p-books.com
Experimental Researches in Electricity, Volume 1
by Michael Faraday
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse

[A] Refer onwards to 1705.—Dec. 1838.

911. But referring to the resistance of each single case of decomposition, it would appear that as these differ in force according to the affinities by which the elements in the substance tend to retain their places, they also would supply cases constituting a series of degrees by which to measure the initial intensities of simple voltaic or other currents of electricity, and which, combined with the scale of intensities determined by different degrees of acting force (909.), would probably include a sufficient set of differences to meet almost every important case where a reference to intensity would be required.

912. According to the experiments I have already had occasion to make, I find that the following bodies are electrolytic in the order in which I have placed them, those which are first being decomposed by the current of lowest intensity. These currents were always from a single pair of plates, and may be considered as elementary voltaic forces.

Iodide of potassium (solution). Chloride of silver (fused). Protochloride of tin (fused). Chloride of lead (fused). Iodide of lead (fused). Muriatic acid (solution). Water, acidulated with sulphuric acid.

913. It is essential that, in all endeavours to obtain the relative electrolytic intensity necessary for the decomposition of different bodies, attention should be paid to the nature of the electrodes and the other bodies present which may favour secondary actions (986.). If in electro-decomposition one of the elements separated has an affinity for the electrode, or for bodies present in the surrounding fluid, then the affinity resisting decomposition is in part balanced by such power, and the true place of the electrolyte in a table of the above kind is not obtained: thus, chlorine combines with a positive platina electrode freely, but iodine scarcely at all, and therefore I believe it is that the fused chlorides stand first in the preceding Table. Again, if in the decomposition of water not merely sulphuric but also a little nitric acid be present, then the water is more freely decomposed, for the hydrogen at the cathode is not ultimately expelled, but finds oxygen in the nitric acid, with which it can combine to produce a secondary result; the affinities opposing decomposition are in this way diminished, and the elements of the water can then be separated by a current of lower intensity.

914. Advantage may be taken of this principle to interpolate more minute degrees into the scale of initial intensities already referred to (909. 911.) than is there spoken of; for by combining the force of a current constant in its intensity, with the use of electrodes consisting of matter, having more or less affinity for the elements evolved from the decomposing electrolyte, various intermediate degrees may be obtained.

* * * * *

915. Returning to the consideration of the source of electricity (878. &c.), there is another proof of the most perfect kind that metallic contact has nothing to do with the production of electricity in the voltaic circuit, and further, that electricity is only another mode of the exertion of chemical forces. It is, the production of the electric spark before any contact of metals is made, and by the exertion of pure and unmixed chemical forces. The experiment, which will be described further on (956.), consists in obtaining the spark upon making contact between a plate of zinc and a plate of copper plunged into dilute sulphuric acid. In order to make the arrangement as elementary as possible, mercurial surfaces were dismissed, and the contact made by a copper wire connected with the copper plate, and then brought to touch a clean part of the zinc plate. The electric spark appeared, and it must of necessity have existed and passed before the zinc and the copper were in contact.

916. In order to render more distinct the principles which I have been endeavouring to establish, I will restate them in their simplest form, according to my present belief. The electricity of the voltaic pile (856. note) is not dependent either in its origin or its continuance upon the contact of the metals with each other (880. 915.). It is entirely due to chemical action (882.), and is proportionate in its intensity to the intensity of the affinities concerned in its production (908.); and in its quantity to the quantity of matter which has been chemically active during its evolution (869.). This definite production is again one of the strongest proofs that the electricity is of chemical origin.

917. As volta-electro-generation is a case of mere chemical action, so volta-electro-decomposition is simply a case of the preponderance of one set of chemical affinities more powerful in their nature, over another set which are less powerful: and if the instance of two opposing sets of such forces (891.) be considered, and their mutual relation and dependence borne in mind, there appears no necessity for using, in respect to such cases, any other term than chemical affinity, (though that of electricity may be very convenient,) or supposing any new agent to be concerned in producing the results; for we may consider that the powers at the two places of action are in direct communion and balanced against each other through the medium of the metals (891.), fig. 76, in a manner analogous to that in which mechanical forces are balanced against each other by the intervention of the lever (1031.).

918. All the facts show us that that power commonly called chemical affinity, can be communicated to a distance through the metals and certain forms of carbon; that the electric current is only another form of the forces of chemical affinity; that its power is in proportion to the chemical affinities producing it; that when it is deficient in force it may be helped by calling in chemical aid, the want in the former being made up by an equivalent of the latter; that, in other words, the forces termed chemical affinity and electricity are one and the same.

919. When the circumstances connected with the production of electricity in the ordinary voltaic circuit are examined and compared, it appears that the source of that agent, always meaning the electricity which circulates and completes the current in the voltaic apparatus, and gives that apparatus power and character (947. 996.), exists in the chemical action which takes place directly between the metal and the body with which it combines, and not at all in the subsequent action of the substance so produced with the acid present[A]. Thus, when zinc, platina, and dilute sulphuric acid are used, it is the union of the zinc with the oxygen of the water which determines the current; and though the acid is essential to the removal of the oxide so formed, in order that another portion of zinc may act on another portion of water, it does not, by combination with that oxide, produce any sensible portion of the current of electricity which circulates; for the quantity of electricity is dependent upon the quantity of zinc oxidized, and in definite proportion to it: its intensity is in proportion to the intensity of the chemical affinity of the zinc for the oxygen under the circumstances, and is scarcely, if at all, affected by the use of either strong or weak acid (908.).

[A] Wollaston, Philosophical Transactions, 1801, p. 427.

920. Again, if zinc, platina, and muriatic acid are used, the electricity appears to be dependent upon the affinity of the zinc for the chlorine, and to be circulated in exact proportion to the number of particles of zinc and chlorine which unite, being in fact an equivalent to them.

921. But in considering this oxidation, or other direct action upon the METAL itself, as the cause and source of the electric current, it is of the utmost importance to observe that the oxygen or other body must be in a peculiar condition, namely, in the state of combination; and not only so, but limited still further to such a state of combination and in such proportions as will constitute an electrolyte (823.). A pair of zinc and platina plates cannot be so arranged in oxygen gas as to produce a current of electricity, or act as a voltaic circle, even though the temperature may be raised so high as to cause oxidation of the zinc far more rapidly than if the pair of plates were plunged into dilute sulphuric acid; for the oxygen is not part of an electrolyte, and cannot therefore conduct the forces onwards by decomposition, or even as metals do by itself. Or if its gaseous state embarrass the minds of some, then liquid chlorine may be taken. It does not excite a current of electricity through the two plates by combining with the zinc, for its particles cannot transfer the electricity active at the point of combination across to the platina. It is not a conductor of itself, like the metals; nor is it an electrolyte, so as to be capable of conduction during decomposition, and hence there is simple chemical action at the spot, and no electric current[A].

[A] I do not mean to affirm that no traces of electricity ever appear in such cases. What I mean is, that no electricity is evolved in any way, due or related to the causes which excite voltaic electricity, or proportionate to them. That which does appear occasionally is the smallest possible fraction of that which the acting matter could produce if arranged so as to act voltaically, probably not the one hundred thousandth, or even the millionth part, and is very probably altogether different in its source.

922. It might at first be supposed that a conducting body not electrolytic, might answer as the third substance between the zinc and the platina; and it is true that we have some such capable of exerting chemical action upon the metals. They must, however, be chosen from the metals themselves, for there are no bodies of this kind except those substances and charcoal. To decide the matter by experiment, I made the following arrangement. Melted tin was put into a glass tube bent into the form of the letter V, fig. 78, so as to fill the half of each limb, and two pieces of thick platina wire, p, w, inserted, so as to have their ends immersed some depth in the tin: the whole was then allowed to cool, and the ends p and w connected with a delicate galvanometer. The part of the tube at x was now reheated, whilst the portion y was retained cool. The galvanometer was immediately influenced by the thermo-electric current produced. The heat was steadily increased at x, until at last the tin and platina combined there; an effect which is known to take place with strong chemical action and high ignition; but not the slightest additional effect occurred at the galvanometer. No other deflection than that due to the thermo-electric current was observable the whole time. Hence, though a conductor, and one capable of exerting chemical action on the tin, was used, yet, not being an electrolyte, not the slightest effect of an electrical current could be observed (947.).

923. From this it seems apparent that the peculiar character and condition of an electrolyte is essential in one part of the voltaic circuit; and its nature being considered, good reasons appear why it and it alone should be effectual. An electrolyte is always a compound body: it can conduct, but only whilst decomposing. Its conduction depends upon its decomposition and the transmission of its particles in directions parallel to the current; and so intimate is this connexion, that if their transition be stopped, the current is stopped also; if their course be changed, its course and direction change with them; if they proceed in one direction, it has no power to proceed in any other than a direction invariably dependent on them. The particles of an electrolytic body are all so mutually connected, are in such relation with each other through their whole extent in the direction of the current, that if the last is not disposed of, the first is not at liberty to take up its place in the new combination which the powerful affinity of the most active metal tends to produce; and then the current itself is stopped; for the dependencies of the current and the decomposition are so mutual, that whichsoever be originally determined, i.e. the motion of the particles or the motion of the current, the other is invariable in its concomitant production and its relation to it.

924. Consider, then, water as an electrolyte and also as an oxidizing body. The attraction of the zinc for the oxygen is greater, under the circumstances, than that of the oxygen for the hydrogen; but in combining with it, it tends to throw into circulation a current of electricity in a certain direction. This direction is consistent (as is found by innumerable experiments) with the transfer of the hydrogen from the zinc towards the platina, and the transfer in the opposite direction of fresh oxygen from the platina towards the zinc; so that the current can pass in that one line, and, whilst it passes, can consist with and favour the renewal of the conditions upon the surface of the zinc, which at first determined both the combination and circulation. Hence the continuance of the action there, and the continuation of the current. It therefore appears quite as essential that there should be an electrolyte in the circuit, in order that the action may be transferred forward, in a certain constant direction, as that there should be an oxidizing or other body capable of acting directly on the metal; and it also appears to be essential that these two should merge into one, or that the principle directly active on the metal by chemical action should be one of the ions of the electrolyte used. Whether the voltaic arrangement be excited by solution of acids, or alkalies, or sulphurets, or by fused substances (476.), this principle has always hitherto, as far as I am aware, been an anion (943.); and I anticipate, from a consideration of the principles of electric action, that it must of necessity be one of that class of bodies.

925. If the action of the sulphuric acid used in the voltaic circuit be considered, it will be found incompetent to produce any sensible portion of the electricity of the current by its combination with the oxide formed, for this simple reason, it is deficient in a most essential condition: it forms no part of an electrolyte, nor is it in relation with any other body present in the solution which will permit of the mutual transfer of the particles and the consequent transfer of the electricity. It is true, that as the plane at which the acid is dissolving the oxide of zinc formed by the action of the water, is in contact with the metal zinc, there seems no difficulty in considering how the oxide there could communicate an electrical state, proportionate to its own chemical action on the acid, to the metal, which is a conductor without decomposition. But on the side of the acid there is no substance to complete the circuit: the water, as water, cannot conduct it, or at least only so small a proportion that it is merely an incidental and almost inappreciable effect (970.); and it cannot conduct it as an electrolyte, because an electrolyte conducts in consequence of the mutual relation and action of its particles; and neither of the elements of the water, nor even the water itself, as far as we can perceive, are ions with respect to the sulphuric acid (848.)[A].

[A] It will be seen that I here agree with Sir Humphry Davy, who has experimentally supported the opinion that acids and alkalies in combining do not produce any current of electricity. Philosophical Transactions, 1826, p. 398.

926. This view of the secondary character of the sulphuric acid as an agent in the production of the voltaic current, is further confirmed by the fact, that the current generated and transmitted is directly and exactly proportional to the quantity of water decomposed and the quantity of zinc oxidized (868. 991.), and is the same as that required to decompose the same quantity of water. As, therefore, the decomposition of the water shows that the electricity has passed by its means, there remains no other electricity to be accounted for or to be referred to any action other than that of the zinc and the water on each other.

927. The general case (for it includes the former one (924.),) of acids and bases, may theoretically be stated in the following manner. Let a, fig. 79, be supposed to be a dry oxacid, and b a dry base, in contact at c, and in electric communication at their extremities by plates of platina pp, and a platina wire w. If this acid and base were fluid, and combination took place at c, with an affinity ever so vigorous, and capable of originating an electric current, the current could not circulate in any important degree; because, according to the experimental results, neither a nor b could conduct without being decomposed, for they are either electrolytes or else insulators, under all circumstances, except to very feeble and unimportant currents (970. 986.). Now the affinities at c are not such as tend to cause the elements either of a or b to separate, but only such as would make the two bodies combine together as a whole; the point of action is, therefore, insulated, the action itself local (921. 947.), and no current can be formed.

928. If the acid and base be dissolved in water, then it is possible that a small portion of the electricity due to chemical action may be conducted by the water without decomposition (966. 984.); but the quantity will be so small as to be utterly disproportionate to that due to the equivalents of chemical force; will be merely incidental; and, as it does not involve the essential principles of the voltaic pile, it forms no part of the phenomena at present under investigation[A].

[A] It will I trust be fully understood, that in these investigations I am not professing to take an account of every small, incidental, or barely possible effect, dependent upon slight disturbances of the electric fluid during chemical action, but am seeking to distinguish and identify those actions on which the power of the voltaic battery essentially depends.

929. If for the oxacid a hydracid be substituted (927.),—as one analogous to the muriatic, for instance,—then the state of things changes altogether, and a current due to the chemical action of the acid on the base is possible. But now both the bodies act as electrolytes, for it is only one principle of each which combine mutually,—as, for instance, the chlorine with the metal,—and the hydrogen of the acid and the oxygen of the base are ready to traverse with the chlorine of the acid and the metal of the base in conformity with the current and according to the general principles already so fully laid down.

930. This view of the oxidation of the metal, or other direct chemical action upon it, being the sole cause of the production of the electric current in the ordinary voltaic pile, is supported by the effects which take place when alkaline or sulphuretted solutions (931. 943.) are used for the electrolytic conductor instead of dilute sulphuric acid. It was in elucidation of this point that the experiments without metallic contact, and with solution of alkali as the exciting fluid, already referred to (884.), were made.

931. Advantage was then taken of the more favourable condition offered, when metallic contact is allowed (895.), and the experiments upon the decomposition of bodies by a single pair of plates (899.) were repeated, solution of caustic potassa being employed in the vessel v, fig. 77. in place of dilute sulphuric acid. All the effects occurred as before: the galvanometer was deflected; the decompositions of the solutions of iodide of potassium, nitrate of silver, muriatic acid, and sulphate of soda ensued at x; and the places where the evolved principles appeared, as well as the deflection of the galvanometer, indicated a current in the same direction as when acid was in the vessel v; i.e. from the zinc through the solution to the platina, and back by the galvanometer and substance suffering decomposition to the zinc.

932. The similarity in the action of either dilute sulphuric acid or potassa goes indeed far beyond this, even to the proof of identity in quantity as well as in direction of the electricity produced. If a plate of amalgamated zinc be put into a solution of potassa, it is not sensibly acted upon; but if touched in the solution by a plate of platina, hydrogen is evolved on the surface of the latter metal, and the zinc is oxidized exactly as when immersed in dilute sulphuric acid (863.). I accordingly repeated the experiment before described with weighed plates of zinc (864. &c.), using however solution of potassa instead of dilute sulphuric acid. Although the time required was much longer than when acid was used, amounting to three hours for the oxidizement of 7.55 grains of zinc, still I found that the hydrogen evolved at the platina plate was the equivalent of the metal oxidized at the surface of the zinc. Hence the whole of the reasoning which was applicable in the former instance applies also here, the current being in the same direction, and its decomposing effect in the same degree, as if acid instead of alkali had been used (868.).

933. The proof, therefore, appears to me complete, that the combination of the acid with the oxide, in the former experiment, had nothing to do with the production of the electric current; for the same current is here produced when the action of the acid is absent, and the reverse action of an alkali is present. I think it cannot be supposed for a moment, that the alkali acted chemically as an acid to the oxide formed; on the contrary, our general chemical knowledge leads to the conclusion, that the ordinary metallic oxides act rather as acids to the alkalies; yet that kind of action would tend to give a reverse current in the present case, if any were due to the union of the oxide of the exciting metal with the body which combines with it. But instead of any variation of this sort, the direction of the electricity was constant, and its quantity also directly proportional to the water decomposed, or the zinc oxidized. There are reasons for believing that acids and alkalies, when in contact with metals upon which they cannot act directly, still have a power of influencing their attractions for oxygen (941.); but all the effects in these experiments prove, I think, that it is the oxidation of the metal necessarily dependent upon, and associated as it is with, the electrolyzation of the water (921. 923.) that produces the current; and that the acid or alkali merely acts as solvents, and by removing the oxidized zinc, allows other portions to decompose fresh water, and so continues the evolution or determination of the current.

934. The experiments were then varied by using solution of ammonia instead of solution of potassa; and as it, when pure, is like water, a bad conductor (554.), it was occasionally improved in that power by adding sulphate of ammonia to it. But in all the cases the results were the same as before; decompositions of the same kind were effected, and the electric current producing these was in the same direction as in the experiments just described.

935. In order to put the equal and similar action of acid and alkali to stronger proof, arrangements were made as in fig. 80.; the glass vessel A contained dilute sulphuric acid, the corresponding glass vessel B solution of potassa, PP was a plate of platina dipping into both solutions, and ZZ two plates of amalgamated zinc connected with a delicate galvanometer. When these were plunged at the same time into the two vessels, there was generally a first feeble effect, and that in favour of the alkali, i.e. the electric current tended to pass through the vessels in the direction of the arrow, being the reverse direction of that which the acid in A would have produced alone: but the effect instantly ceased, and the action of the plates in the vessels was so equal, that, being contrary because of the contrary position of the plates, no permanent current resulted.

936. Occasionally a zinc plate was substituted for the plate PP, and platina plates for the plates ZZ; but this caused no difference in the results: nor did a further change of the middle plate to copper produce any alteration.

937. As the opposition of electro-motive pairs of plates produces results other than those due to the mere difference of their independent actions (1011. 1045.), I devised another form of apparatus, in which the action of acid and alkali might be more directly compared. A cylindrical glass cup, about two inches deep within, an inch in internal diameter, and at least a quarter of an inch in thickness, was cut down the middle into halves, fig. 81. A broad brass ring, larger in diameter than the cup, was supplied with a screw at one side; so that when the two halves of the cup were within the ring, and the screw was made to press tightly against the glass, the cup held any fluid put into it. Bibulous paper of different degrees of permeability was then cut into pieces of such a size as to be easily introduced between the loosened halves of the cup, and served when the latter were tightened again to form a porous division down the middle of the cup, sufficient to keep any two fluids on opposite sides of the paper from mingling, except very slowly, and yet allowing them to act freely as one electrolyte. The two spaces thus produced I will call the cells A and B, fig. 82. This instrument I have found of most general application in the investigation of the relation of fluids and metals amongst themselves and to each other. By combining its use with that of the galvanometer, it is easy to ascertain the relation of one metal with two fluids, or of two metals with one fluid, or of two metals and two fluids upon each other.

938. Dilute sulphuric acid, sp. gr. 1.25, was put into the cell A, and a strong solution of caustic potassa into the cell B; they mingled slowly through the paper, and at last a thick crust of sulphate of potassa formed on the side of the paper next to the alkali. A plate of clean platina was put into each cell and connected with a delicate galvanometer, but no electric current could be observed. Hence the contact of acid with one platina plate, and alkali with the other, was unable to produce a current; nor was the combination of the acid with the alkali more effectual (925.).

939. When one of the platina plates was removed and a zinc plate substituted, either amalgamated or not, a strong electric current was produced. But, whether the zinc were in the acid whilst the platina was in the alkali, or whether the reverse order were chosen, the electric current was always from the zinc through the electrolyte to the platina, and back through the galvanometer to the zinc, the current seeming to be strongest when the zinc was in the alkali and the platina in the acid.

940. In these experiments, therefore, the acid seems to have no power over the alkali, but to be rather inferior to it in force. Hence there is no reason to suppose that the combination of the oxide formed with the acid around it has any direct influence in producing the electricity evolved, the whole of which appears to be due to the oxidation of the metal (919.).

941. The alkali, in fact, is superior to the acid in bringing a metal into what is called the positive state; for if plates of the same metal, as zinc, tin, lead, or copper, be used both in the acid or alkali, the electric current is from the alkali across the cell to the acid, and back through the galvanometer to the alkali, as Sir Humphry Davy formerly stated [A]. This current is so powerful, that if amalgamated zinc, or tin, or lead be used, the metal in the acid evolves hydrogen the moment it is placed in communication with that in the alkali, not from any direct action of the acid upon it, for if the contact be broken the action ceases, but because it is powerfully negative with regard to the metal in the alkali.

[A] Elements of Chemical Philosophy, p. 149; or Philosophical Transactions, 1826, p. 403.

942. The superiority of alkali is further proved by this, that if zinc and tin be used, or tin and lead, whichsoever metal is put into the alkali becomes positive, that in the acid being negative. Whichsoever is in the alkali is oxidized, whilst that in the acid remains in the metallic state, as far as the electric current is concerned.

943. When sulphuretted solutions are used (930.) in illustration of the assertion, that it is the chemical action of the metal and one of the ions of the associated electrolyte that produces all the electricity of the voltaic circuit, the proofs are still the same. Thus, as Sir Humphry Davy[A] has shown, if iron and copper be plunged into dilute acid, the current is from the iron through the liquid to the copper; in solution of potassa it is in the same direction, but in solution of sulphuret of potassa it is reversed. In the two first cases it is oxygen which combines with the iron, in the latter sulphur which combines with the copper, that produces the electric current; but both of these are ions, existing as such in the electrolyte, which is at the same moment suffering decomposition; and, what is more, both of these are anions, for they leave the electrolytes at their anodes, and act just as chlorine, iodine, or any other anion would act which might have been previously chosen as that which should be used to throw the voltaic circle into activity.

[A] Elements of Chemical Philosophy, p. 148.

944. The following experiments complete the series of proofs of the origin of the electricity in the voltaic pile. A fluid amalgam of potassium, containing not more than a hundredth of that metal, was put into pure water, and connected, through the galvanometer with a plate of platina in the same water. There was immediately an electric current from the amalgam through the electrolyte to the platina. This must have been due to the oxidation only of the metal, for there was neither acid nor alkali to combine with, or in any way act on, the body produced.

945. Again, a plate of clean lead and a plate of platina were put into pure water. There was immediately a powerful current produced from the lead through the fluid to the platina: it was even intense enough to decompose solution of the iodide of potassium when introduced into the circuit in the form of apparatus already described (880.), fig. 73. Here no action of acid or alkali on the oxide formed from the lead could supply the electricity: it was due solely to the oxidation of the metal.

* * * * *

946. There is no point in electrical science which seems to me of more importance than the state of the metals and the electrolytic conductor in a simple voltaic circuit before and at the moment when metallic contact is first completed. If clearly understood, I feel no doubt it would supply us with a direct key to the laws under which the great variety of voltaic excitements, direct and incidental, occur, and open out new fields of research for our investigation[A].

[A] In connexion with this part of the subject refer now to Series XI. 1164, Series XII. 1343-1358, and Series XIII. 1621. &c.—Dec. 1838.

947. We seem to have the power of deciding to a certain extent in numerous cases of chemical affinity, (as of zinc with the oxygen of water, &c. &c.) which of two modes of action of the attractive power shall be exerted (996.). In the one mode we can transfer the power onwards, and make it produce elsewhere its equivalent of action (867. 917.); in the other, it is not transferred, but exerted wholly at the spot. The first is the case of volta-electric excitation, the other ordinary chemical affinity: but both are chemical actions and due to one force or principle.

948. The general circumstances of the former mode occur in all instances of voltaic currents, but may be considered as in their perfect condition, and then free from those of the second mode, in some only of the cases; as in those of plates of zinc and platina in solution of potassa, or of amalgamated zinc and platina in dilute sulphuric acid.

949. Assuming it sufficiently proved, by the preceding experiments and considerations, that the electro-motive action depends, when zinc, platina, and dilute sulphuric acid are used, upon the mutual affinity of the metal zinc and the oxygen of the water (921. 924.), it would appear that the metal, when alone, has not power enough, under the circumstances, to take the oxygen and expel the hydrogen from the water; for, in fact, no such action takes place. But it would also appear that it has power so far to act, by its attraction for the oxygen of the particles in contact with it, as to place the similar forces already active between these and the other particles of oxygen and the particles of hydrogen in the water, in a peculiar state of tension or polarity, and probably also at the same time to throw those of its own particles which are in contact with the water into a similar but opposed state. Whilst this state is retained, no further change occurs; but when it is relieved, by completion of the circuit, in which case the forces determined in opposite directions, with respect to the zinc and the electrolyte, are found exactly competent to neutralize each other, then a series of decompositions and recompositions takes place amongst the particles of oxygen and hydrogen constituting the water, between the place of contact with the platina and the place where the zinc is active; these intervening particles being evidently in close dependence upon and relation to each other. The zinc forms a direct compound with those particles of oxygen which were, previously, in divided relation to both it and the hydrogen: the oxide is removed by the acid, and a fresh surface of zinc is presented to the water, to renew and repeat the action.

950. Practically, the state of tension is best relieved by dipping a metal which has less attraction for oxygen than the zinc, into the dilute acid, and making it also touch the zinc. The force of chemical affinity, which has been influenced or polarized in the particles of the water by the dominant attraction of the zinc for the oxygen, is then transferred, in a most extraordinary manner, through the two metals, so as to re-enter upon the circuit in the electrolytic conductor, which, unlike the metals in that respect, cannot convey or transfer it without suffering decomposition; or rather, probably, it is exactly balanced and neutralized by the force which at the same moment completes the combination of the zinc with the oxygen of the water. The forces, in fact, of the two particles which are acting towards each other, and which are therefore in opposite directions, are the origin of the two opposite forces, or directions of force, in the current. They are of necessity equivalent to each other. Being transferred forward in contrary directions, they produce what is called the voltaic current: and it seems to me impossible to resist the idea that it must be preceded by a state of tension in the fluid, and between the fluid and the zinc; the first consequence of the affinity of the zinc for the oxygen of the water.

951. I have sought carefully for indications of a state of tension in the electrolytic conductor; and conceiving that it might produce something like structure, either before or during its discharge, I endeavoured to make this evident by polarized light. A glass cell, seven inches long, one inch and a half wide, and six inches deep, had two sets of platina electrodes adapted to it, one set for the ends, and the other for the sides. Those for the sides were seven inches long by three inches high, and when in the cell were separated by a little frame of wood covered with calico; so that when made active by connexion with a battery upon any solution in the cell, the bubbles of gas rising from them did not obscure the central parts of the liquid.

952. A saturated solution of sulphate of soda was put into the cell, and the electrodes connected with a battery of 150 pairs of 4-inch plates: the current of electricity was conducted across the cell so freely, that the discharge was as good as if a wire had been used. A ray of polarized light was then transmitted through this solution, directly across the course of the electric current, and examined by an analysing plate; but though it penetrated seven inches of solution thus subject to the action of the electricity, and though contact was sometimes made, sometimes broken, and occasionally reversed during the observations, not the slightest trace of action on the ray could be perceived.

953. The large electrodes were then removed, and others introduced which fitted the ends of the cell. In each a slit was cut, so as to allow the light to pass. The course of the polarized ray was now parallel to the current, or in the direction of its axis (517.); but still no effect, under any circumstances of contact or disunion, could be perceived upon it.

954. A strong solution of nitrate of lead was employed instead of the sulphate of soda, but no effects could be detected.

955. Thinking it possible that the discharge of the electric forces by the successive decompositions and recompositions of the particles of the electrolyte might neutralize and therefore destroy any effect which the first state of tension could by possibility produce, I took a substance which, being an excellent electrolyte when fluid, was a perfect insulator when solid, namely, borate of lead, in the form of a glass plate, and connecting the sides and the edges of this mass with the metallic plates, sometimes in contact with the poles of a voltaic battery, and sometimes even with the electric machine, for the advantage of the much higher intensity then obtained, I passed a polarized ray across it in various directions, as before, but could not obtain the slightest appearance of action upon the light. Hence I conclude, that notwithstanding the new and extraordinary state which must be assumed by an electrolyte, either during decomposition (when a most enormous quantity of electricity must be traversing it), or in the state of tension which is assumed as preceding decomposition, and which might be supposed to be retained in the solid form of the electrolyte, still it has no power of affecting a polarized ray of light; for no kind of structure or tension can in this way be rendered evident.

956. There is, however, one beautiful experimental proof of a state of tension acquired by the metals and the electrolyte before the electric current is produced, and before contact of the different metals is made (915.); in fact, at that moment when chemical forces only are efficient as a cause of action. I took a voltaic apparatus, consisting of a single pair of large plates, namely, a cylinder of amalgamated zinc, and a double cylinder of copper. These were put into a jar containing dilute sulphuric acid[A], and could at pleasure be placed in metallic communication by a copper wire adjusted so as to dip at the extremities into two cups of mercury connected with the two plates.

[A] When nitro-sulphuric acid is used, the spark is more powerful, but local chemical action can then commence, and proceed without requiring metallic contact.

957. Being thus arranged, there was no chemical action whilst the plates were not connected. On making the connexion a spark was obtained[A], and the solution was immediately decomposed. On breaking it, the usual spark was obtained, and the decomposition ceased. In this case it is evident that the first spark must have occurred before metallic contact was made, for it passed through an interval of air; and also that it must have tended to pass before the electrolytic action began; for the latter could not take place until the current passed, and the current could not pass before the spark appeared. Hence I think there is sufficient proof, that as it is the zinc and water which by their mutual action produce the electricity of this apparatus, so these, by their first contact with each other, were placed in a state of powerful tension (951.), which, though it could not produce the actual decomposition of the water, was able to make a spark of electricity pass between the zinc and a fit discharger as soon as the interval was rendered sufficiently small. The experiment demonstrates the direct production of the electric spark from pure chemical forces.

[A] It has been universally supposed that no spark is produced on making the contact between a single pair of plates. I was led to expect one from the considerations already advanced in this paper. The wire of communication should be short; for with a long wire, circumstances strongly affecting the spark are introduced.

958. There are a few circumstances connected with the production of this spark by a single pair of plates, which should be known, to ensure success to the experiment[B]. When the amalgamated surfaces of contact are quite clean and dry, the spark, on making contact, is quite as brilliant as on breaking it, if not even more so. When a film of oxide or dirt was present at either mercurial surface, then the first spark was often feeble, and often failed, the breaking spark, however, continuing very constant and bright. When a little water was put over the mercury, the spark was greatly diminished in brilliancy, but very regular both on making and breaking contact. When the contact was made between clean platina, the spark was also very small, but regular both ways. The true electric spark is, in fact, very small, and when surfaces of mercury are used, it is the combustion of the metal which produces the greater part of the light. The circumstances connected with the burning of the mercury are most favourable on breaking contact; for the act of separation exposes clean surfaces of metal, whereas, on making contact, a thin film of oxide, or soiling matter, often interferes. Hence the origin of the general opinion that it is only when the contact is broken that the spark passes.

[B] See in relation to precautions respecting a spark, 1074.—Dec. 1838.

959. With reference to the other set of cases, namely, those of local action (947.) in which chemical affinity being exerted causes no transference of the power to a distance where no electric current is produced, it is evident that forces of the most intense kind must be active, and in some way balanced in their activity, during such combinations; these forces being directed so immediately and exclusively towards each other, that no signs of the powerful electric current they can produce become apparent, although the same final state of things is obtained as if that current had passed. It was Berzelius, I believe, who considered the heat and light evolved in cases of combustion as the consequences of this mode of exertion of the electric powers of the combining particles. But it will require a much more exact and extensive knowledge of the nature of electricity, and the manner in which it is associated with the atoms of matter, before we can understand accurately the action of this power in thus causing their union, or comprehend the nature of the great difference which it presents in the two modes of action just distinguished. We may imagine, but such imaginations must for the time be classed with the great mass of doubtful knowledge (876.) which we ought rather to strive to diminish than to increase; for the very extensive contradictions of this knowledge by itself shows that but a small portion of it can ultimately prove true[A].

[A] Refer to 1738, &c. Series XIV.—Dec. 1838.

960. Of the two modes of action in which chemical affinity is exerted, it is important to remark, that that which produces the electric current is as definite as that which causes ordinary chemical combination; so that in examining the production or evolution of electricity in cases of combination or decomposition, it will be necessary, not merely to observe certain effects dependent upon a current of electricity, but also their quantity: and though it may often happen that the forces concerned in any particular case of chemical action may be partly exerted in one mode and partly in the other, it is only those which are efficient in producing the current that have any relation to voltaic action. Thus, in the combination of oxygen and hydrogen to produce water, electric powers to a most enormous amount are for the time active (861. 873.); but any mode of examining the flame which they form during energetic combination, which has as yet been devised, has given but the feeblest traces. These therefore may not, cannot, be taken as evidences of the nature of the action; but are merely incidental results, incomparably small in relation to the forces concerned, and supplying no information of the way in which the particles are active on each other, or in which their forces are finally arranged.

961. That such cases of chemical action produce no current of electricity, is perfectly consistent with what we know of the voltaic apparatus, in which it is essential that one of the combining elements shall form part of, or be in direct relation with, an electrolytic conductor (921. 923.). That such cases produce no free electricity of tension, and that when they are converted into cases of voltaic action they produce a current in which the opposite forces are so equal as to neutralize each other, prove the equality of the forces in the opposed acting particles of matter, and therefore the equality of electric power in those quantities of matter which are called electro-chemical equivalents (824). Hence another proof of the definite nature of electro-chemical action (783. &c.), and that chemical affinity and electricity are forms of the same power (917. &c.).

962. The direct reference of the effects produced by the voltaic pile at the place of experimental decomposition to the chemical affinities active at the place of excitation (891. 917.), gives a very simple and natural view of the cause why the bodies (or ions) evolved pass in certain directions; for it is only when they pass in those directions that their forces can consist with and compensate (in direction at least) the superior forces which are dominant at the place where the action of the whole is determined. If, for instance, in a voltaic circuit, the activity of which is determined, by the attraction of zinc for the oxygen of water, the zinc move from right to left, then any other cation included in the circuit, being part of an electrolyte, or forming part of it at the moment, will also move from right to left: and as the oxygen of the water, by its natural affinity for the zinc, moves from left to right, so any other body of the same class with it (i.e. any other anion), under its government for the time, will move from left to right.

963. This I may illustrate by reference to fig. 83, the double circle of which may represent a complete voltaic circuit, the direction of its forces being determined by supposing for a moment the zinc b and the platina c as representing plates of those metals acting upon water, d, e, and other substances, but having their energy exalted so as to effect several decompositions by the use of a battery at a (989.). This supposition may be allowed, because the action in the battery will only consist of repetitions of what would take place between b and c, if they really constituted but a single pair. The zinc b, and the oxygen d, by their mutual affinity, tend to unite; but as the oxygen is already in association with the hydrogen e, and has its inherent chemical or electric powers neutralized for the time by those of the latter, the hydrogen e must leave the oxygen d, and advance in the direction of the arrow head, or else the zinc b cannot move in the same direction to unite to the oxygen d, nor the oxygen d move in the contrary direction to unite to the zinc b, the relation of the similar forces of b and c, in contrary directions, to the opposite forces of d being the preventive. As the hydrogen e advances, it, on coming against the platina c, f, which forms a part of the circuit, communicates its electric or chemical forces through it to the next electrolyte in the circuit, fused chloride of lead, g, h, where the chlorine must move in conformity with the direction of the oxygen at d, for it has to compensate the forces disturbed in its part of the circuit by the superior influence of those between the oxygen and zinc at d, b, aided as they are by those of the battery a; and for a similar reason the lead must move in the direction pointed out by the arrow head, that it may be in right relation to the first moving body of its own class, namely, the zinc b. If copper intervene in the circuit from i to k, it acts as the platina did before; and if another electrolyte, as the iodide of tin, occur at l, m, then the iodine l, being an anion, must move in conformity with the exciting anion, namely, the oxygen d, and the cation tin m move in correspondence with the other cations b, e, and h, that the chemical forces may be in equilibrium as to their direction and quantity throughout the circuit. Should it so happen that the anions in their circulation can combine with the metals at the anodes of the respective electrolytes, as would be the case at the platina f and the copper k, then those bodies becoming parts of electrolytes, under the influence of the current, immediately travel; but considering their relation to the zinc b, it is evidently impossible that they can travel in any other direction than what will accord with its course, and therefore can never tend to pass otherwise than from the anode and to the cathode.

964. In such a circle as that delineated, therefore, all the known anions may be grouped within, and all the cations without. If any number of them enter as ions into the constitution of electrolytes, and, forming one circuit, are simultaneously subject to one common current, the anions must move in accordance with each other in one direction, and the cations in the other. Nay, more than that, equivalent portions of these bodies must so advance in opposite directions: for the advance of every 32.5 parts of the zinc b must be accompanied by a motion in the opposite direction of 8 parts of oxygen at d, of 36 parts of chlorine at g, of 126 parts of iodine at l; and in the same direction by electro-chemical equivalents of hydrogen, lead, copper and tin, at e, h, k. and m.

965. If the present paper be accepted as a correct expression of facts, it will still only prove a confirmation of certain general views put forth by Sir Humphry Davy in his Bakerian Lecture for 1806[A], and revised and re-stated by him in another Bakerian Lecture, on electrical and chemical changes, for the year 1826[B]. His general statement is, that "chemical and electrical attractions were produced by the same cause, acting in one case on particles, in the other on masses, of matter; and that the same property, under different modifications, was the cause of all the phenomena exhibited by different voltaic combinations[C]." This statement I believe to be true; but in admitting and supporting it, I must guard myself from being supposed to assent to all that is associated with it in the two papers referred to, or as admitting the experiments which are there quoted as decided proofs of the truth of the principle. Had I thought them so, there would have been no occasion for this investigation. It may be supposed by some that I ought to go through these papers, distinguishing what I admit from what I reject, and giving good experimental or philosophical reasons for the judgment in both cases. But then I should be equally bound to review, for the same purpose, all that has been written both for and against the necessity of metallic contact,—for and against the origin of voltaic electricity in chemical action,—a duty which I may not undertake in the present paper[D].

[A] Philosophical Transactions, 1807.

[B] Ibid. 1826, p. 383.

[C] Ibid. 1826, p. 389.

[D] I at one time intended to introduce here, in the form of a note, a table of reference to the papers of the different philosophers who have referred the origin of the electricity in the voltaic pile to contact, or to chemical action, or to both; but on the publication of the first volume of M. Becquerel's highly important and valuable Traite de l'Electricite et du Magnetisme, I thought it far better to refer to that work for these references, and the views held by the authors quoted. See pages 86, 91, 104, 110, 112, 117, 118, 120, 151, 152, 224, 227, 228, 232, 233, 252, 255, 257, 258, 290, &c.—July 3rd, 1834.

P ii. On the Intensity necessary for Electrolyzation.

966. It became requisite, for the comprehension of many of the conditions attending voltaic action, to determine positively, if possible, whether electrolytes could resist the action of an electric current when beneath a certain intensity? whether the intensity at which the current ceased to act would be the same for all bodies? and also whether the electrolytes thus resisting decomposition would conduct the electric current as a metal does, after they ceased to conduct as electrolytes, or would act as perfect insulators?

967. It was evident from the experiments described (904. 906.) that different bodies were decomposed with very different facilities, and apparently that they required for their decomposition currents of different intensities, resisting some, but giving way to others. But it was needful, by very careful and express experiments, to determine whether a current could really pass through, and yet not decompose an electrolyte (910.).

968. An arrangement (fig. 84.) was made, in which two glass vessels contained the same dilute sulphuric acid, sp. gr. 1.25. The plate z was amalgamated zinc, in connexion, by a platina wire a, with the platina plate e; b was a platina wire connecting the two platina plates PP'; c was a platina wire connected with the platina plate P". On the plate e was placed a piece of paper moistened in solution of iodide of potassium: the wire c was so curved that its end could be made to rest at pleasure on this paper, and show, by the evolution of iodine there, whether a current was passing; or, being placed in the dotted position, it formed a direct communication with the platina plate e, and the electricity could pass without causing decomposition. The object was to produce a current by the action of the acid on the amalgamated zinc in the first vessel A; to pass it through the acid in the second vessel B by platina electrodes, that its power of decomposing water might, if existing, be observed; and to verify the existence of the current at pleasure, by decomposition at e, without involving the continual obstruction to the current which would arise from making the decomposition there constant. The experiment, being arranged, was examined and the existence of a current ascertained by the decomposition at e; the whole was then left with the end of the wire c resting on the plate e, so as to form a constant metallic communication there.

969. After several hours, the end of the wire c was replaced on the test-paper at e: decomposition occurred, and the proof of a passing current was therefore complete. The current was very feeble compared to what it had been at the beginning of the experiment, because of a peculiar state acquired by the metal surfaces in the second vessel, which caused them to oppose the passing current by a force which they possess under these circumstances (1040.). Still it was proved, by the decomposition, that this state of the plates in the second vessel was not able entirely to stop the current determined in the first, and that was all that was needful to be ascertained in the present inquiry.

970. This apparatus was examined from time to time, and an electric current always found circulating through it, until twelve days had elapsed, during which the water in the second vessel had been constantly subject to its action. Notwithstanding this lengthened period, not the slightest appearance of a bubble upon either of the plates in that vessel occurred. From the results of the experiment, I conclude that a current had passed, but of so low an intensity as to fall beneath that degree at which the elements of water, unaided by any secondary force resulting from the capability of combination with the matter of the electrodes, or of the liquid surrounding them, separated from each other.

971. It may be supposed, that the oxygen and hydrogen had been evolved in such small quantities as to have entirely dissolved in the water, and finally to have escaped at the surface, or to have reunited into water. That the hydrogen can be so dissolved was shown in the first vessel; for after several days minute bubbles of gas gradually appeared upon a glass rod, inserted to retain the zinc and platina apart, and also upon the platina plate itself, and these were hydrogen. They resulted principally in this way:—notwithstanding the amalgamation of the zinc, the acid exerted a little direct action upon it, so that a small stream of hydrogen bubbles was continually rising from its surface; a little of this hydrogen gradually dissolved in the dilute acid, and was in part set free against the surfaces of the rod and the plate, according to the well-known action of such solid bodies in solutions of gases (623. &c.).

972. But if the gases had been evolved in the second vessel by the decomposition of water, and had tended to dissolve, still there would have been every reason to expect that a few bubbles should have appeared on the electrodes, especially on the negative one, if it were only because of its action as a nucleus on the solution supposed to be formed; but none appeared even after twelve days.

973. When a few drops only of nitric acid were added to the vessel A, fig. 84, then the results were altogether different. In less than five minutes bubbles of gas appeared on the plates P' and P" in the second vessel. To prove that this was the effect of the electric current (which by trial at c was found at the same time to be passing,) the connexion at c was broken, the plates P'P" cleared from bubbles and left in the acid of the vessel B, for fifteen minutes: during that time no bubbles appeared upon them; but on restoring the communication at c, a minute did not elapse before gas appeared in bubbles upon the plates. The proof, therefore, is most full and complete, that the current excited by dilute sulphuric acid with a little nitric acid in vessel A, has intensity enough to overcome the chemical affinity exerted between the oxygen and hydrogen of the water in the vessel B, whilst that excited by dilute sulphuric acid alone has not sufficient intensity.

974. On using a strong solution of caustic potassa in the vessel A, to excite the current, it was found by the decomposing effects at e, that the current passed. But it had not intensity enough to decompose the water in the vessel B; for though left for fourteen days, during the whole of which time the current was found to be passing, still not the slightest appearance of gas appeared on the plates P'P", nor any other signs of the water having suffered decomposition.

975. Sulphate of soda in solution was then experimented with, for the purpose of ascertaining with respect to it, whether a certain electrolytic intensity was also required for its decomposition in this state, in analogy with the result established with regard to water (974). The apparatus was arranged as in fig. 85; P and Z are the platina and zinc plates dipping into a solution of common salt; a and b are platina plates connected by wires of platina (except in the galvanometer g) with P and Z; c is a connecting wire of platina, the ends of which can be made to rest either on the plates a, b, or on the papers moistened in solutions which are placed upon them; so that the passage of the current without decomposition, or with one or two decompositions, was under ready command, as far as arrangement was concerned. In order to change the anodes and cathodes at the places of decomposition, the form of apparatus fig. 86, was occasionally adopted. Here only one platina plate, c, was used; both pieces of paper on which decomposition was to be effected were placed upon it, the wires from P and Z resting upon these pieces of paper, or upon the plate c, according as the current with or without decomposition of the solutions was required.

976. On placing solution of iodide of potassium in paper at one of the decomposing localities, and solution of sulphate of soda at the other, so that the electric current should pass through both at once, the solution of iodide was slowly decomposed, yielding iodine at the anode and alkali at the cathode; but the solution of sulphate of soda exhibited no signs of decomposition, neither acid nor alkali being evolved from it. On placing the wires so that the iodide alone was subject to the action of the current (900.), it was quickly and powerfully decomposed; but on arranging them so that the sulphate of soda alone was subject to action, it still refused to yield up its elements. Finally, the apparatus was so arranged under a wet bell-glass, that it could be left for twelve hours, the current passing during the whole time through a solution of sulphate of soda, retained in its place by only two thicknesses of bibulous litmus and turmeric paper. At the end of that time it was ascertained by the decomposition of iodide of potassium at the second place of action, that the current was passing and had passed for the twelve hours, and yet no trace of acid or alkali from the sulphate of soda appeared.

977. From these experiments it may, I think, be concluded, that a solution of sulphate of soda can conduct a current of electricity, which is unable to decompose the neutral salt present; that this salt in the state of solution, like water, requires a certain electrolytic intensity for its decomposition; and that the necessary intensity is much higher for this substance than for the iodide of potassium in a similar state of solution.

978. I then experimented on bodies rendered decomposable by fusion, and first on chloride of lead. The current was excited by dilute sulphuric acid without any nitric acid between zinc and platina plates, fig. 87, and was then made to traverse a little chloride of lead fused upon glass at a, a paper moistened in solution of iodide of potassium at b, and a galvanometer at g. The metallic terminations at a and b were of platina. Being thus arranged, the decomposition at b and the deflection at g showed that an electric current was passing, but there was no appearance of decomposition at a, not even after a metallic communication at b was established. The experiment was repeated several times, and I am led to conclude that in this case the current has not intensity sufficient to cause the decomposition of the chloride of lead; and further, that, like water (974.), fused chloride of lead can conduct an electric current having an intensity below that required to effect decomposition.

979. Chloride of silver was then placed at a, fig. 87, instead of chloride of lead. There was a very ready decomposition of the solution of iodide of potassium at b, and when metallic contact was made there, very considerable deflection of the galvanometer needle at g. Platina also appeared to be dissolved at the anode of the fused chloride at a, and there was every appearance of a decomposition having been effected there.

980. A further proof of decomposition was obtained in the following manner. The platina wires in the fused chloride at a were brought very near together (metallic contact having been established at b), and left so; the deflection at the galvanometer indicated the passage of a current, feeble in its force, but constant. After a minute or two, however, the needle would suddenly be violently affected, and indicate a current as strong as if metallic contact had taken place at a. This I actually found to be the case, for the silver reduced by the action of the current crystallized in long delicate spiculae, and these at last completed the metallic communication; and at the same time that they transmitted a more powerful current than the fused chloride, they proved that electro-chemical decomposition of that chloride had been going on. Hence it appears, that the current excited by dilute sulphuric acid between zinc and platina, has an intensity above that required to electrolyze the fused chloride of silver when placed between platina electrodes, although it has not intensity enough to decompose chloride of lead under the same circumstances.

981. A drop of water placed at a instead of the fused chlorides, showed as in the former case (970.), that it could conduct a current unable to decompose it, for decomposition of the solution of iodide at b occurred after some time. But its conducting power was much below that of the fused chloride of lead (978.).

982. Fused nitre at a conducted much better than water: I was unable to decide with certainty whether it was electrolyzed, but I incline to think not, for there was no discoloration against the platina at the cathode. If sulpho-nitric acid had been used in the exciting vessel, both the nitre and the chloride of lead would have suffered decomposition like the water (906.).

983. The results thus obtained of conduction without decomposition, and the necessity of a certain electrolytic intensity for the separation of the ions of different electrolytes, are immediately connected with the experiments and results given in S 10. of the Fourth Series of these Researches (418. 423. 444. 419.). But it will require a more exact knowledge of the nature of intensity, both as regards the first origin of the electric current, and also the manner in which it may be reduced, or lowered by the intervention of longer or shorter portions of bad conductors, whether decomposable or not, before their relation can be minutely and fully understood.

984. In the case of water, the experiments I have as yet made, appear to show, that, when the electric current is reduced in intensity below the point required for decomposition, then the degree of conduction is the same whether sulphuric acid, or any other of the many bodies which can affect its transferring power as an electrolyte, are present or not. Or, in other words, that the necessary electrolytic intensity for water is the same whether it be pure, or rendered a better conductor by the addition of these substances; and that for currents of less intensity than this, the water, whether pure or acidulated, has equal conducting power. An apparatus, fig. 84, was arranged with dilute sulphuric acid in the vessel A, and pure distilled water in the vessel B. By the decomposition at c, it appeared as if water was a better conductor than dilute sulphuric acid for a current of such low intensity as to cause no decomposition. I am inclined, however, to attribute this apparent superiority of water to variations in that peculiar condition of the platina electrodes which is referred to further on in this Series (1040.), and which is assumed, as far as I can judge, to a greater degree in dilute sulphuric acid than in pure water. The power therefore, of acids, alkalies, salts, and other bodies in solution, to increase conducting power, appears to hold good only in those cases where the electrolyte subject to the current suffers decomposition, and loses all influence when the current transmitted has too low an intensity to affect chemical change. It is probable that the ordinary conducting power of an electrolyte in the solid state (419.) is the same as that which it possesses in the fluid state for currents, the tension of which is beneath the due electrolytic intensity.

985. Currents of electricity, produced by less than eight or ten series of voltaic elements, can be reduced to that intensity at which water can conduct them without suffering decomposition, by causing them to pass through three or four vessels in which water shall be successively interposed between platina surfaces. The principles of interference upon which this effect depends, will be described hereafter (1009. 1018.), but the effect may be useful in obtaining currents of standard intensity, and is probably applicable to batteries of any number of pairs of plates.

986. As there appears every reason to expect that all electrolytes will be found subject to the law which requires an electric current of a certain intensity for their decomposition, but that they will differ from each other in the degree of intensity required, it will be desirable hereafter to arrange them in a table, in the order of their electrolytic intensities. Investigations on this point must, however, be very much extended, and include many more bodies than have been here mentioned before such a table can be constructed. It will be especially needful in such experiments, to describe the nature of the electrodes used, or, if possible, to select such as, like platina or plumbago in certain cases, shall have no power of assisting the separation of the ions to be evolved (913).

987. Of the two modes in which bodies can transmit the electric forces, namely, that which is so characteristically exhibited by the metals, and usually called conduction, and that in which it is accompanied by decomposition, the first appears common to all bodies, although it occurs with almost infinite degrees of difference; the second is at present distinctive of the electrolytes. It is, however, just possible that it may hereafter be extended to the metals; for their power of conducting without decomposition may, perhaps justly, be ascribed to their requiring a very high electrolytic intensity for their decomposition.

987-1/2. The establishment of the principle that a certain electrolytic intensity is necessary before decomposition can be effected, is of great importance to all those considerations which arise regarding the probable effects of weak currents, such for instance as those produced by natural thermo-electricity, or natural voltaic arrangements in the earth. For to produce an effect of decomposition or of combination, a current must not only exist, but have a certain intensity before it can overcome the quiescent affinities opposed to it, otherwise it will be conducted, producing no permanent chemical effects. On the other hand, the principles are also now evident by which an opposing action can be so weakened by the juxtaposition of bodies not having quite affinity enough to cause direct action between them (913.), that a very weak current shall be able to raise the sum of actions sufficiently high, and cause chemical changes to occur.

988. In concluding this division on the intensity necessary for electrolyzation, I cannot resist pointing out the following remarkable conclusion in relation to intensity generally. It would appear that when a voltaic current is produced, having a certain intensity, dependent upon the strength of the chemical affinities by which that current is excited (916.), it can decompose a particular electrolyte without relation to the quantity of electricity passed, the intensity deciding whether the electrolyte shall give way or not. If that conclusion be confirmed, then we may arrange circumstances so that the same quantity of electricity may pass in the same time, in at the same surface, into the same decomposing body in the same state, and yet, differing in intensity, will decompose in one case and in the other not:—for taking a source of too low an intensity to decompose, and ascertaining the quantity passed in a given time, it is easy to take another source having a sufficient intensity, and reducing the quantity of electricity from it by the intervention of bad conductors to the same proportion as the former current, and then all the conditions will be fulfilled which are required to produce the result described.

P iii. On associated Voltaic Circles, or the Voltaic Battery.

989. Passing from the consideration of single circles (875. &c.) to their association in the voltaic battery, it is a very evident consequence, that if matters are so arranged that two sets of affinities, in place of being opposed to each other as in figg. 73. 76. (880. 891.), are made to act in conformity, then, instead of either interfering with the other, it will rather assist it. This is simply the case of two voltaic pairs of metals arranged so as to form one circuit. In such arrangements the activity of the whole is known to be increased, and when ten, or a hundred, or any larger number of such alternations are placed in conformable association with each other, the power of the whole becomes proportionally exalted, and we obtain that magnificent instrument of philosophic research, the voltaic battery.

990. But it is evident from the principles of definite action already laid down, that the quantity of electricity in the current cannot be increased with the increase of the quantity of metal oxidized and dissolved at each new place of chemical action. A single pair of zinc and platina plates throws as much electricity into the form of a current, by the oxidation of 32.5 grains of the zinc (868.) as would be circulated by the same alteration of a thousand times that quantity, or nearly five pounds of metal oxidized at the surface of the zinc plates of a thousand pairs placed in regular battery order. For it is evident, that the electricity which passes across the acid from the zinc to the platina in the first cell, and which has been associated with, or even evolved by, the decomposition of a definite portion of water in that cell, cannot pass from the zinc to the platina across the acid in the second cell, without the decomposition of the same quantity of water there, and the oxidation of the same quantity of zinc by it (924. 949.). The same result recurs in every other cell; the electro-chemical equivalent of water must be decomposed in each, before the current can pass through it; for the quantity of electricity passed and the quantity of electrolyte decomposed, must be the equivalents of each other. The action in each cell, therefore, is not to increase the quantity set in motion in any one cell, but to aid in urging forward that quantity, the passing of which is consistent with the oxidation of its own zinc; and in this way it exalts that peculiar property of the current which we endeavour to express by the term intensity, without increasing the quantity beyond that which is proportionate to the quantity of zinc oxidized in any single cell of the series.

991. To prove this, I arranged ten pairs of amalgamated zinc and platina plates with dilute sulphuric acid in the form of a battery. On completing the circuit, all the pairs acted and evolved gas at the surfaces of the platina. This was collected and found to be alike in quantity for each plate; and the quantity of hydrogen evolved at any one platina plate was in the same proportion to the quantity of metal dissolved from any one zinc plate, as was given in the experiment with a single pair (864. &c.). It was therefore certain, that, just as much electricity and no more had passed through the series of ten pair of plates as had passed through, or would have been put into motion by, any single pair, notwithstanding that ten times the quantity of zinc had been consumed.

992. This truth has been proved also long ago in another way, by the action of the evolved current on a magnetic needle; the deflecting power of one pair of plates in a battery being equal to the deflecting power of the whole, provided the wires used be sufficiently large to carry the current of the single pair freely; but the cause of this equality of action could not be understood whilst the definite action and evolution of electricity (783. 869.) remained unknown.

993. The superior decomposing power of a battery over a single pair of plates is rendered evident in two ways. Electrolytes held together by an affinity so strong as to resist the action of the current from a single pair, yield up their elements to the current excited by many pairs; and that body which is decomposed by the action of one or of few pairs of metals, &c., is resolved into its ions the more readily as it is acted upon by electricity urged forward by many alternations.

994. Both these effects are, I think, easily understood. Whatever intensity may be, (and that must of course depend upon the nature of electricity, whether it consist of a fluid or fluids, or of vibrations of an ether, or any other kind or condition of matter,) there seems to be no difficulty in comprehending that the degree of intensity at which a current of electricity is evolved by a first voltaic element, shall be increased when that current is subjected to the action of a second voltaic element, acting in conformity and possessing equal powers with the first: and as the decompositions are merely opposed actions, but exactly of the same kind as those which generate the current (917.), it seems to be a natural consequence, that the affinity which can resist the force of a single decomposing action may be unable to oppose the energies of many decomposing actions, operating conjointly, as in the voltaic battery.

995. That a body which can give way to a current of feeble intensity, should give way more freely to one of stronger force, and yet involve no contradiction to the law of definite electrolytic action, is perfectly consistent. All the facts and also the theory I have ventured to put forth, tend to show that the act of decomposition opposes a certain force to the passage of the electric current; and, that this obstruction should be overcome more or less readily, in proportion to the greater or less intensity of the decomposing current, is in perfect consistency with all our notions of the electric agent.

996. I have elsewhere (947.) distinguished the chemical action of zinc and dilute sulphuric acid into two portions; that which, acting effectually on the zinc, evolves hydrogen at once upon its surface, and that which, producing an arrangement of the chemical forces throughout the electrolyte present, (in this case water,) tends to take oxygen from it, but cannot do so unless the electric current consequent thereon can have free passage, and the hydrogen be delivered elsewhere than against the zinc. The electric current depends altogether upon the second of these; but when the current can pass, by favouring the electrolytic action it tends to diminish the former and increase the latter portion.

997. It is evident, therefore, that when ordinary zinc is used in a voltaic arrangement, there is an enormous waste of that power which it is the object to throw into the form of an electric current; a consequence which is put in its strongest point of view when it is considered that three ounces and a half of zinc, properly oxidized, can circulate enough electricity to decompose nearly one ounce of water, and cause the evolution of about 2100 cubic inches of hydrogen gas. This loss of power not only takes place during the time the electrodes of the battery are in communication, being then proportionate to the quantity of hydrogen evolved against the surface of any one of the zinc plates, but includes also all the chemical action which goes on when the extremities of the pile are not in communication.

998. This loss is far greater with ordinary zinc than with the pure metal, as M. De la Rive has shown[A]. The cause is, that when ordinary zinc is acted upon by dilute sulphuric acid, portions of copper, lead, cadmium, or other metals which it may contain, are set free upon its surface; and these, being in contact with the zinc, form small but very active voltaic circles, which cause great destruction of the zinc and evolution of hydrogen, apparently upon the zinc surface, but really upon the surface of these incidental metals. In the same proportion as they serve to discharge or convey the electricity back to the zinc, do they diminish its power of producing an electric current which shall extend to a greater distance across the acid, and be discharged only through the copper or platina plate which is associated with it for the purpose of forming a voltaic apparatus.

[A] Quarterly Journal of Science, 1831, p. 388; or Bibliotheque Universelle, 1830, p. 391.

999. All these evils are removed by the employment of an amalgam of zinc in the manner recommended by Mr. Kemp[A], or the use of the amalgamated zinc plates of Mr. Sturgeon (863.), who has himself suggested and objected to their application in galvanic batteries; for he says, "Were it not on account of the brittleness and other inconveniences occasioned by the incorporation of the mercury with the zinc, amalgamation of the zinc surfaces in galvanic batteries would become an important improvement; for the metal would last much longer, and remain bright for a considerable time, even for several successive hours; essential considerations in the employment of this apparatus[B]."

[A] Jameson's Edinburgh Journal, October 1828.

[B] Recent Experimental Researches, p. 42, &c. Mr. Sturgeon is of course unaware of the definite production of electricity by chemical action, and is in fact quoting the experiment as the strongest argument against the chemical theory of galvanism.

1000. Zinc so prepared, even though impure, does not sensibly decompose the water of dilute sulphuric acid, but still has such affinity for the oxygen, that the moment a metal which, like copper or platina, has little or no affinity, touches it in the acid, action ensues, and a powerful and abundant electric current is produced. It is probable that the mercury acts by bringing the surface, in consequence of its fluidity, into one uniform condition, and preventing those differences in character between one spot and another which are necessary for the formation of the minute voltaic circuits referred to (998.). If any difference does exist at the first moment, with regard to the proportion of zinc and mercury, at one spot on the surface, as compared with another, that spot having the least mercury is first acted on, and, by solution of the zinc, is soon placed in the same condition as the other parts, and the whole plate rendered superficially uniform. One part cannot, therefore, act as a discharger to another; and hence all the chemical power upon the water at its surface is in that equable condition (949.), which, though it tends to produce an electric current through the liquid to another plate of metal which can act as a discharger (950.), presents no irregularities by which any one part, having weaker affinities for oxygen, can act as a discharger to another. Two excellent and important consequences follow upon this state of the metal. The first is, that the full equivalent of electricity is obtained for the oxidation of a certain quantity of zinc; the second, that a battery constructed with the zinc so prepared, and charged with dilute sulphuric acid, is active only whilst the electrodes are connected, and ceases to act or be acted upon by the acid the instant the communication is broken.

1001. I have had a small battery of ten pairs of plates thus constructed, and am convinced that arrangements of this kind will be very important, especially in the development and illustration of the philosophical principles of the instrument. The metals I have used are amalgamated zinc and platina, connected together by being soldered to platina wires, the whole apparatus having the form of the couronne des tasses. The liquid used was dilute sulphuric acid of sp. gr. 1.25. No action took place upon the metals except when the electrodes were in communication, and then the action upon the zinc was only in proportion to the decomposition in the experimental cell; for when the current was retarded there, it was retarded also in the battery, and no waste of the powers of the metal was incurred.

1002. In consequence of this circumstance, the acid in the cells remained active for a very much longer time than usual. In fact, time did not tend to lower it in any sensible degree: for whilst the metal was preserved to be acted upon at the proper moment, the acid also was preserved almost at its first strength. Hence a constancy of action far beyond what can be obtained by the use of common zinc.

1003. Another excellent consequence was the renewal, during the interval of rest, between two experiments of the first and most efficient state. When an amalgamated zinc and a platina plate, immersed in dilute sulphuric acid, are first connected, the current is very powerful, but instantly sinks very much in force, and in some cases actually falls to only an eighth or a tenth of that first produced (1036.). This is due to the acid which is in contact with the zinc becoming neutralized by the oxide formed; the continued quick oxidation of the metal being thus prevented. With ordinary zinc, the evolution of gas at its surface tends to mingle all the liquid together, and thus bring fresh acid against the metal, by which the oxide formed there can be removed. With the amalgamated zinc battery, at every cessation of the current, the saline solution against the zinc is gradually diffused amongst the rest of the liquid; and upon the renewal of contact at the electrodes, the zinc plates are found most favourably circumstanced for the production of a ready and powerful current.

1004. It might at first be imagined that amalgamated zinc would be much inferior in force to common zinc, because, of the lowering of its energy, which the mercury might be supposed to occasion over the whole of its surface; but this is not the case. When the electric currents of two pairs of platina and zinc plates were opposed, the difference being that one of the zincs was amalgamated and the other not, the current from the amalgamated zinc was most powerful, although no gas was evolved against it, and much was evolved at the surface of the unamalgamated metal. Again, as Davy has shown[A], if amalgamated and unamalgamated zinc be put in contact, and dipped into dilute sulphuric acid, or other exciting fluids, the former is positive to the latter, i.e. the current passes from the amalgamated zinc, through the fluid, to the unprepared zinc. This he accounts for by supposing that "there is not any inherent and specific property in each metal which gives it the electrical character, but that it depends upon its peculiar state—on that form of aggregation which fits it for chemical change."

[A] Philosophical Transactions, 1826, p. 405.

1005. The superiority of the amalgamated zinc is not, however, due to any such cause, but is a very simple consequence of the state of the fluid in contact with it; for as the unprepared zinc acts directly and alone upon the fluid, whilst that which is amalgamated does not, the former (by the oxide it produces) quickly neutralizes the acid in contact with its surface, so that the progress of oxidation is retarded, whilst at the surface of the amalgamated zinc, any oxide formed is instantly removed by the free acid present, and the clean metallic surface is always ready to act with full energy upon the water. Hence its superiority (1037.). 1006. The progress of improvement in the voltaic battery and its applications, is evidently in the contrary direction at present to what it was a few years ago; for in place of increasing the number of plates, the strength of acid, and the extent altogether of the instrument, the change is rather towards its first state of simplicity, but with a far more intimate knowledge and application of the principles which govern its force and action. Effects of decomposition can now be obtained with ten pairs of plates (417.), which required five hundred or a thousand pairs for their production in the first instance. The capability of decomposing fused chlorides, iodides, and other compounds, according to the law before established (380. &c.), and the opportunity of collecting certain of the products, without any loss, by the use of apparatus of the nature of those already described (789. 814. &c.), render it probable that the voltaic battery may become a useful and even economical manufacturing instrument; for theory evidently indicates that an equivalent of a rare substance may be obtained at the expense of three or four equivalents of a very common body, namely, zinc: and practice seems thus far to justify the expectation. In this point of view I think it very likely that plates of platina or silver may be used instead of plates of copper with advantage, and that then the evil arising occasionally from solution of the copper, and its precipitation on the zinc, (by which the electromotive power of the zinc is so much injured,) will be avoided (1047.).

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse