|
256. WARM SEPIA
is the natural sepia warmed by mixture with other browns of a red hue, and is intended for drawings where it would be difficult to keep the whole work of the same tint, unless the compound were made in the cake of colour.
257. ROMAN SEPIA
is a preparation similar to the preceding, but with a yellow instead of a red cast.
258. VANDYKE BROWN.
This pigment, hardly less celebrated than the great painter whose name it bears, is a species of peat or bog-earth of a fine, deep, semi-transparent brown colour. The pigment so much esteemed and used by Vandyke is said to have been brought from Cassel; an assertion which seems to be justified by a comparison of Cassel earth with the browns of his pictures. Gilpin in his Essays on Picturesque Beauty, remarks that "In the tribe of browns—in oil-painting, one of the finest earths is known, at the colour shops, by the name of Castle-earth, or Vandyke's brown." The Vandyke brown of the present day is a bituminous ochre, purified by grinding and washing over. Apt to vary in hue, it is durable both in water and oil, but, like all bituminous earths, dries tardily as a rule in the latter vehicle. Clear in its pale tints, deep and glowing in shadows, in water it has sometimes the bad property of working up: for this reason, where it is necessary to lay on a great body of it, the moist tube colour should be preferred to the cake. With madder red, the brown gives a fine tint, most useful as a warm shadow colour; and with Prussian blue, clear, very sober neutral greens for middle distances. In banks and roads, Vandyke brown is the general colour for dragging over the surface, to give roughness of texture: compounded with yellow ochre, it affords a good ground tint, and with purple madder a rich shadow colour. In sunrise and sunset clouds, a mixture of the brown with cobalt yields a cold neutral green, adapted for those clouds at the greatest distance from the sun. For foliage tints, aureolin, French blue, and Vandyke brown, will be found of service; or as a glaze over such tints, the yellow and the brown. With raw Sienna, brown madder, Payne's gray, gamboge, and Roman ochre, this brown is useful. In a water-colour winter scene, when the trees are denuded of foliage, the net work of the small branches at the tops of them may be prettily given with cobalt and Vandyke brown, used rather dry, and applied with a brush having its hairs spread out either by the fingers or by drawing them through a fine-tooth comb before working. Grass is likewise represented readily by this means, and so are small trees on the summit of a cliff or in like positions.
The Campania Brown of the old Italian painters was a similar earth.
259. VERONA BROWN,
a pigment peculiar to oil painting, is a native ferruginous earth. A citrine brown of great service in tender drab greens, it forms with terre verte and the madder lakes rich autumnal tints of much beauty and permanence.
260. YELLOW MADDER,
Cory's Yellow Madder, or Cory's Madder, is classed among the browns for the same reason that Italian Pink was ranked among the yellows. It was stated in the eighth chapter that no true madder yellow, brilliant and pure, exists as a pigment at the present day, and certainly this preparation can lay no claim to the title. Except in name, it is an orange-brown of the burnt Sienna hue, and might therefore with more reason have been called Orange Madder. It is a good and permanent colour, rich and transparent, at present used only in oil, we believe, and chiefly as a glaze.
* * * * *
261. Cadmium Brown.
By igniting the white carbonate of cadmium, among other methods, a cinnamon-brown oxide is obtainable, of a very clear and beautiful colour if the process be well conducted. It is, however, not eligible as a pigment, owing to the rapidity with which the oxide is acted upon by the air. In water, especially, we have found this brown so eagerly absorb carbonic acid from the atmosphere as to become in a few months once more a carbonate, and as purely white as before. The same result is observable when the powder is exposed: some shown at the International Exhibition of 1862, on a glass stand, had to be removed, its label marked 'Cadmium Brown' being at last found attached to a sample of cadmium white. In oil, the conversion takes place less readily, that vehicle having the property of protecting, to some extent, pigments from oxidation. It is curious that even in a book a water-rub of the brown slowly but surely changes to white.
262. Catechu Browns.
Catechu is an extract of the Khair tree or acacia catechu of Bombay, Bengal, and other parts of India. With the exception of such earthy matters as are communicated to it during the preparation, or are added purposely as adulterants, catechu is entirely soluble both in water and alcohol. An aqueous solution has a reddish-brown colour, and gives the following results:—protosalts of iron thrown down olive-brown and persalts greenish-brown precipitates; salts of tin and lead yield brownish-yellow and brick-coloured deposits respectively; while acetate of copper or bichromate of potash furnishes brown residues. To our knowledge, none of these have been introduced as pigments, but a brown prepared by Dr. Lyon Playfair some years back from the catechu bark has been described as exceedingly rich, transparent, and beautiful; and recommended for painting if not too thinly applied.
263. Chrome Browns
are produced by various methods of several hues, tints, and shades, both by wet and dry processes. We have obtained them by many methods, of different degrees of permanence. Some very intense in colour have stood well, while others paler and more delicate have gradually greened, but none possessed the strict stability of the green oxides. Presuming a paucity of browns, these preparations of chromium would be worth further attention; but, with the objection of being—for browns—somewhat expensive, they have the far more fatal objection of not being wanted.
264. Copper Brown,
varying in hue, is obtainable, in the form of prussiate, &c., but cannot be recommended, however made.
265. French Prussian-Brown.
According to Bouvier, a colour similar to that of bistre, and rivalling asphaltum in transparency, is produced by partially charring a moderately dark Prussian blue; neither one too intense, which gives a heavy and opaque brownish-red, nor one too aluminous and bright, which yields a feeble and yellowish tint. Yielding to a rapture we cannot wholly share, he describes its qualities in the warmest terms. In his opinion, it has the combined advantages of asphaltum, mummy, and raw Sienna, without their drawbacks. "I cannot," he says, "commend too highly the use of this charming bistre-tint: it is as beautiful and good in water as in oil, perfectly transparent, of a most harmonious tone, and dries better than any other colour suitable for glazing. Closely resembling asphaltum in tint as well as in transparency, this brown is preferable to it in every point of view." As the colour is very quickly and easily obtained, the artist can judge for himself of its proper value. M. Bouvier's process is, to place upon a clear fire a large iron spoon, into which, when red hot, some pieces of the Prussian blue are put about the size of a small nut: these soon begin to crackle, and throw off scales in proportion as they grow hot. The spoon is then removed, and allowed to cool: if suffered to remain too long on the fire, the right colour will not be produced. When the product is crushed small, some of it will be found blackish, and the rest of a yellowish brown: this is quite as it should be. Chemically, the result is a mixture of oxide of iron and partly undecomposed or carbonised prussiate.
266. Gambogiate of Iron.
Dr. Scoffern read a paper at the Meeting of the British Association of Science, in 1851, describing this combination as a rich brown, like asphaltum, but richer, as well as more durable in oil. It has not been, however, employed as a pigment, or at least is not at present.
267. Hypocastanum,
or Chestnut Brown, is a brown lake prepared from the horse-chestnut. This now obsolete pigment is transparent and rich in colour, warmer than brown pink, and very durable both in water and oil; in the latter of which it dries moderately well.
268. Iron Browns,
native or artificial, are well represented on the palette, but nothing would be easier than to increase their number. Of all metals, iron is the richest source of colour, capable of affording all colours with the exception of white. None of them, however, are so numerous as the browns, a description of which would fill this chapter. Suffice it to state they are obtainable of every hue, tint, and shade, and are generally permanent. They are made on a large scale and sold under various names for house-painting, &c.
269. Manganese Brown
is an oxide of manganese, which is quite durable both in water and oil, and dries admirably in the latter. A fine, deep, semi-opaque brown of good body, it is deficient in transparency, but might be useful for glazing or lowering the tone of white without tinging it, and as a local colour in draperies, &c.
270. Nickel Brown.
A very pleasing yellowish brown is obtainable from nickel, bright and clear in its pale washes, and of some richness in oil. Unless thoroughly washed, it has a tendency to greenness in time.
271. Ochre Browns.
The slight affinity of sulphur for yellow ochre, with its merely temporary effect thereon, was observed in the eighth chapter, where allusion was made to the action of sulphuretted hydrogen and sulphide of ammonium on the earth. Sulphur alone, and in the dry state, ignited with yellow or other native ochres converts them into browns, varying in hue, and of greater or less durability. Those browns, however, which we have made by this process, although standing well in a book, have not withstood exposure to light and air. They have all become pale, whitish, or of a drab cast, evidently through the oxidation of the sulphur, or rather the sulphide of iron formed during the calcination. Practically, therefore, ochres have an antipathy to sulphur, moist or dry, by itself or in combination; and are, so to speak, the disinfectants of the palette. Ever waging war against sulphurous vapours, the native earths serve to protect a picture from the damaging influence of impure air, whether they be used alone, or employed in admixture with such pigments as are injured thereby.
272. Purple Brown
is a refuse manufacture from Indian red washings. A dull, heavy, coarse colour, it belongs to the class of common pigments which are unexceptionable for decorative painting, but scarcely suited to the higher branches of art. As this work professes simply to treat of artistic pigments, that have been, are, or might be, more than a passing reference to those colours exclusively adopted by house-painters, &c., would be out of place.
273. Rubens' Brown,
still in use in the Netherlands under this appellation, is an earth of a lighter colour and more ochrous texture than the Vandyke brown of English commerce: it is also of a warmer or more tawny hue than the latter pigment. Beautiful and durable, it works well both in water and oil, and much resembles the brown employed by Teniers.
274. Uranium Brown.
Yellow, red, orange, green, have been previously noticed as being derived from uranium, and to this list of colours may now be added brown. A warm rich hue of the utmost intensity may be produced, which possesses considerable permanence, although not equal to that of uranium yellow.
275. Zinc Brown.
A yellow-brown, so yellow that it might fairly have been classed with the ochrous colours of that denomination, is made by combining zinc with another metal by the aid of heat. Experience tells us that it is, chemically, a thoroughly good and stable pigment. Safely to be used in admixture, it is a clear, bright colour, affording good greens by compounding with blue. Of no great power, and semi-opaque, this yellow-brown or brown-yellow is superior to some of the pigments at present used, but is probably too much like them in hue and other properties to be of any special value.
* * * * *
Besides the preceding, there are those browns of a citrine or russet cast which are elsewhere described, such as raw umber, madder brown, &c. Moreover, there are numberless other varieties, obtainable from most of the metals, from many organic substances, and from a combination of the two. Of all colours, a 'new' brown is the most easily discovered: success may not be met with in seeking a yellow, red, or blue, or an orange, green, or purple; but it is strange if in the course of one's experiments a brown does not turn up. No difficulty, therefore, would have been found in greatly extending the present list; but it was felt that no advantage could have accrued by further multiplying the notices of a colour, with which we are already furnished so abundantly by nature and art, and which is capable of being produced in such profusion by admixture.
With the exception of ivory and bone browns, and perhaps Cassel and Cologne earths, all the browns commonly employed may be considered more or less durable.
CHAPTER XVIII.
ON THE SEMI-NEUTRAL, MARRONE.
We have adopted the term MARRONE, or maroon as it is sometimes called, for our second and middle semi-neutral, as applicable to a class of impure colours composed of black and red, black and purple, or black and russet, or of black and any other denomination in which red predominates. It is a mean between the warm, broken, semi-neutral browns, and the cold, semi-neutral grays. Marrone is practically to shade, what red is to light; and its relations to other colours are those of red, &c., when we invert the scale from black to white. It is therefore a following, or shading, colour of red and its derivatives; and hence its accordances, contrasts, and expressions agree with those of red degraded; consequently red added to dark brown converts it into marrone if in sufficient quantity to prevail. In smaller proportions, red gives to lighter browns the names of bay, chestnut, sorrel, &c.
Owing to confused nomenclature, most of the colours and pigments of this class have been assigned to other denominations—puce, murrey, morelle, chocolate, columbine, pavonazzo, &c., being variously ranked among reds, browns, and purples. This vagueness also accounts for pigments having been ranged under heads not suited to the names they bear, and explains why Brown Ochre has been classed among the yellows, Italian Pink among the same, Brown Pink among the citrines, &c.
As adapted to the walls of a picture gallery, marrone, more or less deep and inclined to crimson, is one of the best colours known. For the reason that each colour has its antagonist, and consequently may affect a picture well or ill, according to its tone or general hue, there can be no universally good colour for such a purpose. What suits one picture or style of painting may not suit another: with a blood-red sunset, for instance, or portrait with crimson drapery, marrone would be out of place. But as it is impossible to provide each picture with a separate background, all that can be done in large collections is to study the general effect, sacrificing the interests of the few to the good of the many. If cool-coloured landscapes predominate, with blue skies and green foliage, it will be found that the orange-yellow of the frames agreeably contrasts the former, and the crimson-marrone of walls as agreeably sets off the latter. If portraits and historic paintings prevail, which are in general of a warm advancing nature, then a modest green may prove eligible. And if engravings form the staple, the grey hue of the print is best opposed by a bright fawn colour. Where several rooms are devoted to pictures, a suitable wall colour is most easily secured by classifying the paintings as far as possible according to their general hue, and placing them in different chambers: in each there will be a prevailing character in the colouring of its pictures, and each can be painted or papered accordingly. However, whether this plan is adopted or not—and it may be objected to as involving a certain monotony—care should be taken to have a wall colour of some sort or other, that is, to let it be seen. Pictures crammed together kill each other: without a pin's point between them, a speck of wall space visible, much of the illusion is destroyed. "It is only," says Chevreul, "the intelligent connoisseur and amateur who, on seeing a picture exhibited in a gallery, experience all the effect which the artist has wished to produce; because they alone know the best point of view, and because, while their attention is fixed on the work they are observing, they alone end by no longer seeing the surrounding pictures, or even the frame of that one they contemplate." Amid a moving crowd of people, inseparable from nearly all public exhibitions, it becomes difficult for the visitor, intelligent or otherwise, thus to concentrate his attention on one work. As far, therefore, as space will allow, paintings should be kept separate: larger rooms, or fewer pictures, are what is wanted.[B]
From this digression, pardonable, let us hope, because in the interests of art, we will pass on to a consideration of marrone pigments.
276. BROWN MADDER
is an exceedingly rich marrone or russet-marrone brown, bearing the same relation to the colour marrone that raw umber bears to the colour citrine. One of the most valuable products of the madder root, it has supplied a great desideratum, and in water especially is indispensable, both as a local and auxiliary colour. Of intense depth and transparency, if made with skill, it affords the richest description of shadows, either alone or compounded with blue, and the most delicate pale tints. Being quite permanent, a good drier, and working most kindly, it is a pigment which cannot be too strongly recommended to the landscape painter's notice. Containing a large proportion of red, it is eligible, with yellow or blue, for mixed orange or mixed purple of a subdued tone. It may be used tolower red curtains or draperies, and for the darkest touches in flesh. Mixed with cobalt, it forms a fine shadow colour for distant objects; and with indigo or Prussian blue and black, is serviceable for the shades of those nearer the foreground. It is similarly useful when mixed with black, and will be found advantageous in rusty iron, as anchors, chains, &c. For the deepest and richest parts of foregrounds it may be employed alone, as also for deep dark cracks and fissures, or strong markings in other near objects, as boats and figures. With French blue, or cobalt and white, a set of beautiful warm or cold grays may be obtained, in proportion as the brown or blue predominates. Compounded with blues and bright yellows such as aureolin, it gives fine autumnal russet greens. A good purple for soft aerial clouds is furnished by cobalt and brown madder, or for stormy clouds by the brown, Prussian blue, and black: an equally good slate colour is obtained from cobalt, sepia, and the brown. For glazing over foliage and herbage, a mixture of the madder with aureolin or gamboge is adapted; and for brooks and running streams compounds of this brown with raw Sienna, cobalt and raw Sienna, Vandyke brown, and French blue, will each be found useful. Black sails are well represented by burnt Sienna, French blue, and brown madder; and red sails by light red or burnt Sienna with the brown.
277. MIXED MARRONE.
Marrone is a retiring colour easily compounded in all its hues and shades by the mixture variously of red, and black or brown; or of any other warm colours in which red and black predominate. A reference to the permanent brown, black, and red or reddish pigments will show to what extent the colour marrone may safely be produced by admixture. In compounding marrone, the brown or black may be itself compounded, before the addition of the red, reddish-purple, or russet, requisite for its conversion.
* * * * *
278. Chica Marrone.
Chica, the red colouring principle alluded to in the ninth chapter, is extracted from the Bignonia chica, by boiling its leaves in water, decanting the decoction, and allowing it to cool, when a red matter falls down, which is formed into cakes and dried. Insoluble in cold water, it dissolves in alcohol and alkalies; is precipitated from alkaline solutions by acids without alteration; and is bleached by chlorine. Another variety of the same substance, obtained from Para in Brazil, and known as crajuru, carajuru, or caracuru, behaves in a similar manner. This is said to be superior to the former sort.
A chica pigment, brought from South America, and examined by the author, was of a soft powdery texture, and rich marrone colour. Somewhat resembling Rubens' madder in hue, it was equal in body and transparency to the carmine of cochineal, though by no means approaching it in beauty, or even in durability. Simply exposed to the light of a window, without sun, the colour was soon changed and destroyed. Conclusive evidence as this is that the sample submitted to Mr. Field was worthless, it remains to be seen whether all the colours to be derived from chica, by different modes and from different kinds, are equally valueless as pigments.
279. Chocolate Lead,
or Marrone Red, is a pigment prepared by calcining oxide of lead with about a third of copper oxide, and reducing the compound to a uniform tint by levigation. It is of a chocolate hue, strong opaque body, and dries freely. Like all lead and copper colours, it is blackened by impure air.
280. Cobalt Marrone.
There is obtainable from cobalt a very rich marrone brown, which, like many other colours, is more beautiful while moist than when dried. Permanent, if carefully made and most thoroughly washed, it is an expensive compound, and must rank among those colours which are interesting in the laboratory but superfluous in the studio.
281. Madder Marrone,
or Marrone Lake, was a preparation of madder, of great depth, transparency, and stability. Working well in water, glazing and drying in oil, and in every respect a good pigment, it was one of those colours which gradually—and often, as in this case, unfortunately—become obsolete, on account of their hues being easily given by admixture of other pigments. There was likewise a deeper kind, called Purple Black. A good madder marrone may be produced by adding to brown madder either rose madder, madder carmine, or Rubens' madder, with a slight portion of black or blue if required.
282. Mars Marrone.
Under the heading of a New Marrone Pigment there appeared some months back in a chemical journal the following:—"The blood-red compound obtained by adding a soluble sulphocyanide to a salt of iron in solution can be made (apparently at least) to combine with resin thus: To a concentrated solution of sesquichloride of iron and sulphocyanide of potassium in ether, an etherial solution of common resin is added, and the whole well shaken together. There is then mixed with it a sufficiency of water to cause a precipitate, when it will be found, after the mixture has stood a few hours, that the whole or nearly the whole of the red-coloured iron compound has united with the precipitated resin, forming the marrone-coloured pigment in question. When this coloured substance is finely powdered and mixed with water, the liquid is not the least coloured; whence it is inferred that the red iron compound has chemically united itself with the resin."
The foregoing account is rather to be regarded as of scientific interest than of practical utility. The blood-red solution of sulphocyanide of iron is in itself not stable: when the red solution of this salt is so exposed to the sun, that the rays pass through the glass jar containing it, it is rendered colourless, but the colour is retained or restored when the rays pass directly from the air into the fluid; so that when a properly diluted solution is placed in a cylindrical glass vessel in direct sunshine, it loses colour in the morning till about eleven in the forenoon, when the rays beginning to fall upon the surface exposed to the air, gradually restore the colour, which attains its maximum about two o'clock. Moreover, the solution is immediately decolourised by sulphuretted hydrogen and other deoxidizing agents, as well as by alkalies and many acids. It is scarcely probable that the union of the red colouring matter with the resin would suffice to secure it from change; and there is little doubt that the new marrone pigment would be a chameleon colour.
* * * * *
Failures in the process of burning carmines, and preparing the purple of gold, frequently afford good marrones. Compounds more or less of that hue are likewise furnished by copper, mercury, &c. Some ochres incline to marrone when calcined: indeed we have remarked in many instances that the action of fire anticipates the effects of long continued time; and that several of the primary and secondary colours may, by different degrees of burning, be converted into their analogous secondary, tertiary, or semi-neutral colours.
The one marrone or brown-marrone pigment at present employed, brown madder, is permanent.
FOOTNOTES:
[B] This was written previous to the opening of the new rooms of the Royal Academy at Burlington House. In these, among other improvements, the subject of wall space has been considered.
CHAPTER XIX.
ON THE SEMI-NEUTRAL, GRAY.
Of the tribe of semi-neutral colours, GRAY is third and last, being nearest in relation to black. In its common acceptation, and that in which we here use it, gray, as was observed in the third chapter, denotes a class of cool cinereous colours faint of hue; whence we have blue grays, olive grays, green grays, purple grays, and grays of all hues, in which blue predominates; but no yellow or red grays, the prevalence of such hues carrying the compounds into the classes of brown and marrone, of which gray is the natural opposite. In this sense the semi-neutral Gray is distinguished from the neutral Grey, which springs in an infinite series from the mixture of the neutral black and white. Between gray and grey, however, there is no intermediate, since where colour ends in the one, neutrality commences in the other, and vice vers. Hence the natural alliance of the semi-neutral gray—definable as a cool coloured grey—with black or shade; an alliance which is strengthened by the latent predominance of blue in the synthesis of black, so that in the tints resulting from the mixture of black and white, so much of that hue is developed as to give apparent colour to the tints. This explains why the tints of black and dark pigments are colder than their originals, so much so as in some instances to answer the purposes of positive colours. It accounts in some measure for the natural blueness of the sky, yet not wholly, for this is in part dependent, by contrast, upon the warm colour of sunshine to which it is opposed; for, if by any accident the light of nature should be rendered red, the colour of the sky would not appear purple, in consequence, but green. Again, if the sun shone green, the sky would not be green, but red inclined to purple; and so would it be with all colours, not according to the laws of composition, but of contrast; since, if it were otherwise, the golden rays of the sun would render a blue sky green.
The grays are the natural cold correlatives, or contrasts, of the warm semi-neutral browns, as well as degradations of blue and its allies. Hence blue added to brown throws it into or toward the class of grays, and hence grays are equally abundant in nature and necessary in art: in both they comprehend a widely diffused and beautiful play of retiring colours in skies, distances, carnations, and the shadowings and reflections of pure light, &c. Gray is, indeed, the colour of space, and has therefore the property of diffusing breadth in a picture, while it furnishes at the same time good connecting tints, or media, for harmonizing the general colouring. Consequently the grays are among the most essential hues of the art, though they must not be suffered to predominate where the subject or sentiment does not require it, lest they cast over the painting that gloom or leaden dulness reprobated by Sir Joshua Reynolds; yet in solemn works they are wonderfully effective, and proper ruling colours. Nature supplies these hues from the sky abundantly and effectively throughout landscape, and Rubens has employed them as generally to correct and give value to his colouring, with fine natural perception in this branch of his art: witness his works in the National Gallery, and in that of the Luxembourg.
According to the foregoing relations, grays favour the effects and force of warm colours, which in their turn also give value to grays. It is hence that the tender gray distances of a landscape are assisted, enlivened, and kept in place by warm and forcible colouring in the foreground, gradually connected through intermediate objects and middle distances by demi-tints declining into gray; a union which secures full value to the colours and objects, and by reconciling opposites gives repose to the eye. As a general rule, it may be inferred that half of a picture should be of a neutral hue, to ensure the harmony of the colouring; or at least that a balance of colour and neutrality is quite as essential to the best effect of a painting as a like balance of light and shade.
283. MINERAL GRAY,
or Mineral Grey, as it is often improperly spelt, is obtainable from the lapis lazuli, after the blue and ash have been worked out. So derived, it is a refuse article, worthless if the stone has been skilfully exhausted of its ultramarine. As this is now generally the case, the best mineral gray is no longer a waste product, but a lower species of ash, a pale whitish blue with a grey cast. Possessing the permanence of ultramarine, it may be regarded in colour as a very weak variety of that blue, diluted with a large quantity of white slightly tinged by black. A pigment peculiar to oil painting, it is admirably adapted to that gray semi-neutrality, the prevalence of which in nature has been just remarked. For misty mornings, cloudy skies, and the like, this gray will be found useful.
284. MIXED GRAY
is formed by compounding black and blue, black and purple, black and olive, &c.; and is likewise produced by adding blue in excess to madder brown, sepia, &c., transparent mixtures which are much employed. It should be borne in mind that the semi-neutrals, like the secondaries and tertiaries, may be so compounded as to be permanent, semi-stable, or fugitive. The due remembrance of this cannot be too strongly insisted upon, seeing that in every picture the browns and grays are of frequent occurrence. These it is that lend such charm to the whole, flowing, as it were, like a quiet under-current of colour beneath the troubled surface of more decided hues. In the work of every true artist—between whom and the mere painter there is as much difference as between the poet and the poetaster—there is sentiment as well as colour, whether the subject be an exciting battle-scene or a bit of still life. This sentiment, as strongly felt as the colour is clearly seen, is imparted in no small degree by the skilful use of semi-neutrality, the compounding of which, as time goes on, will therefore affect a picture for good or for evil.
Subjoined is an analysis of the three semi-neutrals, which serves partly to show in what great variety they may be obtained by admixture.
Brown = Black + Yellow } " = " + Orange } + Red, Purple, &c. " = " + Citrine} " = 2 Yellow + Red + Blue " = 2 Orange + Green + Purple " = 2 Citrine + Russet + Olive Marrone = Black + Red " = " + Purple-red " = " + Russet " = 2 Red } " = 2 Purple-red} + Dark Brown or Black " = 2 Russet } Gray = Black + Blue } " = " + Purple-blue} + 2 White " = " + Olive } " = 2 Blue } " = 2 Purple-blue} + Light Brown, or Black + 2 White " = 2 Olive }
In the last division, the White has been added to remind the reader that grays are coloured greys, not coloured blacks; and are therefore faint of hue. This paleness, however, need not necessarily be produced by admixture with white: it can be gained by means of thin washes. As a pigment, gray may be to all appearance black in bulk.
285. NEUTRAL TINT,
or, more correctly, Semi-Neutral Tint, is a compound shadow colour of a cool character. It is permanent, except that on exposure the gray is apt to become grey, a change which may be prevented by a slight addition of ultramarine ash. So protected, it becomes serviceable in landscape for the extreme distance, which, it may be laid down as a general principle, should be painted rather cold than otherwise. Blue being the principal compound of atmosphere, it is of the utmost importance to obtain this in the first instance, particularly as, from its being only of a blue tint, not blue colour, it is so immediately altered and acted upon by subsequent washes; whereas, the blue tone once lost, it will be found very difficult to be recovered. Wherever a picture is wanting in air effect, the cause will, upon examination, be seen to rest entirely upon the absence of pure grays, bordering upon a bluish tone, not tending, be it observed, to brown or purple. A bluish gray, then, of rather a cold tone, such as the neutral tint, is recommended as the prevailing hue with which to begin the extreme distances; and, as a rule, it is better to pass with this over as much of the landscape as possible, and thus lay the foundation for a general atmosphere.
286. PAYNE'S GRAY
resembles the preceding in being a compound colour and liable to assume a grey cast by time, but differs from it in having more lilac in its hue, and being therefore of a warmer tone. Giving by itself a clear violet shadow, it may be rendered more neutral by a small portion of burnt Sienna, an admixture which, whether the gray or Sienna predominates, affords useful tints. Compounded with light red or Vandyke brown, the gray is good for shipping and sails, or the stems and branches of trees; while with gamboge or aureolin it is suited to glossy leaves in high light, also to very cold tones in foregrounds, herbage, &c. Yellow ochre, light red, and Payne's gray form a mixture for banks and roads; the ochre, gray, and sepia, a most beautiful tint for stones; and brown madder and the gray, a fine shade for the black head and feet of cattle. Alone, the gray is serviceable for slate; and compounded with light red, for bricks or tiles in shadow.
287. ULTRAMARINE ASH
is obtained from the stone after the richer and more intense blue has been extracted. Although not equal in beauty, and inferior in strength of colour to ultramarine, it is a valuable bye-product varying in shade from light to dark, and in hue from pale azure to cold blue. With a grey cast, it affords delicate and extremely tender tints, not so positive as ultramarine, but which, as water-colours, wash much better. It furnishes grays softer, purer, and more suited to the pearly tints of flesh, skies, distances, foliage, shadows of drapery, &c. than those composed of other blues, with white and black, which the old masters were wont to employ. Ultramarine, however, produces the same effects when broken with black and white, and is thus sometimes carried throughout the colouring of a picture. The ash, compounded with lamp black, gives a soft cold gray for dark louring clouds, or for twilight away from the sun's influence. Alone it is adapted to very remote hills or mountains, and with orient yellow or aureolin to distant foliage.
* * * * *
The native phosphate of iron, which has been already described in the tenth chapter under its name of Blue Ochre, might have been classed among the grays, being similar in colour to the deeper hues of ultramarine ashes. Powdered slate, slate clays, and several native earths, likewise rank with grays; but some of the earths we have tried are not durable, being apt to become brown by the oxidation of the iron they contain. It may be proper here to mention those other pigments, known as tints, which, being the result of the experience of accredited masters in their peculiar modes of practice, serve to facilitate the progress of their amateur pupils, while they are more or less eligible for artists. Such are Harding's and Macpherson's Tints, composed of pigments which associate cordially, and sold ready prepared in cakes and boxes for miniature and water painting.
Of the four grays in use—mineral gray, ultramarine ash, neutral tint, and Payne's gray—the two first are quite unchangeable, and the others sufficiently stable to be classed as permanent.
CHAPTER XX.
ON THE NEUTRAL, GREY.
Grey is the second and intermediate of the neutral colours, standing between white and black. True or normal grey is only obtainable by admixture of pure white with pure black, various proportions of which afford numerous tones of pure grey. In practice it may likewise be produced by a thin wash of black over white. The neutral grey differs from the semi-neutral gray in not being coloured by any primary, secondary, tertiary, or semi-neutral; hence any blue, purple, olive, or gray added to it, at once destroys the neutrality of grey, and converts it into gray. Thus easily defiled and changed in class, grey is rather a theoretical than a practical colour. To our knowledge, there has never been a true grey pigment, that is, one composed exclusively of pure white and pure black; the grays known to the palette as Mineral Grey and Payne's Grey having been incorrectly named. Practically, the nearest approach to a normal grey is furnished by Black Lead, which forms grey tints of greater permanence and purity than the blacks in general use, and is now employed for this purpose with approved satisfaction by experienced artists.
Being compounded of white and black, grey partakes in some measure of the qualities of both those colours—for colours, as a matter of convenience, they must be called; although white is often spoken of as no colour, and black as the complete extinction of all colour. With white predominant, grey is used, pure or coloured, for the general lights of a picture; just as, with black predominant, grey is employed, pure or coloured, for the shades. It helps to subdue the absolute white, and to make the absolute black conspicuous. Black and white are in some respects complementary to each other, and when in contact, appear to differ more from each other than when viewed separately: both show with best effect when harmonised by a medium of grey, normal or otherwise. The primary colours, also, gain in brilliancy and purity by the proximity of grey. With dark colours, such as blue and violet, and deep tones in general, grey forms assortments of analogous harmonies; while with the luminous colours, such as red, orange, yellow, and the light tints of green, it forms harmonies of contrast. Although grey never produces a bad effect in its assortments with two luminous colours, in most cases the association is dull and inferior to black and white. The only instance in which grey associates with two such colours more happily than white is that with red and orange. Grey is inferior to both white and black with red and green, red and yellow, orange and yellow, orange and green, yellow and green; and is not so good as white with yellow and blue. In association with sombre colours, such as blue and violet, and with broken tones of luminous colours, grey gives rise to harmonies of analogy which have not the vigour of those with white; but if the colours do not combine well together, it has the advantage of separating them from each other. Associated with two colours, one sombre, the other luminous, grey will perhaps be better than white, if white produces too strong a contrast of tone: on the other hand, grey will be preferable to black, if that has the inconvenience of increasing too much the proportion of sombre colours. Grey associates more happily than black with orange and violet, green and blue, or green and violet.
288. MIXED GREY.
When a ray of solar light (a sunbeam) is passed through a prism of flint glass, and the image or 'prismatic spectrum' received upon a screen of white paper, it is found to consist of numerous rays of different colours, which are conveniently divided into six groups—red, orange, yellow, green, blue, violet. Optically, the union of red, yellow, and blue, in proper proportions, constitutes white light; whether the rays of the three separate colours are mixed, or of one with the other two in combination: the same result ensues when red is mixed with green as if it were mixed with blue and yellow, because green is composed of blue and yellow. Consequently, any primary mixed with a secondary composed of the other two primaries, forms the complement of rays necessary to constitute or make up white light, and vice vers.
There is, however, a very great difference between the results arising from the mixture of the pure coloured rays of the spectrum, and those from material colours or pigments. When, by means of a convex lens, we reunite the coloured rays of the spectrum white light is reproduced; but when we mix coloured materials, blues, yellows, and reds, the compound is never white, but grey or black; even if these coloured pigments are taken in the exact proportions in which their colours exist in the spectrum. Ultramarine, our purest blue, reflects red rays as well as blue rays; aureolin, our purest yellow, reflects blue as well as yellow rays; and carmine reflects yellow as well as red rays. Now whenever the third primary colour is present in any mixture of coloured materials, it tends to form grey, by mixing with a sufficient quantity of the other coloured rays to neutralize it, and the presence of this grey breaks or tarnishes the pure colour. Hence it is that to obtain a pure green, a blue should be taken tinged with yellow rather than with red, and a yellow tinged with blue: if there were chosen either a blue or a yellow tinged with red, this latter colour would go to form some grey in the compound, which would tarnish the green. In like manner, to produce pure orange, neither the red nor the yellow must contain blue; and similarly with pure purple, neither the blue nor red should contain yellow.
As regards pigments, then, a proper mixture of yellow, red, and blue; or of yellow and purple, red and green, or blue and orange; or of orange, green, and purple, affords black if sufficiently intense, and grey if sufficiently diluted. The black may be rendered grey by spreading a thin wash over a white ground, or by the direct addition of white. It must be remembered, however, that suitable proportions of the component colours are essential. When all three of the primaries, for example, are mixed together, colour is neutralised according as they are compounded of equal strength and in right quantities: if proper proportions are observed, pure black or normal grey results; but if not, there will be produced a coloured black or a coloured grey, an excess of one or two of the primaries giving rise to brown, marrone, or gray.
A reference to the lists of permanent primary and secondary pigments will show to what extent durable greys can be compounded. As these pigments differ so widely in hue and other properties, no fixed rules can be given for their admixture: to ensure neutrality, practice and a correct eye are indispensable. Without perfect neutrality, difficult to attain and rarely to be met with, grey ceases to exist. In pure white, pure grey, and pure black, colour is, so to speak, conspicuous by its absence.
CHAPTER XXI.
ON THE NEUTRAL, BLACK.
Black is the last and lowest in the series or scale of colours descending—the opposite extreme from white—the maximum of colour. To be perfect, it must be neutral with respect to colours individually, and absolutely transparent, or destitute of reflective power as regards light; its use in painting being to represent shade or depths, of which black is the element in a picture and in colours, as white is of light.
As there is no perfectly pure and transparent black pigment, black deteriorates all colours in deepening them, as it does warm colours by partially neutralizing them, but it combines less injuriously with cold colours. Though black is the antagonist of white, yet added to it in minute portion, it in general renders white more neutral, solid, and local, with less of the character of light. Impure black is brown, but black in its purity is a cold colour, and communicates a coolness to all light colours; thus it blues white, greens yellow, purples red, and cools blue. Hence the artist errs with ill effect who regards black as of nearest affinity to hot and brown colours, and will do well to keep in mind—"The glow of sunshine and the cool of shade."
It is a fault of even some of our best colourists, as evinced by their pictures, to be too fond of black upon their palettes, and thence to infuse it needlessly into their tints and colours. With such it is a taste acquired from the study of old pictures; but in nature hardly any object above ground is black, or in daylight is rendered neutral thereby. Black, therefore, should be reserved for a local colour, or employed only in the under-painting properly called grounding and dead colouring. As a local colour, black has the effect of connecting or amassing surrounding objects, and is the most retiring of all colours, a property which it communicates to other colours in mixture. It heightens the effect of warm as well as light colours, by a double contrast when opposed to them, and in like manner subdues that of cold and deep colours. In mixture or glazing, however, these effects are reversed, by reason of the predominance of cold colour in the constitution of black. Having, therefore, the double office of colour and of shade, black is perhaps the most important of all colours to the artist, both as to its use and avoidance.
It may be laid down as a rule that the black must be conspicuous. However small a point of black may be, it ought to catch the eye, otherwise the work is too heavy in the shadow. All the ordinary shadows should be of some colour—never black, nor approaching black, they should be evidently and always of a luminous nature, and the black should look strange among them; never occurring except in a black object, or in small points indicative of intense shade in the very centre of masses of shadow. Shadows of absolutely negative grey, however, may be beautifully used with white, or with gold; but still though the black thus, in subdued strength, becomes spacious, it should always be conspicuous: the spectator should notice this grey neutrality with some wonder, and enjoy, all the more intensely on account of it, the gold colour and the white which it relieves. Of all the great colourists, Velasquez is the greatest master of the black chords: his black is more precious than other people's crimson. Yet it is not simply black and white that must be made valuable, rare worth must be given to each colour employed; but the white and black ought to separate themselves quaintly from the rest, while the other colours should be continually passing one into the other, being all plainly companions in the same gay world; while the white, black, and neutral grey should stand monkishly aloof in the midst of them. Crimson may be melted into purple, purple into blue, and blue into green, but none of them must be melted into black.
All colours are comprehended in the synthesis of black, consequently the whole sedative power of colour is comprised in black. It is the same in the synthesis of white; and, with like relative consequence, white includes all the stimulating powers of colour in painting. It follows that a little white or black is equivalent to much colour, and hence their use as colours requires judgment and caution. By due attention to the synthesis of black, it may be rendered a harmonizing medium to all colours, to all which it lends brilliancy by its sedative effect on the eye, and its powers of contrast: nevertheless, we repeat, it must be introduced with caution when hue is of greater importance than shade. Even when employed as a shadow, without much judgment in its use, black is apt to appear as local colour rather than as privation of light; and black pigments obtained by charring have a tendency to rise and predominate over other hues, subduing the more delicate tints by their chemical bleaching power upon other colours, and their own disposition to turn brown or dusky. For these reasons deep and transparent colours, which have darkness in their constitution, are better adapted as a rule for producing the true natural and permanent effects of shade. Many pictures of the early masters, and especially of the Roman and Florentine schools, evince the truth of our remarks; and it is to be feared the high reputation of these works has betrayed their admirers into this defective employment of black.
Black substances reflect a small quantity of white light, which receives the complementary of the colour contiguous to the black. By 'complementary' is meant that colour which is required with another colour to form white light; thus, green is the complementary of red, blue of orange, and yellow of violet, or vice vers; because green and red, blue and orange, and yellow and violet, each make up the full complement of rays necessary to form white light. Briefly digressing, we give the following mode of observing complementary colours:—Place a sheet of white paper on a table opposite to one of two windows admitting diffused daylight[C] into a room; take a piece of coloured glass and so place it that the coloured light transmitted through it falls over the surface of the paper; then put an opaque object on the paper close to the coloured glass. The shadow of this object will not appear black or of the colour of the glass, as might be supposed, but of its complementary colour; thus if the glass is red, the colour of the shadow will be green, although the whole of the paper surrounding it appears red. Similarly, if the glass is blue, the shadow will appear orange; if it is green, the shadow will appear red; and so with other colours. It is absolutely essential, however, to the success of this experiment, that the paper be also illuminated with the white light admitted from the other window.
It has been said that black substances reflect a small quantity of white light, which receives the complementary of the colour contiguous to the black. If this colour is deep, it gives rise to a luminous complementary, such as orange, or yellow, and enfeebles the black; while the other complementaries, such as violet or green, strengthen and purify it. In colours associated with black, if green is juxtaposed therewith, its complementary red, added to the black, makes it seem rusty. Those colours which best associate with black are orange, yellow, blue, and violet. It would be well to remember that black, being always deeper than the juxtaposed colour, entails contrast of tone, and tends to lower the tone of that colour.
Most of the black pigments in use are obtained by charring, and owe their colour to the carbon they contain. As the objects of vegetal and animal nature may be blackened through every degree of impurity by the action of fire, black substances more or less fitted for pigments abound. The following are the chief native and artificial black pigments, or colours available as such:—
289. BLACK LEAD,
Plumbago, or Graphite, contains in spite of its name no lead, being simply a species of carbon or charcoal. In most specimens iron is present, varying in quantity from a mere trace up to five per cent, together with silica and alumina. Sometimes manganese and titanic acid are likewise found. It is curious that carbon should occur in two distinct and very dissimilar forms—as diamond, and as graphite; one, white, hard, and transparent; the other, black, soft, and opaque: the artist, therefore, who uses a pigment of plumbago, paints with nothing more or less than a black diamond. The best graphite, the finest and most valuable for pencils, is yielded by the mine of Borrowdale, at the west end of Derwent Lake, in Cumberland, where it was first wrought during the reign of Elizabeth. A kind of irregular vein traverses the ancient slate-beds of that district, furnishing the carbon of an iron-grey colour, metallic lustre, and soft and greasy to the touch. Universally employed in the form of crayons, &c. in sketching, designing, and drawing, until of late years it was not acknowledged as a pigment: yet its powers in this respect claim a place for it. As a water-colour, levigated in gum in the usual manner, it may be effectively used with rapidity and freedom in the shading and finishing of pencil drawings, or as a substitute therein for Indian ink. Even in oil it may be employed occasionally, as it possesses remarkably the property of covering, forms very pure grey, dries quickly, injures no colour chemically, and endures for ever. These qualities render it the most eligible black for adding to white in minute quantity to preserve the neutrality of its tint.
Although plumbago has usurped the name of Black Lead, there is another substance more properly entitled to this appellation, and which may be used in the same way, and with like effects as a pigment. This substance is the sulphide of lead, found native in the beautiful lead ore, or Galena, of Derbyshire. An artificial sulphide can be prepared by dry and wet processes, which is subject to gradual oxidation on exposure to the air, and consequent conversion into grey or white. Neither variety can be compared to graphite for permanence, although the native is preferable to the artificial.
Plumbago, or the so-called Black Lead, is often adulterated to an enormous extent with lamp black.
290. BLUE BLACK,
Charcoal, Liege, or Vine Black, is a well-burnt and levigated charcoal prepared from vine twigs, of weaker body than ivory or lamp black, and consequently better suited to the grays and general mixed tints of landscape painting, in which it is not so likely to look black and sooty as the others may do. Of a cool neutral tint, it has, in common with all carbonaceous blacks, a preserving influence on white when duly mixed therewith; which it owes, chemically, to the bleaching power of carbon, and, chromatically, to the neutralizing and contrasting power of black with white. Compounded slightly with blue black, and washed over with zinc white, white lead may be exposed to any ordinary impure atmosphere with comparative impunity. It would be well for art if carbon had a like power upon the colour of oils, but of this it is deficient; and although chlorine destroys their colour temporarily, they re-acquire it at no very distant period.
Alone, blue black is useful as a cool shade for white draperies; and compounded with cobalt, affords a good gray for louring clouds.
291. BRITISH INK
is a compound black, preferred by some artists to Indian ink, on account of its not being liable to wash streaky, as the latter does: at the same time it is not so perfectly fixed on the paper as Indian ink.
292. INDIAN INK,
sometimes called China or Chinese Ink, is chiefly brought from China in oblong cakes, of a musky scent, ready prepared for painting in water. Varying considerably in body and colour, the best has a shining black fracture, is finely compact, and homogeneous when rubbed with water, in which, when largely diluted, it yields no precipitate. Without the least appearance of particles, its dry surface is covered with a pellicle of a metallic appearance. When dry on the paper, it resists the action of water, yet it will give way at once to that action, when it has been used and dried on marble or ivory, a fact which proves that the alummed paper forms a strong combination with the ink; possibly a compound of the latter on an aluminous base, might even be employed in oil. Different accounts are given of the mode of making this ink, the principal substance or colouring matter of which is a smoke black, having all the properties of our lamp black; the variety of its hues and texture seeming wholly to depend on the degree of burning and levigating it receives. From certain Chinese documents, we learn that the ink of Nan-king is the most esteemed; and among the many sorts imported into this country, we find those of the best quality are prepared with lamp black of the oil of Sesame; with which are combined camphor, and the juice of a plant named Houng hoa to give it brightness of tone. According to an analysis by M. Proust, the better kinds contain about two per cent. of camphor. By some, the pigment known as Sepia has been supposed to enter into their composition.
Liquid Indian Ink is a solution for architects, surveyors, &c.
293. IVORY BLACK
is ivory charred to blackness by strong heat in closed vessels. Differing chiefly through want of care or skill in preparing, when well made it is the richest and most transparent of all the blacks, a fine neutral colour perfectly durable and eligible both in water and oil. When insufficiently burnt, however, it is brown, and dries badly; or if too much burnt, it becomes cineritious, opaque, and faint in hue. With a slight tendency to brown in its pale washes, this full, silky black is serviceable where the sooty density of lamp black would be out of place. It is occasionally adulterated with bone black, a cheaper and inferior product.
Being nothing more nor less than animal charcoal, ivory or bone black had best not be compounded with organic pigments, in water at least. It is well known that this charcoal possesses the singular property of completely absorbing the colour of almost any vegetal or animal solution, and of rendering quite limpid and colourless the water charged with it. If a solution of indigo in concentrated sulphuric acid be diluted with water, and animal charcoal added in sufficient quantity, the solution will soon be deprived of colour. The more perfect the ivory or bone black, the more powerful is its action likely to be: either over or under calcined, animal charcoal is less energetic; in the former case, because it is less porous; in the latter, because the animal matter, not being wholly consumed, makes a kind of varnish in the charcoal which interferes with its acting. To a greater or less extent, gums, oils, and varnishes serve similarly as preventives, thereby decreasing the danger of employing these blacks in admixture; but, in the compounding of colours, nothing is gained by needless risk. To mix with organic pigments, therefore, blue or lamp blacks should be substituted for those of ivory or bone; that is, vegetal charcoal should be used instead of animal. It is a question whether even with inorganic pigments the adoption of the former in admixture would not be advisable. It was once the general opinion that the action of animal charcoal was limited to bodies of organic origin, but it has since been found that inorganic matters are likewise influenced. "Through its agency," says Graham, "even the iodine is separated from iodide of potassium;" whence probably pigments containing iodine would suffer by contact. The investigation of Weppen appears to prove that the action of the charcoal extends to all metallic salts; with the following, no doubt remains of this being so, to wit:—the sulphates of copper, zinc, chromium, and protoxide of iron; the nitrates of lead, nickel, silver, cobalt, suboxide and oxide of mercury; the protochlorides of tin and mercury; the acetates of lead and sesquioxide of iron; and the tartrate of antimony. Whether animal charcoal exercises any deleterious influence on pigments consisting of these metals, and, if so, how far and under what circumstances, can only be answered when our knowledge of the properties of pigments is greater than it now is. At present, perhaps, it is safer to choose vegetal charcoal for mixed tints, inasmuch as, although it shares the property of bleaching in a certain degree, it does not possess the same energy.
294. LAMP BLACK,
or Lamblack, is a smoke black, being the soot procured by the burning of resins or resinous woods. It is a pure vegetal charcoal of fine texture, not quite so intense nor so transparent as the black made from ivory, but less brown in its pale tones. It has a very strong body that covers readily every underlay of colour, works well, but dries badly in oil. On emergency, it may be prepared extemporaneously for water-painting by holding a plate over the flame of a lamp or candle, and adding gum to the colour: the nearer the plate is held to the wick of the lamp, the more abundant and warm will be the hue of the black obtained; at a greater distance it will be more effectually charred, and blacker.
Mixed with French blue or cobalt, lamp black gives good cloudy grays, which are useful for the shadows of heavy storm clouds. With French blue and this black alone various beautiful stormy skies may be represented; the contrast of the blue causing the black to assume, if desired, a warm tone in shadows. For like purposes, the black with ultramarine ash affords a very soft hue, and with light red and cobalt in different proportions yields silvery tones most serviceable. To the dark marking of murky and dirty clouds, a compound of lamp black and light red is particularly suited; while a mixture of the black with cobalt and purple madder is adapted for slate-coloured sunset and sunrise clouds. French blue softened with a little lamp black is fitted for mountains or hills, very remote; and the same blue and black with rose madder meet their tints if nearer. In seas the black is useful with raw Sienna and other colours; while, whether in storm or calm, vessels and boats may be painted with tints of lamp black, madder brown, and burnt Sienna, varying in degrees of strength according to the distances. Lamp black alone, or with French blue, cobalt and purple madder, emerald green, or rose madder, is good for rocks; and for dark foreground objects when mixed with madder lake and burnt Sienna. With aureolin the black furnishes a sober olive for foliage, and with rose madder a fine colour for the stems and branches of trees. Compounded with light red, it is suited to the first general tones of the ground for banks and roads; and with yellow ochre or madder red, to parts of buildings and cattle. A very eminent miniature painter recommends for hair tints, lamp black, Indian red, and burnt Sienna. Being a dense solid colour, this black must be used sparingly to avoid heaviness.
Hitherto confined to painting and engraving, lamp black has lately refuted the assertion that there is nothing new under the sun by making its appearance in photography. By a method which combines the fidelity of that art with the permanence of prints, there is produced a species of photographic engraving, so to speak, having lamp black or carbon for its colouring matter. Indeed, in this 'Autotype' process, as it is called, any other durable pigment or pigments may be used, and a photographic picture thus obtained. In copying the works of artists, especially, the mode promises to be of value, inasmuch as by its agency the same pigments may be made the colouring matter of the reproduction as are employed in the original. If this be in sepia or bistre, the copy can be autotyped in those colours; or if a red chalk drawing be required to be multiplied, the proofs may be in red chalk, the copy when produced to the same scale being scarcely distinguishable from the original. In like manner, any single colour of the artist's palette is applicable without restriction or limitation, so that not only are every line and touch rendered absolutely, but the very pigment used in the original is found in the copy. Moreover, as the pigments are quite unchanged by the action of the other agents employed, the resulting colour of the print is determined once for all, just as the artist mixes those pigments on his palette for his picture. As extending the use of lamp black and permanent pigments in general, this brief digression on Autotypography may be pardoned in a treatise on colours.
295. MIXED BLACK.
Black is to be considered as a synthesis of the three primary colours, the three secondaries, or the three tertiaries, or of all these together; and, consequently, also of the three semi-neutrals, and may thus be composed of due proportions of either tribe or triad. All antagonistic colours, or contrasts, likewise afford the neutral black by composition; but in all the modes of producing black by compounding colours, blue is to be regarded as its archeus or predominating colour, and yellow as subordinate to red, in the proportions, when their hues are true, of eight blue, five red, and three yellow. It is owing to this predominance of blue in the constitution of black, that it contributes by mixture to the pureness of hue in white colours, which usually incline to warmth, and that it produces the cool effect of blueness in glazing and tints, or however otherwise diluted or dilated. It accords with the principle here inculcated that in glass-founding the oxide of manganese, which gives the red hue, and that of cobalt, which furnishes the blue, are added to brown or yellow frit, to obtain a velvety black glass. Similarly the dyer proceeds to dye black upon a deep blue basis of indigo, with the ruddy colour of madder and the yellow of quercitron, &c.
Some of the best blacks and neutrals of the painter are those formed with colours of sufficient power and transparency upon the palette. Prussian blue and burnt lake afford a powerful though not very durable black; and compound blacks in which transparent pigments are employed will generally go deeper and harmonize better with other colours than any original black pigment alone. Hence lakes and deep blues, added to the common blacks, greatly increase their clearness and intensity: in mixture and glazing of the fine blacks of some old pictures, ultramarine has evidently been used. In this view, black altogether compounded of blue with red and yellow, each deep and transparent, and duly subordinated according to its powers, will give the most powerful and transparent blacks; although, like most other blacks, they dry badly in oil. Of course, as with all compound colours, it depends entirely on the pigments employed whether these mixed blacks are permanent or not: a compound black can very well pass through the stages of black to grey, gray, or dirty white, if each link in the chain of combination be not as strong as its fellows.
* * * * *
296. Black Chalk
is an indurated clay, of the texture of white chalk, and chiefly used for cutting into crayons. Fine specimens have been found near Bantry in Ireland, and in Wales, but the Italian has the most reputation. Crayons for sketching and drawing are also artificially prepared, which are deeper in colour and free from grit. Wood charcoal is likewise cut into crayons, that of soft woods, such as lime, poplar, &c., being best adapted for the purpose.
297. Black Ochre,
Earth Black, or Prussian Black, is a native earth, combined with iron and alluvial clay. It is found in most countries, and should be washed and exposed to the atmosphere before being employed. Sea-coal, and other black mineral substances, have been and may be used as substitutes for the more perfect blacks, when the latter are not procurable, which now seldom or never happens.
298. Bone Black,
obtained by charring, is similar to that of ivory, except that it is a little warmer in tone, having a reddish or orange tinge, and is a worse drier in oil. Like ivory black, it is very transparent. Immense quantities of bone black are consumed with sulphuric acid in the manufacture of shoe blacking.
299. Coffee Black,
though little known and not on sale, has been strongly recommended by Bouvier as one of the best blacks that can be used. Soft without being greasy, light, almost impalpable, even before being ground, it gives tints of a very bluish gray when mixed with white, a quality precious for making the blues of the sketch, and dull greens. It is said to dry better than blue or vine black, and to combine admirably with other colours. De Montabert prefers calling it Coffee Brown, giving it as an exemplification of a bluish-brown, but probably this brown hue is owing to want of skill in its manufacture. We have not had personal experience of the colour, but there is no theoretical reason why a carbonaceous black should not be produced from coffee. The mode of proceeding is to calcine the berry in a covered vessel, and well wash the resulting charcoal with boiling water by decantation. In order to prevent the powder, which is of great lightness, from floating, it is made into paste with a few drops of alcohol before adding the water.
300. Frankfort Black
is said to be made of the lees of wine from which the tartar has been washed, by burning, in the manner of ivory black; although the inferior sort is merely the levigated charcoal of woods, of which the hardest, such as box and ebony, yield the best. Fine Frankfort black, though almost confined to copper-plate printing, is one of the best black pigments extant, being of a neutral colour, next in intensity to lamp black, and more powerful than that of ivory. Strong light has the effect of deepening its colour. It is probable that this was the black used by some of the Flemish painters, and that the pureness of the greys formed therewith is due to the property of charred substances of preventing discolourment.
301. Manganese Black,
the common black oxide of that metal, is the best of all blacks for drying in oil without addition. It is also a colour of vast body and tingeing power. As a siccative, it might be advantageously employed with ivory black.
302. Mineral Black
is a native impure carbon of soft texture, found in Devonshire. Blacker than plumbago, and free from its metallic lustre, it is of a neutral colour, greyer and more opaque than ivory black, and forms pure neutral tints. Being perfectly durable, and drying well in oil, it is of value in dead colouring on account of its solid body, as a preparation for black and deep colours before glazing. It would likewise be the most permanent and best possible black for frescoes.
303. Paper Black,
a pigment unknown to the modern palette, like most of our numbered italicised colours, is of the nature of blue or vine black. Very soft and of a fine bluish-gray, it is fitted for flesh, or for mixing with whites or yellows in landscapes.
304. Peach Black,
or Almond Black, made by burning the stones of fruits, the shell of the cocoa-nut, &c., is a violet-black, once much used by Parisian artists. Bouvier believes it to be a good black, but at the same time sensibly asks, of what use is it to have a black of this cast, which can always be given by lake, without diminishing but rather increasing the intensity of the black it may be mixed with.
305. Prussian Black.
The same Prussian blue which gives a brown when burnt in the open air, yields a black when calcined in a close crucible. Very intense, very soft and velvety, and very agreeable to work, this bluish-black dries much more promptly than most other blacks, and scarcely requires grinding. On account of its extreme division, however, it would probably be found more energetic as a decolourising agent in admixture with organic pigments than most carbonaceous blacks.
Another Prussian black, containing copper, and made by a wet process, is obtained when a dilute solution of cupric sulphate and ferrous sulphate, in proper proportions, is mixed with a quantity of ferrocyanide of potassium not in excess. A very bulky deep black precipitate is formed, which is difficult to wash, and is deep black when dry. It is insoluble in water, and appears to be a compound analogous to Prussian blue. As a pigment, this black is inferior to the preceding.
306. Purple Black
is, or rather was, a preparation of madder, of a deep purple hue approaching black. Powerful and very transparent, it glazed and dried well in oil, and was a durable and eligible pigment. Its tints with white lead were of a purple cast.
307. Spanish Black,
or Cork Black, is a soft black, obtained by charring cork, and differs not essentially from Frankfort black, except in being of a lighter and softer texture. "Some of my friends," says Bouvier, "call it Beggars' Ultramarine, because it produces, by combinations, tints almost as fine as ultramarine." A blue but not a velvet black, where intensity is required some other is to be preferred. For mixtures, however, it is stated to be admirable, and especially for linen, skies, distances, and the various broken tints of carnations, &c.
* * * * *
Besides those blacks which have been mentioned, there are others furnished by several of the metals and by many organic substances employed as dyes; but as the blacks in common use are all permanent, and have been found sufficient for every purpose, it is scarce needful to swell the list. Nor is it more needful, the Editor considers, to swell the book; lest his aim be defeated of reflecting in a moderate-sized mirror the palette as it is and might be at the present day. Arrived at age, as it were, in its twenty-first chapter, this treatise may fitly conclude with Black, the last of the series of colours. Let us hope the maxim of Sir Joshua Reynolds, that success in some degree was never denied to earnest work may apply here.
Still, by way of finale, we would offer a few remarks. In no branch of the science, perhaps, is it more hazardous to commit oneself to a positive dictum than in the chemistry of colours, so liable are theory and practice to clash, and so often does the experience of one person or one time differ from that of another. He who has turned his attention to pigments, finds nearly every assertion must be qualified, for to nearly every rule there is some exception, and learns that theory alone may mislead. For example, a colour known to be fugacious may last, in certain cases, a surprisingly long time; while, on the contrary, a pigment permanent when used alone, may be rendered fugitive by improper compounding. Again, what holds good of a colour produced by one process, or employed in one vehicle or by one artist, may not be true of the same colour made by a different mode, or used in another vehicle or by another artist. It is because, then, colours are of every degree of durability, from the perfectly stable to the utterly fugitive, and because each one is liable to influence by every condition of time, place, and circumstance, that the chemist's theory is opposed as often to the painter's practice as the experience of artists themselves varies. This may explain the charges of inconsistency and contradiction which have been brought against writers on pigments, faults that lie rather with the nature of the subject than with the authors.
Even at the risk of being tiresome, we have throughout insisted on the choice of permanent pigments, not simply for use alone but for mixed tints. To quote Cennini, "I give you this advice, that you endeavour always to use ... good colours.... And if you say that a poor person cannot afford the expense, I answer, that if you work well (and give sufficient time to your works), and paint with good colours, you will acquire so much fame that from a poor person you will become a rich one; and your name will stand so high for using good colours, that if some masters receive a ducat for painting one figure, you will certainly be offered two, and your wishes will be fulfilled, according to the old proverb, 'good work, good pay.'" Of a truth, if man cannot dip his brush in the rainbow and paint with the aerial colours of the skies, he can at least select the best pigments that earth and the sea afford him; preferring, where he cannot get brilliancy and permanence combined, sobriety and permanence to brilliancy and fugacity. It must be the wish of every real artist to leave behind him a lasting record of his skill, a permanent panorama of those hues of nature which in life he loved so well. To effect this, genius alone is powerless: there must be first a proper choice of materials, and next a proper use of them. The painter's pigments are the bricks wherewith the mortar of his mind must be mixed, either to erect an edifice that shall endure for ages, or one which will quickly topple over like a house of cards. Now in nothing more than in painting is prevention better than cure—indeed cure may be said to be here out of the question: for good or for evil a picture once painted is painted for ever. Without a strong constitution there is no hope for it; no chemistry can strengthen the sickly frame, restore the faded colour, stop the ravages of consumption: Science stands helpless before dying Art.
And yet, she sighs to think, it might have been otherwise. If durable pigments had been employed, if her counsel had been sought, this need not have been. In the history of modern art the use and abuse of colours would furnish a sad chapter, telling of gross ignorance, and a grosser indifference. Happily there is promise of a healthier state of things. When this comes, Art will be less shy to consult her sister: in the interests of both there should be closer union. Without waiting till the picture is finished—for then it will be too late—let her, if in doubt, frankly display the contents of her palette and ask advice. Now, not knowing what pigments are chosen or how they are used, never standing by and watching the progress of the work, how can Science lend her aid? She would willingly, for she herself needs help: at present her knowledge is limited, not so much of the chemistry of colours as of the properties of pigments. She seeks to mix her pound of theory with an ounce of practice, and craves a warmer welcome to the studio. For any approximation to the truth to be arrived at, facts must be noted with the conditions under which they occur, not by one sister alone nor by the other alone, but by both. In future, Art and Science should go hand in hand, mutually dependent on each other, mutually trustful of each other, working with and for each other, earnestly and patiently.
FOOTNOTES:
[C] Light is either direct or diffused—direct, when the sun's rays fall upon any object; diffused, when ordinary daylight illumines objects with white light, causing them to appear of their peculiar colours.
ADDENDUM.
With the present rapid progress of applied chemistry, an addendum in a work of this kind is quite excusable. Even while the book is being printed some fact may be announced which the author or editor would wish to insert. In our case this has happened. Very recently there has been introduced in France as a pigment
308. TUNGSTEN WHITE,
or Tungstate of Baryta. "At the request of a landscape painter," says M. Sacc in a letter to M. Dumas, "I was induced to examine in succession all our insoluble white compounds, with regard to their adaptability to painting purposes. Tungstate of baryta answers perfectly, covers as well as white lead, and is as unalterable as zinc white. It has been employed by this artist for three months, and was found equally successful in oil or water colours, chromolithography, and even in making white impressions on a black ground. This harmless substitute for the injurious white lead is prepared on a large scale in Paris by M. E. Rousseau." We have not met with a sample of that gentleman's manufacture, but judging from our own specimens, made both by wet and dry processes, and carefully tried in water and oil, it would seem that a perfect white pigment has yet to be discovered. With us, at least, tungstate of baryta is far from having the body of white lead, and indeed is inferior in opacity to good zinc white. Unaffected by foul air, the tungstate appears to possess the common fault of all whites when compared with white lead—want of body, moreover it is a bad dryer. However, M. Rousseau's preparation may not be open to these objections, and we therefore reserve our final opinion of tungsten white. It is intended to publish from time to time a fresh edition of Field's Chromatography, and we hope in the next issue to give a more detailed and favourable account of the new pigment.
INDEX.
A.
Acacia catechu, 354.
Academy, Royal, at Burlington House, 365.
Acetate of lead, as a siccative, 51. " improper use of, 52.
Adulteration, 70. " of Anotta, 256. " Artificial Ultramarine, 214. " Black Lead, 394. " Cadmium Yellow, 88. " Carmine, 134. " Chrome Yellow, 94. " Cochineal, 132. " Genuine Ultramarine, 214. " Indigo, 202. " Ivory Black, 397. " Madder, 140. " Madder Carmine, 142. " Mars Yellow, 102. " Prussian Blue, 203. " Red Lead, 152. " Smalt, 198. " Verdigris, 276. " Vermilion, 156. " Veronese Green, 268. " White Lead, 70, 74, 75. " Yellow and Orange Orpiment, 113, 259. " Zinc White, 77.
Advancing and retiring colours, 186-188.
Advice, Cennini's, 411.
Aerial perspective, 22.
African cochineal, 170. " green, 271.
Air and light, action of, on pigments, 39.
Air effect, want of, 378.
Albumen, 50.
Alchemy, 259.
Alexander the Great, 296. " Veronese, 284.
Alkanet, 302.
Almagra, 147.
Almond Black, 407.
American artist, an, 347.
Analysis of Brown, 377. " Citrine, 329. " Gray, 377. " Marrone, 377. " Olive, 330. " Russet, 330.
Anchusa tinctoria, 302.
Ancients, colouring of the, 3. " colours of the, 5, 6, 218.
Aniline, 162. " colours, 162. " " cakes of, 163. " " in oil, 247.
Animal thiops, 348. " charcoal, 397-399. " jelly, 50.
Anotta, 255.
Antimony, Golden Sulphur of, 256. " Orange, 256. " Red, 159. " White, 79. " Yellow, 105.
Antipathies of pigments, 193.
Antwerp Blue, 207. " Brown, 339.
Apelles, 7, 293.
Archil, 303. " Purple, 303.
Arethas, 217.
Armenian blue, 5, 217, 228. " bole, 147. " stone, 228.
Arsenical pigments, 273.
Arsenic green, substitutes for, 288, 290. " white, 79. " yellow, 116.
Art and Science, 238, 412.
Artificial Ultramarine, 209-216. " acid pigments with, 214. " adulteration of, 215. " green in, 211. " gum with, 214.
Artificial Ultramarine, in siliceous painting, 212. " origin of, 209. " prize for, 209. " test for, 212.
Artists and painters, 182.
Arts, Society of, 130.
Ash, Ultramarine, 379.
Ashes, Blue, 228.
Asphaltic Lake, the, 337.
Asphaltum and Asphalt, 337. " Liquid, 339.
Association of Science, British, 357.
Assyrians, colouring and colours of, 6.
Augustus Csar, 295.
Aureolin, 42, 47, 83-87. " Chemical News on, 84. " in admixture, 86. " Mr. Aaron Penley on, 85. " the purest yellow, 84, 384.
Aurine, 162.
Autotype process, the, 401.
Avignon, berries of, 312.
Axiom, a wholesome, 201.
Axioms for compounding, 250.
Azuline, 162.
Azure, 192, 196, 217.
B.
Barff, Mr., 212.
Barium and Bismuth chrome greens, 280.
Barthe and Laurent, MM., 235.
Bartholomew, Mr., 143.
Baryta, Ferrate of, 165. " Silicate of, 290.
Barytic White, 65.
Beauty in Pigments, 46.
Beeswax, 50.
Berries, French, Persian, and Turkey, 212.
Berzelius, 169.
Bice, Green, 187.
Bignonia chica, 367.
Bismuth Purple, 304.
Bixa Orellana, 255.
Bixine, 256.
Black, 27. " ancient, 5. " as a colour, 387, 391. " as a pigment, 389. " colours with, 392. " on the Neutral, 387.
BLACK PIGMENTS:— Almond Black, 407. Beggars' Ultramarine, 409. Black Chalk, 404. Black Lead, 382, 393. Black Ochre, 404. Blue Black, 394. Bone Black, 405. British Ink, 395. Charcoal Black, 394. Chinese Ink, 395. Coffee Black, 405. Copper Prussian Black, 408. Cork Black, 409. Earth Black, 404. Frankfort Black, 406. Galena, 394. Graphite, 393. Indian Ink, 395. Ivory Black, 397. Lamp Black, 399. Liege Black, 394. Manganese Black, 406. Mineral Black, 407. Mixed Black, 402. Paper Black, 407. Peach Black, 407. Plumbago, 393. Prussian Black, 404, 408. Purple Black, 408. Spanish Black, 409. Vine Black, 394.
Bladder Green, 282.
Blanc d'Argent, 71.
Blending of pigments, 37.
Blood, Dragon's, 137.
Bloodstone, 147.
Blue, 28. " ancient, 5, 217. " Armenian, 5, 217. " as a colour, 183. " contrast of, 185, 188. " discordant, 185. " on the Primary, 183.
BLUE PIGMENTS:— Antwerp Blue, 207. Artificial Ultramarines, 209-216. Azure, 192, 217. Basic Prussian Blue, 207. Berlin Blue, 203, 207. Bice, 228. Bleu de Garance, 209. Blue Ashes, 228. Blue Bice, 228. Blue Carmine, 228. Blue Ochre, 226, 380. Blue Sand, 196. Blue Verditer, 228. Brilliant Ultramarine, 215. Cerulian Blue, or Coeruleum, 190. Cobalt Blue, 192. Cobalt Blues, 189-199. Cobalt Prussian Blue, 227. Cobalt Ultramarine, 192. Colin, 190. Copper Blues, 227-230. Cotton Seed Blue, 230. Cyanine, 198. Dumont's Blue, 196. Dutch Ultramarine, 189. Enamel Blue, 189. Egyptian Blue, 229. Factitious Ultramarine, 215. Ferricyanide of Iron, 208. Ferrocyanide of Iron, 203. French Blue, 215. French Ultramarine, 215. Genuine Ultramarine, 216-225. Gmelin's German Ultramarine, 209. Gold Blue, 231. Guimet's Ultramarine, 209. Haerlem Blue, 207. Hungary Blue, 189. Indian Blue, 199. Indicum, 199. Indigo, 199. Intense Blue, 202. Iodine Blue, 231. Iridium Blue, 232. Iris, 228. Lazuline, 217. Lazulite Blue, 217. Lazurstein, 217. Leitch's Blue, 199. Leithner's Blue, 189. Manganese Blue, 232. Mineral Blue, 207. Mountain Blue, 228. Native Prussian Blue, 207. Native Ultramarine, 216. Natural Ultramarine, 216. New Blue, 216. Outremer, 217. Outremer de Guimet, 209. Paris Blue, 192, 203. Permanent Blue, 216. Platinum Blue, 233. Powder Blue, 196. Prussian Blue, 203. Prussiate of Iron, 203. Pure Ultramarine, 217. Real Ultramarine, 216. Reboulleau's Blue, 230. Royal Blue, 196. Saunders' Blue, 230. Saxon Blue, 189. Schweinfurt Blue, 230. Smalt, 195-198. Terre Bleu, 228. Thnard's Blue, 192. True Ultramarine, 216. Tungsten Blue, 233. Turnbull's Blue, 208. Ultramarines, 209-225. Verditer, 228. Vienna Blue, 192. Wood-Tar Blue, 233. Zaffre, 189. Zinc-Cobalt Blue, 235.
Body White, 72.
Bole, Armenian, 147.
Borrowdale, 393.
Bouvier, 153, 345, 347, 355, 405, 407, 409.
Box, the painter's, 60.
Bradley, Mr., 246.
British School, 9.
Broken colours, 16.
Bronze, 279.
Brown, 28. " analysis of, 377. " as a colour, 335. " Citrine, 317. " contrast of, 337. " Liquid, Prout's, 345. " Madder, 305. " Mars, 313. " on the Semi-Neutral, 334.
BROWN PIGMENTS:— Animal thiops, 348. Antwerp Brown, 339. Asphaltum or Asphalt, 337. Bistre, 340. Bitumen, 339. Bitumen of Judea, 337. Bone Brown, 340. Burnt Umber, 341. Cadmium Brown, 353. Caledonian Brown, 341. Campania Brown, 352. Cappah Brown, 342. Cassel Earth, 343. Castle Earth, 343. Catechu Browns, 374. Chalon's Brown, 344. Chestnut Brown, 357. Chrome Browns, 355. Cologne Earth, 344. Copper Brown, 355. Cory's Madder or Yellow Madder, 353. Cullen's Earth, 344. Egyptian Brown, 347. Euchrome, 342. French Prussian Brown, 355. Gambogiate of Iron, 357. Hypocastanum, 357. Iron Browns, 357. Ivory Brown, 340. Jew's Pitch, 337. Leitch's Brown, 346. Manganese Brown, 358. Mineral Brown, 342. Mineral Pitch, 337. Mixed Brown, 346. Mummy, 347. Mummy Brown, 347. Nickel Brown, 358. Ochre Browns, 358. Prussian Brown, 348. Purple Brown, 359. Roman Sepia, 351. Rubens' Brown, 359. Sepia, 348. Terre de Cassel, 343. Uranium Brown, 360. Vandyke Brown, 351. Verona Brown, 353. Warm Sepia, 350. Yellow Madder, 353. Zinc Brown, 360.
Brown Pink, 312. " Red, 147. " Spanish, 146. " Stil de Grain, 312.
Browns, abundance of, 336, 361.
Brun de Mars, 313.
Brunswick Green, 271, 279.
Brushes, soap and alkali in, 52.
Burlington House, Royal Academy at, 365.
Burnt Carmine, 298. " Lake, 298. " Madder, 305. " Orpiment, 259. " Roman Ochre, 255. " Sienna, 243. " Terra di Sienna, 243. " Verdigris, 331.
C.
Cadmium Brown, 353. " Orange, 36, 42, 244. " Red, 42, 130. " White, 78. " Yellow, 87, 92. " " adulteration of, 88. " " manufacture of, 92. " " when fugacious, 92. " " with White Lead, 89.
Caledonian Brown, 341.
Campania Brown, 352.
Camphor, 396.
Cappah or Cappagh Brown, 342.
Carajuru, 367.
Carbolic acid, 162.
Carbon, 393.
Carmichael, Mr., 348.
Carmine, 133, 135. " adulteration of, 134. " Blue, 225. " Burnt, 298. " Field's, 142.
Carmine, Madder, 142. " manufacture of, 134. " Vermilion, 156. " Violet, 302. " with Indian Yellow, 98. " " White Lead, 134.
Carnac, ruins at, 4.
Carnagione, 149.
Carthamus, 174.
Cartoons at Hampton Court, 10.
Cassel Earth, 343. " Green, 288. " Terre de, 343. " Yellow, 121.
Cassius, Purple of, 306.
Cassius's Purple Precipitate, 306.
Castle Earth, 343.
Catechu Browns, 354.
Celandine, 96.
Cendres Bleues, 230.
Cennini, advice of, 411.
Cerulian Blue or Coeruleum, 190. |
|