINGS FOR THE STUDENT.
Paradise of Childhood. Edward Wiebe. Pages 39-45. Kindergarten Guide. J. and B. Ronge. 33-36. Kindergarten Guide. Kraus-Boelte. 239-373. The Kindergarten Principle. Mary J. Lyschinska. 103-20. Law of Childhood. W. N. Hailmann. 39. Kindergarten Culture. W. N. Hailmann. 70-72. The Kindergarten. H. Goldammer. 154-72. Primary Helps. W. N. Hailmann. Industrial Art in Schools.[74] Charles G. Leland. Drawing and Decorative Design. Charles G. Leland. Art and the Formation of Taste. Walter Crane. Manual of Design. Richard Redgrave, R. A. Principles of Decorative Design. Christopher Dresser. Art and Ornament in Dress. Introduction. Charles Blanc.
[74] Circulars of Information of the Bureau of Education, No. 4, 1882.
FROEBEL'S NINTH GIFT
THE RING OR CURVED LINE
"Art developed in the same way. The Egyptian temples show us only straight-lined figures, which consequently show mathematical relations. Only in later times appeared the lines of beauty, that is, the arched or circular lines. I carry the child on in the same way." FRIEDRICH FROEBEL.
"The curve bears with it in its unity and variety, its rich symbolism to everything which lives and moves, the most intimate relation to that which the child sees, feels, and loves." EMMA MARWEDEL.
"It might be said that to produce useful objects is the result of the struggle for life; but the tendency to create that which is simply artistic results from no such urgent need, yet it is found wherever the former exists." CHARLES G. LELAND.
"Thou canst not wave thy staff in air, Or dip thy paddle in the lake, But it carves the bow of beauty there, And the ripples in rhymes the oar forsake." EMERSON.
1. The rings of the ninth gift are made of silvered wire, either soldered or unsoldered, and are whole circles three inches, two inches, and one inch in diameter, with their respective halves and quarters.
2. As the first six gifts emphasized solids and divided solids, the seventh, the plane, and the eighth, the straight line, so the ninth, the ring, embodies the curve, and illustrates the circumference of the sphere and the edge of the cylinder.
3. All the objects hitherto used have, with the exception of the ball and cylinder, dealt with straight lines and the figures formed by those lines. We now begin a series of exercises with the curve, and the variety of symmetrical figures that can be constructed is immensely increased.
4. Much new knowledge can be conveyed by means of this fresh material, a complete set of new figures may be produced, and the imitation of objects passes from that of things constructed by man, which are mostly rectilinear, to those of nature in which curved lines in every possible variety prevail.
5. The geometrical forms illustrated in this gift are:—
{ Circles. { Semicircles. Planes. { Quadrants. { Sectors. { Segments.
By the union of straight and curved lines (sticks and rings) the entire geometry of the circle may be illustrated, and the child may thus become acquainted with the appearance of the
Diameter. Radius. Circumference. Chord. Arc.
6. The law of mediation of contrasts is shown as follows: the semicircles, when placed on the table with ends towards right or left, connect points of opposite direction up and down, and when placed with ends pointing upward or downward they connect the right with the left side.
The circle is of course an unending line traced from a given point back to itself, according to certain laws, but it is also a union of two semicircles curving outward in opposite directions. "It is a representation of the general law, since the periphery and centre stand in contrast to each other, and are connected by the radii."—(Froebel.)
* * * * *
The New Gift and its Charms.
Having already analyzed straight lines in the sticks, we will pass directly to the consideration of the ninth in the series of Froebel's gifts, the rings, which are whole, half, and quarter circles of bright silvered wire.
If the sticks were fascinating to the child as the embodied straight edge or line, and perfect treasure-houses of new possibilities to the kindergartner, the rings are just a bit more delightful as, with their glittering surface and curved lines, and their wonderful property of having neither beginning nor end, they are quite different in appearance from anything which precedes or follows them. Of course the child sees at once that here is an entirely new field for invention, and he hastens to possess it, fully conscious of his power of combining the new elements.
Introduction of the Ring.
We must first discuss the new form with the children so as to be certain that they fully understand its relation to the other gifts. Perhaps in a previous exercise with the eighth gift we have allowed the children to experiment with a stick, and to break it partially in a number of places so as to produce a measurably correct curved line, afterwards promising them that they should soon have perfect curves to play with. This exercise has its value because it illustrates practically that a curved line is one which changes its direction at every point.
Let us see when to-day's play begins if the children can think of any way to make such curves, save by the stick already used. Some quick-witted little one will remember at once the surface of the ball and his repeated experiments in dividing it, and will suggest in sufficiently plain words that a curved line might be made from a clay sphere. His neighbor thinks a clay cylinder would make one more easily, and both experiments are tried by all the children with a resultant of quite perfect clay rings. Then some one wants to make paper rings, and some one else cloth rings, and the wise kindergartner encourages all this experimenting, knowing that "the power of memory increases in the same ratio as delight, animation, and joy are connected with free mental activity."
Material of the Rings.
When the wire rings are at last given, some conversation about their material will be pleasant and timely, as it is of a kind we have not had before in the gifts, and shall not have again. The children will see that it is akin to the substance of which their sewing and weaving needles and their scissors are made, and possibly some one may know that both are products of iron. At this juncture it may be well to show a piece of iron, to let the children handle it and note its various properties, and while this is being done, to tell them of the many parts of the world in which it is found, of its great strength and usefulness, and that its value is greater than that of the shining yellow gold. A description of iron mines will easily follow, and the children will delight to hear of the great shafts sunk deep in the earth, of the baskets in which the miners travel up and down, of the darkness underground where they toil all day with pick and shovel, of the safety lamps they carry in their caps, of the mules that drag the loads of iron ore to and fro, and—startling fact, at which round eyes are invariably opened—that some of these mules have their stables down in the ground below, and never come up where the sun shines and the flowers bloom. If there is a foundry in the vicinity of the kindergarten, and we can take the little ones to see the huge furnaces, the intense fires, the molten iron, and the various roasting, melting, and moulding processes necessary in refining the ore, they will gain an ineffaceable idea of the value of the metal in human labor, and of the endless chain of hands, clasped each in the other, through which the slender wire rings have passed to reach them.
First Exercises.
In the first dictation exercise several whole circles of the same size may be given, and their equality shown by laying one on top of the other. Then we may lay them side by side in actual contact, and the important fact will be discovered by the children that circles can touch each other at one point only. Subsequent exercises take up rings of different sizes, when concentric circles are of course made, showing one thing completely inclosed in another, and next follow the half and quarter rings, which the children must be led, as heretofore, to discover and make for themselves.
With the semicircles, which offer still richer suggestions for invention than the whole rings, another property of the curved line is seen. Two blocks, two tablets, two sticks could not touch each other without forming new angles, nor could they be so placed as to produce a complete figure. Two semicircles, on the other hand, form no new angles when they touch, and they may be joined completely and leave no opening.
In his work with the sticks the child became well versed in handling a comparatively large amount of material, so that now he can deal successfully from the first exercise with a fair number of whole, half, and quarter rings. We must be careful, however, not to give him too many of these in the beginning, lest he be overwhelmed with the riches at his command.[75]
[75] "The number of rings should only gradually be augmented. Satiety destroys every impulse of creation."—Emma Marwedel, Childhood's Poetry and Studies, page 15.
When the Rings should be introduced.
The rings should not be used freely until the child is familiar with vertical, horizontal, and slanting lines, and not only familiar in the sense of being able to receive and obey dictations intelligently, but in constantly making correct and artistic use of them in his creations. The practice with them, however, is often deferred entirely too long, and the intense pleasure and profit which the child gains from the beautiful and satisfying curved line are not given him until very late in the kindergarten course. This is manifestly unnecessary, for although, if we introduce Froebel's gifts and occupations in orderly sequence, we make greater use of the straight line after the first and second gifts are passed than we do of the curve, yet we should not end with it, nor accept it as a finality; neither should we keep the child tied down altogether to the contemplation of such lines.
There is no need of exhausting all the possibilities of the straight line before beginning work with the curve, for sufficient difficulties could be devised with the former to last an indefinite length of time.
If the child understands the relation of the edge to the solid, and of the outline to the body; if he is skilled in the use of six to a dozen sticks laid in various positions, he can appreciate perfectly the relation of the curved edge or line to the spherical and circular objects which he has seen in the kindergarten. He remembers the faces of the cylinder, the conversation about spherical and flat rounding objects in his plays with the ball, and he has seen the circular as well as square paper-folding.
He will be accustomed in that to the appearance of the semicircle, segment, quadrant, and sector, and will take great delight in cutting and drawing rings and crescents if we open the way for him.
How we may keep the Curve before the Child's Eye.
Although the gifts, from third to ninth, illustrate straight lines, angles, and rectilinear figures, yet the occupations present many facilities for keeping the curve before the eye of the child. In sewing, we introduce curving outlines during the study of the ball, and work out a series of objects in the vegetable and animal world in order to vary the mathematical precision of the making of lines, angles, and geometrical figures, as well as to illustrate more fully the spherical form.
We may also use the circular paper-folding in some simple sequence as early as the child's development will permit, and we have, of course, at the very outset, the occupation of modeling, which is one of the most valuable of aids in this matter, and the stringing of wooden spheres and beads.
The thread game enters here also, and makes a useful supplement to the rings, as the wet thread may be pushed while it lies on the surface of the table or slate into numberless different forms, all of which may be included under curving outlines.
In linear drawing we give the child lines running in various directions at the earliest possible time, so that he may not grow into a strained and unnatural position of the hand, for this constant drawing of the vertical line, which is necessary to its execution with perfect precision by the young child, limits the freedom of the wrist and muscles, and instead of preparing him to write a good hand, does absolutely the reverse. The various exercises, on the other hand, in drawing the curves of circle and oval and their combinations are quite perfect preparations for clear, graceful penmanship.
We also have, in drawing, Miss Emma Marwedel's circular system, and the outline work performed by means of pasteboard patterns, most of which are of the curving outlines of leaves, flowers, fruits, and vegetables. When the children can draw quite well from these patterns we always encourage the drawing without them, merely looking at the object to be copied.
These exercises are of the greatest value as connected with modeling when the subjects chosen for invention are comprehended under the sphere, prolate and oblate spheroid, ovoid, cone, etc., the cube with its straight lines coming last of all.
In this way, while keeping up the regular sequence of lessons and occupations with the straight line, we do not debar the child from the contemplation of the line of beauty.
Uniting the Straight and Curved Lines.
After this, he takes great pleasure in uniting the straight and curved lines in his inventions with the sticks and rings given him together, and is quite able to use them separately or unitedly in his creative work. About this time the fruit of these exercises will begin to appear in his drawing. He will attempt to unite his straight lines by curves, and even essay large designs in curves which will be far from perfect, but nevertheless will not be without their value.
Copying Inventions.
The first trials of this kind may be in copying the inventions in rings which he has made on his table, exactly as he previously transferred his stick inventions to the slate. The spaces should be just as carefully counted, and accuracy expected in preserving the numerical proportions. But this needs much tact and patience on the part of the kindergartner, as well as skill in teaching; for the principles of drawing the curve are much less obvious to the child and much more difficult for him to comprehend than the measurement and calculation of straight lines with their various lengths and inclinations.
These inventions with rings, which are often wonderfully beautiful,—so beautiful, in fact, that the uninstructed person is sometimes skeptical as to their production by the children,—may also be preserved in permanent form by parquetry. It is furnished in various colors for this gift, as for the seventh and eighth, and is greatly enjoyed by the children.
If any should fear that the long contemplation of rectangular solids, planes, and straight lines in Froebel's gifts should tend towards too great rigidity and barrenness of imagination in inventive work, it is obviously within our power, as has been shown, to vary this mathematical exactness, which is no doubt less agreeable to the child than the graceful image of his own fancy (could he attain it), by introducing the curve freely into many of the occupations and exercises with the kindergarten material in general.
Forms of Life, Beauty, and Knowledge.
The rings are of course not as well adapted to the production of objects constructed by man as were the sticks, but, nevertheless, the material is not without value in this direction. Various fruits, flowers, and leaves may be made, as well as such objects as bowls, goblets, hour-glasses, baskets, and vases. When connected with sticks, the number of Life forms is obviously much increased on account of the union of straight and curved lines thus made possible. Tablets may also be added and contribute a new element to the possibilities for invention.
For symmetrical forms, however, the gift is admirably adapted, since the child can hardly put two rings together without producing something pleasing.[76] Borders enter here in great variety, tablets and sticks being added when desirable, and the group work forms, combining the seventh, eighth, and ninth gifts, give full play to the creative impulses of the child, while calling constantly upon those principles of design which he has learned empirically.
[76] "It is true that the child produces forms of beauty with other material also, but it is the curved line which offers the strongest inducements to attempt such forms, since even the simplest combinations of a small number of semicircles and circles yield figures bearing the stamp of beauty."—H. Goldammer's The Kindergarten, page 177.
The forms of knowledge which can be made with the ninth gift are necessarily few. It is not especially well fitted for number work, and development of geometrical form is limited to the planes and lines of the circle.
Wooden Rings.
Miss Emma Marwedel introduced a supplement to the ninth gift in the form of wooden circles and half-circles in many colors. These are much heavier than the metal rings, therefore somewhat easier to handle and give, as she claims, "the child's creative powers a much larger field for aesthetic development." Of course, this larger field is to be found in color blending, not in beauty of design, as the form elements remain the same. The bright hues are undoubtedly a great attraction, however, and perhaps are in line with that return to color which was noted in the seventh gift, when the architectural forms were laid aside. If we adopt the wooden rings we need not on that account lay aside the metal ones, for the two materials may be combined to great advantage.
Difficulties of the Gift.
The gift presents little difficulty, the dictations requiring less concentration than heretofore as the positions in which the rings may be placed are few and simple. Froebel's purpose evidently was that the child should now concentrate his activity entirely upon design, and that he should use the material by itself, and in connection with sticks and tablets to give out in visible form whatever aesthetic impressions he had received through the preceding gifts. The office of the kindergartner is hardly now more than to suggest, merely to watch the child in his creative work, and to advise when necessary as to the most artistic disposition of the simple material. She may here, if she adopts this attitude, have the experience of seeing the direct result of her teachings, for the child's work will be a mirror in which she can see reflected her successes or her failures.
Froebel's Idea.
The idea of Froebel in devising all these gifts was not, it seems hardly necessary to say, to instruct the child in abstractions, which do not properly belong to childhood, but to lead him early in life to the practical knowledge of things about him; to inculcate the love of industry, helpfulness, independence of thought and action, neatness, accuracy, economy, beauty, harmony, truth, and order.
The gifts and occupations are only means to a great end, and if used in this sense will attain their highest usefulness.
No dictation with any of the kindergarten materials, no study of lines, angles, oblongs, triangles, and pentagons, no work with numbers either concrete or abstract are fit employments for little children, if not connected in every possible way with their home pleasures and the natural objects of their love. Only when thus connected do they produce real interest, only thus can agreement with the child's inner wants be secured.
Actual experiences in the child's life are its most natural and potent teachers. We need constantly to remember that the prime value of the kindergarten lies in its personal influence upon individuals, and seek to develop each separate member of our class according to his possibilities.
An Objection answered.
The objection has been made that the study and practice with straight lines, angles, geometrical forms, cubes, and other rectangular solids would fit the child for later work in the exact and mathematical sciences more than for other branches of study. But yet it is difficult to see how, when the child's powers of observation are so carefully trained in every way; when he is constantly led to notice objects in nature and reproduce them with clay, pencil, chalk, or needle; when these objects are so frequently presented for his critical inspection and comparison; when he is led to see in the flowers, plants, rocks, and stars, the unity which holds together everything in the universe; when beauty and harmony, mingled freely, constitute the atmosphere of the ideal kindergarten,—it is difficult indeed to see how he can receive anything but benefit from the gift plays, which present at first mainly the straight line, seemingly deferring the curve to a later period when it can be managed more successfully.
READINGS FOR THE STUDENT.
Paradise of Childhood. Edward Wiebe. Pages 45, 46. Kindergarten Guide. Kraus-Boelte. 373-417. The Kindergarten. H. Goldammer. 173-78. The Kindergarten. Principles of Froebel's System. Emily Shirreff. 17-20. Industrial Art in Schools.[77] Charles G. Leland. Childhood's Poetry and Studies. With Diagrams. Emma Marwedel. The Grammar of Ornament. Owen Jones. Art. Sir John Lubbock. How to Judge a Picture. Van Dyke.
[77] Circulars of Information of the Bureau of Education, No. 4, 1882.
FROEBEL'S TENTH GIFT
THE POINT
"The awakening mind of the child ... is led from the material body and its regular division to the contemplation of the surface, from this to the contemplation of the line and to the point made visible." FRIEDRICH FROEBEL.
"And it is precisely thus that the first artistic work of primeval man occurs; he begins by the forming of simple rows, as strings of beads, or of shells, for instance." H. POESCHE.
"For the last step in this analysis the child receives small lentil seeds or pebbles—concrete points, so to speak—with which he constructs the most wonderful pictures." W. N. HAILMANN.
1. The point made concrete, which forms the tenth and last of Froebel's gifts, is represented by many natural objects, by beans, lentils, pebbles, shells, leaves, and buds of flowers, by seeds of various kinds, as well as by tiny spheres of clay and bits of wood and cork.
2. We have been moving by gradual analysis from the solid through the divided solid, the plane and the line, and thus have reached in logical sequence the point, into a series of which the line may be resolved.
3. The point which was visible in the preceding gifts, but inseparable from them, now in the tenth gift has an existence of its own. Although it is an imaginary quantity having neither length, breadth, nor thickness, yet it is here illustrated by tangible objects which the child can handle. By its very lack of individuality, it lends itself to many charming plays and transformations.
4. By the use of the point the child learns practically the composition of the line, that its direction is determined by two points, that the shortest distance between two points is a straight line, and that a curved line is one which changes its direction at every point. The gift closes the series of objects obtained by analysis from the solid, and prepares for the occupations which are developed by synthesis from the point.
5. The outlines of all geometrical plane figures both rectilinear and curvilinear may be illustrated with the point as well as straight and curved lines and angles of every degree.
6. The law of mediation of contrasts is no longer illustrated in the gift itself, but simply governs the use of the material. All lines and outlines of planes made with a series of dots show its workings, and the symmetrical figures, as we have noted from the first, owe to it their very existence.
Meeting-Place of Gifts and Occupations.
When we begin upon a consideration of the tenth gift, the last link in the chain of objects which Froebel devised to "produce an all-sided development of the child," we see at once that the meeting-place of gift and occupation has been reached. The two series are now in fact so nearly one that the point is much more often used for occupation work than as a gift. This convergence of the series in regard to their practical use was first noted in the tablets, and has grown more and more marked with each succeeding object.
Though the point is in truth the last step which the child takes in the sequence of gifts as he journeys toward the abstract, yet we are met at once in practice by the apparently inconsistent fact that it is one of the first presented in the kindergarten. This can only be explained by the statement that it is in truth quite as much of an occupation as a gift, and is used in the former sense among the child's first work-materials as a preparation for later point-making (perforating), and as an exercise in eye-training and accuracy of measurement. It is not an occupation, of course, for the reason that permanent results cannot be produced with it, and because no transformation of its material is possible.
The Point as a Gift.
Before the child completes his kindergarten course, however, he should certainly be led to an intellectual perception of the interrelation of the gifts and their gradual development from solid to point, for their orderly progression according to law, though it be but dimly apprehended, will be most useful and strengthening to the mind. To discern the logical order of a single series of objects is a step toward the comprehension of world-order in mature life.[78]
[78] "This coming-out of the child from the outer and superficial and his entrance into the inner view of things, which, because it is inner, leads to recognition, insight, and consciousness,—this coming-out of the child from the house-order to the higher world-order makes the boy a scholar."—Friedrich Froebel, Education of Man, page 79.
The mind in later childhood should be what Froebel describes his own to have been. "I often felt," he says, "as if my mind were a smooth, still pool scarce a handbreadth over, or even a single water-drop, in which surrounding things were clearly mirrored, while the blue vault of the sky was seen as well, reaching far away and above."
When the derivation of plane and of straight and curved line and their place in the gifts are clearly understood by the child, there will be no difficulty in gaining an equally clear apprehension of the point and its position in the series. This may be done somewhat as follows. When the children are playing with blocks on some occasion, we may direct the conversation to the essential characteristics of the cube, its faces, edges, and corners. Do they remember which one of their playthings is like the face of the cube; do they remember cutting clay tablets from the clay blocks?
It is most unlikely that this experiment will have been forgotten, but if it has been, it may be easily repeated. Speak next of the edges of the cube, and let the children recall the derivation of the stick. That portion of the cube not yet discussed will now be seized upon by the children, and they will ask if any of their playthings are like the cube's corners. Can they think of anything; shall we not try to make something?
Now the clay appears, cubes are quickly fashioned, and each child is allowed to cut off the eight corners of his block. He has no sooner done this than he sees the nearest approach we can make to a point, and proceeds to make a design from them while he recalls the beans, shells, lentils, etc., he has used before in a similar way.
It is well here to suggest making the bits of clay into tiny oblate spheroids, and laying them away to dry so that we may make a group work invention of them to-morrow. Better still, however, is the instant introduction of sticks or wires to connect with the clay points, and thus form at once the skeleton of the solid, which will give an ineffaceable impression of the relation of point and line to each other.
Pleasure of Child in Point-laying and Stringing.
The pleasure the child finds in point-laying is not confined to the kindergarten, for playing with beads and pin-heads is an ordinary nursery occupation in all countries, and which of us cannot recall long happy hours on the seashore, or by the brookside, when we gathered and sorted shells and smooth glistening pebbles, and laid them in rows and patterns? The mere handling of a great store of these gave a Midas-like delight, and what primitive artistic pleasure we felt as we arranged them according to the principle of repetition to border our garden-beds or to inclose our miniature parks and playgrounds.
The same joy is felt in plucking, arranging, and stringing rose-hips, the seeds of the ailantus, the nasturtium, the pumpkin, or the "cheeses" of the mallow and wild geranium.
Miscellaneous Materials.
It will commonly be found that the child enjoys tenfold more the objects for point-work which he finds himself than the more perfect school-materials. Imagine the joy, for instance, of a bevy of kindergarten children set free on Pescadero Beach (California), and allowed to ramble up and down its shining sands to pick up the wonderful Pescadero pebbles. What colors of dull red and amber, of pink and palest green, what opaline lights, and smooth, glimmering surfaces! "Busy work" with such materials would be worth while indeed,—yet easy to obtain as they are, they are almost never seen in use.
Smooth, white pebbles, washed entirely clean and sorted according to size, are not uncommonly seen in the kindergartens, however, and are especially useful in the sand-table, and if these and the shining cream-colored shells could be found by the children themselves, their pleasure in them would be immensely increased. That this is true is proved by the experience of many teachers with seed-work. One of our own brood of kindergartners once had a birthday melon party for one of her children. The melons were brought to the kindergarten room and there divided, the small host serving his guests himself. Great interest was immediately shown in the jet-black seeds of the water-melon in contrast with the smaller light-colored seeds of the musk-melon, and unanimous appeals were made to the kindergartner that they might be saved and used for inventions. This was done, and they were always called for afterwards in point-work, rather than the beans, or vegetable and wooden lentils.
In those kindergartens where the seeds of all fruits are saved by the children at lunch hour, it is also noted that the collection thus made is always the object of universal interest and preference.
Use of the Gift.
One of the first uses of the point may be in following the outline of some form of life which the kindergartner has drawn in white or colored chalk on the child's table. This is much more fascinating work than the placing of seeds one space apart, three in a row, etc., for the latter belongs to the "knowledge-acquiring side of the game," which, as Froebel says, is the "quickly tiring side, only to be given quite casually at first, and as chance may provide suitable openings for it."
The forms drawn in chalk may very well be of curving outlines of vegetables, fruits, leaves, and flowers to connect with the study of the first gift, and may include any other simple appropriate object which the kindergartner is capable of drawing.
The more advanced child can of course make his own Life forms without the aid of drawing, and if he is given different sizes and kinds of shells, seeds, or pebbles, often arranges them with great ability to imitate the shading of the object.
The beginning of the forms of knowledge is in placing the points in regular order on the squared tables at the intersection of vertical and horizontal lines. Next, the child lays one space vertical lines, three points in a line, then two space lines with five points, then horizontal lines, angles, parallelograms, borders, etc., following out the school of linear drawing, and in this way progresses in an orderly manner to the designing of symmetrical forms. Curved lines of course are quite as easily represented as the straight, and really beautiful designs are often made by the children with them.
Tenth Gift Parquetry.
Tiny circles and squares of colored paper corresponding to the wooden lentils are also to be had with this gift, and afford a means of preserving the designs in permanent form. They are so small, however, as to give occasion for considerable patience in pasting them, and are rather difficult to arrange with regularity without first drawing the design. It is doubtful, in our opinion, if they may be considered to be of any particular educational benefit, if indeed they are not a positive harm to the child in that they require a too minute and long-sustained use of the finer muscles.
Objections to the Gift.
These strictures on the tenth gift parquetry bring us naturally to the criticisms lately made by eminent authorities upon some of the Froebel materials. The objection that many of them require too minute handling and too close attention on the part of children of the kindergarten age seems, as far as the gifts are concerned, to hold especial weight in regard to point-work.[79]
[79] The development of motor-ability in children and its furtherance or arrest by the kindergarten materials concerns the occupations more particularly, and as such will receive full consideration in a later volume.
We need not consider here the physio-psychological tests lately made of the early motor-ability of children and the results which these have shown, but simply concern ourselves with what we have seen and noted many times in daily kindergarten practice. Is it not true that the laying of beans and lentils one inch apart on the tables, for instance, is an occupation which requires very delicate handling on account of the smallness of the object, its easy mobility, and the exactness required to place it precisely at the crossing-point of vertical and horizontal lines? Is it not true that such work requires considerable effort from the kindergartner to make it interesting to the child? Is it not true that there is a cramp of the fingers, shown by a slight trembling, in getting hold of the tiny object and placing it, a cramp of the eye in foreseeing and following the movement, and a cramp of the body accompanying the tension of hand and arm? If all these observations are correct, or measurably so, if they hold with a majority of children, then point-laying as an occupation clearly needs considerable modification in the kindergarten.
What are then the objections to the point as illustrated in bean, coffee-berry, seed, and wooden lentil? In a word, that when represented as above, it becomes too small and too mobile. The difficulty of using these materials is immensely increased by the fact that a slight movement of the child's table will send them all on the floor, while even an ill-timed cough or sneeze, or puff of wind, will blow them out of position. Point-laying is quite difficult enough for the child's small powers under the best conditions, and need not be made more so by undue mobility in the materials with which it is carried on. This criticism would not hold of course as against large shells or pebbles or as against Miss Marwedel's hemispheres and ellipsoids.
How these Objections may be obviated.
The only good reason for using the small materials to which the preceding objections have been made is a very good one, viz., that if we are to take any concrete object to represent the point, it should be as small as possible, since the point is in reality an intangible something, having no one of the three dimensions. This reasoning seems to be logical enough, and it is surely equally so, to insist that the child shall at some time derive his own points from the cube and make them as small as possible, that he may the better understand their relation to line, plane, and solid. When once this relation is understood, however, and before it is suggested to his mind, why may he not use the larger materials, even though they do not illustrate the point as perfectly? Any lack in perfect representation would probably be more than compensated by the removal of the strain on the accessory muscles and the gain in artistic development. This latter point, indeed, needs special consideration, for there seems no doubt that the continued use of such small objects for design leads to accuracy and prettiness rather than breadth and power.
The Marwedel Materials.
If we throw out all the smaller materials used for point-laying, and it seems advisable so to do, we still have left smooth pebbles from one half to three fourths of an inch in diameter, and shells of any univalve, such as the "money-cowry" (cyproea moneta). These should be polished, as free from convolutions as possible, and not less than half an inch in diameter. To these we may add Miss Emma Marwedel's wooden ellipsoids and hemispheres, already mentioned, which are satisfactory in size, and add the delights of color.[80]
[80] Marwedel's Materials for Child-Culture. D. C. Heath & Co.
The hemispheres, which are about one half inch in diameter, come in eight colors and also in the natural wood, are pierced for stringing, and are similar to ordinary button-moulds, having of course one flat side.
The ellipsoids in the six rainbow hues, black gray, brown, and wood colors, resemble elliptical shells, having one flat side, are also pierced for stringing, and vary in length from three fourths of to something over an inch, being nearly an inch wide, perhaps, and a half inch thick.
The children are invariably delighted with both hemispheres and ellipsoids, and need no stimulus from the kindergartner in their use.
Mind-Pictures.
In some of Miss Marwedel's pamphlets on the use of these materials, she speaks of the mind-pictures which can be made with them, and which are of course quite possible with any of the other gifts. These mind-pictures, showing form and number groups, are drawn by the kindergartner on the blackboard, where they are left a second and then erased. They are then copied from memory, and the results compared, described, and criticised by the children. This constitutes a valuable mental exercise, and if the tests are simple at first and made gradually more difficult will be most valuable in increasing the memory-span as well as in developing language power.
Abuse of the Gift.
If some of the materials used in the kindergarten are unwisely chosen, and if this objection applies in the gifts, especially to the point, then the kindergartner has been, and still is, unnecessarily increasing her sum of error, for no one of the connected series of objects (save the stick) is commonly so forced upon the child. It is somewhat unusual for this reason to find a whole class of children really enjoying point-work, though several conscientious and industrious members of the group may be toiling away with praiseworthy diligence.
Sometimes the children's feeling toward the gift goes beyond indifference and passes into active dislike, but in either attitude of mind the beans, lentils, etc., are likely to be mistreated.
It is not that the work with them is not in itself pleasing to the child, but that it has been forced upon him ad nauseam, and that the kindergartner has lacked interest in presenting it. His own interest has in consequence gradually died out, and when once the fire is cold, who shall light it again?
That there is no need of this abuse of the gift is clear enough, and it can only come from entire lack of originality in using Froebel's materials, or from a mental or physical inertia on the part of the kindergartner, which causes her to prefer giving out such work as needs neither preparation nor previous thought.
READINGS FOR THE STUDENT.
Kindergarten Guide. Kraus-Boelte. Pages 439-53. The Kindergarten. H. Goldammer. 181-84. A System of Child-Culture. Emma Marwedel. 6-8. Hints to Teachers. Emma Marwedel. 49. Decorative Design. Frank S. Jackson. Art in Education. Thos. Davidson. Manual of Design. Richard Redgrave, R. A. Exercices et Travaux pour les Enfants. Fanny Ch. Delon. Manuel Pratique des Jardins d'Enfants. J. E. Jacobs and Mme. von Marenholtz-Buelow.
GENERAL REMARKS ON THE GIFTS
As we close the series of talks upon Froebel's gifts and look back over the ground that has been covered, we see that a number of important subjects have been only lightly touched upon, while we have been altogether silent regarding others equally as vital. This is doubtless inevitable in any work upon the kindergarten which does not aim to be encyclopaedic in character, but a few of the more serious omissions may be supplied before we close our consideration of the gifts and enter upon that of the occupations.
First, then, a word on the subject of attention.
Difficulty of holding Child's Attention.
It is not uncommon, when discussing any exercises with kindergarten materials which require dictation or guidance, to hear complaints of the difficulty of holding the children's attention. It may generally be said, doubtless, that when little children fail to give attention it is because they are not interested, and if the teacher finds the majority of her pupils listless, indifferent, and vagrant-minded, she may reasonably conclude that something is amiss either with the subject or with her presentation of it. The child is as yet too young to command his mental powers and "drive himself on by his own self-determination," and if we enforce an attention which he gives through fear, we lose the motive power of interest which Froebel sought to utilize in the plays of the kindergarten.
Dr. George P. Brown in a late article on "Metaphysics and Pedagogics"[81] says, "Every one admits that there is much that must be done by the child in his elementary education which is a task, for the reason that his ideas of its worth to himself cannot be sufficiently appreciated to arouse a lively and impelling interest in the doing of it," and he adds, "Garfield once complained that he had done so long those things in which he was interested that he was losing his power to do that which did not interest him, which suggests the danger of relying entirely upon interest as an incentive to learn."
[81] Public School Journal, July, 1895.
That there is a danger here cannot be denied, but it is one which need hardly be considered at the kindergarten age, when that interest which comes from continued agreement between the work in hand and the child's inner wants is absolutely essential to the gaining of knowledge. Mr. W. N. Hailmann puts the whole matter in a nutshell when he says: "If the kindergartner has the penetration to discover these inner wants, and the skill to adapt the circumstances and her own purposes to these, she will find it easy to secure and hold the child's attention. Without this penetration and skill, all else is unavailing. She may sing and cajole herself into hoarseness, she may smile and gesticulate herself into a mild sort of tarantism, or freeze herself at one end of the table into a statue of Suppressed Reproach,—if the instruction or dictation has no natural connection with the purposes of the children, these will remain uninterested or bored victims of her ill-directed enthusiasm."
Language Teaching.
The plays with the gifts open wide avenues for language teaching if conducted as Froebel intended. He says many wise things on this subject in his "Education of Man," and the following is of absolute application.
"Our children will attain," he says, "to a far more fundamental insight into language, if we, when teaching them, connect the words more with the actual perception of the thing and the object.... Our language would then again become a true language of life, that is, born of life and producing life; while it threatens otherwise, by merely outward consideration, to become more and more dead."[82]
[82] Education of Man, page 145.
From the first the child should be led to voice his small observations on the gifts in clear language and in approximately complete sentences, brief though they be. He can as easily say, "I would like a blue ball, please," if asked what color he prefers, as to jerk out a monosyllabic "Blue!"
After a little practice he will use a short sentence when comparing two objects, for instance, but as he naturally moves along the line of least resistance it is hardly to be expected that he will take the trouble to form complete sentences unless gently stimulated to do so. The stimulus must be gentle, however, and given at the right time, for any feeling that his words are criticised will lead him to self-repression, not expression.
In gift work, too, he explains to the kindergartner what he is inventing, and for what purpose; he weaves gossamer threads of fancy about the objects constructed, or describes the forms of beauty and knowledge he has built by dictation.
There is and should be constant interchange of conversation during the gift plays, and the kindergartner who directs them like a drill-sergeant, requiring her recruits only to be silent and obey, has entirely misconceived Froebel's idea.[83]
[83] It is a difficult thing to find the via media between complete silence on the part of the children save when answering questions and a confusion of tongues like that at the building of Babel, but there is such a via media, and it can be found by those who seek it diligently.
It is undeniably much easier for the teacher to do all the talking, the children serving as audience, but the ideal to be reached is that she shall be the audience herself, or rather the chairman of the meeting, guiding the conversation, asking suggestive questions, and making wise comments.
Our language teaching, however, is not confined to the cultivation of greater powers of expression, for there is a direct gain in the child's vocabulary consequent upon his kindergarten experience. He absorbs many new words from his teachers, but many others he learns through his daily work and play, and these are his absolute possession,—the thing and the word together. An interesting series of experiments was once made in the San Francisco free kindergartens relative to the number of new words which the child had mastered and used easily and freely after three years in the child-garden. These included terms of dictation, geometrical terms, names of tools, colors, materials, plants, animals, buildings, and places, new and poetic words of songs, games, and stories, etc., and the experiments established the fact that the child's vocabulary was fully as great as that of his parents and decidedly more choice.
Relation of Word to Object.
It should be said here that there is great value to the child in learning to name things correctly from the very beginning. If the new word is a simple one, he can learn it with perfect ease, and then the object is properly labeled, so to speak, for future use.[84] Familiar names are sometimes used in the kindergarten when the correct term would be quite as easy to pronounce. This practice often arises from a false conception of symbolism, and is continued with an idea that it is pleasing to the child. Sometimes the pseudonyms are absolutely misleading, as in the frequent speaking of squares as boxes, which must, of course, confuse the child as to the real nature of a plane. There are many cases where the geometrical name of a form can easily be taught if it is given after the object is clearly understood.[85]
[84] "At all stages of learning the mother tongue, the purely verbal exercises are more or less accompanied with the occupation of the mind upon things. If we suppose the child to become acquainted, in the first instance, with a variety of objects, the imparting of the names is a welcome operation, and the mental fusion of each name and thing is rapidly brought about. If the objects are in any way interesting, if they arouse or excite attention, their names are eagerly embraced. On the other hand, if objects are but languidly cared for, or if they are inconspicuous or confused with other things, we are indifferent both to the things themselves and to their designations." (Alexander Bain.)
[85] "Language is the necessary tool of thought used in the conduct of the analysis and synthesis of investigation." (W. T. Harris.)
"What we are really seeking is the meaning and the word. One is of no value without the other in the education of the child. There is no such thing as a valuable observation and investigation of natural objects without language in which to embody the results at every step." (Geo. P. Brown.) Report on Correlation of Studies by Committee of Fifteen. With annotations by Geo. P. Brown.
There is a distinction here as to age, which should be noted. Though with babies of three years it is not only delightful, but necessary, to use objects symbolically, to give play-names to the lines they make, etc., with older children who are nearing the age of school instruction and therefore passing away from the "sense relations of things," it is just as essential to begin a more scientific nomenclature.
Value of Knowledge Gained by Individual Effort.
One of the commonest errors in the kindergarten, as well as one of the most pernicious, is that of assisting the child too much in all his work. This is perhaps more universally true of the plays with the occupations than with the gifts, but even in the latter direction the practice is far too widespread.[86]
[86] "Of course, there is great difference between the disciplinary value of that study in which the pupil solves his own difficulties and that teaching in which the teacher accompanies the pupil, supplying the needed information or suggestion at every step of his progress. The latter is not worth much for character building for the reason that it is not apt to become a part of the organized self.... The school cannot afford to expend much energy in acquiring such knowledge." (Geo. P. Brown.) Report on Correlation of Studies by Committee of Fifteen. With annotations by Geo. P. Brown.
The kindergartner often forms his sentences for the child, over-directs him when he is matching colors, gives names to the objects he constructs without waiting for him to do so, moves his blocks, sticks, tablets, rings into more accurate position, changes his spacing when incorrect, rearranges his inventions, selects the colors for his parquetry work,—and all for what reasons? Primarily, to produce a better effect, it is probable, glorying in the consciousness that the work on every child's table is exactly right, and blind to the truth that uniformity must always be mechanical; and secondarily, to quiet her own feeling of impatience, which sometimes comes from nervous exhaustion and sometimes from an over-eagerness to get a quantity of work done regardless of the method by which it is obtained.
There is a thirdly, too, which is that the inaccurate work, the awkward designs, the unfortunate blending of colors which the little one inevitably makes at first, so offend her artistic eye that she trembles with eagerness to set them right, forgetting that by so doing she is imposing her superior taste upon the child and thereby failing to develop his. We shall never see this matter clearly, nor know how to bear with the crudity of the child's work, until we learn that the crudity is natural and therefore to be respected, and that it is in a sense beautiful after all, for it is a stage of being. |
|