p-books.com
Experimental Researches in Electricity, Volume 1
by Michael Faraday
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse

1587. That the drop, when of water, or a better conductor than water, is formed into a cone principally by the current of air, is shown amongst other ways (1594.) thus. A sharp point being held opposite the conical drop, the latter soon lost its pointed form; was retraced and became round; the current of air from it ceased, and was replaced by one from the point beneath, which, if the latter were held near enough to the drop, actually blew it aside, and rendered it concave in form.

1588. It is hardly necessary to say what happened with still worse conductors than water, as oil, or oil of turpentine; the fluid itself was then spun out into threads and carried off, not only because the air rushing over its surface helped to sweep it away, but also because its insulating particles assumed the same charged state as the particles of air, and, not being able to discharge to them in a much greater decree than the air particles themselves could do, were carried off by the same causes which urged those in their course. A similar effect with melted sealing-wax on a metal point forms an old and well-known experiment.

1589. A drop of gum water in the exhausted receiver of the air-pump was not sensibly affected in its form when electrified. When air was let in, it begun to show change of shape when the pressure was ten inches of mercury. At the pressure of fourteen or fifteen inches the change was more sensible, and as the air increased in density the effects increased, until they were the same as those in the open atmosphere. The diminished effect in the rare air I refer to the relative diminished energy of its current; that diminution depending, in the first place, on the lower electric condition of the electrified ball in the rarefied medium, and in the next, on the attenuated condition of the dielectric, the cohesive force of water in relation to rarefied air being something like that of mercury to dense air (1581.), whilst that of water in dense air may be compared to that of mercury in oil of turpentine (1597.).

1590. When a ball is covered with a thick conducting fluid, as treacle or syrup, it is easy by inductive action to determine the wind from almost any part of it (1577.); the experiment, which before was of rather difficult performance, being rendered facile in consequence of the fluid enabling that part, which at first was feeble in its action, to rise into an exalted condition by assuming a pointed form.

1591. To produce the current, the electric intensity must rise and continue at one spot, namely, at the origin of the current, higher than elsewhere, and then, air having a uniform and ready access, the current is produced. If no current be allowed (1574.), then discharge may take place by brush or spark. But whether it be by brush or spark, or wind, it seems very probable that the initial intensity or tension at which a particle of a given gaseous dielectric charges, or commences discharge, is, under the conditions before expressed, always the same (1410.).

1592. It is not supposed that all the air which enters into motion is electrified; on the contrary, much that is not charged is carried on into the stream. The part which is really charged may be but a small proportion of that which is ultimately set in motion (1442.).

1593. When a drop of gum water (1584.) is made negative, it presents a larger cone than when made positive; less of the fluid is thrown off, and yet, when a ball is approached, sparks can hardly be obtained, so pointed is the cone, and so free the discharge. A point held opposite to it did not cause the retraction of the cone to such an extent as when it was positive. All the effects are so different from those presented by the positive cone, that I have no doubt such drops would present a very instructive method of investigating the difference of positive and negative discharge in air and other dielectrics (1480. 1501.).

1594. That I may not be misunderstood (1587.), I must observe here that I do not consider the cones produced as the result only of the current of air or other insulating dielectric over their surface. When the drop is of badly conducting matter, a part of the effect is due to the electrified state of the particles, and this part constitutes almost the whole when the matter is melted sealing-wax, oil of turpentine, and similar insulating bodies (1588.). But even when the drop is of good conducting matter, as water, solutions, or mercury, though the effect above spoken of will then be insensible (1607.), still it is not the mere current of air or other dielectric which produces all the change of form; for a part is due to those attractive forces by which the charged drop, if free to move, would travel along the line of strongest induction, and not being free to move, has its form elongated until the sum of the different forces tending to produce this form is balanced by the cohesive attraction of the fluid. The effect of the attractive forces are well shown when treacle, gum water, or syrup is used; for the long threads which spin out, at the same time that they form the axes of the currents of air, which may still be considered as determined at their points, are like flexible conductors, and show by their directions in what way the attractive forces draw them.

1595. When the phenomena of currents are observed in dense insulating dielectrics, they present us with extraordinary degrees of mechanical force. Thus, if a pint of well-rectified and filtered (1571.) oil of turpentine be put into a glass vessel, and two wires be dipped into it in different places, one leading to the electrical machine, and the other to the discharging train, on working the machine the fluid will be thrown into violent motion throughout its whole mass, whilst at the same time it will rise two, three or four inches up the machine wire, and dart off jets from it into the air.

1596. If very clean uninsulated mercury be at the bottom of the fluid, and the wire from the machine be terminated either by a ball or a point, and also pass through a glass tube extending both above and below the surface of the oil of turpentine, the currents can be better observed, and will be seen to rush down the wire, proceeding directly from it towards the mercury, and there, diverging in all directions, will ripple its surface strongly, and mounting up at the sides of the vessel, will return to re-enter upon their course.

1597. A drop of mercury being suspended from an amalgamated brass ball, preserved its form almost unchanged in air (1581.); but when immersed in the oil of turpentine it became very pointed, and even particles of the metal could be spun out and carried off by the currents of the dielectric. The form of the liquid metal was just like that of the syrup in air (1584.), the point of the cone being quite as fine, though not so long. By bringing a sharp uninsulated point towards it, it could also be effected in the same manner as the syrup drop in air (1587.), though not so readily, because of the density and limited quantity of the dielectric.

1598. If the mercury at the bottom of the fluid be connected with the electrical machine, whilst a rod is held in the hand terminating in a ball three quarters of an inch, less or more, in diameter, and the ball be dipped into the electrified fluid, very striking appearances ensue. When the ball is raised again so as to be at a level nearly out of the fluid, large portions of the latter will seem to cling to it (fig. 138.). If it be raised higher, a column of the oil of turpentine will still connect it with that in the basin below (fig. 139.). If the machine be excited into more powerful action, this will become more bulky, and may then also be raised higher, assuming the form (fig. 140); and all the time that these effects continue, currents and counter-currents, sometimes running very close together, may be observed in the raised column of fluid.

1599. It is very difficult to decide by sight the direction of the currents in such experiments as these. If particles of silk are introduced they cling about the conductors; but using drops of water and mercury the course of the fluid dielectric seems well indicated. Thus, if a drop of water be placed at the end of a rod (1571.) over the uninsulated mercury, it is soon swept away in particles streaming downwards towards the mercury. If another drop be placed on the mercury beneath the end of the rod, it is quickly dispersed in all directions in the form of streaming particles, the attractive forces drawing it into elongated portions, and the currents carrying them away. If a drop of mercury be hung from a ball used to raise a column of the fluid (1598.), then the shape of the drop seems to show currents travelling in the fluid in the direction indicated by the arrows (fig. 141.).

1600. A very remarkable effect is produced on these phenomena, connected with positive and negative charge and discharge, namely, that a ball charged positively raises a much higher and larger column of the oil of turpentine than when charged negatively. There can be no doubt that this is connected with the difference of positive and negative action already spoken of (1480. 1525.), and tends much to strengthen the idea that such difference is referable to the particles of the dielectric rather than to the charged conductors, and is dependent upon the mode in which these particles polarize (1503. 1523.).

1601. Whenever currents travel in insulating dielectrics they really effect discharge; and it is important to observe, though a very natural result, that it is indifferent which way the current or particles travel, as with reversed direction their state is reversed. The change is easily made, either in air or oil of turpentine, between two opposed rods, for an insulated ball being placed in connexion with either rod and brought near its extremity, will cause the current to set towards it from the opposite end.

1602. The two currents often occur at once, as when both terminations present brushes, and frequently when they exhibit the glow (1531.). In such cases, the charged particles, or many of them, meet and mutually discharge each other (1518. 1612.). If a smoking wax taper be held at the end of an insulating rod towards a charged prime conductor, it will very often happen that two currents will form, and be rendered visible by its vapour, one passing as a fine filament of smoky particles directly to the charged conductor, and the other passing as directly from the same taper wick outwards, and from the conductor: the principles of inductric action and charge, which were referred to in considering the relation of a carrier ball and a conductor (1566.), being here also called into play.

* * * * *

1603. The general analogy and, I think I may say, identity of action found to exist as to insulation and conduction (1338. 1561.) when bodies, the best and the worst in the classes of insulators or conductors, were compared, led me to believe that the phenomena of convection in badly conducting media were not without their parallel amongst the best conductors, such even as the metals. Upon consideration, the cones produced by Davy[A] in fluid metals, as mercury and tin, seemed to be cases in point, and probably also the elongation of the metallic medium through which a current of electricity was passing, described by Ampere (1113)[B]; for it is not difficult to conceive, that the diminution of convective effect, consequent upon the high conducting power of the metallic media used in these experiments, might be fully compensated for by the enormous quantity of electricity passing. In fact, it is impossible not to expect some effect, whether sensible or not, of the kind in question, when such a current is passing through a fluid offering a sensible resistance to the passage of the electricity, and, thereby, giving proof of a certain degree of insulating power (1328.).

[A] Philosophical Transactions, 1823, p. 155.

[B] Bibliotheque Universelle, xxi, 417.

1604. I endeavoured to connect the convective currents in air, oil of turpentine, &c. and those in metals, by intermediate cases, but found this not easy to do. On taking bodies, for instance, which, like water, adds, solutions, fused salts or chlorides, &c., have intermediate conducting powers, the minute quantity of electricity which the common machine can supply (371. 861.) is exhausted instantly, so that the cause of the phenomenon is kept either very low in intensity, or the instant of time during which the effect lasts is so small, that one cannot hope to observe the result sought for. If a voltaic battery be used, these bodies are all electrolytes, and the evolution of gas, or the production of other changes, interferes and prevents observation of the effect required.

1605. There are, nevertheless, some experiments which illustrate the connection. Two platina wires, forming the electrodes of a powerful voltaic battery, were placed side by side, near each other, in distilled water, hermetically sealed up in a strong glass tube, some minute vegetable fibres being present in the water. When, from the evolution of gas and the consequent increased pressure, the bubbles formed on the electrodes were so small as to produce but feebly ascending currents, then it could be observed that the filaments present were attracted and repelled between the two wires, as they would have been between two oppositely charged surfaces in air or oil of turpentine, moving so quickly as to displace and disturb the bubbles and the currents which these tended to form. Now I think it cannot be doubted, that under similar circumstances, and with an abundant supply of electricity, of sufficient tension also, convective currents might have been formed; the attractions and repulsions of the filaments were, in fact, the elements of such currents (1572.), and therefore water, though almost infinitely above air or oil of turpentine as a conductor, is a medium in which similar currents can take place.

1606. I had an apparatus made (fig. 142.) in which a is a plate of shell-lac, b a fine platina wire passing through it, and having only the section of the wire exposed above; c a ring of bibulous paper resting on the shell-lac, and d distilled water retained by the paper in its place, and just sufficient in quantity to cover the end of the wire b; another wire, e, touched a piece of tinfoil lying in the water, and was also connected with a discharging train; in this way it was easy, by rendering b either positive or negative, to send a current of electricity by its extremity into the fluid, and so away by the wire e.

1607. On connecting b with the conductor of a powerful electrical machine, not the least disturbance of the level of the fluid over the end of the wire during the working of the machine could be observed; but at the same time there was not the smallest indication of electrical charge about the conductor of the machine, so complete was the discharge. I conclude that the quantity of electricity passed in a given time had been too small, when compared with the conducting power of the fluid to produce the desired effect.

1608. I then charged a large Leyden battery (291.), and discharged it through the wire b, interposing, however, a wet thread, two feet long, to prevent a spark in the water, and to reduce what would else have been a sudden violent discharge into one of more moderate character, enduring for a sensible length of time (334.). I now did obtain a very brief elevation of the water over the end of the wire; and though a few minute bubbles of gas were at the same time formed there, so as to prevent me from asserting that the effect was unequivocally the same as that obtained by DAVY in the metals, yet, according to my best judgement, it was partly, and I believe principally, of that nature.

1609. I employed a voltaic battery of 100 pair of four-inch plates for experiments of a similar nature with electrolytes. In these cases the shell-lac was cupped, and the wire b 0.2 of an inch in diameter. Sometimes I used a positive amalgamated zinc wire in contact with dilute sulphuric acid; at others, a negative copper wire in a solution of sulphate of copper; but, because of the evolution of gas, the precipitation of copper, &c., I was not able to obtain decided results. It is but right to mention, that when I made use of mercury, endeavouring to repeat DAVY's experiment, the battery of 100 pair was not sufficient to produce the elevations[A].

[A] In the experiments at the Royal Institution, Sir H. Davy used, I think, 500 or 600 pairs of plates. Those at the London Institution were made with the apparatus of Mr. Pepys (consisting of an enormous single pair of plates), described in the Philosophical Transactions for 1832, p. 187.

1610. The latter experiments (1609.) may therefore be considered as failing to give the hoped-for proof, but I have much confidence in the former (1605. 1608.), and in the considerations (1603.) connected with them. If I have rightly viewed them, and we may be allowed to compare the currents at points and surfaces in such extremely different bodies as air and the metals, and admit that they are effects of the same kind, differing only in degree and in proportion to the insulating or conducting power of the dielectric used, what great additional argument we obtain in favour of that theory, which in the phenomena of insulation and conduction also, as in these, would link the same apparently dissimilar substances together (1336. 1561.); and how completely the general view, which refers all the phenomena to the direct action of the molecules of matter, seems to embrace the various isolated phenomena as they successively come under consideration!

* * * * *

1611. The connection of this convective or carrying effect, which depends upon a certain degree of insulation, with conduction; i.e. the occurrence of both in so many of the substances referred to, as, for instance, the metals, water, air, &c., would lead to many very curious theoretical generalizations, which I must not indulge in here. One point, however, I shall venture to refer to. Conduction appears to be essentially an action of contiguous particles, and the considerations just stated, together with others formerly expressed (1326, 1336, &c.), lead to the conclusion, that all bodies conduct, and by the same process, air as well as metals; the only difference being in the necessary degree of force or tension between the particles which must exist before the act of conduction or transfer from one particle to another can take place.

1612. The question then arises, what is this limiting condition which separates, as it were, conduction and insulation from each other? Does it consist in a difference between the two contiguous particles, or the contiguous poles of these particles, in the nature and amount of positive and negative force, no communication or discharge occurring unless that difference rises up to a certain degree, variable for different bodies, but always the same for the same body? Or is it true that, however small the difference between two such particles, if time be allowed, equalization of force will take place, even with the particles of such bodies as air, sulphur or lac? In the first case, insulating power in any particular body would be proportionate to the degree of the assumed necessary difference of force; in the second, to the time required to equalize equal degrees of difference in different bodies. With regard to airs, one is almost led to expect a permanent difference of force; but in all other bodies, time seems to be quite sufficient to ensure, ultimately, complete conduction. The difference in the modes by which insulation may be sustained, or conduction effected, is not a mere fanciful point, but one of great importance, as being essentially connected with the molecular theory of induction, and the manner in which the particles of bodies assume and retain their polarized state.

* * * * *

P xi. Relation of a vacuum to electrical phenomena.

1613. It would seem strange, if a theory which refers all the phenomena of insulation and conduction, i.e. all electrical phenomena, to the action of contiguous particles, were to omit to notice the assumed possible case of a vacuum. Admitting that a vacuum can be produced, it would be a very curious matter indeed to know what its relation to electrical phenomena would be; and as shell-lac and metal are directly opposed to each other, whether a vacuum would be opposed to them both, and allow neither of induction or conduction across it. Mr. Morgan[A] has said that a vacuum does not conduct. Sir H. Davy concluded from his investigations, that as perfect a vacuum as could be made[B] did conduct, but does not consider the prepared spaces which he used as absolute vacua. In such experiments I think I have observed the luminous discharge to be principally on the inner surface of the glass; and it does not appear at all unlikely, that, if the vacuum refused to conduct, still the surface of glass next it might carry on that action.

[A] Philosophical Transactions, 1785, p. 272

[B] Ibid. 1822, p. 64.

1614. At one time, when I thought inductive force was exerted in right lines, I hoped to illustrate this important question by making experiments on induction with metallic mirrors (used only as conducting vessels) exposed towards a very clear sky at night time, and of such concavity that nothing but the firmament could be visible from the lowest part of the concave n, fig. 143. Such mirrors, when electrified, as by connexion with a Leyden jar, and examined by a carrier ball, readily gave electricity at the lowest part of their concavity if in a room; but I was in hopes of finding that, circumstanced as before stated, they would give little or none at the same spot, if the atmosphere above really terminated in a vacuum. I was disappointed in the conclusion, for I obtained as much electricity there as before; but on discovering the action of induction in curved lines (1231.), found a full and satisfactory explanation of the result.

1615. My theory, as far as I have ventured it, does not pretend to decide upon the consequences of a vacuum. It is not at present limited sufficiently, or rendered precise enough, either by experiments relating to spaces void of matter, or those of other kinds, to indicate what would happen in the vacuum case. I have only as yet endeavoured to establish, what all the facts seem to prove, that when electrical phenomena, as those of induction, conduction, insulation and discharge occur, they depend on, and are produced by the action of contiguous particles of matter, the next existing particle being considered as the contiguous one; and I have further assumed, that these particles are polarized; that each exhibits the two forces, or the force in two directions (1295. 1298.); and that they act at a distance, only by acting on the contiguous and intermediate particles.

1616. But assuming that a perfect vacuum were to intervene in the course of the lines of inductive action (1304.), it does not follow from this theory, that the particles on opposite sides of such a vacuum could not act on each other. Suppose it possible for a positively electrified particle to be in the centre of a vacuum an inch in diameter, nothing in my present views forbids that the particle should act at the distance of half an inch on all the particles forming the inner superficies of the bounding sphere, and with a force consistent with the well-known law of the squares of the distance. But suppose the sphere of an inch were full of insulating matter, the electrified particle would not then, according to my notion, act directly on the distant particles, but on those in immediate association with it, employing all its power in polarizing them; producing in them negative force equal in amount to its own positive force and directed towards the latter, and positive force of equal amount directed outwards and acting in the same manner upon the layer of particles next in succession. So that ultimately, those particles in the surface of a sphere of half an inch radius, which were acted on directly when that sphere was a vacuum, will now be acted on indirectly as respects the central particle or source of action, i.e. they will be polarized in the same way, and with the same amount of force.

S 19. Nature of the electric current.

1617. The word current is so expressive in common language, that when applied in the consideration of electrical phenomena we can hardly divest it sufficiently of its meaning, or prevent our minds from being prejudiced by it (283. 511.). I shall use it in its common electrical sense, namely, to express generally a certain condition and relation of electrical forces supposed to be in progression.

1618. A current is produced both by excitement and discharge; and whatsoever the variation of the two general causes may be, the effect remains the same. Thus excitement may occur in many ways, as by friction, chemical action, influence of heat, change of condition, induction, &c.; and discharge has the forms of conduction, electrolyzation, disruptive discharge, and convection; yet the current connected with these actions, when it occurs, appears in all cases to be the same. This constancy in the character of the current, notwithstanding the particular and great variations which may be made in the mode of its occurrence, is exceedingly striking and important; and its investigation and development promise to supply the most open and advantageous road to a true and intimate understanding of the nature of electrical forces.

1619. As yet the phenomena of the current have presented nothing in opposition to the view I have taken of the nature of induction as an action of contiguous particles. I have endeavoured to divest myself of prejudices and to look for contradictions, but I have not perceived any in conductive, electrolytic, convective, or disruptive discharge.

1620. Looking at the current as a cause, it exerts very extraordinary and diverse powers, not only in its course and on the bodies in which it exists, but collaterally, as in inductive or magnetic phenomena.

1621. Electrolytic action.—One of its direct actions is the exertion of pure chemical force, this being a result which has now been examined to a considerable extent. The effect is found to be constant and definite for the quantity of electric force discharged (783. &c.); and beyond that, the intensity required is in relation to the intensity of the affinity or forces to be overcome (904. 906. 911.). The current and its consequences are here proportionate; the one may be employed to represent the other; no part of the effect of either is lost or gained; so that the case is a strict one, and yet it is the very case which most strikingly illustrates the doctrine that induction is an action of contiguous particles (1164. 1343.).

1622. The process of electrolytic discharge appears to me to be in close analogy, and perhaps in its nature identical with another process of discharge, which at first seems very different from it, I mean convection (1347. 1572.). In the latter case the particles may travel for yards across a chamber; they may produce strong winds in the air, so as to move machinery; and in fluids, as oil of turpentine, may even shake the hand, and carry heavy metallic bodies about[A]; and yet I do not see that the force, either in kind or action, is at all different to that by which a particle of hydrogen leaves one particle of oxygen to go to another, or by which a particle of oxygen travels in the contrary direction.

[A] If a metallic vessel three or four inches deep, containing oil of turpentine, be insulated and electrified, and a rod with a ball (an inch or more in diameter) at the end have the ball immersed in the fluid whilst the end is held in the hand, the mechanical force generated when the ball is moved to and from the sides of the vessel will soon be evident to the experimenter.

1623. Travelling particles of the air can effect chemical changes just as well as the contact of a fixed platina electrode, or that of a combining electrode, or the ions of a decomposing electrolyte (453. 471.); and in the experiment formerly described, where eight places of decomposition were rendered active by one current (469.), and where charged particles of air in motion were the only electrical means of connecting these parts of the current, it seems to me that the action of the particles of the electrolyte and of the air were essentially the same. A particle of air was rendered positive; it travelled in a certain determinate direction, and coming to an electrolyte, communicated its powers; an equal amount of positive force was accordingly acquired by another particle (the hydrogen), and the latter, so charged, travelled as the former did, and in the same direction, until it came to another particle, and transferred its power and motion, making that other particle active. Now, though the particle of air travelled over a visible and occasionally a large space, whilst the particle of the electrolyte moved over an exceedingly small one; though the air particle might be oxygen, nitrogen, or hydrogen, receiving its charge from force of high intensity, whilst the electrolytic particle of hydrogen had a natural aptness to receive the positive condition with extreme facility; though the air particle might be charged with very little electricity at a very high intensity by one process, whilst the hydrogen particle might be charged with much electricity at a very low intensity by another process; these are not differences of kind, as relates to the final discharging action of these particles, but only of degree; not essential differences which make things unlike, but such differences as give to things, similar in their nature, that great variety which fits them for their office in the system of the universe.

1624. So when a particle of air, or of dust in it, electrified at a negative point, moves on through the influence of the inductive forces (1572.) to the next positive surface, and after discharge passes away, it seems to me to represent exactly that particle of oxygen which, having been rendered negative in the electrolyte, is urged by the same disposition of inductive forces, and going to the positive platina electrode, is there discharged, and then passes away, as the air or dust did before it.

1625. Heat is another direct effect of the current upon substances in which it occurs, and it becomes a very important question, as to the relation of the electric and heating forces, whether the latter is always definite in amount[A]. There are many cases, even amongst bodies which conduct without change, that at present are irreconcileable with the assumption that it is[B]; but there are also many which indicate that, when proper limitations are applied, the heat produced is definite. Harris has shown this for a given length of current in a metallic wire, using common electricity[C]; and De la Rive has proved the same point for voltaic electricity by his beautiful application of Breguet's thermometer[D].

[A] See De la Rive's Researches, Bib. Universelle, 1829, xl. p. 40.

[B] Amongst others, Davy, Philosophical Transactions, 1821, p. 438. Pelletier's important results, Annales de Chimie, 1834, lvi. p. 371. and Becquerel's non-heating current, Bib. Universelle, 1835, lx. 218.

[C] Philosophical Transactions, 1824, pp. 225. 228.

[D] Annales de Chimie, 1836, lxii. 177.

1626. When the production of heat is observed in electrolytes under decomposition, the results are still more complicated. But important steps have been taken in the investigation of this branch of the subject by De la Rive[A] and others; and it is more than probable that, when the right limitations are applied, constant and definite results will here also be obtained.

[A] Bib. Universelle, 1829, xl. 49; and Ritchie, Phil. Trans. 1832. p. 296.

* * * * *

1627. It is a most important part of the character of the current, and essentially connected with its very nature, that it is always the same. The two forces are everywhere in it. There is never one current of force or one fluid only. Any one part of the current may, as respects the presence of the two forces there, be considered as precisely the same with any other part; and the numerous experiments which imply their possible separation, as well as the theoretical expressions which, being used daily, assume it, are, I think, in contradiction with facts (511, &c.). It appears to me to be as impossible to assume a current of positive or a current of negative force alone, or of the two at once with any predominance of one over the other, as it is to give an absolute charge to matter (516. 1169. 1177.).

1628. The establishment of this truth, if, as I think, it be a truth, or on the other hand the disproof of it, is of the greatest consequence. If, as a first principle, we can establish, that the centres of the two forces, or elements of force, never can be separated to any sensible distance, or at all events not further than the space between two contiguous particles (1615.), or if we can establish the contrary conclusion, how much more clear is our view of what lies before us, and how much less embarrassed the ground over which we have to pass in attaining to it, than if we remain halting between two opinions! And if, with that feeling, we rigidly test every experiment which bears upon the point, as far as our prejudices will let us (1161.), instead of permitting them with a theoretical expression to pass too easily away, are we not much more likely to attain the real truth, and from that proceed with safety to what is at present unknown?

1629. I say these things, not, I hope, to advance a particular view, but to draw the strict attention of those who are able to investigate and judge of the matter, to what must be a turning point in the theory of electricity; to a separation of two roads, one only of which can be right: and I hope I may be allowed to go a little further into the facts which have driven me to the view I have just given.

1630. When a wire in the voltaic circuit is heated, the temperature frequently rises first, or most at one end. If this effect were due to any relation of positive or negative as respects the current, it would be exceedingly important. I therefore examined several such cases; but when, keeping the contacts of the wire and its position to neighbouring things unchanged, I altered the direction of the current, I found that the effect remained unaltered, showing that it depended, not upon the direction of the current, but on other circumstances. So there is here no evidence of a difference between one part of the circuit and another.

1631. The same point, i.e. uniformity in every part, may be illustrated by what may be considered as the inexhaustible nature of the current when producing particular effects; for these effects depend upon transfer only, and do not consume the power. Thus a current which will heat one inch of platina wire will heat a hundred inches (853. note). If a current be sustained in a constant state, it will decompose the fluid in one voltameter only, or in twenty others if they be placed in the circuit, in each to an amount equal to that in the single one.

1632. Again, in cases of disruptive discharge, as in the spark, there is frequently a dark part (1422.) which, by Professor Johnson, has been called the neutral point[A]; and this has given rise to the use of expressions implying that there are two electricities existing separately, which, passing to that spot, there combine and neutralize each other[B]. But if such expressions are understood as correctly indicating that positive electricity alone is moving between the positive ball and that spot, and negative electricity only between the negative ball and that spot, then what strange conditions these parts must be in; conditions, which to my mind are every way unlike those which really occur! In such a case, one part of a current would consist of positive electricity only, and that moving in one direction; another part would consist of negative electricity only, and that moving in the other direction; and a third part would consist of an accumulation of the two electricities, not moving in either direction, but mixing up together! and being in a relation to each other utterly unlike any relation which could be supposed to exist in the two former portions of the discharge. This does not seem to me to be natural. In a current, whatever form the discharge may take, or whatever part of the circuit or current is referred to, as much positive force as is there exerted in one direction, so much negative force is there exerted in the other. If it were not so we should have bodies electrified not merely positive and negative, but on occasions in a most extraordinary manner, one being charged with five, ten, or twenty times as much of both positive and negative electricity in equal quantities as another. At present, however, there is no known fact indicating such states.

[A] Silliman's Journal, 1834, xxv. p. 57.

[B] Thomson on Heat and Electricity, p. 171.

1633. Even in cases of convection, or carrying discharge, the statement that the current is everywhere the same must in effect be true (1627.); for how, otherwise, could the results formerly described occur? When currents of air constituted the mode of discharge between the portions of paper moistened with iodide of potassium or sulphate of soda (465. 469.), decomposition occurred; and I have since ascertained that, whether a current of positive air issued from a spot, or one of negative air passed towards it, the effect of the evolution of iodine or of acid was the same, whilst the reversed currents produced alkali. So also in the magnetic experiments (307.) whether the discharge was effected by the introduction of a wire, or the occurrence of a spark, or the passage of convective currents either one way or the other (depending on the electrified state of the particles), the result was the same, being in all cases dependent upon the perfect current.

1634. Hence, the section of a current compared with other sections of the same current must be a constant quantity, if the actions exerted be of the same kind; or if of different kinds, then the forms under which the effects are produced are equivalent to each other, and experimentally convertible at pleasure. It is in sections, therefore, we must look for identity of electrical force, even to the sections of sparks and carrying actions, as well as those of wires and electrolytes.

1635. In illustration of the utility and importance of establishing that which may be the true principle, I will refer to a few cases. The doctrine of unipolarity, as formerly stated, and I think generally understood[A], is evidently inconsistent with my view of a current (1627.); and the later singular phenomena of poles and flames described by Erman and others[B] partake of the same inconsistency of character. If a unipolar body could exist, i.e. one that could conduct the one electricity and not the other, what very new characters we should have a right to expect in the currents of single electricities passing through them, and how greatly ought they to differ, not only from the common current which is supposed to have both electricities travelling in opposite directions in equal amount at the same time, but also from each other! The facts, which are excellent, have, however, gradually been more correctly explained by Becquerel[C], Andrews[D], and others; and I understand that Professor Ohms[E] has perfected the work, in his close examination of all the phenomena; and after showing that similar phenomena can take place with good conductors, proves that with soap, &c. many of the effects are the mere consequences of the bodies evolved by electrolytic action.

[A] Erman, Annales de Chimie, 1807. lxi. p. 115. Davy's Elements, p. 168. Biot, Ency. Brit. Supp, iv. p. 444. Becquerel, Traite, i. p. 167. De la Rive, Bib. Univ. 1837. vii. 392.

[B] Erman, Annales de Chimie, 1824. xxv. 278. Becquerel, Ibid. xxxvi. p. 329

[C] Becquerel, Annales de Chimie, 1831. xlvi. p. 283.

[D] Andrews, Philosophical Magazine, 1836. ix. 182.

[E] Schweigger's Jahrbuch de Chimie, &c. 1830. Heft 8. Not understanding German, it is with extreme regret I confess I have not access, and cannot do justice, to the many most valuable papers in experimental electricity published in that language. I take this opportunity also of stating another circumstance which occasions me great trouble, and, as I find by experience, may make, me seemingly regardless of the labours of others:—it is a gradual loss of memory for some years past; and now, often when I read a memoir, I remember that I have seen it before, and would have rejoiced if at the right time I could have recollected and referred to it in the progress of my own papers.—M.F.

1636. I conclude, therefore, that the facts upon which the doctrine of unipolarity was founded are not adverse to that unity and indivisibility of character which I have stated the current to possess, any more than the phenomena of the pile itself (which might well bear comparison with those of unipolar bodies,) are opposed to it. Probably the effects which have been called effects of unipolarity, and the peculiar differences of the positive and negative surface when discharging into air, gases, or other dielectrics (1480. 1525.) which have been already referred to, may have considerable relation to each other[A].

[A] See also Hare in Silliman's Journal, 1833. xxiv. 246.

* * * * *

1637. M. de la Rive has recently described a peculiar and remarkable effect of heat on a current when passing between electrodes and a fluid[A]. It is, that if platina electrodes dip into acidulated water, no change is produced in the passing current by making the positive electrode hotter or colder; whereas making the negative electrode hotter increased the deflexion of a galvanometer affected by the current, from 12 deg. to 30 deg. and even 45 deg., whilst making it colder diminished the current in the same high proportions.

[A] Bibliotheque Universelle, 1837, vii. 388.

1638. That one electrode should have this striking relation to heat whilst the other remained absolutely without, seem to me as incompatible with what I conceived to be the character of a current as unipolarity (1627. 1635.), and it was therefore with some anxiety that I repeated the experiment. The electrodes which I used were platina; the electrolyte, water containing about one sixth of sulphuric acid by weight: the voltaic battery consisted of two pairs of amalgamated zinc and platina plates in dilute sulphuric acid, and the galvanometer in the circuit was one with two needles, and gave when the arrangement was complete a deflexion of 10 deg. or 12 deg..

1639. Under these circumstances heating either electrode increased the current; heating both produced still more effect. When both were heated, if either were cooled, the effect on the current fell in proportion. The proportion of effect due to heating this or that electrode varied, but on the whole heating the negative seemed to favour the passage of the current somewhat more than heating the positive. Whether the application of heat were by a flame applied underneath, or one directed by a blowpipe from above, or by a hot iron or coal, the effect was the same.

1640. Having thus removed the difficulty out of the way of my views regarding a current, I did not pursue this curious experiment further. It is probable, that the difference between my results and those of M. de la Rive may depend upon the relative values of the currents used; for I employed only a weak one resulting from two pairs of plates two inches long and half an inch wide, whilst M. de la Rive used four pairs of plates of sixteen square inches in surface.

* * * * *

1641. Electric discharges in the atmosphere in the form of balls of fire have occasionally been described. Such phenomena appear to me to be incompatible with all that we know of electricity and its modes of discharge. As time is an element in the effect (1418. 1436.) it is possible perhaps that an electric discharge might really pass as a ball from place to place; but as every thing shows that its velocity must be almost infinite, and the time of its duration exceedingly small, it is impossible that the eye should perceive it as anything else than a line of light. That phenomena of balls of fire may appear in the atmosphere, I do not mean to deny; but that they have anything to do with the discharge of ordinary electricity, or are at all related to lightning or atmospheric electricity, is much more than doubtful.

* * * * *

1642. All these considerations, and many others, help to confirm the conclusion, drawn over and over again, that the current is an indivisible thing; an axis of power, in every part of which both electric forces are present in equal amount[A] (517. 1627.). With conduction and electrolyzation, and even discharge by spark, such a view will harmonize without hurting any of our preconceived notions; but as relates to convection, a more startling result appears, which must therefore be considered.

[A] I am glad to refer here to the results obtained by Mr. Christie with magneto-electricity, Philosophical Transactions, 1833, p. 113 note. As regards the current in a wire, they confirm everything that I am contending for.

1643. If two balls A and B be electrified in opposite states and held within each other's influence, the moment they move towards each other, a current, or those effects which are understood by the word current, will be produced. Whether A move towards B, or B move in the opposite direction towards A, a current, and in both cases having the same direction, will result. If A and B move from each other, then a current in the opposite direction, or equivalent effects, will be produced.

1644. Or, as charge exists only by induction (1178. 1299.), and a body when electrified is necessarily in relation to other bodies in the opposite state; so, if a ball be electrified positively in the middle of a room and be then moved in any direction, effects will be produced, as current in the same direction (to use the conventional mode of expression) had existed: or, if the ball be negatively electrified, and then moved, effects as if a current in a direction contrary to that of the motion had been formed, will be produced.

1645. I am saying of a single particle or of two what I have before said, in effect, of many (1633.). If the former account of currents be true, then that just stated must be a necessary result. And, though the statement may seem startling at first, it is to be considered that, according to my theory of induction, the charged conductor or particle is related to the distant conductor in the opposite state, or that which terminates the extent of the induction, by all the intermediate particles (1165, 1295.), these becoming polarized exactly as the particles of a solid electrolyte do when interposed between the two electrodes. Hence the conclusion regarding the unity and identity of the current in the case of convection, jointly with the former cases, is not so strange as it might at first appear.

* * * * *

1646. There is a very remarkable phenomenon or effect of the electrolytic discharge, first pointed out, I believe, by Mr. Porrett, of the accumulation of fluid under decomposing action in the current on one side of an interposed diaphragm[A]. It is a mechanical result; and as the liquid passes from the positive towards the negative electrode in all the known cases, it seems to establish a relation to the polar condition of the dielectric in which the current exists (1164. 1525.). It has not as yet been sufficiently investigated by experiment; for De la Rive says[B], it requires that the water should be a bad conductor, as, for instance, distilled water, the effect not happening with strong solutions; whereas, Dutrochet says[C] the contrary is the case, and that, the effect is not directly due to the electric current.

[A] Annals of Philosophy, 1816. viii. p. 75.

[B] Annales de Chimie, 1835. xxviii. p. 196.

[C] Annales de Chimie, 1832, xlix. p. 423.

1647. Becquerel, in his Traite de l'Electricite, has brought together the considerations which arise for and against the opinion, that the effect generally is an electric effect[A]. Though I have no decisive fact to quote at present, I cannot refrain from venturing an opinion, that the effect is analogous both to combination and convection (1623.), being a case of carrying due to the relation of the diaphragm and the fluid in contact with it, through which the electric discharge is jointly effected; and further, that the peculiar relation of positive and negative small and large surfaces already referred to (1482. 1503. 1525.), may be the direct cause of the fluid and the diaphragm travelling in contrary but determinate directions. A very valuable experiment has been made by M. Becquerel with particles of clay[B], which will probably bear importantly on this point.

[A] Vol. iv. p. 192, 197.

[B] Traite de l'Electricite, i. p. 285.

* * * * *

1648. As long as the terms current and electro-dynamic are used to express those relations of the electric forces in which progression of either fluids or effects are supposed to occur (283.), so long will the idea of velocity be associated with them; and this will, perhaps, be more especially the case if the hypothesis of a fluid or fluids be adopted.

1649. Hence has arisen the desire of estimating this velocity either directly or by some effect dependent on it; and amongst the endeavours to do this correctly, may be mentioned especially those of Dr. Watson[A] in 1748, and of Professor Wheatstone[B] in 1834; the electricity in the early trials being supposed to travel from end to end of the arrangement, but in the later investigations a distinction occasionally appearing to be made between the transmission of the effect and of the supposed fluid by the motion of whose particles that effect is produced.

[A] Philosophical Transactions, 1748.

[B] Ibid. 1834, p. 583.

1650. Electrolytic action has a remarkable bearing upon this question of the velocity of the current, especially as connected with the theory of an electric fluid or fluids. In it there is an evident transfer of power with the transfer of each particle of the anion or cathion present, to the next particles of the cathion or anion; and as the amount of power is definite, we have in this way a means of localizing as it were the force, identifying it by the particle and dealing it out in successive portions, which leads, I think, to very striking results.

1651. Suppose, for instance, that water is undergoing decomposition by the powers of a voltaic battery. Each particle of hydrogen as it moves one way, or of oxygen as it moves in the other direction, will transfer a certain amount of electrical force associated with it in the form of chemical affinity (822. 852. 918.) onwards through a distance, which is equal to that through which the particle itself has moved. This transfer will be accompanied by a corresponding movement in the electrical forces throughout every part of the circuit formed (1627. 1634.), and its effects may be estimated, as, for instance, by the heating of a wire (853.) at any particular section of the current however distant. If the water be a cube of an inch in the side, the electrodes touching, each by a surface of one square inch, and being an inch apart, then, by the time that a tenth of it, or 25.25 grs., is decomposed, the particles of oxygen and hydrogen throughout the mass may be considered as having moved relatively to each other in opposite directions, to the amount of the tenth of an inch; i.e. that two particles at first in combination will after the motion be the tenth of an inch apart. Other motions which occur in the fluid will not at all interfere with this result; for they have no power of accelerating or retarding the electric discharge, and possess in fact no relation to it.

1652. The quantity of electricity in 25.25 grains of water is, according to an estimate of the force which I formerly made (861.), equal to above 24 millions of charges of a large Leyden battery; or it would have kept any length of a platina wire 1/104 of an inch in diameter red-hot for an hour and a half (853.). This result, though given only as an approximation, I have seen no reason as yet to alter, and it is confirmed generally by the experiments and results of M. Pouillet[A]. According to Mr. Wheatstone's experiments, the influence or effects of the current would appear at a distance of 576,000 miles in a second[B]. We have, therefore, in this view of the matter, on the one hand, an enormous quantity of power equal to a most destructive thunder-storm appearing instantly at the distance of 576,000 miles from its source, and on the other, a quiet effect, in producing which the power had taken an hour and a half to travel through the tenth of an inch: yet these are the equivalents to each other, being effects observed at the sections of one and the same current (1634.).

[A] Becquerel, Traite de l'Electricite, v. p. 278.

[B] Philosophical Transactions, 1834, p. 589.

* * * * *

1653. It is time that I should call attention to the lateral or transverse forces of the current. The great things which have been achieved by Oersted, Arago, Ampere, Davy, De la Rive, and others, and the high degree of simplification which has been introduced into their arrangement by the theory of Ampere, have not only done their full service in advancing most rapidly this branch of knowledge, but have secured to it such attention that there is no necessity for urging on its pursuit. I refer of course to magnetic action and its relations; but though this is the only recognised lateral action of the current, there is great reason for believing that others exist and would by their discovery reward a close search for them (951.).

1654. The magnetic or transverse action of the current seems to be in a most extraordinary degree independent of those variations or modes of action which it presents directly in its course; it consequently is of the more value to us, as it gives us a higher relation of the power than any that might have varied with each mode of discharge. This discharge, whether it be by conduction through a wire with infinite velocity (1652.), or by electrolyzation with its corresponding and exceeding slow motion (1651.), or by spark, and probably even by convection, produces a transverse magnetic action always the same in kind and direction.

1655. It has been shown by several experimenters, that whilst the discharge is of the same kind the amount of lateral or magnetic force is very constant (216. 366. 367. 368. 376.). But when we wish to compare discharge of different kinds, for the important purpose of ascertaining whether the same amount of current will in its different forms produce the same amount of transverse action, we find the data very imperfect. Davy noticed, that when the electric current was passing through an aqueous solution it affected a magnetic needle[A], and Dr. Ritchie says, that the current in the electrolyte is as magnetic as that in a metallic wire[B], and has caused water to revolve round a magnet as a wire carrying the current would revolve.

[A] Philosophical Transactions, 1821, p. 426.

[B] Ibid. 1832, p. 294.

1656. Disruptive discharge produces its magnetic effects: a strong spark, passed transversely to a steel needle, will magnetise it as well as if the electricity of the spark were conducted by a metallic wire occupying the line of discharge; and Sir H. Davy has shown that the discharge of a voltaic battery in vacuo is affected and has motion given to it by approximated magnets[A].

[A] Philosophical Transactions, 1821, p. 427.

1657. Thus the three very different modes of discharge, namely, conduction, electrolyzation, and disruptive discharge, agree in producing the important transverse phenomenon of magnetism. Whether convection or carrying discharge will produce the same phenomenon has not been determined, and the few experiments I have as yet had time to make do not enable me to answer in the affirmative.

* * * * *

1658. Having arrived at this point in the consideration of the current and in the endeavour to apply its phenomena as tests of the truth or fallacy of the theory of induction which I have ventured to set forth, I am now very much tempted to indulge in a few speculations respecting its lateral action and its possible connexion with the transverse condition of the lines of ordinary induction (1165, 1304.)[A]. I have long sought and still seek for an effect or condition which shall be to statical electricity what magnetic force is to current electricity (1411.); for as the lines of discharge are associated with a certain transverse effect, so it appeared to me impossible but that the lines of tension or of inductive action, which of necessity precede that discharge, should also have their correspondent transverse condition or effect (951.).

[A] Refer for further investigations to 1709.—1736.—Dec. 1838.

1659. According to the beautiful theory of Ampere, the transverse force of a current may be represented by its attraction for a similar current and its repulsion of a contrary current. May not then the equivalent transverse force of static electricity be represented by that lateral tension or repulsion which the lines of inductive action appear to possess (1304.)? Then again, when current or discharge occurs between two bodies, previously under inductrical relations to each other, the lines of inductive force will weaken and fade away, and, as their lateral repulsive tension diminishes, will contract and ultimately disappear in the line of discharge. May not this be an effect identical with the attractions of similar currents? i.e. may not the passage of static electricity into current electricity, and that of the lateral tension of the lines of inductive force into the lateral attraction of lines of similar discharge, have the same relation and dependences, and run parallel to each other?

1660. The phenomena of induction amongst currents which I had the good fortune to discover some years ago (6. &c. 1048.) may perchance here form a connecting link in the series of effects. When a current is first formed, it tends to produce a current in the contrary direction in all the matter around it; and if that matter have conducting properties and be fitly circumstanced, such a current is produced. On the contrary, when the original current is stopped, one in the same direction tends to form all around it, and, in conducting matter properly arranged, will be excited.

1661. Now though we perceive the effects only in that portion of matter which, being in the neighbourhood, has conducting properties, yet hypothetically it is probable, that the nonconducting matter has also its relations to, and is affected by, the disturbing cause, though we have not yet discovered them. Again and again the relation of conductors and non-conductors has been shown to be one not of opposition in kind, but only of degree (1334, 1603.); and, therefore, for this, as well as for other reasons, it is probable, that what will affect a conductor will affect an insulator also; producing perhaps what may deserve the term of the electrotonic state (60. 242. 1114.).

1662. It is the feeling of the necessity of some lateral connexion between the lines of electric force (1114.); of some link in the chain of effects as yet unrecognised, that urges me to the expression of these speculations. The same feeling has led me to make many experiments on the introduction of insulating dielectrics having different inductive capacities (1270. 1277.) between magnetic poles and wires carrying currents, so as to pass across the lines of magnetic force. I have employed such bodies both at rest and in motion, without, as yet, being able to detect any influence produced by them; but I do by no means consider the experiments as sufficiently delicate, and intend, very shortly, to render them more decisive[A].

[A] See onwards 1711.—1726.—Dec. 1838.

1663. I think the hypothetical question may at present be put thus: can such considerations as those already generally expressed (1658.) account for the transverse effects of electrical currents? are two such currents in relation to each other merely by the inductive condition of the particles of matter between them, or are they in relation by some higher quality and condition (1654.), which, acting at a distance and not by the intermediate particles, has, like the force of gravity, no relation to them?

1664. If the latter be the case, then, when electricity is acting upon and in matter, its direct and its transverse action are essentially different in their nature; for the former, if I am correct, will depend upon the contiguous particles, and the latter will not. As I have said before, this may be so, and I incline to that view at present; but I am desirous of suggesting considerations why it may not, that the question may be thoroughly sifted.

1665. The transverse power has a character of polarity impressed upon it. In the simplest forms it appears as attraction or repulsion, according as the currents are in the same or different directions: in the current and the magnet it takes up the condition of tangential forces; and in magnets and their particles produces poles. Since the experiments have been made which have persuaded me that the polar forces of electricity, as in induction and electrolytic action (1298. 1343.), show effects at a distance only by means of the polarized contiguous and intervening particles, I have been led to expect that all polar forces act in the same general manner; and the other kinds of phenomena which one can bring to bear upon the subject seem fitted to strengthen that expectation. Thus in crystallizations the effect is transmitted from particle to particle; and in this manner, in acetic acid or freezing water a crystal a few inches or even a couple of feet in length will form in less than a second, but progressively and by a transmission of power from particle to particle. And, as far as I remember, no case of polar action, or partaking of polar action, except the one under discussion, can be found which does not act by contiguous particles[A]. It is apparently of the nature of polar forces that such should be the case, for the one force either finds or developed the contrary force near to it, and has, therefore, no occasion to seek for it at a distance.

[A] I mean by contiguous particles those which are next to each other, not that there is no space between them. See (1616.).

1666. But leaving these hypothetical notions respecting the nature of the lateral action out of sight, and returning to the direct effects, I think that the phenomena examined and reasoning employed in this and the two preceding papers tend to confirm the view first taken (1464.), namely, that ordinary inductive action and the effects dependent upon it are due to an action of the contiguous particles of the dielectric interposed between the charged surfaces or parts which constitute, as it were, the terminations of the effect. The great point of distinction and power (if it have any) in the theory is, the making the dielectric of essential and specific importance, instead of leaving it as it were a mere accidental circumstance or the simple representative of space, having no more influence over the phenomena than the space occupied by it. I have still certain other results and views respecting the nature of the electrical forces and excitation, which are connected with the present theory; and, unless upon further consideration they sink in my estimation, I shall very shortly put them into form as another series of these electrical researches.

Royal Institution. February 14th, 1838.



FOURTEENTH SERIES.

S 20. Nature of the electric force or forces. S 21. Relation of the electric and magnetic forces. S 22. Note on electrical excitation.

Received June 21, 1838.—Read June 21, 1838.

S 20. Nature of the electric force or forces.

1667. The theory of induction set forth and illustrated in the three preceding series of experimental researches does not assume anything new as to the nature of the electric force or forces, but only as to their distribution. The effects may depend upon the association of one electric fluid with the particles of matter, as in the theory of Franklin, Epinus, Cavendish, and Mossotti; or they may depend upon the association of two electric fluids, as in the theory of Dufay and Poisson; or they may not depend upon anything which can properly be called the electric fluid, but on vibrations or other affections of the matter in which they appear. The theory is unaffected by such differences in the mode of viewing the nature of the forces; and though it professes to perform the important office of stating how the powers are arranged (at least in inductive phenomena), it does not, as far as I can yet perceive, supply a single experiment which can be considered as a distinguishing test of the truth of any one of these various views,

1668. But, to ascertain how the forces are arranged, to trace them in their various relations to the particles of matter, to determine their general laws, and also the specific differences which occur under these laws, is as important as, if not more so than, to know whether the forces reside in a fluid or not; and with the hope of assisting in this research, I shall offer some further developments, theoretical and experimental, of the conditions under which I suppose the particles of matter are placed when exhibiting inductive phenomena.

1669. The theory assumes that all the particles, whether of insulating or conducting matter, are as wholes conductors.

1670. That not being polar in their normal state, they can become so by the influence of neighbouring charged particles, the polar state being developed at the instant, exactly as in an insulated conducting mass consisting of many particles.

1671. That the particles when polarized are in a forced state, and tend to return to their normal or natural condition.

1672. That being as wholes conductors, they can readily be charged, either bodily or polarly.

1673. That particles which being contiguous[A] are also in the line of inductive action can communicate or transfer their polar forces one to another more or less readily.

[A] See note to 1164.—Dec. 1838.

1674. That those doing so less readily require the polar forces to be raised to a higher degree before this transference or communication takes place.

1675. That the ready communication of forces between contiguous particles constitutes conduction, and the difficult communication insulation; conductors and insulators being bodies whose particles naturally possess the property of communicating their respective forces easily or with difficulty; having these differences just as they have differences of any other natural property.

1676. That ordinary induction is the effect resulting from the action of matter charged with excited or free electricity upon insulating matter, tending to produce in it an equal amount of the contrary state.

1677. That it can do this only by polarizing the particles contiguous to it, which perform the same office to the next, and these again to those beyond; and that thus the action is propagated from the excited body to the next conducting mass, and there renders the contrary force evident in consequence of the effect of communication which supervenes in the conducting mass upon the polarization of the particles of that body (1675.).

1678. That therefore induction can only take place through or across insulators; that induction is insulation, it being the necessary consequence of the state of the particles and the mode in which the influence of electrical forces is transferred or transmitted through or across such insulating media.

1679. The particles of an insulating dielectric whilst under induction may be compared to a series of small magnetic needles, or more correctly still to a series of small insulated conductors. If the space round a charged globe were filled with a mixture of an insulating dielectric, as oil of turpentine or air, and small globular conductors, as shot, the latter being at a little distance from each other so as to be insulated, then these would in their condition and action exactly resemble what I consider to be the condition and action of the particles of the insulating dielectric itself (1337.). If the globe were charged, these little conductors would all be polar; if the globe were discharged, they would all return to their normal state, to be polarized again upon the recharging of the globe. The state developed by induction through such particles on a mass of conducting mutter at a distance would be of the contrary kind, and exactly equal in amount to the force in the inductric globe. There would be a lateral diffusion of force (1224. 1297.), because each polarized sphere would be in an active or tense relation to all those contiguous to it, just as one magnet can affect two or more magnetic needles near it, and these again a still greater number beyond them. Hence would result the production of curved lines of inductive force if the inducteous body in such a mixed dielectric were an uninsulated metallic ball (1219. &c.) or other properly shaped mass. Such curved lines are the consequences of the two electric forces arranged as I have assumed them to be: and, that the inductive force can be directed in such curved lines is the strongest proof of the presence of the two powers and the polar condition of the dielectric particles.

1680. I think it is evident, that in the case stated, action at a distance can only result through an action of the contiguous conducting particles. There is no reason why the inductive body should polarize or affect distant conductors and leave those near it, namely the particles of the dielectric, unaffected: and everything in the form of fact and experiment with conducting masses or particles of a sensible size contradicts such a supposition.

1681. A striking character of the electric power is that it is limited and exclusive, and that the two forces being always present are exactly equal in amount. The forces are related in one of two ways, either as in the natural normal condition of an uncharged insulated conductor; or as in the charged state, the latter being a case of induction.

1682. Cases of induction are easily arranged so that the two forces being limited in their direction shall present no phenomena or indications external to the apparatus employed, Thus, if a Leyden jar, having its external coating a little higher than the internal, be charged and then its charging ball and rod removed, such jar will present no electrical appearances so long as its outside is uninsulated. The two forces which may be said to be in the coatings, or in the particles of the dielectric contiguous to them, are entirely engaged to each other by induction through the glass; and a carrier ball (1181.) applied either to the inside or outside of the jar will show no signs of electricity. But if the jar be insulated, and the charging ball and rod, in an uncharged state and suspended by an insulating thread of white silk, be restored to their place, then the part projecting above the jar will give electrical indications and charge the carrier, and at the same time the outside coating of the jar will be found in the opposite state and inductric towards external surrounding objects.

1683. These are simple consequences of the theory. Whilst the charge of the inner coating could induce only through the glass towards the outer coating, and the latter contained no more of the contrary force than was equivalent to it, no induction external to the jar could be perceived; but when the inner coating was extended by the rod and ball so that it could induce through the air towards external objects, then the tension of the polarized glass molecules would, by their tendency to return to the normal state, fall a little, and a portion of the charge passing to the surface of this new part of the inner conductor, would produce inductive action through the air towards distant objects, whilst at the same time a part of the force in the outer coating previously directed inwards would now be at liberty, and indeed be constrained to induct outwards through the air, producing in that outer coating what is sometimes called, though I think very improperly, free charge. If a small Leyden jar be converted into that form of apparatus usually known by the name of the electric well, it will illustrate this action very completely.

1684. The terms free charge and dissimulated electricity convey therefore erroneous notions if they are meant to imply any difference as to the mode or kind of action. The charge upon an insulated conductor in the middle of a room is in the same relation to the walls of that room as the charge upon the inner coating of a Leyden jar is to the outer coating of the same jar. The one is not more free or more dissimulated than the other; and when sometimes we make electricity appear where it was not evident before, as upon the outside of a charged jar, when, after insulating it, we touch the inner coating, it is only because we divert more or less of the inductive force from one direction into another; for not the slightest change is in such circumstances impressed upon the character or action of the force.

* * * * *

1685. Having given this general theoretical view, I will now notice particular points relating to the nature of the assumed electric polarity of the insulating dielectric particles.

1686. The polar state may be considered in common induction as a forced state, the particles tending to return to their normal condition. It may probably be raised to a very high degree by approximation of the inductric and inducteous bodies or by other circumstances; and the phenomena of electrolyzation (861. 1652. 1796.) seem to imply that the quantity of power which can thus be accumulated on a single particle is enormous. Hereafter we may be able to compare corpuscular forces, as those of gravity, cohesion, electricity, and chemical affinity, and in some way or other from their effects deduce their relative equivalents; at present we are not able to do so, but there seems no reason to doubt that their electrical, which are at the same time their chemical forces (891. 918.), will be by far the most energetic.

1687. I do not consider the powers when developed by the polarization as limited to two distinct points or spots on the surface of each particle to be considered as the poles of an axis, but as resident on large portions of that surface, as they are upon the surface of a conductor of sensible size when it is thrown into a polar state. But it is very probable, notwithstanding, that the particles of different bodies may present specific differences in this respect, the powers not being equally diffused though equal in quantity; other circumstances also, as form and quality, giving to each a peculiar polar relation. It is perhaps to the existence of some such differences as these that we may attribute the specific actions of the different dielectrics in relation to discharge(1394. 1508.). Thus with respect to oxygen and nitrogen singular contrasts were presented when spark and brush discharge were made to take place in these gases, as may be seen by reference to the Table in paragraph 1518 of the Thirteenth Series; for with nitrogen, when the small, negative or the large positive ball was rendered inductric, the effects corresponded with those which in oxygen were produced when the small positive or the large negative ball was rendered inductric.

1688. In such solid bodies as glass, lac, sulphur, &c., the particles appear to be able to become polarized in all directions, for a mass when experimented upon so as to ascertain its inductive capacity in three or more directions (1690.), gives no indication of a difference. Now as the particles are fixed in the mass, and as the direction of the induction through them must change with its change relative to the mass, the constant effect indicates that they can be polarized electrically in any direction. This accords with the view already taken of each particle as a whole being a conductor (1669.), and, as an experimental fact, helps to confirm that view.

1689. But though particles may thus be polarized in any direction under the influence of powers which are probably of extreme energy (1686.), it does not follow that each particle may not tend to polarize to a greater degree, or with more facility, in one direction than another; or that different kinds may not have specific differences in this respect, as they have differences of conducting and other powers (1296. 1326. 1395.). I sought with great anxiety for a relation of this nature; and selecting crystalline bodies as those in which all the particles are symmetrically placed, and therefore best fitted to indicate any result which might depend upon variation of the direction of the forces to the direction of the particles in which they were developed, experimented very carefully with them. I was the more strongly stimulated to this inquiry by the beautiful electrical condition of the crystalline bodies tourmaline and boracite, and hoped also to discover a relation between electric polarity and that of crystallization, or even of cohesion itself (1316.). My experiments have not established any connexion of the kind sought for. But as I think it of equal importance to show either that there is or is not such a relation, I shall briefly describe the results.

1690. The form of experiment was as follows. A brass ball 0.73 of an inch in diameter, fixed at the end of a horizontal brass rod, and that at the end of a brass cylinder, was by means of the latter connected with a large Leyden battery (291.) by perfect metallic communications, the object being to keep that ball, by its connexion with the charged battery in an electrified state, very nearly uniform, for half an hour at a time. This was the inductric ball. The inducteous ball was the carrier of the torsion electrometer (1229. 1314.); and the dielectric between them was a cube cut from a crystal, so that two of its faces should be perpendicular to the optical axis, whilst the other four were parallel to it. A small projecting piece of shell-lac was fixed on the inductric ball at that part opposite to the attachment of the brass rod, for the purpose of preventing actual contact between the ball and the crystal cube. A coat of shell-lac was also attached to that side of the carrier ball which was to be towards the cube, being also that side which was furthest from the repelled ball in the electrometer when placed in its position in that instrument. The cube was covered with a thin coat of shell-lac dissolved in alcohol, to prevent the deposition of damp upon its surface from the air. It was supported upon a small table of shell-lac fixed on the top of a stem of the same substance, the latter being of sufficient strength to sustain the cube, and yet flexible enough from its length to act as a spring, and allow the cube to bear, when in its place, against the shell-lac on the inductric ball.



1691. Thus it was easy to bring the inducteous ball always to the same distance from the inductric bull, and to uninsulate and insulate it again in its place; and then, after measuring the force in the electrometer (1181.), to return it to its place opposite to the inductric ball for a second observation. Or it was easy by revolving the stand which supported the cube to bring four of its faces in succession towards the inductric ball, and so observe the force when the lines of inductive action (1304.) coincided with, or were transverse to, the direction of the optical axis of the crystal. Generally from twenty to twenty-eight observations were made in succession upon the four vertical faces of a cube, and then an average expression of the inductive force was obtained, and compared with similar averages obtained at other times, every precaution being taken to secure accurate results.

1692. The first cube used was of rock crystal; it was 0.7 of an inch in the side. It presented a remarkable and constant difference, the average of not less than 197 observations, giving 100 for the specific inductive capacity in the direction coinciding with the optical axis of the cube, whilst 93.59 and 93.31 were the expressions for the two transverse directions.

1693. But with a second cube of rock crystal corresponding results were not obtained. It was 0.77 of an inch in the side. The average of many experiments gave 100 for the specific inductive capacity coinciding with the direction of the optical axis, and 98.6 and 99.92 for the two other directions.

1694. Lord Ashley, whom I have found ever ready to advance the cause of science, obtained for me the loan of three globes of rock crystal belonging to Her Grace the Duchess of Sutherland for the purposes of this investigation. Two had such fissures as to render them unfit for the experiments (1193. 1698.). The third, which was very superior, gave me no indications of any difference in the inductive force for different directions.

1695. I then used cubes of Iceland spar. One 0.5 of an inch in diameter gave 100 for the axial direction, and 98.66 and 95.74 for the two cross directions. The other, 0.8 of an inch in the side, gave 100 for the axial direction, whilst 101.73 and 101.86 were the numbers for the cross direction.

1696. Besides these differences there were others, which I do not think it needful to state, since the main point is not confirmed. For though the experiments with the first cube raised great expectation, they have not been generalized by those which followed. I have no doubt of the results as to that cube, but they cannot as yet be referred to crystallization. There are in the cube some faintly coloured layers parallel to the optical axis, and the matter which colours them may have an influence; but then the layers are also nearly parallel to a cross direction, and if at all influential should show some effect in that direction also, which they did not.

1697. In some of the experiments one half or one part of a cube showed a superiority to another part, and this I could not trace to any charge the different parts had received. It was found that the varnishing of the cubes prevented any communication of charge to them, except (in a few experiments) a small degree of the negative state, or that which was contrary to the state of the inductric ball (1564. 1566.).

1698. I think it right to say that, as far as I could perceive, the insulating character of the cubes used was perfect, or at least so nearly perfect, as to bear a comparison with shell-lac, glass, &c. (1255). As to the cause of the differences, other than regular crystalline structure, there may be several. Thus minute fissures in the crystal insensible to the eye may be so disposed as to produce a sensible electrical difference (1193.). Or the crystallization may be irregular; or the substance may not be quite pure; and if we consider how minute a quantity of matter will alter greatly the conducting power of water, it will seem not unlikely that a little extraneous matter diffused through the whole or part of a cube, may produce effects sufficient to account for all the irregularities of action that have been observed.

1699. An important inquiry regarding the electrical polarity of the particles of an insulating dielectric, is, whether it be the molecules of the particular substance acted on, or the component or ultimate particles, which thus act the part of insulated conducting polarizing portions (1669.).

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse