p-books.com
Form and Function - A Contribution to the History of Animal Morphology
by E. S. (Edward Stuart) Russell
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

[41] Lecons d'Anatomie Comparee, tome i., pp. 10 et scq., 1800.

[42] Lecons d'Anatomie Comparee, i., p. 18.

[43] Loc. cit., i., p. 13.

[44] Lecons d'Anatomie Comparee, tome i., Articles iii.-iv., 1800.

[45] Lecons d'Anatomie Comparee, i., p. 47.

[46] Le Regne Animal, i., p. 6, 1817.

[47] Histoire des Progres des Sciences naturelles depuis 1789, i., p. 310, 1826.

[48] Recherches sur les Ossemens Fossiles, i., p. 60, 1812.

[49] Ossemens fossiles, i., p. 60.

[50] Loc. cit., i., p. 63.

[51] Lecons d'Anatomie Comparee, i., p. 6.

[52] Le Regne Animal, i., p. 16.

[53] Hist. Prog. Sci. Nat., i., p. 187, 1826.

[54] Lecons, i., p. 58.

[55] Loc. cit., i., Article iii.

[56] Loc. cit., i., p. 60.

[57] Regne Animal, i., p. xx.

[58] Cuvier, Hist. Prog. Sci. Nat., i., p. 288, 1826.

[59] Regne Animal, i., p. 10.

[60] Regne Animal, p. 55.

[61] First propounded by Cuvier in 1812, Ann. Mus. d'Hist. Nat., xix.

[62] Regne Animal, i., p. 19.

[63] Loc. cit., p. 20.

[64] Recherches sur les Ossemens Fossiles, i., p. 74, 1812.

[65] Loc. cit., p. 79.

[66] See C. Deperet, Les transformations du Monde animal, Paris, 1907, and G. Steinmann, Die geologischen Grundlagen der Abstammungslehre, Leipzig, 1908.

[67] Recherches, i., p. 81.

[68] Regne Animal, i., p. 91.

[69] Ossemens Fossiles, i., p. 26.



CHAPTER IV

GOETHE

Science, in so far as it rises above the mere accumulation of facts, is a product of the mind's creative activity. Scientific theories are not so much formulae extracted from experience as intuitions imposed upon experience. So it was that Goethe, who was little more than a dilettante,[70] seized upon the essential principles of a morphology some years before that morphology was accepted by the workers.

Goethe is important in the history of morphological method because he was the first to bring to clear consciousness and to express in definite terms the idea on which comparative anatomy before him was based, the idea of the unity of plan. We have seen that this idea was familiar to Aristotle and that it was recognised implicitly by all who after him studied structure comparatively. In Goethe's time the idea had become ripe for expression. It was used as a guiding principle in Goethe's youth particularly by Vicq d'Azyr and by Camper. The former (1748-1794), who discovered[71] in the same year as Goethe (1784) the intermaxillary bone in man, pointed out the homology in structure between the fore limb and the hind limb, and interpreted certain rudimentary bones, the intermaxillaries and rudimentary clavicles, in the light of the theory that Vertebrates are built upon one single plan of structure.

"Nature seems to operate always according to an original and general plan, from which she departs with regret and whose traces we come across everywhere" (Vicq d'Azyr, quoted by Flourens, Mem. Acad. Sei., XXIII., p. xxxvi.).

Peter Camper (1722-1789), we are told by Goethe himself in his Osteologie, was convinced of the unity of plan holding throughout Vertebrates; he compared in particular the brain of fishes with the brain of man.

The idea of the unity of plan had not yet become limited and defined as a strictly scientific theory; it was an idea common to philosophy, to ordinary thought, and to anatomical science. We find it expressed by Herder (who perhaps got it from Kant) in his Ideen sur Philosophie der Geschichte der Menschheit (1784), and it is possible that Goethe became impressed with the importance of the idea through his conversations with Herder. Be that as it may, it is certain that Goethe sought for the intermaxillaries in man only because he was firmly convinced that the skeleton in all the higher animals was built upon one common plan and that accordingly bones such as the intermaxillaries, found well developed in some animals, must also be found in man. The idea was not drawn from the facts, but the facts were interpreted and even sought for in the light of the idea. "I eagerly worked upon a general osteological scheme, and had accordingly to assume that all the separate parts of the structure, in detail as in the whole, must be discoverable in all animals, because on this supposition is built the already long begun science of comparative anatomy."[72]

The principle comes to clear expression in his Erster Entwurf einer allgemeinen Einleitung in die vergleichende Anatomie (1795).[73] He writes:—"On this account an attempt is here made to arrive at an anatomical type, a general picture in which the forms of all animals are contained in potentia, and by means of which we can describe each animal in an invariable order."[74] His aim is to discover a general scheme of the constant in organic parts, a scheme into which all animals will fit equally well, and no animal better than the rest. When we remember that the type to which anatomists before him had, consciously or unconsciously, referred all other structure was man himself, we see that in seeking after an abstract generalised type Goethe was reaching out to a new conception. The fact that only the structure of man and the higher animals was at all well-known in his time led Goethe to think that his general Typus would hold for the lower animals as well, though it was to be arrived at primarily from a study of the higher animals. All he could assert of the entire animal kingdom was that all animals agreed in having a head, a middle part, and an end part, with their characteristic organs, and that accordingly they might, in this respect at least, be reduced to one common Typus. Goethe's knowledge of the lower animals was not extensive.

Though Goethe did not work out a criterion of the homology of parts with any great clearness, he had an inkling of the principle later developed by E. Geoffroy St Hilaire, and called by him the "Principle of Connections." According to this principle, the homology of a part is determined by its position relative to other parts. Goethe expresses it thus:—"On the other hand the most constant factor is the position in which the bone is invariably found, and the function to which it is adapted in the organic edifice."[75] But from this sentence it is not clear that Goethe understood the principle as one of form independent of function, for he seems to consider that the homology of an organ is partly determined by the function which it performs for the whole. He wavers between the purely formal or morphological interpretation of the principle of connections and the functional. We find him in the additions to the Entwurf (1796), saying:—"We must take into consideration not merely the spatial relations of the parts, but also their living reciprocal influence, their dependence upon and action on one another." [76] But in seeking for the intermaxillary bone in man he was guided by its position relative to the maxillaries—it must be the bone between the anterior ends of the maxillaries, a bone whose limits are indicated in the adult only by surface grooves.

As a matter of fact Goethe's morphological views are neither very clearly expressed nor very consistent. This comes out in his treatment of the relation between structure and function. Sometimes he takes the view that structure determines function. "The parts of the animal," he writes, "their reciprocal forms, their relations, their particular properties determine the life and habits of the creature."[77] We are not to explain, he says, the tusks of the Babirussa by their possible use, but we must ask how it comes to have tusks. In the same way we must not suppose that a bull has horns in order to gore, but we must investigate the process by which it comes to have horns to gore with. This is the rigorous morphological view. On the other hand he admits elsewhere that function may influence form. Apparently he did not work out his ideas on this point to logical clearness, and Radl[78] is probably correct in saying that the following quotation with its double assertion represents most nearly Goethe's position:—

"Also bestimmt die Gestalt die Lebensweise des Thieres, Und die Weise zu leben, sie wirkt auf alle Gestalten Maechtig zurueck."[79]

His best piece of purely morphological work was his theory of the metamorphosis of plants. Stripped of its vaguer elements, and of the crude attempt to explain differences in the character of plant organs by differences in the degree of "refinement" of the sap supplied to them, the theory is that stem-leaves, sepals, petals, and stamens are all identical members or appendages. These appendages differ from one another only in shape and in degree of expansion, stem-leaves being expanded, sepals contracted, petals expanded, and so on alternately. It is equally correct to call a stamen a contracted petal, and a petal an expanded stamen, for no one of the organs is the type of the others, but all equally are varieties of a single abstract plant-appendage.

What Goethe considered he had proved for the appendages of plants he extended to all living things. Every living thing is a complex of living independent beings, which "der Idee, der Anlage nach," are the same, but in appearance may be the same or similar, different or unlike.[80] Not only is there a primordial animal and a primordial plant, schematic forms to which all separate species are referable, but the parts of each are themselves units, which "der Idee nach," are identical inter se. This fantasy can hardly be taken seriously as a scientific theory; it seems, however, to have been what guided Goethe in his "discovery" of the vertebral nature of the skull. Just as the fore limb can be homologised with the hind limb, so, reasoning by analogy, the skull should be capable of being homologised with the vertebrae. To what ludicrous extremes this doctrine of the repetition of parts within the organism was pushed we shall see when we consider the theories of the German transcendentalists of the early nineteenth century.

Though Goethe's morphological views were lacking in definiteness he hit upon one or two ideas which proved useful. Thus he enunciated the "law of balance" long before Etienne Geoffroy St Hilaire, the law "that to no part can anything be added, without something being taken away from another part, and vice versa."[81] He saw, too, what a help to the interpretation of adult structure the study of the embryo would be, for many bones which are fused in the adult are separate in the embryo.[82] This also was a point to which the later transcendentalists gave considerable attention.

So far we have spoken of Goethe as if he were merely the prophet of formal morphology; we have pointed out how he brought to clear expression the morphological principle implicit in the idea of unity of type, and how he seized upon some important guiding ideas, such as the principle of connections. But Goethe was not a formalist, and he was very far from the static conception of life which is at the base of pure morphology. His interest was not in Gestalt or fixed form, Bildung or form change. He saw that Gestalt was but a momentary phase of Bildung, and could be considered apart and in itself only by an abstraction fatal to all understanding of the living thing. Mephistopheles scoffs at the scholars who would explain a living creature by anatomising it:

"Dann hat er die Theile in seiner Hand, Fehlt leider! nur das geistige Band."[83]

Goethe kept clear of this mistake; he knew that the artist comes nearer to the truth than the analyst.

In the fragment entitled Bildung und Umbildung organischer Naturen (1807), introductory to a reprint of his paper on the "Metamorphosis of Plants," we get an exposition of his general views on living things. He points out there how we try to understand things by separating them into their parts. We can, it is true, resolve the organism into its structural elements, but we cannot recompose it or endow it with life by joining up the parts. Hence we require some other means of understanding it. "In all ages even among scientific men there can be discerned a yearning to apprehend the living form as such, to grasp the connection of their external visible parts, to interpret them as indications of the inner activity, and so, in a certain measure, to master the whole conceptually." This science which should discover the inner meaning of organic Bildung is called Morphology.[84] In Morphology we should not speak of Gestalt or fixed form, or if we do we should understand by it only a momentary phase of Bildung. Form is of interest not in itself but only as the manifestation of the inner activity of the living being. Over development, he says elsewhere, there presides a formative force, a bildende Kraft or Bildungstrieb, which works out the idea of the organism. Living things, in his view of them, strive to manifest an idea. They are Nature's works of art—and so, incidentally, they require an artist to interpret them.

This profound conception of the nature of life is applied not only to the growing changing individual but also to the whole changing world of organisms. They are all manifestations of a living shaping power which moulds them. This shaping power, immanent in all life, is conceived to work according to a general plan, and so we get an explanation of the fact that living things seem simply varieties of one common type.

"If we once recognise," says Goethe, "that the creative spirit brings into being and shapes the evolution of the more perfect organic creatures according to a general scheme, is it altogether impossible to represent this original plan if not to the senses at least to the mind...?"[85]

Such an interpretation of the unity of plan reaches perhaps beyond the bounds of science.

[70] See Kohlbrugge, "Hist. krit. Studien ueber Goethe als Naturforscher," Zool. Annalen. v., 1913, pp. 83-231.

[71] Or re-discovered, according to Kohlbrugge.

[72] Cotta ed., vol. ix., p. 448.

[73] "First Draft of a General Introduction to Comparative Anatomy."

[74] Cotta ed., ix., p. 463.

[75] Cotta ed., p. 478.

[76] Loc. cit., p. 491.

[77] Entwurf, Cotta ed., ix., p. 465.

[78] Geschichte der biologischen Theorien, i., p. 266.

[79] "So the form determines the manner of life of the animal, and the manner of life in its turn reacts powerfully upon all forms."

[80] Bildung und Umbildung organischer Naturen, 1807.

[81] Cotta ed., ix., p. 466.

[82] Loc. cit., pp. 474-5.

[83] Then he has all the parts within his hand, excepting only, sad to say, the living bond.

[84] Goethe was the inventor of the word.

[85] Cotta ed., ix., p. 490.



CHAPTER V

ETIENNE GEOFFROY SAINT-HILAIRE

E. Geoffrey made an experiment, unsuccessful but instructive. He tried to found a science of pure morphology; he failed: his failure showed, once and for all, that a pure morphology of organic forms is impracticable.

Already, in 1796, in one of his earliest memoirs,[86] Geoffroy was guided by the idea that Nature has formed all living things upon one plan. Organs which seem anomalous are merely modifications of the normal; the trunk of an elephant is formed by the excessively prolonged nostrils, the horn of a rhinoceros is simply a mass of adhering hairs. In general, however varied their form, all organs are simply variations of a common scheme; Nature employs no new organs. Organs which are rudimentary, such as the clavicles in the ostrich and the nictitating membrane in man, bear witness to the unity of plan. In this Geoffroy goes no further than his predecessors. They too had recognised homologies of organs; they too had interpreted rudimentary organs as vestiges of an original plan.

In a series of papers published in 1807, Geoffroy took a further step, and sought to establish homologies which were not obvious—homologies, too, not so much of organs as of parts.

These memoirs (published in the Annales du Museum d'Histoire naturelle, vols. ix. and x., 1807) dealt with the homology between the bones of the pectoral fin and girdle in fish and the bones of the arm and shoulder-girdle in higher Vertebrates, with the homologies of the bones of the sternum, and with the determination of the pieces of the skull, particularly in the crocodile. All Geoffroy's morphological doctrine is found in them, but for the full expression of his views we must take his chief work, the Philosophie anatomique, particularly the first volume (1818). This volume contains, beside the important "Discours preliminaire" and "Introduction" which we shall presently consider in detail, five memoirs, which deal with the various bones connected with the respiratory organs in fishes (the bones of the operculum, of the hyoid, of the branchial arches, of the pectoral girdle), and seek to discover their homologies with corresponding bones in air-breathing Vertebrates.

"Can the organisation of vertebrated animals be referred to one uniform type?" This is the question with which the Philosophie anatomique opens, the question to which the whole book is an answer. But is it not generally acknowledged by naturalists that Vertebrates are built upon one uniform plan, that, for instance, the fore limb may be modified for running, climbing, swimming, or flying, yet the arrangement of the bones remain the same? How else could there be a "natural method" of classification?[87]

But the homologies so drawn repose upon a vague and confused feeling for likenesses; they are not based upon an explicit principle. What general principle can be applied? "Now it is evident that the sole general principle one can apply is given by the position, the relations, and the dependencies of the parts, that is to say, by what I name and include under the term of connections." For instance, the part known as the hand in man and generally as the fore foot in other Vertebrates, is the fourth part in order in the anterior member, and its homologue can always be recognised by this fact of its connections (p. xxvi.). The principle of connections serves as a guide in tracing an organ through all its functional transformations, for "an organ can be deteriorated, atrophied, annihilated, but not transposed" (p. xxx.).

It is this principle which enables one to follow out in detail the further fundamental conception that in every Vertebrate there are found the same "organic materials," or units of construction. This conception, which Geoffroy calls the Theorie des analogues (p. xxxii.), is clearly one part of the old idea of the unity of type; it teaches the unity of composition of organic beings, while the Principe des connexions adds the unity of plan.

Both conceptions are logically implicit in the vague notion of unity of type; Geoffroy disengaged them, and pushed each to its logical extreme.

Most of the ordinary homologies of structure in air-breathing Vertebrates have already been seized, he continues, for they are more or less obvious, and many intermediate states exist (p. xxxiv.). But ordinary methods of comparison fail when the attempt is made to homologise the structure of fishes with that of air-breathing Vertebrates, for the homologies are anything but obvious and no intermediate organs are found.

Most air-breathing Vertebrates have a larynx, a trachea, and bronchi, which are absent in fish; and fish have many parts which seem to be absent in higher Vertebrates. But apply the "Theory of Analogues"; it teaches that there can be no organ peculiar to fish and not found in other Vertebrates; apply the "Principle of Connections," it will show which organs are homologous in the two types (p. xxxv.).

Comparative anatomists, with few exceptions, had hitherto taken man as the type, and referred all structure to his; Geoffroy's principles led him to give preference to no one animal in particular, but to seize upon each part in the species in which it reaches the maximum of its development (p. xxxvi.). He is thus led to refer all structures to a generalised abstract type. In this abstract type each organ exists at the maximum of its development, each organ shows all its potentialities realised. In a way, therefore, this type, this abstraction, gives the scheme of the possible transformations of each organ.

It is true Geoffroy does not refer to this "Archetype" in so many words, but it must always have been vaguely present in his mind. He has this idea in his head when he says in one of his later works, "There is, philosophically speaking, only a single animal."[88] The "single animal" is simply the generalised type.

Having laid down his two principles Geoffroy goes on to apply them to the difficult case of the comparison of the skeleton of fish with the skeleton of the higher Vertebrates. "My present task is to demonstrate that there is no part of the bony framework of fishes that cannot find its analogue in the other vertebrated animals."[89] It seems at first sight that many bones are peculiar to fish, formed expressly for performing the functions which fish do not share with higher animals. These are the bones connected with respiration—the operculum, the branchiostegal rays, the branchial arches, and others. That the peculiar bones should be connected with the respiratory functions is only natural, for the contrast between fish and higher Vertebrates is essentially a contrast between water-breathing and air-breathing animals. Considering first the general form of the skeleton in fish, we are met at once with a difficulty; there is no obvious homologue in fishes of the neck, the trunk, and the abdomen of higher animals. What apparently corresponds to the trunk is in fishes crowded close up under the head. But, after all, it is not of the essence of the vertebrate type to have the trunk and the abdomen attached at definite and invariable distances along the vertebral column—that is a notion surviving from the anatomy which made man its type. The "trunk" differs in position according to the class, in quadrupeds, birds, and fishes (p. 9). Now, says Geoffroy, allow me this one hypothesis, that the trunk with its organs can, as it were, move bodily along the vertebral column, so as to be found in one class near the front end of the vertebral column, in another about the middle, and in a third near the end, then I can show you in detail that the constituent parts of this trunk are found in all classes to be invariably in the same positions relatively to one another (p. 10). It is important to note this hypothesis of a "metastasis" which Geoffroy makes, for it is the key to the understanding of many of the far-fetched homologies which he tries to establish. It is, of course, clear that this hypothesis is in formal contradiction with his principal hypothesis of the invariability of connections, and that he, so to speak, gets a hold on his fish to apply his principle of connections only by admitting at the very outset an exception to his primary principle. A further application of the hypothesis of metastasis will be noticed below in connection with the determination of the sternum of fishes. We note here an interpretation of the first metastasis in terms of functional adaptation. "The constant and violent action of the tail, if it does not go so far as actually to displace and move forward the internal organs, at least fits in well with an arrangement in which the organs are so disposed" (p. 99).

The first memoir deals with the homologies of the opercular bones. Geoffroy considers that the external opening of the ear corresponds to the external opening of the gill-chamber, which lies between the operculum and the pectoral girdle. The ear communicates with the buccal cavity by the Eustachian tube, so does the branchial chamber by means of the gill-slits. The auditory chamber of higher Vertebrates is, therefore, the homologue of the branchial chamber in fish; the opercular bones in fish and the ossicles of the ear in other Vertebrates stand in close relation to this chamber; therefore the opercular bones are the homologues of the ossicles of the ear, the interoperculum corresponding to the malleus, the suboperculum to the lenticular, the minute lower part of the suboperculum to the incus, the operculum to the stapes, and the pre-operculum to the tympanic ring. In making these particular determinations Geoffroy professes to be led by his principle of connections. The pre-operculum has, he says, the same connections with neighbouring bones as the tympanic bone in other Vertebrates, and the other pieces of the gill-cover are homologised with particular ear-ossicles according to the order in which they stand to one another. The second memoir in the book deals with the sternum, and affords a very good example of Geoffroy's method of dealing with the facts of structure. We shall omit here any detailed reference to the other three memoirs, which deal with the hyoid, with the branchial arches and the structures which correspond in air-breathing Vertebrates, and with the bones of the shoulder-girdle.

In the memoir on the sternum Geoffroy's first care is to arrive at a definition of what a sternum is. He defines it partly by its functions, partly by its connections, as the system of bones which covers and protects the thorax, and gives attachment to certain groups of muscles.

The most highly developed sternum (according to this definition) is the plastron of the tortoise, whose structure it dominates (p. 103). It is important, therefore, to determine of how many bones the plastron is composed, since the full number of elementary parts of which an organ is composed is best seen when the organ is at the maximum of its development. There are nine bones in the plastron of the tortoise. "The conclusion to be drawn from this is that every sternum, provided that it is not inhibited in its development by some obstacle, is composed of nine elementary parts" (p. 105). These nine bones are in Geoffroy's nomenclature, the episternals, the hyosternals, the hyposternals, the xiphisternals, which are all paired bones, and the entosternal, which is unpaired. The arrangement of them is in the tortoise:—

Episternal -Episternal / / / Entosternal / / / / / Hyosternal Hyosternal Hyposternal -Hyposternal Xiphisternal Xiphisternal.

The articulations in the tortoise are indicated by the connecting lines. Geoffroy tries to show that the sternum in other animals is composed of these nine bones, or at least of a certain number of them, always in the same invariable relative positions. Thus in birds the sternum consists of five pieces, of a huge keeled entosternal, and of two "annexes" on either side, which are the hyo-and hyposternals. These are separate only in young birds. Occasionally, especially in young birds, rudiments of episternals and xiphisternals also occur. The minuteness of the episternals and the xiphisternals may be attributed to the gigantic size of the entosternal, in accordance with the Loi de balancement. In the other air-breathing Vertebrates the nine sternal elements can according to Geoffroy be discovered without great difficulty. But when we come to the determination of the sternum in fishes, difficulties abound, which Geoffroy solves in the following way. He points out that between the clavicles (cleithra) and the hyoid bone (basihyal) in fishes there is a long median bone (urohyal) which is attached in front by two strong tendons to the horns of the hyoid and is free behind (see Fig. 1). Gouan (1720) had seen in this bone the homologue of the sternum. Geoffroy adopts this view, but considers that this bone alone cannot represent the whole sternum. He finds the representatives of other bones of the sternum in the large bones (epihyal and ceratohyal, or the two pieces of the ceratohyal) which are comprised in the hyoid arch. But he is immediately met by the difficulty that this complex of bones is situated in front of the pectoral girdle, whereas the sternum in higher Vertebrates lies behind the pectoral girdle. He reflects, however, that the gills of fish, situated in front of the clavicles, are merely the lungs under another name. The gills have become shifted forward by a metastasis similar to that which brought the whole thoracic organs far forward in fish. This being so, their supporting elements, the sternum and the ribs, must have moved with them, and are hence to be found in front of the pectoral girdle.



Geoffroy's next step is to point out that the only possible homologues of sternal ribs are the branchiostegal rays, which arise from the large bones of the hyoid arch. If these are sternal ribs, the bones to which they are attached must be the hyo- and hyposternals or "annexes," the bones from which in birds the ribs take their origin.

The unpaired sternal bone (urohyal) cannot be homologous with the entosternal, for it has no connections with the annexes. He decides that it must represent the episternals, for in some young birds there is a two-headed episternal to which two strong tendons are attached, just in the same way as the unpaired piece in fish is bound to the bones of the hyoid by two tendons. "Thus it is not the sternum as a whole that has shifted in front of the clavicles and covered with its side pieces the gills placed there; it is a piece exclusively piscine, in the sense that it is only in the class of fishes that it reaches the maximum of its development" (p. 83).

To sum up, the sternum in all four vertebrate classes is composed of the same elements, arranged always in the same way. "One is ... led to the conception of an ideal type of sternum for all Vertebrates, which then, considered from a lower standpoint, resolves itself into several secondary forms according as the whole or the majority of the constituent materials are employed, or even as these elements come to change their respective dimensions or proportions" (p. 134). As to the elementary constituents, "they give proof of individuality, and sometimes even, in certain abnormalities, of independence, and rise to the level of primary organisatory materials" (p. 132). What holds good for the sternum holds good for other organs—and accordingly the unity of plan and composition can be demonstrated for all the organs of Vertebrates.

Soon after the publication of the Philosophie anatomique (1818) Geoffroy went further in his search for unity, and maintained that the structure of insects and Crustacea could be reduced to the vertebrate type.

He proposed to replace Cuvier's classification of the animal kingdom into the four large groups, Vertebrata, Mollusca, Articulata, and Radiata by the following classification:—[90]

Hauts-Vertebres (Vertebrata, Cuv.). Vertebres / Dermo-Vertebres (Articulata, Cuv.).

Mollusques (Mollusca, Cuv.). Invertebres / Rayonnes (Radiata, Cuv.).

The idea upon which is based the comparison of Articulates with Vertebrates is that each skeletal segment of Articulates is a vertebra. In the Hauts-vertebres the vertebrae are internal; in the Dermo-vertebres they are external. "Every animal lives either outside or inside its vertebral column."[91] The essence of a vertebra is not its form, nor its function, but its composition from four elementary pieces which unite round a central space (Isis, loc. cit., p. 532). Serres had shown that in the higher animals every vertebra is formed from four centres of ossification, that the body of the vertebra is at first tubular, and that afterwards it becomes filled up. In lobsters and crabs each segment is composed of four elementary pieces, as may be seen most easily in young ones. "Accordingly each segment corresponds to a true vertebra in composition: there is the same number of 'materials,' the same order in the course of ossification, the same kind of articulation, the same annular arrangement, the same empty space in the middle" (p. 534). The only difference is that in Articulates the central space is very great and contains all the organs of the body, whereas in the higher Vertebrates the body of the vertebra becomes completely filled up. In the thoracic region of Crustacea it is not the whole segment with part of the carapace which corresponds to a vertebra, but merely the part round the ventral nerve-cord (endophragmal skeleton).

If the skeleton of the segment in Articulates corresponds to the body of a vertebra and is here external, then the appendages of the Articulate must correspond to ribs (p. 538). The full development of this thought is found in a Memoir of 1822, "Sur la vertebre."[92] He takes as the typical vertebra that of a Pleuronectid, probably the turbot. His original figure is reproduced (Fig. 2).



He includes as part of the vertebra not only the neural (e', e'') and haemal (o', o'') arches, but also, above and below these, the radialia (a'', u') and the fin-rays (a', u''). (Neither the radialia nor the fin-rays are, by the way, in the same transverse plane as the body of the vertebra). Every vertebra, he considers, contains these nine pieces—the cycleal (or body), the two perials (e', e'') and the two epials (a', a'') above, the two paraals (o', o'') and the two cataals (u', u'') below. The epials and the cataals are in reality paired bones which in fish mount one on top of the other to support the median fins. In the cranial region—the skull is formed of modified vertebrae—the epials and perials open out so as to form the walls and roof of the brain; in the thoracic region the paraals and cataals reach their maximum of development and perform the same service for the thoracic organs, the paraals becoming vertebral, and the cataals sternal, ribs.

We have seen that in Arthropods the body of the vertebra (cycleal) forms the open ring of the segment, which lies immediately under the skin, the vertebral tube coinciding with the epidermal tube. The homologues of the other eight pieces of the vertebra must accordingly be sought in the external appendages. At first sight there seems here a contradiction of the principle of connections, for the appendages in Arthropods are lateral, whereas the paired bones of the vertebra are dorsal and ventral. But there is in reality no contradiction, for "what our law of connections absolutely requires is that all organs, whether internal or external, should stand to one another in the same relations; but it is all one whether the box (coffre) that encloses them lies with this or that side on the ground. What similarities in the organisation of man and the digitate mammals, and yet what differences between their attitudes when standing! The same holds true as regards the normal attitudes of the pleuronectids and the other fishes" (p. 107).

The exact way in which Geoffroy homologised the parts of the appendages in Arthropods with the paired pieces of the typical vertebra is best shown by the reproduction of his figure of an abdominal segment of the lobster (Fig. 3), in which the parts homologous with those represented in the figure of the typical vertebra (Fig. 2) are indicated by the same letters. The ingenuity of the comparison is astonishing.



The comparison of the Arthropod with the Vertebrate is extended also to the internal organs. The internal organs of the Arthropod are shown to stand in the same order to one another as in the Vertebrate, only the organs are inverted. Thus the nervous system is dorsal in the Vertebrate, ventral in the Arthropod. Turn the Arthropod on its back and the relative positions of the systems of organs are the same as in the Vertebrate. The relation of the organs to the external tube is of course different in Arthropods and Vertebrates, but this is no contradiction of the principle of connections. "Such a tube, although it is the organs essential to life that it contains, can yet behave in different ways with regard to the mass of these organs: the principle of connections demands only that all the organs maintain with one another fixed and definite relations; but the principle would be in no way invalidated if the whole mass had rotated inside the tube" (p. 112).

Geoffroy pushed the analogy between Arthropods and Vertebrates very far, for he asserted that every piece in the skeleton of an insect was homologous with some bone in Vertebrates, that it stood always in its proper place, and remained faithful to at least one of its connections.[93] It does not appear that he attempted to prove in detail this very big assumption, but the beginnings of a detailed comparison are found in the paper of 1820, Sur l'organisation des insectes. Six segments are distinguished in an insect—the head, the three divisions of the thorax, the abdomen, and the terminal segment of the abdomen (p. 455).

The skeleton of the insect's head is said to correspond to the bones of the face, to the bones of the cerebrum and to the hyoid of higher Vertebrates, the skeleton of the prothorax to the bones of the cerebellum, of the palate, and the pieces of the larynx, the skeleton of the mesothorax to the parietals, interparietals, and opercular bones, and that of the metathorax to the skeleton of the thorax of Vertebrates. The pieces of the abdomen and of the terminal segment correspond to the bones of the abdomen and coccyx (p. 458). It does not need the subsequent likening of the hind wings of insects to the air bladder of fish, and of the stigmata to the pores of the lateral line, to convince one finally of the fancifulness of the whole comparison.

In 1830 two young naturalists, Meyranx and Laurencet, presented to the Academie des Sciences a memoir in which they likened a Cephalopod to a Vertebrate bent back at the level of the umbilicus, saying that the Vertebrate in this position had all its organs in the same order as in the Cephalopod. Geoffroy took up this idea with enthusiasm, seeing in it a further application of his master-idea of the unity of plan and composition. By means of this comparison Mollusca definitely took their place in the Echelle des etres, after the Articulata, just as Geoffroy had maintained in 1820, saying that crabs formed a link between the other Crustacea and the molluscs.[94] The comparison brought him nearer to the end he had in view, the reference of all animal structure to one single type.

But in championing the memoir of Meyranx and Laurencet, Geoffroy found himself in direct antagonism with Cuvier, who held that his four "Embranchements" had each a separate and distinct plan of structure. In a paper read to the Academy in February 1830,[95] Cuvier easily demolished the crude comparison of the Cephalopod to the Vertebrate. He gave diagrams of the internal organs of a Cephalopod and of a Vertebrate bent back in the manner indicated by Meyranx and Laurencet, and he showed in detail that the arrangement of the main organs was quite different, that the likeness would have been much greater if the Cephalopod had been likened to a Vertebrate doubled up the other way,[96] but that even then the arrangement of the organs would not be the same. The organs, too, of the Cephalopod are differently constructed. He sums up his criticism by saying:—"I give true and summary expression to all these facts when I say that Cephalopods have several organs in common with Vertebrates, which fulfil in either case similar functions, but that these organs are differently arranged with respect to one another, and often constructed in a different way; that they are in Cephalopods accompanied by several other organs which Vertebrates do not possess, whilst the latter on their side have many organs which Cephalopods lack" (p. 257). Geoffroy could not accept this commonsense view of the matter, but made a fight for his transcendental theories. This was the beginning of the famous controversy between Geoffroy and Cuvier which so excited the interest of Goethe. It was a struggle between "comparative anatomy" and "morphology," between the commonsense teleological view of structure and the abstract, transcendental. Geoffroy brought forward all his theories on the homology of the skeleton of fish with the skeleton of higher Vertebrates, and tried to prove by them his great principle of the unity of plan and composition; Cuvier took Geoffroy's homologies one by one, and showed how very slight was their foundation. Cuvier was on sure ground in insisting upon the observable diversities of structural type, and his vast knowledge enabled him to score a decisive victory.[97]

The controversy was not, as we are sometimes told, a controversy between a believer in evolution and an upholder of the fixity of species, although it raised a question upon which evolution theory was to throw some light.

In these Darwinian days Geoffroy has reaped a little posthumous glory as an early believer in evolution. That he did believe in evolution to a limited extent is certain; that his theory of evolution was, as it were, a by-product of his life-work, is also certain. Geoffroy was primarily a morphologist and a seeker after the unity hidden under the diversity of organic form. His theory of evolution had as good as no influence upon his morphology, for he did not to any extent interpret unity of plan as being due to community of descent. His morphological, non-evolutionary standpoint comes out quite clearly in several places in the Philosophie anatomique. He does not derive the structure of the higher Vertebrates from the simpler structure of the lower, but when he finds in fish a part at the maximum of its development, he speaks of the same part, rudimentary in the higher forms, as being, as it were, held in reserve for use in the fish. Thus, speaking of the episternal in fish which forms the central piece of its sternum, he says, "it is a bone that is rudimentary in birds (one might almost add a bone that is held in reserve in birds for this fate) which is destined to form in the centre the principal keel of this new machine" (p. 84). Again, with reference to the homology of the ossicles of the ear with the opercular bones in fish, "employing other resources equally hidden and rudimentary, Nature makes profitable use of the four tiny ossicles lodged in the auditory passage, and, raising them in fish to the greatest possible dimensions, forms from them these broad opercula...." (p. 85). Or you may take it the other way about, and start from the organisation of fishes; opercular bones are of no use to air-breathing animals, so they dwindle away, and are pressed into the service of the ear, although they are of little use in hearing (p. 46).

There is here no thought of evolution; in later years, however, his researches upon fossil crocodilians led him to consider the possibility that the living species were descended from the antediluvian. For the factors of the transformation he refers to Lamarck's hypotheses.[98] In a memoir of 1828,[99] dealing with the possible genetic relation of living to fossil species, he still regards the question as more or less open. Although fossil species are mostly different from living species are we therefore to conclude, he asks, that they are not the ancestors of the present day forms? "The contrary idea arises more naturally in the mind; for otherwise the six-days' creation would have had to be repeated and new beings produced by a fresh creation. Now this proposition, contrary as it is to the most ancient historical traditions, is inadmissible" (p. 210). It is sufficiently clear from this quotation that Geoffroy was thinking only of a transformation of the antediluvian species created by God, and by no means of an evolution of all species from one primitive type. In matters of religion Geoffroy was orthodox. He goes on to point out how great a resemblance there is in essential structure between fossil and living species. All find their place in one scheme of classification; does it not seem that all are modifications "of one single being, of that abstract being or common type, which it is always possible to denote by the same name?" (p. 211). This type is abstract, not actual, and it is certainly not conceived as an original ancestor of all animals.

The fullest development of Geoffroy's views on evolution is found in his memoir "Le degre d'influence du monde ambiant pour modifier les formes animales."[100] Here the relation of his evolution-theory to his morphology is pointed out. The principle of unity of plan and composition cannot be the final goal of zoology; there must follow on it a philosophical study of the differences between organic forms. The causes of these differences are to be found in the environment (pp. 66-7). Geoffroy seems here to be moving from a pure to a causal morphology. It is probable, he continues, that living species have descended by uninterrupted generation from the antediluvian species (p. 74), and that they have in the process become modified through external influences.

Now of all functions respiration is the most important, and upon respiration everything is regulated. "If it be admitted that the slow progression of the centuries has brought in its train successive changes in the proportion of the different elements of the atmosphere, it follows as a rigorously necessary consequence that the organisation has been proportionately influenced by them" (p. 76). The respiratory milieu changes, the species change with it, or are eliminated (p. 79). We may see, perhaps, in the stress which Geoffroy lays upon respiration and the respiratory milieu a result of his constant obsession with the comparison of fish with air-breathing Vertebrates.

In the first geological period, we read in another Memoir of the same year,[101] when ammonites and Gryphaea flourished, hot-blooded animals with lungs could not exist. "A lung constructed like that of mammals and birds would not have been adapted to the essence of the respiratory element such as in my conception of it the system of the environing air used to be"[102] (p. 58).

Geoffroy does not tell us exactly how the milieu is to act upon the organism; the whole theory is little more than a sketch and a pointing out of the way for future research—and in this prophetic enough. The action of external agents was apparently considered as physical, and no power of active adaptation was ascribed to the organism.

From a passage in the memoir "Sur la Vertebre" we may perhaps infer that he believed increasing complexity of structure to be due to a realisation of potentialities, to the development of parts present in the lower animals only in potency—"the organisation ... only awaits favourable conditions to rise, by addition of parts, from the simplicity of the first formations to the complication of the creatures at the head of the scale" (p. 112). Evolution takes place as the environment allows, and in a sense in opposition to the environment.

He believed in saltatory evolution, for he considered that the lower oviparous Vertebrates could not be transformed into birds by slow modification, but only by a sudden transformation of their lungs, which would bring about the other characteristics of birds (p. 80). He considered, too, that transformations could arise by means of monstrous development (p. 86). In this connection the experiments which he made on the hen's egg[103] in order to produce artificial monstrosities are significant, though his purpose was rather to obtain proof of the inadequacy of the preformation hypothesis.[104]

It seems probable enough that if Geoffroy had developed his views on evolution he would finally have been led to interpret unity of plan in terms of genetic relationship. But as it was he remained at his morphological standpoint. He did not interpret rudimentary organs as useless heritages of the past; he preferred to think that Nature had prepared double means for the same function, one or other being predominant according as the animal lived in the water or on the land. "To the animal that lives exclusively in the air Nature has granted an organisation suited to this mode of respiration, without however suppressing the other corresponding means, that is to say, without depriving it of a second system which is applicable only to the mode of respiration by the intermediary of water, and vice versa."[105]

He seems, in one instance at least, to have hit upon the root-idea of the biogenetic law, but he was far from appreciating its significance. He recognised that an amphibian in its development passed through a stage when it was in all essentials similar to a fish, and he saw in this visible transformation a picture of the evolutionary transformation. "An amphibian," he writes,[106] "is at first a fish under the name of tadpole, and then a reptile [sic] under that of frog.... In this observed fact is realised what we have above represented as an hypothesis, the transformation of one organic stage into the stage immediately superior." But it is not clear that he considered the development of the amphibian to be a repetition of its ancestral history.

He went, however, a certain length towards recognising the main principle of a law which was a commonplace of German transcendental thought, and was developed later by his disciple E. Serres, the law that the higher animals repeat during their development the main features of the adult organisation of animals lower in the scale. Thus he compared fish as regards certain parts of their structure with the foetus of mammals. He compared also Articulates with embryonic Vertebrates in respect of their vertebrae, for in the higher Vertebrates the body of the vertebra is tubular at an early stage of development, and in Articulates the body of the vertebra remains tubular permanently (supra, p. 61). As regards their vertebrae, "insects occupy a place in the series of the ages and developments of the vertebrate animals, that is to say, they realise one of the states of their embryo, as fishes do one of the states of their foetal condition."[107]

This idea was destined to exercise a great influence upon the development of morphology. A further development of the thought is that certain abnormalities in the higher animals, resulting from arrest of development, represent states of organisation which are permanent in the lower animals.[108]

So far we have considered Geoffroy's theories in their application to the facts. We go on to discuss the theories themselves, and the general conception of living things which underlies them.

The principle of unity of plan and composition is the keynote of Geoffroy's work. It states that the same materials of organisation are to be found in all animals, and that these materials stand always in the same general spatial relations to one another. The "materials of organisation" are not necessarily organs in the physiological sense, and indeed the principle of the unity of plan cannot be upheld if the unity has reference to organs only. This became clear to Geoffroy, especially in his later years. In 1835 he wrote, speaking of the principle of the unity of plan, "I have, moreover, regenerated this principle, and obtained for it universality of application, by showing that it is not always the organs as a whole, but merely the materials composing each organ, that can be reduced to unity."[109] Even in the Philosophie anatomique he deals rather with parts than with organs; he deals, for instance, with the elementary parts of the sternum, not with the organ "sternum" in its totality. The functions of the sternum vary, and the primary protective function of the sternum may be assumed by quite other parts, e.g., by the clavicles in fish, which protect the heart.[110]

True homologies can be established between materials of organisation but not always between organs, which may be composed of different "materials."

Almost as a corollary to this comes the further view that form is of little importance in determining homologies. An organ is essentially an instrument for doing a particular kind of work, and its form is determined by its function. Organs which perform the same function are usually similar in form though the elementary materials composing them may be different. This is seen in many cases of convergence. Organs, therefore, which perform the same function and are similar in external form are not necessary homologous. Conversely, the same complex of materials, say a fore limb, may take on the most varied shapes according as the function of the organ changes—but homology remains though form changes. Accordingly, form is one of the least important elements to be considered in determining a homology. "Nature," he wrote in one of his early papers, "tends to repeat the same organs in the same number and in the same relations, and varies to infinity only their form. In accordance with this principle I shall have to draw my conclusions, in the determining the bones of the fish's skull, not from a consideration of their form, but from a consideration of their connections."[111]

Again, after comparing a vertebra of the Aurochs with an abdominal segment of the crab, he says, "I have insisted upon an identity which has extended to the least important relation of all, that of form."[112]

Geoffroy's morphological units or materials of organisation were in the case of the skeleton—with which his researches principally deal—the single bones. But the interesting point is that he sought his skeleton-units in the embryo, and considered each separate centre of ossification as a separate bone. Coalescence of bones originally separate is one of the most usual events in development, and it is an occurrence which, more than any other, tends to obscure homologies. Because of its coalescence with the maxillaries, the intermaxillary in man was not discovered until Vicq d'Azyr and Goethe found it separate in the embryo. Apparently quite independently of Goethe, Geoffroy hit upon this plan of seeking in the embryo the primary elements or materials of organisation. In an early paper on the skull of Vertebrates,[113] where he is concerned with showing that each bone of the fish's skull has its homologue in the skull of higher Vertebrates, he is faced with the difficulty that the skull of the fish has more bones than the skull of higher Vertebrates. "Having had the inspiration," he writes, "to reckon as many bones as there are distinct centres of ossification, and having made a consistent trial of this method, I have been able to appreciate the correctness of the idea: fish, in their earliest stages, are in the same conditions relatively to their development as the foetuses of mammals, and hence bear out the theory" (p. 344). So, too, in dealing with the homologies of the sternal elements (supra, p. 57) he treats as separate bones the "annexes" of the sternum in birds, though these are separate only in the young.

If the same materials of organisation are present in all animals, and if they are arranged always in the same positions relatively to one another, how does it come about that animal forms are so varied, what explanation can be offered of the diversities of organic structure? Geoffroy's main answer to this question is his Loi de balancement. The law was enunciated by him already in 1807.[114] We take the following quotation, which represents his thought most nearly, from the Cours de l'histoire naturelle des Mammiferes (1829). "According to our manner of regarding the organisation of mammals, there is only a single animal modified by the inverse reciprocal variation of all or some of its parts. Now, from the fact that there is only one single general animal, it follows that for each section of its components or for each of its organs there is available only a given quantity of formative materials. Now suppose that the distribution of these materials has not been made in such a way as to ensure an exact equilibrium between all the parts concerned, one organ will get more than its share, another less. My law of the compensation of organs is founded on these principles" (i., Lecon 16, p. 12). "The atrophy of one organ turns to the profit of another; and the reason why this cannot be otherwise is simple, it is because there is not an unlimited supply of the substance required for each special purpose."[115] The nutritive material available is limited for each species; if one part gets more than its share the other parts must get less—that is all the law means. As an example, take the minuteness of the episternals and xiphisternals in birds, as contrasted with the huge size of the entosternal. "The minuteness of the episternals and xiphisternals might be imputed to this gigantic piece diverting to its own profit the nutritive fluid, since the bigger it is the smaller these are."[116]

One has constantly to remember in dealing with Geoffroy's theories that he was not an evolutionist, but purely a morphologist. It is therefore, perhaps, to ask too much to require of him an explanation of the causes of diversity. The morphologist describes, classifies, generalises; he does not seek for causes. But we must leave this question aside in order to discuss how far Geoffroy's theory of the unity of plan and composition fits the facts. As Geoffroy himself admitted on several occasions, his theory was an a priori one, a theory hit upon by hasty induction, then erected into a principle and imposed upon the facts. No more than Goethe did he extract his principle from a sufficient mass of data.

Now he found his theory to be in its pure form unworkable; he found, for example, that the skeleton of fishes could not be compared directly, bone for bone, with the skeleton of higher Vertebrates; he had to admit differences of position of whole sets of organs in the two groups, he had to admit various metastases, before he could bring the skeleton of fish into line. And these metastases are due to functional requirements—for example, the forward position of sternum and thoracic organs in fish is an adaptation to swimming.

So he does not so much demonstrate the unity of plan of whole organisms as the unity of plan of particular corresponding parts of them. Thus he does not prove or attempt to prove that Articulates are in all points like Vertebrates, but simply that their skeleton is built upon the same plan as that of Vertebrates. The rest of the organs, while still comparable with the organs of Vertebrates, stand in different relations to the skeleton. An Articulate therefore, on his own showing, is not, as a whole, built upon the same general structural plan as a Vertebrate.

Further, he does not always remain true to his principles, for he does not establish homologies of parts entirely by their connections but sometimes by their functions as well. Thus the sternum, or rather the complex of sternal elements, is defined and discovered in particular cases not by its connections only but also by its functions. The framework of the gills is homologised part by part with the framework of the lungs, not because the relations of the framework to the rest of the skeleton are the same in fish and air-breathing Vertebrates, but simply because gills are considered the equivalents of lungs—a comparison which is purely physiological.

Even with these concessions to the functional view of living things, Geoffroy was unable to make good his contention that all animals are built upon the same plan. His arguments failed to carry conviction to his contemporaries, and Cuvier in particular subjected them to destructive, and indeed final, criticism.

The paper, already referred to, in which Cuvier disposed of the transcendentalists' comparison of Cephalopods and Vertebrates is of great significance, for it states in the clearest way the radical opposition between the functional and the formal attitudes to living things.

Cuvier points out that if by unity of composition is meant identity, then the statement that all animals show the same composition is simply not true—compare a polyp with a man!—on the other hand, if by unity is meant simply resemblance or homology, the statement is true within certain limits, but it has been employed as a principle since the days of Aristotle, and the theory of unity of composition is original only in so far as it is false. He admits, however, that Geoffroy has seized upon many hidden homologies, especially by his valuable discovery of the importance of foetal structure. In all this Cuvier is undoubtedly right. Unity of plan and composition, as Geoffroy conceived it, simply does not exist. Cuvier goes on to say that this principle of Geoffroy's, in the greatly modified form in which it can be accepted, and has been accepted from the dawn of zoology, is not the sole and unique principle of the science. On the contrary, it is merely a subordinate principle, subordinate to a higher and more fruitful principle, that, namely, of the conditions of existence, of the adaptation (convenance) of the parts, of the co-ordination of the parts for the role which the animal is to play in Nature. "That is the true philosophical principle," he says, "whence may be deduced the possibility of certain resemblances, the impossibility of certain others; it is the rational principle from which follows the principle of the unity of plan and composition, and in which at the same time it finds those limits, which some would like to disregard" (p. 248).

Geoffroy's position is the direct contrary. He holds that the principle of the unity of plan and composition is the true base of natural history,[117] and that this unity limits the possible transformations of the organism. Thus, speaking of the influence of the respiratory medium, he says, "All the same this influence of the external world, if it has ever become a cause which disturbed organisation, must necessarily have been confined within fairly narrow limits; animals must have opposed to it certain conditions inherent to their nature, the existence of the same materials composing them, and a manifest tendency to resemble one another, and to reproduce invariably the same primordial type."[118] Unity of plan and composition is, on this view, prior to adaptation and limits adaptation. Cuvier's view, on the contrary, is that the necessity of functional and ecological adaptation accounts for the repetition of the same types of structure. There are, of all the possible combinations of organs, only a few viable types—those whose structure is adapted to their life. Therefore it is reasonable that these few types should be repeated in innumerable exemplars. One must remember, in order to appreciate Cuvier's view, that he was not obsessed, as we are, by the idea of evolution.

Cuvier thought in terms of organs, not in terms of "materials of organisation." He held that the resemblances between the organs of one class of animals and the organs of another were due to the similarity of their functions. "Let us conclude, then, that if there are resemblances between the organs of fish and those of other classes, it is only in the measure that there is a resemblance between their functions."[119] There are only a few kinds of organs, each adapted for a particular function, and these organs are necessarily repeated from class to class.—"As the animal kingdom has received only a limited number of organs, it is inevitable that some at least of these organs should be common to several classes."[120]

Geoffroy thought in terms of "materials," of parts of indefinite function, parts which might take on any function. He insists upon the necessity of disregarding function when tracing out the unity of composition. He considers, in direct opposition to Cuvier's interpretation of structural resemblance as due to similarity of function, that unity of composition is the primary fact, and similarity of function subsidiary. In his reply in the Mammiferes (1829) to Cuvier's criticisms in the Histoire naturelle des Poissons (1828), he insists on the necessity of excluding function from consideration in any truly philosophical treatment of comparative anatomy (Discours prel., p. 25). Cuvier held that function determined structure, or at least that the necessity of adaptation ruled the transformations of form. Geoffroy considered that structure determined function, that changes of structure, however they might arise, caused changes of function. "Animals," he writes, "have no habits but those that result from the structure of their organs; if the latter varies, there vary in the same manner all their springs of action, all their faculties and all their actions."[121]

Again, "a vegetarian regime is imposed upon the Quadrumana by their possession of a somewhat ample stomach, and intestines of moderate length."[122] The hand of the bat has become so modified as to constrain the bat to live in the air.[123]

The best example of Geoffroy's insistence upon the priority of structure to function, and so of his purely morphological attitude, is perhaps his interpretation, already alluded to, of the appendages of Articulates. The segments of the Articulate are, he says, the equivalents of the bodies of the vertebrae of higher forms. Now "from the circumstance that the vertebra is external, it results that the ribs must be so too; and, as it is impossible that organs of such a size can remain passive and absolutely functionless, these great arms, hanging there continually at the disposition of the animal, are pressed into the service of progression, and become its efficient instruments."[124] The ribs become locomotory appendages.

We may compare the similar thought that the ear ossicles are simply opercular bones reduced and turned to other uses.

Geoffroy could not but recognise the correlation of structure to function, for this is a fact which imposes itself upon every observer. He recognised also correlation between functions, as when he pointed out the connection between increased respiration and enhanced muscular activity in birds.[125] He interpreted structure at times in terms of function, the short, strong clavicle of the mole as an adaptation to digging, the keeled sternum of birds as an adaptation to flying, and so on. But we may say that his whole tendency was to disregard function, to look upon it as subsidiary. He protests against arguing from function and habits to structure, as an "abuse of final causes."[126] He was not so convinced as Cuvier was of the all-importance of functional correlation; in this view he was probably confirmed by his work on teratology. It did not surprise him that Insects, in which lungs, heart and circulation have disappeared(!), should yet have a skeleton built upon the same plan as the skeleton of Vertebrates, which possess these organs; the correlation of organ-systems is not so close as to prevent this.[127] So too, although the other organs of the insect are all inside the body of the vertebrae, they are yet comparable with the organs of Vertebrates.[128] The existence of rudimentary organs also seemed to him an argument against too strict a correlation of parts.

The contrast between the teleological attitude, with its insistence upon the priority of function to structure, and the morphological attitude, with its conviction of the priority of structure to function, is one of the most fundamental in biology.

Cuvier and Geoffroy are the greatest representatives of these opposing views. Which of them is right? Is there nothing more in the unity and diversity of organic forms than the results of functional adaptation, or is Geoffroy right in insisting upon an element of unity which cannot be explained in terms of adaptation? If there be an irreducible element of unity, is there any truth in Geoffroy's suggestion that this unity results from a power which is exercised in the world of atoms where are elements of inalterable character?[129]

The problem as Geoffroy and Cuvier understood it was not an evolutionary one. But the problem exists unchanged for the evolutionist, and evolution-theory is essentially an attempt to solve it in the one direction or the other. Theories such as Darwin's, which assume a random variation which is not primarily a response to environmental changes, answer the problem in Geoffroy's sense. Theories such as Lamarck's, which postulate an active responsive self-adaptation of the organism, are essentially a continuation and completing of Cuvier's thought.

[86] "Memoire sur les rapports naturels des makis," Magasin Encyclopedique, vii.

[87] Discours preliminaire, pp. xv.-xxiv.

[88] Etudes progressives d'un Naturaliste, p. 50, Paris, 1835.

[89] Philosophie Anatomique., i., Introduction, p. 1.

[90] "Sur une colonne vertebrale et ses cotes dans les insectes apiropodes," (Acad. Sci., Feb. 12, 1820). Printed in Isis, pp. 527-52, 1820 (2).

[91] "Sur l'organisation des insectes," p. 458. Isis, pp. 452-62, 1820 (2).

[92] Mem. Mus. d'Hist. nat., ix., pp. 89-119, Pls. v-vii.

[93] Sur l'organisation des insectes, p. 459.

[94] Isis, p. 549.

[95] Published in Ann. Sci. Nat., xix., pp. 241-59, 1830.

[96] Cf. Aristotle (supra, p. 10).

[97] For an account of the controversy reference may be made to I. Geoffroy St Hilaire, Vie Travaux et Doctrine scientifique d'Etienne Geoffroy St Hilaire, Paris, 1847; also Semper, Arb. zool. zoot. Instit. Wuerzburg, iii., 1876-7, K. E. von Baer, Lebensgeschichte Cuviers, ed. L. Stieda, 1897, and J. Kohlbrugge, in Zoolog. Annalen, v., pp. 143-95. 1913.

[98] "Recherches sur l'organisation des Gavials," Mem. Mus. d'Hist. nat., xii., 1825.

[99] Mem. Mus. d'Hist. nat., xvii., pp. 209-29.

[100] Mem. Acad. Sci., xii., pp. 63-92, 1833.

[101] Mem. Acad. Sci., xii., pp. 43-61, 1833.

[102] Geoffroy's French style is at times incredibly bad, and more or less literal translations of his sentences are apt to read queerly!

[103] Mem. Mus. d'Hist. nat., xiii., p. 289, 1826.

[104] Mem. Mus. d'Hist. nat., xviii., p. 221, 1828. His teratological work is important, and is chiefly contained in the second volume of the Philosophie anatomique.

[105] Phil. anat., i., p. 449.

[106] Mem. Acad. Sci., xii., p. 82, 1833.

[107] Mem. Mus. d'Hist. nat., ix., p. 101, 1822.

[108] Cours de l'histoire naturelle des Mammiferes, i., Lecon 3, p. 13, 1829.

[109] Etudes progressives d'un Naturaliste, p. 59, f.n., Paris, 1835.

[110] Phil. Anat., i., p. 444.

[111] Ann. Mus. d'Hist. nat., x., p. 344, 1807.

[112] Isis, p. 534, 1820 (2).

[113] Ann. Mus. d'Hist. nat., x., pp. 342-65, 1807.

[114] loc. cit., x., p. 343.

[115] Phil. anat., i., 450, f.n. Cf. Aristotle (supra, p. 11).

[116] Loc. cit., p. 136.

[117] Mammiferes, i., Discours prel., p. 18.

[118] Phil. anat., i., p. 208.

[119] Cuvier and Valenciennes, Hist. nat. Poissons, i., p. 550, 1828.

[120] Cuvier and Valenciennes, loc. cit., p. 544.

[121] Mammiferes, i., Lecon 4, p. 17.

[122] Loc. cit., Lecon 5, p. 8.

[123] Loc. cit., Lecon 13, p. 6.

[124] Isis, p. 539, 1820 (2).

[125] Mammiferes, i., Lecon 4, p. 6.

[126] Mammiferes, Discours prel., p. 7.

[127] Isis, p. 460, 1820 (2).

[128] Mem. Mus. d'Hist. nat., ix., p. 102, 1822.

[129] Mem. Acad. Sci.., xii., p. 76, 1833.



CHAPTER VI

THE FOLLOWERS OF ETIENNE GEOFFROY SAINT-HILAIRE

Geoffroy's theories were not generally accepted by his contemporaries, but his methods had considerable influence, especially in France, where many made essays in pure morphology.

His chief follower was Serres, who is mentioned indeed in the Philosophie anatomique as a fellow-worker. Serres was primarily a medical anatomist; his interest lay in human anatomy and embryology, normal and pathological.

His best early work was an Anatomie comparee du cerveau (1824-26), which met with a flattering reception from Cuvier.[130] He laid great stress upon the development of the brain and spinal cord in the different classes, and was quick to point out analogies not only between adult but also between embryonic structures. He paid much attention to cases of correlation, and noted a great many; he observed, for instance, a constant relation between the development of the spinal cord and of the corpora quadrigemina, and between the size of the corpora quadrigemina and the volume of the optic nerves and eyes. In this the influence of Cuvier is unmistakable.

Serres' early theoretical views are to be found in a series of papers in the Annales des Sciences naturelles,[131] under the general title Recherches d'Anatomie transcendante, sur les Lois de l'Organogenie appliquees a l'anatomie pathologique, also published separately. We follow these papers in our expose of Serres' doctrine, reserving for a future chapter (Chap. XII.) the consideration of his matured views of thirty years later.

In the first of them he points out how neither position nor function has proved altogether sufficient to establish homologies. In the early days anatomists were guided by form; when form failed them, they traced an organ in its changes throughout the series of animals by considering its function. This method was satisfactory enough as regards the organs of the nutritive life. But in the organs of the life of relation, in the nervous system, the functions of the parts were difficult to discover, and their form very changeful. Hence a new principle was required, and Serres found it in the thought which he probably owed to the German transcendentalists (see Chap. VII.), that the permanent structure of the lower animals could be compared with phases in the development of the higher, and particularly of man, or, as he put it, that comparative anatomy was often only a fixed and permanent anthropogeny, and anthropogeny a fugitive and transitory comparative anatomy (xi., p. 106).

"In rising towards the first formations," he writes, "transcendental anatomy recognised that one and the same organ, however complicated its definitive form might be, repeated in its transitory states the organic simplicities of the lower classes. Thus the primitive heart of birds was first of all a canal, then a pocket or single cavity, then finally the complex organ of the class. Comparative anatomy was thus seen to be repeated and reproduced by embryogeny" (xii., p. 85).

His explanation of the fact of repetition is that, "in animals belonging to the lower classes the formative force, whatever it may be, has a less energetic impulsion than in the higher animals, and hence the organs pass through only a part of the transformations which those of the higher forms undergo; and it is for this reason that they show permanently the organic dispositions which are only transitory in the embryo of man and the higher Vertebrates. Hence these double aortas, these double venae cavae which one observes more or less constantly among reptiles" (xxi., p. 48).

The number of stages in embryogeny is proportionate to the complexity of the adult; the younger the embryo the simpler its organs—such is the general formula of the relation between the embryo and the adult. But here in Serres' doctrine of parallelism a complication enters. He observed that embryonic organs did not always develop in a piece, by simple growth, but often were formed by the union of separately formed parts or layers. Thus the kidney in man is formed by the fusion of a number of "little kidneys," and the spinal cord reaches its full development by the laying down of successive layers within it. He was greatly impressed with this fact, which, as a convinced believer in epigenesis, he used with great effect against the preformistic theories. "This method of isolated formation," he wrote, "is noticed in early stages in the thyroid, the liver, the heart, the aorta, the intestinal canal, the womb, the prostate, the clitoris, and the penis" (xi., p. 69). So, too, in the development of the skeleton, ossification proceeds from separate centres, foramina are formed by the fusion of separate bones round them. In his memoir, Lois d'Osteogenie (1819), Serres established several laws of ossification based upon this principle of separate formation.[132]

How is the fact of multiple formation to be reconciled with the principle of repetition, according to which organs are simplest in the early embryo and in the lower animals? But observation shows that, as a rule, the further down the scale you go the more divided organs become—the more numerous the bones of the skull, for example. There is thus a parallel between multiple formation of organs in the embryos of the higher Vertebrates and their subdivided state in the lower. Take, for example, the kidney. In the genus Felis, and in birds, each kidney has two lobes, in the elephant four, in the otter ten, in the ox twelve to fourteen. The human kidney in its development starts with about a dozen lobes, and the number diminishes as the kidney grows. Thus the permanent state of the kidney in the animals mentioned is reproduced by the stages of its development in man (xii., p. 126).

So, too, at the second or third month the uterus of the human embryo is bicornuate, and afterwards passes through stages comparable to the adult and permanent uterus of rodents, ruminants, and carnivores. There is indeed a time in the development of the human embryo when it resembles in many of its organs the adult stage of various lower animals. It is about this time that it possesses a tail.

We note that Serres' theory of parallelism applies, strictly speaking, only to organs, not to organisms, although he, too, readily fell into the error of supposing that the organisation of an embryo could be compared as a whole with the adult organisation of an animal lower in the scale. Thus he wrote in one of his later papers[133]—"As our researches have made clear, an animal high in the organic scale only reaches this rank by passing through all the intermediate states which separate it from the animals placed below it. Man only becomes man after traversing transitional organisatory states which assimilate him first to fish, then to reptiles, then to birds and mammals." Serres was not altogether free from the besetting sin of the transcendentalists—hasty generalisation.

The law of parallelism applied not only to Vertebrates but also to Invertebrates. In a short paper[134] of 1824 Serres attempted an explanation of the nervous system of Invertebrates. Invertebrates, he considered, lacked the cerebrospinal axis of Vertebrates, and their nervous system was the homologue of the sympathetic system of Vertebrates. The relation of the invertebrate to the vertebrate nervous system being thus fixed, can the nervous system of Invertebrates be reduced to one plan? It does not seem possible to establish a common plan for the adult nervous systems. But apply the principle of parallelism, which has proved so valuable within the limits of the vertebrate series. Taking insects as the highest class, we find that there are three stages in the development of their nervous system; in the first the nervous system is composed of two separate strands, in the second the strands unite round the oesophagus, in the third they unite also behind. Now in Bulla aperta, stage (1) is permanent; in Clio, Doris, Aplysia, Tritonia, Sepia, Helix, stage (2) is permanent, and in Unio stage (3). In fact, all the varieties of the nervous system of molluscs fall into one or other of these three classes. "It follows, then, that as regards their nervous system, the Mollusca are more or less advanced larvae of insects" (p. 380). The law of parallelism is here applied to single organ-systems, but in later years Serres applied it to whole organisations also, saying that the lower Invertebrates were permanent embryos of the higher.

In the paper of 1834, already referred to, Serres pushed his speculations further and attempted to establish the unity of type of all animals, Vertebrates and Invertebrates alike—a favourite pastime of the transcendentalists. It is incontestable, he admits, that adult Invertebrates are quite different in structure from adult Vertebrates, "but if one regards them as what I take them to be, namely, permanent embryos, and if one compares their organisation with the embryogeny of Vertebrates, one sees the differences disappear, and from their analogies arise a crowd of unsuspected resemblances" (loc. cit., p. 247).

The last point of Serres' doctrine which calls for remark is his interpretation of abnormalities as being often comparable to grades of structure permanent in the lower animals. Thus the double aorta which may occur as an abnormality in man is the normal and permanent state in reptiles. This idea, of course, he got from Etienne Geoffroy St Hilaire. It is further developed in his "Theorie des formations et des deformations organiques appliquee a l'anatomie comparee des monstruosites (1832), and in his final large memoir of 1860 (see below, p. 205).

In 1816 appeared a fine piece of work by J. C. Savigny on the homologies of the appendages in Articulates. The standpoint was that of pure morphology. "I am convinced," he wrote, "that when a more complete examination has been made of the mouth of insects, properly so called, that is to say, having six legs and two antennae, it will be found that whatever form it affects it is always essentially composed of the same elements.... The organ remains the same, only the function is modified or changed—such is Nature's constant plan."[135] In this the influence of Geoffroy can be traced; but the work was very free from the exaggerations of the transcendentalists, and many of Savigny's homologies are accepted even to-day. The first memoir dealt with the mouth-parts of insects; the second with the anterior appendages of Articulates generally. Savigny shows that the mouth-parts of insects can be reduced to the type shown in Orthoptera, where there are clearly two mandibles, two maxillae, and a lower lip formed by the fusion of two second maxillae. All other insects have these same mouth-parts, disposed in the same order, however much their form may have been modified in response to new functions. He goes on to compare the anterior set of appendages in a long series of Articulates, in Julus, Scolopendra, Cancer, Gammarus, Cyamus, Nymphon, Phalangium, Apus, Caligus, Limulus, and a few others. For Crustacea he established the homologies now accepted, of the mandibles with the mandibles of insects, of the first and second pairs of maxillae with the parts so named in insects, and so on. He is quite clear that the maxillipedes of Crustacea are the homologues of the feet of Hexapoda. "Their disposition must lead one to think that the six anterior feet of Julus, that is to say, all the feet of the Hexapoda, are here transformed into jaws" (loc. cit., p. 48). In Scolopendra also there is a similar transformation of two pairs of legs into auxiliary jaws. In Gammarus, where there is only the first pair of maxillipedes, the other two pairs have become "retransformed" into feet. We find him supporting his comparison of the three anterior pairs of legs in Julus to the three pairs of legs in insects by an argument drawn from embryology; for only the first three pairs of feet are present in Julus at birth (Degeer), "an observation, which, together with their position, should cause them to be considered as the representatives of the six thoracic feet of Hexapoda" (p. 44).

His comparison of the Arachnid appendages with those of insects and Crustacea is very curious. As his starting-point he takes Cyamus, which has antennae (two pairs) and mouth parts (four pairs) as in many Crustacea, and then seven pairs of legs; he compares with it Nymphon, which has in all seven pairs of appendages. These appendages he homologises with the seven pairs of legs of Cyamus, so that the first appendage in Nymphon corresponds to the seventh appendage of Cyamus. This homology is extended to all Arachnids; their first two pairs of appendages, however they may be modified as "false" mandibles and "false" maxillae, really correspond to the second and third maxillipedes in Crustacea, and to the second and third pairs of feet in insects. It is interesting to note that he treats Limulus as an Arachnid, pointing out that there is as much difference between Apus and Limulus as between Cancer and Phalangium. He describes the "gnathobases" in Phalangium and Limulus. We may note that he had just an inkling of the modern doctrine that all the appendages of Articulates consist of a basal joint bearing an inner and an outer terminal piece, for he observes that the "cirri" of the maxillipedes of Crustacea give the appendage the same bifid appearance as the appendages of the abdomen and the thoracic legs of Mysis (p. 50).

V. Audouin, in his memoir, Recherches anatomiques sur le thorax des animaux articules,[135] applied the principle of the unity of plan and composition to the exoskeleton of insects, Crustaceans, and Arachnids. His guiding ideas were, "(1) that the skeleton of articulated animals is formed of a definite number of pieces, which are either distinct or intimately fused with one another; (2) that in many cases, some pieces diminish or altogether disappear, while others reach an excessive development; (3) that the increase of one piece seems to exert on the neighbouring pieces a kind of influence which explains all the differences one finds between the individuals of each order, family and genus" (Sep. copy, p. 16). Geoffroy had already stated, without proof, that the parts of the Arthropod's skeleton, however they might change in shape and size, remained faithful to the principle of connections, at least at their points of insertion.[137] Audouin gave the detailed demonstration of this by his accurate and minute determination of the pieces of the arthropod skeleton. He recognised that the body of Arthropods was made up of a series of similar rings, and that even the compact head of insects consisted of fused segments. In each segment Audouin distinguished a fixed number of hard chitinous parts, the dorsal tergum, the ventral sternum, the lateral "flanc" of three pieces, all to be recognised by their positions relative to one another. Many of the names which he proposed are still in use; it was he who introduced the terms prothorax, mesothorax, and metathorax, for the three segments of the insect's thorax. He used Geoffroy's Loi de balancement to explain cases of correlative development, such as the relation between the size of the front wings and the development of the mesothorax. In another paper Audouin compared the three pieces of the dorsal skeleton of Trilobites to the tergum and the upper part of the "flanc."[138] In a third paper of about the same time he tried to establish the homologies of the segments throughout the Articulate series—with less success than Savigny.

Later on, in conjunction with Milne-Edwards, he demonstrated the unity of composition of the nervous system in Crustacea, showing how the concentrated system of the crab was formed by the same series of ganglia as in the Macrura.

The entomologist Latreille also tackled the problem of the homologies of the segments in the different classes of Arthropods (Cuvier, loc. cit., p. cclxxii.). He thought he could find fifteen segments in all Arthropods. He made the retrograde step of likening the head of insects to a single segment. But some of his homologies showed morphological insight, e.g., his comparison of the "first jaws" of Arachnids to antennae, because they were placed above the upper lip. It was he who first pointed out the resemblance of the leaf-like gills of Ephemerid larvae to wings, and suggested that wings were "a sort of tracheal feet."

He made also a rather hazy and speculative contribution on Okenian lines to the problem of the relation of Arthropods to Vertebrates, likening the carapace of Crustacea to an enormously developed hyoid, the appendages of the tail to the ventral and anal fins of fish. The masticatory organs of Arthropods were jaws disjointed at their symphysis; antennae, nostrils turned outside in.

Duges also made a comparison of Articulates with Vertebrates.[139] He did not accept Geoffroy's vertebral theory of the Arthropod skeleton, though he admitted that in Arthropods the dorsal surface was turned towards the ground, basing this assumption on the position of the nervous system, and also, curiously enough, on the inverted position of the embryo on the lower surface of the yolk. He considered that the mandibles and first maxillae of Arthropods were the homologues of the upper and lower jaws of Vertebrates, adducing as confirmatory evidence the fact that in snakes the rami are separate. The labium was the equivalent of the hyoid, the labial palps and maxillipedes the equivalent of the "hyoid" elements which form the branchial arches.

But Duges' main contribution to morphological method was his conception of the living organism as a colony of lesser units, which were themselves real "organisms." "By organism the author means a complex of organs which taken together suffice to constitute, ideally or actually, a complete animal. An 'organism' is, as it were, an elementary or simple animal; several organisms combined form a complex animal" (p. 255). Duges hit upon this principle, which was first suggested to him by A. Moquin-Tandon's work on the leech (1827), as a great aid in demonstrating the unity of plan and composition throughout the animal kingdom.[140] According to his view there are three main types of animals—(1) Biserials, including bilaterally symmetrical animals, composed of two parallel series of "organisms"; (2) Radiates, composed of "organisms" arranged like the spokes of a wheel; and (3) Raceme-animals, in which the separate "organisms" were disposed more or less irregularly, in bunches (p. 257). The unitary "organism" is supposed to be the same in all, only the arrangement differing. Duges of course admitted that the centralisation of the complete organism became greater the higher it stood in the scale, and that this held good also in individual development. The appendages of Articulates and Vertebrates were thought of as the members of as many separate organisms. He went so far as to suggest that the fingers of a man's hand were the free extremities of as many thoracic members.

Duges' conception of the organism has often been revived since in a saner form, e.g., by E. Perrier, and it has a certain validity. It has much affinity with the similar conceptions of Goethe and the German transcendentalists.

[130] Mem. Acad. Sci., iv., pp. cclxxxiv.-ccci., 1824.

[131] Ann. Sci. Nat., xi., xii., 1827; xvi., 1829; xxi., 1830.

[132] See Radl, loc. cit., i., pp. 225-6.

[133] Ann. Sci. nat. (2), ii., p. 248, 1834.

[134] Ann. Sci. nat., iii., pp. 377-80, 1824.

[135] Memoires sur les Animaux sans Vertebres, Part I., p. 10, Paris, 1816.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse