p-books.com
Essays on Education and Kindred Subjects - Everyman's Library
by Herbert Spencer
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

On further considering the matter, however, it will perhaps be felt that this definition does not express the whole fact—that inseparable as science may be from common knowledge, and completely as we may fill up the gap between the simplest previsions of the child and the most recondite ones of the natural philosopher, by interposing a series of previsions in which the complexity of reasoning involved is greater and greater, there is yet a difference between the two beyond that which is here described. And this is true. But the difference is still not such as enables us to draw the assumed line of demarcation. It is a difference not between common knowledge and scientific knowledge; but between the successive phases of science itself, or knowledge itself—whichever we choose to call it. In its earlier phases science attains only to certainty of foreknowledge; in its later phases it further attains to completeness. We begin by discovering a relation: we end by discovering the relation. Our first achievement is to foretell the kind of phenomenon which will occur under specific conditions: our last achievement is to foretell not only the kind but the amount. Or, to reduce the proposition to its most definite form—undeveloped science is qualitative prevision: developed science is quantitative prevision.

This will at once be perceived to express the remaining distinction between the lower and the higher stages of positive knowledge. The prediction that a piece of lead will take more force to lift it than a piece of wood of equal size, exhibits certainty, but not completeness, of foresight. The kind of effect in which the one body will exceed the other is foreseen; but not the amount by which it will exceed. There is qualitative prevision only. On the other hand, the prediction that at a stated time two particular planets will be in conjunction; that by means of a lever having arms in a given ratio, a known force will raise just so many pounds; that to decompose a specified quantity of sulphate of iron by carbonate of soda will require so many grains—these predictions exhibit foreknowledge, not only of the nature of the effects to be produced, but of the magnitude, either of the effects themselves, of the agencies producing them, or of the distance in time or space at which they will be produced. There is not only qualitative but quantitative prevision.

And this is the unexpressed difference which leads us to consider certain orders of knowledge as especially scientific when contrasted with knowledge in general. Are the phenomena measurable? is the test which we unconsciously employ. Space is measurable: hence Geometry. Force and space are measureable: hence Statics. Time, force, and space are measureable: hence Dynamics. The invention of the barometer enabled men to extend the principles of mechanics to the atmosphere; and Aerostatics existed. When a thermometer was devised there arose a science of heat, which was before impossible. Such of our sensations as we have not yet found modes of measuring do not originate sciences. We have no science of smells; nor have we one of tastes. We have a science of the relations of sounds differing in pitch, because we have discovered a way to measure them; but we have no science of sounds in respect to their loudness or their timbre, because we have got no measures of loudness and timbre.

Obviously it is this reduction of the sensible phenomena it represents, to relations of magnitude, which gives to any division of knowledge its especially scientific character. Originally men's knowledge of weights and forces was in the same condition as their knowledge of smells and tastes is now—a knowledge not extending beyond that given by the unaided sensations; and it remained so until weighing instruments and dynamometers were invented. Before there were hour-glasses and clepsydras, most phenomena could be estimated as to their durations and intervals, with no greater precision than degrees of hardness can be estimated by the fingers. Until a thermometric scale was contrived, men's judgments respecting relative amounts of heat stood on the same footing with their present judgments respecting relative amounts of sound. And as in these initial stages, with no aids to observation, only the roughest comparisons of cases could be made, and only the most marked differences perceived; it is obvious that only the most simple laws of dependence could be ascertained—only those laws which, being uncomplicated with others, and not disturbed in their manifestations, required no niceties of observation to disentangle them. Whence it appears not only that in proportion as knowledge becomes quantitative do its previsions become complete as well as certain, but that until its assumption of a quantitative character it is necessarily confined to the most elementary relations.

Moreover it is to be remarked that while, on the one hand, we can discover the laws of the greater proportion of phenomena only by investigating them quantitatively; on the other hand we can extend the range of our quantitative previsions only as fast as we detect the laws of the results we predict. For clearly the ability to specify the magnitude of a result inaccessible to direct measurement, implies knowledge of its mode of dependence on something which can be measured—implies that we know the particular fact dealt with to be an instance of some more general fact. Thus the extent to which our quantitative previsions have been carried in any direction, indicates the depth to which our knowledge reaches in that direction. And here, as another aspect of the same fact, we may further observe that as we pass from qualitative to quantitative prevision, we pass from inductive science to deductive science. Science while purely inductive is purely qualitative: when inaccurately quantitative it usually consists of part induction, part deduction: and it becomes accurately quantitative only when wholly deductive. We do not mean that the deductive and the quantitative are coextensive; for there is manifestly much deduction that is qualitative only. We mean that all quantitative prevision is reached deductively; and that induction can achieve only qualitative prevision.

Still, however, it must not be supposed that these distinctions enable us to separate ordinary knowledge from science, much as they seem to do so. While they show in what consists the broad contrast between the extreme forms of the two, they yet lead us to recognise their essential identity; and once more prove the difference to be one of degree only. For, on the one hand, the commonest positive knowledge is to some extent quantitative; seeing that the amount of the foreseen result is known within certain wide limits. And, on the other hand, the highest quantitative prevision does not reach the exact truth, but only a very near approximation to it. Without clocks the savage knows that the day is longer in the summer than in the winter; without scales he knows that stone is heavier than flesh: that is, he can foresee respecting certain results that their amounts will exceed these, and be less than those—he knows about what they will be. And, with his most delicate instruments and most elaborate calculations, all that the man of science can do, is to reduce the difference between the foreseen and the actual results to an unimportant quantity.

Moreover, it must be borne in mind not only that all the sciences are qualitative in their first stages,—not only that some of them, as Chemistry, have but recently reached the quantitative stage—but that the most advanced sciences have attained to their present power of determining quantities not present to the senses, or not directly measurable, by a slow process of improvement extending through thousands of years. So that science and the knowledge of the uncultured are alike in the nature of their previsions, widely as they differ in range; they possess a common imperfection, though this is immensely greater in the last than in the first; and the transition from the one to the other has been through a series of steps by which the imperfection has been rendered continually less, and the range continually wider.

These facts, that science and the positive knowledge of the uncultured cannot be separated in nature, and that the one is but a perfected and extended form of the other, must necessarily underlie the whole theory of science, its progress, and the relations of its parts to each other. There must be serious incompleteness in any history of the sciences, which, leaving out of view the first steps of their genesis, commences with them only when they assume definite forms. There must be grave defects, if not a general untruth, in a philosophy of the sciences considered in their interdependence and development, which neglects the inquiry how they came to be distinct sciences, and how they were severally evolved out of the chaos of primitive ideas.

Not only a direct consideration of the matter, but all analogy, goes to show that in the earlier and simpler stages must be sought the key to all subsequent intricacies. The time was when the anatomy and physiology of the human being were studied by themselves—when the adult man was analysed and the relations of parts and of functions investigated, without reference either to the relations exhibited in the embryo or to the homologous relations existing in other creatures. Now, however, it has become manifest that no true conceptions, no true generalisations, are possible under such conditions. Anatomists and physiologists now find that the real natures of organs and tissues can be ascertained only by tracing their early evolution; and that the affinities between existing genera can be satisfactorily made out only by examining the fossil genera to which they are allied. Well, is it not clear that the like must be true concerning all things that undergo development? Is not science a growth? Has not science, too, its embryology? And must not the neglect of its embryology lead to a misunderstanding of the principles of its evolution and of its existing organisation?

There are a priori reasons, therefore, for doubting the truth of all philosophies of the sciences which tacitly proceed upon the common notion that scientific knowledge and ordinary knowledge are separate; instead of commencing, as they should, by affiliating the one upon the other, and showing how it gradually came to be distinguishable from the other. We may expect to find their generalisations essentially artificial; and we shall not be deceived. Some illustrations of this may here be fitly introduced, by way of preliminary to a brief sketch of the genesis of science from the point of view indicated. And we cannot more readily find such illustrations than by glancing at a few of the various classifications of the sciences that have from time to time been proposed. To consider all of them would take too much space: we must content ourselves with some of the latest.

* * * * *

Commencing with those which may be soonest disposed of, let us notice first the arrangement propounded by Oken. An abstract of it runs thus:—

Part I. MATHESIS.—Pneumatogeny: Primary Art, Primary Consciousness, God, Primary Rest, Time, Polarity, Motion, Man, Space, Point. Line, Surface, Globe, Rotation.—Hylogeny: Gravity, Matter, Ether, Heavenly Bodies, Light, Heat, Fire.

(He explains that MATHESIS is the doctrine of the whole; Pneumatogeny being the doctrine of immaterial totalities, and Hylogeny that of material totalities.)

Part II. ONTOLOGY.—Cosmogeny: Rest, Centre, Motion, Line, Planets, Form, Planetary System, Comets.—Stoechiogeny: Condensation, Simple Matter, Elements, Air, Water, Earth—Stoechiology: Functions of the Elements, etc., etc.—Kingdoms of Nature: Individuals.

(He says in explanation that "ONTOLOGY teaches us the phenomena of matter. The first of these are the heavenly bodies comprehended by Cosmogeny. These divide into elements—Stoechiogeny. The earth element divides into minerals—Mineralogy. These unite into one collective body—Geogeny. The whole in singulars is the living, or Organic, which again divides into plants and animals. Biology, therefore, divides into Organogeny, Phytosophy, Zoosophy.")

FIRST KINGDOM.—MINERALS. Mineralogy, Geology.

Part III. BIOLOGY.—Organosophy, Phytogeny, Phyto-physiology, Phytology, Zoogeny, Physiology, Zoology, Psychology.

A glance over this confused scheme shows that it is an attempt to classify knowledge, not after the order in which it has been, or may be, built up in the human consciousness; but after an assumed order of creation. It is a pseudo-scientific cosmogony, akin to those which men have enunciated from the earliest times downwards; and only a little more respectable. As such it will not be thought worthy of much consideration by those who, like ourselves, hold that experience is the sole origin of knowledge. Otherwise, it might have been needful to dwell on the incongruities of the arrangements—to ask how motion can be treated of before space? how there can be rotation without matter to rotate? how polarity can be dealt with without involving points and lines? But it will serve our present purpose just to point out a few of the extreme absurdities resulting from the doctrine which Oken seems to hold in common with Hegel, that "to philosophise on Nature is to re-think the great thought of Creation." Here is a sample:—

"Mathematics is the universal science; so also is Physio-philosophy, although it is only a part, or rather but a condition of the universe; both are one, or mutually congruent.

"Mathematics is, however, a science of mere forms without substance. Physio-philosophy is, therefore, mathematics endowed with substance."

From the English point of view it is sufficiently amusing to find such a dogma not only gravely stated, but stated as an unquestionable truth. Here we see the experiences of quantitative relations which men have gathered from surrounding bodies and generalised (experiences which had been scarcely at all generalised at the beginning of the historic period)—we find these generalised experiences, these intellectual abstractions, elevated into concrete actualities, projected back into Nature, and considered as the internal framework of things—the skeleton by which matter is sustained. But this new form of the old realism is by no means the most startling of the physio-philosophic principles. We presently read that,

"The highest mathematical idea, or the fundamental principle of all mathematics is the zero = 0."....

"Zero is in itself nothing. Mathematics is based upon nothing, and, consequently, arises out of nothing.

"Out of nothing, therefore, it is possible for something to arise; for mathematics, consisting of propositions, is something, in relation to 0."

By such "consequentlys" and "therefores" it is, that men philosophise when they "re-think the great thought of Creation." By dogmas that pretend to be reasons, nothing is made to generate mathematics; and by clothing mathematics with matter, we have the universe! If now we deny, as we do deny, that the highest mathematical idea is the zero;—if, on the other hand, we assert, as we do assert, that the fundamental idea underlying all mathematics, is that of equality; the whole of Oken's cosmogony disappears. And here, indeed, we may see illustrated, the distinctive peculiarity of the German method of procedure in these matters—the bastard a priori method, as it may be termed. The legitimate a priori method sets out with propositions of which the negation is inconceivable; the a priori method as illegitimately applied, sets out either with propositions of which the negation is not inconceivable, or with propositions like Oken's, of which the affirmation is inconceivable.

It is needless to proceed further with the analysis; else might we detail the steps by which Oken arrives at the conclusions that "the planets are coagulated colours, for they are coagulated light; that the sphere is the expanded nothing;" that gravity is "a weighty nothing, a heavy essence, striving towards a centre;" that "the earth is the identical, water the indifferent, air the different; or the first the centre, the second the radius, the last the periphery of the general globe or of fire." To comment on them would be nearly as absurd as are the propositions themselves. Let us pass on to another of the German systems of knowledge—that of Hegel.

The simple fact that Hegel puts Jacob Boehme on a par with Bacon, suffices alone to show that his standpoint is far remote from the one usually regarded as scientific: so far remote, indeed, that it is not easy to find any common basis on which to found a criticism. Those who hold that the mind is moulded into conformity with surrounding things by the agency of surrounding things, are necessarily at a loss how to deal with those, who, like Schelling and Hegel, assert that surrounding things are solidified mind—that Nature is "petrified intelligence." However, let us briefly glance at Hegel's classification. He divides philosophy into three parts:—

1. Logic, or the science of the idea in itself, the pure idea.

2. The Philosophy of Nature, or the science of the idea considered under its other form—of the idea as Nature.

3. The Philosophy of the Mind, or the science of the idea in its return to itself.

Of these, the second is divided into the natural sciences, commonly so called; so that in its more detailed form the series runs thus:—Logic, Mechanics, Physics, Organic Physics, Psychology.

Now, if we believe with Hegel, first, that thought is the true essence of man; second, that thought is the essence of the world; and that, therefore, there is nothing but thought; his classification, beginning with the science of pure thought, may be acceptable. But otherwise, it is an obvious objection to his arrangement, that thought implies things thought of—that there can be no logical forms without the substance of experience—that the science of ideas and the science of things must have a simultaneous origin. Hegel, however, anticipates this objection, and, in his obstinate idealism, replies, that the contrary is true; that all contained in the forms, to become something, requires to be thought: and that logical forms are the foundations of all things.

It is not surprising that, starting from such premises, and reasoning after this fashion, Hegel finds his way to strange conclusions. Out of space and time he proceeds to build up motion, matter, repulsion, attraction, weight, and inertia. He then goes on to logically evolve the solar system. In doing this he widely diverges from the Newtonian theory; reaches by syllogism the conviction that the planets are the most perfect celestial bodies; and, not being able to bring the stars within his theory, says that they are mere formal existences and not living matter, and that as compared with the solar system they are as little admirable as a cutaneous eruption or a swarm of flies.[2]

Results so outrageous might be left as self-disproved, were it not that speculators of this class are not alarmed by any amount of incongruity with established beliefs. The only efficient mode of treating systems like this of Hegel, is to show that they are self-destructive—that by their first steps they ignore that authority on which all their subsequent steps depend. If Hegel professes, as he manifestly does, to develop his scheme by reasoning—if he presents successive inferences as necessarily following from certain premises; he implies the postulate that a belief which necessarily follows after certain antecedents is a true belief: and, did an opponent reply to one of his inferences, that, though it was impossible to think the opposite, yet the opposite was true, he would consider the reply irrational. The procedure, however, which he would thus condemn as destructive of all thinking whatever, is just the procedure exhibited in the enunciation of his own first principles.

Mankind find themselves unable to conceive that there can be thought without things thought of. Hegel, however, asserts that there can be thought without things thought of. That ultimate test of a true proposition—the inability of the human mind to conceive the negation of it—which in all other cases he considers valid, he considers invalid where it suits his convenience to do so; and yet at the same time denies the right of an opponent to follow his example. If it is competent for him to posit dogmas, which are the direct negations of what human consciousness recognises; then is it also competent for his antagonists to stop him at every step in his argument by saying, that though the particular inference he is drawing seems to his mind, and to all minds, necessarily to follow from the premises, yet it is not true, but the contrary inference is true. Or, to state the dilemma in another form:—If he sets out with inconceivable propositions, then may he with equal propriety make all his succeeding propositions inconceivable ones—may at every step throughout his reasoning draw exactly the opposite conclusion to that which seems involved.

Hegel's mode of procedure being thus essentially suicidal, the Hegelian classification which depends upon it falls to the ground. Let us consider next that of M. Comte.

As all his readers must admit, M. Comte presents us with a scheme of the sciences which, unlike the foregoing ones, demands respectful consideration. Widely as we differ from him, we cheerfully bear witness to the largeness of his views, the clearness of his reasoning, and the value of his speculations as contributing to intellectual progress. Did we believe a serial arrangement of the sciences to be possible, that of M. Comte would certainly be the one we should adopt. His fundamental propositions are thoroughly intelligible; and if not true, have a great semblance of truth. His successive steps are logically co-ordinated; and he supports his conclusions by a considerable amount of evidence—evidence which, so long as it is not critically examined, or not met by counter evidence, seems to substantiate his positions. But it only needs to assume that antagonistic attitude which ought to be assumed towards new doctrines, in the belief that, if true, they will prosper by conquering objectors—it needs but to test his leading doctrines either by other facts than those he cites, or by his own facts differently applied, to at once show that they will not stand. We will proceed thus to deal with the general principle on which he bases his hierarchy of the sciences.

In the second chapter of his Cours de Philosophic Positive, M. Comte says:—"Our problem is, then, to find the one rational order, amongst a host of possible systems." ... "This order is determined by the degree of simplicity, or, what comes to the same thing, of generality of their phenomena." And the arrangement he deduces runs thus: Mathematics, Astronomy, Physics, Chemistry, Physiology, Social Physics. This he asserts to be "the true filiation of the sciences." He asserts further, that the principle of progression from a greater to a less degree of generality, "which gives this order to the whole body of science, arranges the parts of each science." And, finally, he asserts that the gradations thus established a priori among the sciences, and the parts of each science, "is in essential conformity with the order which has spontaneously taken place among the branches of natural philosophy;" or, in other words—corresponds with the order of historic development.

Let us compare these assertions with the facts. That there may be perfect fairness, let us make no choice, but take as the field for our comparison, the succeeding section treating of the first science—Mathematics; and let us use none but M. Comte's own facts, and his own admissions. Confining ourselves to this one science, of course our comparisons must be between its several parts. M. Comte says, that the parts of each science must be arranged in the order of their decreasing generality; and that this order of decreasing generality agrees with the order of historical development. Our inquiry must be, then, whether the history of mathematics confirms this statement.

Carrying out his principle, M. Comte divides Mathematics into "Abstract Mathematics, or the Calculus (taking the word in its most extended sense) and Concrete Mathematics, which is composed of General Geometry and of Rational Mechanics." The subject-matter of the first of these is number; the subject-matter of the second includes space, time, motion, force. The one possesses the highest possible degree of generality; for all things whatever admit of enumeration. The others are less general; seeing that there are endless phenomena that are not cognisable either by general geometry or rational mechanics. In conformity with the alleged law, therefore, the evolution of the calculus must throughout have preceded the evolution of the concrete sub-sciences. Now somewhat awkwardly for him, the first remark M. Comte makes bearing upon this point is, that "from an historical point of view, mathematical analysis appears to have risen out of the contemplation of geometrical and mechanical facts." True, he goes on to say that, "it is not the less independent of these sciences logically speaking;" for that "analytical ideas are, above all others, universal, abstract, and simple; and geometrical conceptions are necessarily founded on them."

We will not take advantage of this last passage to charge M. Comte with teaching, after the fashion of Hegel, that there can be thought without things thought of. We are content simply to compare the two assertions, that analysis arose out of the contemplation of geometrical and mechanical facts, and that geometrical conceptions are founded upon analytical ones. Literally interpreted they exactly cancel each other. Interpreted, however, in a liberal sense, they imply, what we believe to be demonstrable, that the two had a simultaneous origin. The passage is either nonsense, or it is an admission that abstract and concrete mathematics are coeval. Thus, at the very first step, the alleged congruity between the order of generality and the order of evolution does not hold good.

But may it not be that though abstract and concrete mathematics took their rise at the same time, the one afterwards developed more rapidly than the other; and has ever since remained in advance of it? No: and again we call M. Comte himself as witness. Fortunately for his argument he has said nothing respecting the early stages of the concrete and abstract divisions after their divergence from a common root; otherwise the advent of Algebra long after the Greek geometry had reached a high development, would have been an inconvenient fact for him to deal with. But passing over this, and limiting ourselves to his own statements, we find, at the opening of the next chapter, the admission, that "the historical development of the abstract portion of mathematical science has, since the time of Descartes, been for the most part determined by that of the concrete." Further on we read respecting algebraic functions that "most functions were concrete in their origin—even those which are at present the most purely abstract; and the ancients discovered only through geometrical definitions elementary algebraic properties of functions to which a numerical value was not attached till long afterwards, rendering abstract to us what was concrete to the old geometers." How do these statements tally with his doctrine? Again, having divided the calculus into algebraic and arithmetical, M. Comte admits, as perforce he must, that the algebraic is more general than the arithmetical; yet he will not say that algebra preceded arithmetic in point of time. And again, having divided the calculus of functions into the calculus of direct functions (common algebra) and the calculus of indirect functions (transcendental analysis), he is obliged to speak of this last as possessing a higher generality than the first; yet it is far more modern. Indeed, by implication, M. Comte himself confesses this incongruity; for he says:—"It might seem that the transcendental analysis ought to be studied before the ordinary, as it provides the equations which the other has to resolve; but though the transcendental is logically independent of the ordinary, it is best to follow the usual method of study, taking the ordinary first." In all these cases, then, as well as at the close of the section where he predicts that mathematicians will in time "create procedures of a wider generality", M. Comte makes admissions that are diametrically opposed to the alleged law.

In the succeeding chapters treating of the concrete department of mathematics, we find similar contradictions M. Comte himself names the geometry of the ancients special geometry, and that of moderns the general geometry. He admits that while "the ancients studied geometry with reference to the bodies under notice, or specially; the moderns study it with reference to the phenomena to be considered, or generally." He admits that while "the ancients extracted all they could out of one line or surface before passing to another," "the moderns, since Descartes, employ themselves on questions which relate to any figure whatever." These facts are the reverse of what, according to his theory, they should be. So, too, in mechanics. Before dividing it into statics and dynamics, M. Comte treats of the three laws of motion, and is obliged to do so; for statics, the more general of the two divisions, though it does not involve motion, is impossible as a science until the laws of motion are ascertained. Yet the laws of motion pertain to dynamics, the more special of the divisions. Further on he points out that after Archimedes, who discovered the law of equilibrium of the lever, statics made no progress until the establishment of dynamics enabled us to seek "the conditions of equilibrium through the laws of the composition of forces." And he adds—"At this day this is the method universally employed. At the first glance it does not appear the most rational—dynamics being more complicated than statics, and precedence being natural to the simpler. It would, in fact, be more philosophical to refer dynamics to statics, as has since been done." Sundry discoveries are afterwards detailed, showing how completely the development of statics has been achieved by considering its problems dynamically; and before the close of the section M. Comte remarks that "before hydrostatics could be comprehended under statics, it was necessary that the abstract theory of equilibrium should be made so general as to apply directly to fluids as well as solids. This was accomplished when Lagrange supplied, as the basis of the whole of rational mechanics, the single principle of virtual velocities." In which statement we have two facts directly at variance: with M. Comte's doctrine; first, that the simpler science, statics, reached its present development only by the aid of the principle of virtual velocities, which belongs to the more complex science, dynamics; and that this "single principle" underlying all rational mechanics—this most general form which includes alike the relations of statical, hydro-statical, and dynamical forces—was reached so late as the time of Lagrange.

Thus it is not true that the historical succession of the divisions of mathematics has corresponded with the order of decreasing generality. It is not true that abstract mathematics was evolved antecedently to, and independently of concrete mathematics. It is not true that of the subdivisions of abstract mathematics, the more general came before the more special. And it is not true that concrete mathematics, in either of its two sections, began with the most abstract and advanced to the less abstract truths.

It may be well to mention, parenthetically, that in defending his alleged law of progression from the general to the special, M. Comte somewhere comments upon the two meanings of the word general, and the resulting liability to confusion. Without now discussing whether the asserted distinction can be maintained in other cases, it is manifest that it does not exist here. In sundry of the instances above quoted, the endeavours made by M. Comte himself to disguise, or to explain away, the precedence of the special over the general, clearly indicate that the generality spoken of is of the kind meant by his formula. And it needs but a brief consideration of the matter to show that, even did he attempt it, he could not distinguish this generality, which, as above proved, frequently comes last, from the generality which he says always comes first. For what is the nature of that mental process by which objects, dimensions, weights, times, and the rest, are found capable of having their relations expressed numerically? It is the formation of certain abstract conceptions of unity, duality and multiplicity, which are applicable to all things alike. It is the invention of general symbols serving to express the numerical relations of entities, whatever be their special characters. And what is the nature of the mental process by which numbers are found capable of having their relations expressed algebraically? It is just the same. It is the formation of certain abstract conceptions of numerical functions which are the same whatever be the magnitudes of the numbers. It is the invention of general symbols serving to express the relations between numbers, as numbers express the relations between things. And transcendental analysis stands to algebra in the same position that algebra stands in to arithmetic.

To briefly illustrate their respective powers—arithmetic can express in one formula the value of a particular tangent to a particular curve; algebra can express in one formula the values of all tangents to a particular curve; transcendental analysis can express in one formula the values of all tangents to all curves. Just as arithmetic deals with the common properties of lines, areas, bulks, forces, periods; so does algebra deal with the common properties of the numbers which arithmetic presents; so does transcendental analysis deal with the common properties of the equations exhibited by algebra. Thus, the generality of the higher branches of the calculus, when compared with the lower, is the same kind of generality as that of the lower branches when compared with geometry or mechanics. And on examination it will be found that the like relation exists in the various other cases above given.

Having shown that M. Comte's alleged law of progression does not hold among the several parts of the same science, let us see how it agrees with the facts when applied to separate sciences. "Astronomy," says M. Comte, at the opening of Book III., "was a positive science, in its geometrical aspect, from the earliest days of the school of Alexandria; but Physics, which we are now to consider, had no positive character at all till Galileo made his great discoveries on the fall of heavy bodies." On this, our comment is simply that it is a misrepresentation based upon an arbitrary misuse of words—a mere verbal artifice. By choosing to exclude from terrestrial physics those laws of magnitude, motion, and position, which he includes in celestial physics, M. Comte makes it appear that the one owes nothing to the other. Not only is this altogether unwarrantable, but it is radically inconsistent with his own scheme of divisions. At the outset he says—and as the point is important we quote from the original—"Pour la physique inorganique nous voyons d'abord, en nous conformant toujours a l'ordre de generalite et de dependance des phenomenes, qu'elle doit etre partagee en deux sections distinctes, suivant qu'elle considere les phenomenes generaux de l'univers, ou, en particulier, ceux que presentent les corps terrestres. D'ou la physique celeste, ou l'astronomie, soit geometrique, soit mechanique; et la physique terrestre."

Here then we have inorganic physics clearly divided into celestial physics and terrestrial physics—the phenomena presented by the universe, and the phenomena presented by earthly bodies. If now celestial bodies and terrestrial bodies exhibit sundry leading phenomena in common, as they do, how can the generalisation of these common phenomena be considered as pertaining to the one class rather than to the other? If inorganic physics includes geometry (which M. Comte has made it do by comprehending geometrical astronomy in its sub-section—celestial physics); and if its sub-section—terrestrial physics, treats of things having geometrical properties; how can the laws of geometrical relations be excluded from terrestrial physics? Clearly if celestial physics includes the geometry of objects in the heavens, terrestrial physics includes the geometry of objects on the earth. And if terrestrial physics includes terrestrial geometry, while celestial physics includes celestial geometry, then the geometrical part of terrestrial physics precedes the geometrical part of celestial physics; seeing that geometry gained its first ideas from surrounding objects. Until men had learnt geometrical relations from bodies on the earth, it was impossible for them to understand the geometrical relations of bodies in the heavens.

So, too, with celestial mechanics, which had terrestrial mechanics for its parent. The very conception of force, which underlies the whole of mechanical astronomy, is borrowed from our earthly experiences; and the leading laws of mechanical action as exhibited in scales, levers, projectiles, etc., had to be ascertained before the dynamics of the solar system could be entered upon. What were the laws made use of by Newton in working out his grand discovery? The law of falling bodies disclosed by Galileo; that of the composition of forces also disclosed by Galileo; and that of centrifugal force found out by Huyghens—all of them generalisations of terrestrial physics. Yet, with facts like these before him, M. Comte places astronomy before physics in order of evolution! He does not compare the geometrical parts of the two together, and the mechanical parts of the two together; for this would by no means suit his hypothesis. But he compares the geometrical part of the one with the mechanical part of the other, and so gives a semblance of truth to his position. He is led away by a verbal delusion. Had he confined his attention to the things and disregarded the words, he would have seen that before mankind scientifically co-ordinated any one class of phenomena displayed in the heavens, they had previously co-ordinated a parallel class of phenomena displayed upon the surface of the earth.

Were it needful we could fill a score pages with the incongruities of M. Comte's scheme. But the foregoing samples will suffice. So far is his law of evolution of the sciences from being tenable, that, by following his example, and arbitrarily ignoring one class of facts, it would be possible to present, with great plausibility, just the opposite generalisation to that which he enunciates. While he asserts that the rational order of the sciences, like the order of their historic development, "is determined by the degree of simplicity, or, what comes to the same thing, of generality of their phenomena;" it might contrariwise be asserted, that, commencing with the complex and the special, mankind have progressed step by step to a knowledge of greater simplicity and wider generality. So much evidence is there of this as to have drawn from Whewell, in his History of the Inductive Sciences, the general remark that "the reader has already seen repeatedly in the course of this history, complex and derivative principles presenting themselves to men's minds before simple and elementary ones."

Even from M. Comte's own work, numerous facts, admissions, and arguments, might be picked out, tending to show this. We have already quoted his words in proof that both abstract and concrete mathematics have progressed towards a higher degree of generality, and that he looks forward to a higher generality still. Just to strengthen this adverse hypothesis, let us take a further instance. From the particular case of the scales, the law of equilibrium of which was familiar to the earliest nations known, Archimedes advanced to the more general case of the unequal lever with unequal weights; the law of equilibrium of which includes that of the scales. By the help of Galileo's discovery concerning the composition of forces, D'Alembert "established, for the first time, the equations of equilibrium of any system of forces applied to the different points of a solid body"—equations which include all cases of levers and an infinity of cases besides. Clearly this is progress towards a higher generality—towards a knowledge more independent of special circumstances—towards a study of phenomena "the most disengaged from the incidents of particular cases;" which is M. Comte's definition of "the most simple phenomena." Does it not indeed follow from the familiarly admitted fact, that mental advance is from the concrete to the abstract, from the particular to the general, that the universal and therefore most simple truths are the last to be discovered? Is not the government of the solar system by a force varying inversely as the square of the distance, a simpler conception than any that preceded it? Should we ever succeed in reducing all orders of phenomena to some single law—say of atomic action, as M. Comte suggests—must not that law answer to his test of being independent of all others, and therefore most simple? And would not such a law generalise the phenomena of gravity, cohesion, atomic affinity, and electric repulsion, just as the laws of number generalise the quantitative phenomena of space, time, and force?

The possibility of saying so much in support of an hypothesis the very reverse of M. Comte's, at once proves that his generalisation is only a half-truth. The fact is, that neither proposition is correct by itself; and the actuality is expressed only by putting the two together. The progress of science is duplex: it is at once from the special to the general, and from the general to the special: it is analytical and synthetical at the same time.

M. Comte himself observes that the evolution of science has been accomplished by the division of labour; but he quite misstates the mode in which this division of labour has operated. As he describes it, it has simply been an arrangement of phenomena into classes, and the study of each class by itself. He does not recognise the constant effect of progress in each class upon all other classes; but only on the class succeeding it in his hierarchical scale. Or if he occasionally admits collateral influences and intercommunications, he does it so grudgingly, and so quickly puts the admissions out of sight and forgets them, as to leave the impression that, with but trifling exceptions, the sciences aid each other only in the order of their alleged succession. The fact is, however, that the division of labour in science, like the division of labour in society, and like the "physiological division of labour" in individual organisms, has been not only a specialisation of functions, but a continuous helping of each division by all the others, and of all by each. Every particular class of inquirers has, as it were, secreted its own particular order of truths from the general mass of material which observation accumulates; and all other classes of inquirers have made use of these truths as fast as they were elaborated, with the effect of enabling them the better to elaborate each its own order of truths.

It was thus in sundry of the cases we have quoted as at variance with M. Comte's doctrine. It was thus with the application of Huyghens's optical discovery to astronomical observation by Galileo. It was thus with the application of the isochronism of the pendulum to the making of instruments for measuring intervals, astronomical and other. It was thus when the discovery that the refraction and dispersion of light did not follow the same law of variation, affected both astronomy and physiology by giving us achromatic telescopes and microscopes. It was thus when Bradley's discovery of the aberration of light enabled him to make the first step towards ascertaining the motions of the stars. It was thus when Cavendish's torsion-balance experiment determined the specific gravity of the earth, and so gave a datum for calculating the specific gravities of the sun and planets. It was thus when tables of atmospheric refraction enabled observers to write down the real places of the heavenly bodies instead of their apparent places. It was thus when the discovery of the different expansibilities of metals by heat, gave us the means of correcting our chronometrical measurements of astronomical periods. It was thus when the lines of the prismatic spectrum were used to distinguish the heavenly bodies that are of like nature with the sun from those which are not. It was thus when, as recently, an electro-telegraphic instrument was invented for the more accurate registration of meridional transits. It was thus when the difference in the rates of a clock at the equator, and nearer the poles, gave data for calculating the oblateness of the earth, and accounting for the precession of the equinoxes. It was thus—but it is needless to continue.

Here, within our own limited knowledge of its history, we have named ten additional cases in which the single science of astronomy has owed its advance to sciences coming after it in M. Comte's series. Not only its secondary steps, but its greatest revolutions have been thus determined. Kepler could not have discovered his celebrated laws had it not been for Tycho Brahe's accurate observations; and it was only after some progress in physical and chemical science that the improved instruments with which those observations were made, became possible. The heliocentric theory of the solar system had to wait until the invention of the telescope before it could be finally established. Nay, even the grand discovery of all—the law of gravitation—depended for its proof upon an operation of physical science, the measurement of a degree on the Earth's surface. So completely indeed did it thus depend, that Newton had actually abandoned his hypothesis because the length of a degree, as then stated, brought out wrong results; and it was only after Picart's more exact measurement was published, that he returned to his calculations and proved his great generalisation. Now this constant intercommunion, which, for brevity's sake, we have illustrated in the case of one science only, has been taking place with all the sciences. Throughout the whole course of their evolution there has been a continuous consensus of the sciences—a consensus exhibiting a general correspondence with the consensus of faculties in each phase of mental development; the one being an objective registry of the subjective state of the other.

From our present point of view, then, it becomes obvious that the conception of a serial arrangement of the sciences is a vicious one. It is not simply that the schemes we have examined are untenable; but it is that the sciences cannot be rightly placed in any linear order whatever. It is not simply that, as M. Comte admits, a classification "will always involve something, if not arbitrary, at least artificial;" it is not, as he would have us believe, that, neglecting minor imperfections a classification may be substantially true; but it is that any grouping of the sciences in a succession gives a radically erroneous idea of their genesis and their dependencies. There is no "one rational order among a host of possible systems." There is no "true filiation of the sciences." The whole hypothesis is fundamentally false. Indeed, it needs but a glance at its origin to see at once how baseless it is. Why a series? What reason have we to suppose that the sciences admit of a linear arrangement? Where is our warrant for assuming that there is some succession in which they can be placed? There is no reason; no warrant. Whence then has arisen the supposition? To use M. Comte's own phraseology, we should say, it is a metaphysical conception. It adds another to the cases constantly occurring, of the human mind being made the measure of Nature. We are obliged to think in sequence; it is the law of our minds that we must consider subjects separately, one after another: therefore Nature must be serial—therefore the sciences must be classifiable in a succession. See here the birth of the notion, and the sole evidence of its truth. Men have been obliged when arranging in books their schemes of education and systems of knowledge, to choose some order or other. And from inquiring what is the best order, have naturally fallen into the belief that there is an order which truly represents the facts—have persevered in seeking such an order; quite overlooking the previous question whether it is likely that Nature has consulted the convenience of book-making.

For German philosophers, who hold that Nature is "petrified intelligence," and that logical forms are the foundations of all things, it is a consistent hypothesis that as thought is serial, Nature is serial; but that M. Comte, who is so bitter an opponent of all anthropomorphism, even in its most evanescent shapes, should have committed the mistake of imposing upon the external world an arrangement which so obviously springs from a limitation of the human consciousness, is somewhat strange. And it is the more strange when we call to mind how, at the outset, M. Comte remarks that in the beginning "toutes les sciences sont cultivees simultanement par les memes esprits;" that this is "inevitable et meme indispensable;" and how he further remarks that the different sciences are "comme les diverses branches d'un tronc unique." Were it not accounted for by the distorting influence of a cherished hypothesis, it would be scarcely possible to understand how, after recognising truths like these, M. Comte should have persisted in attempting to construct "une echelle encyclopedique."

The metaphor which M. Comte has here so inconsistently used to express the relations of the sciences—branches of one trunk—is an approximation to the truth, though not the truth itself. It suggests the facts that the sciences had a common origin; that they have been developing simultaneously; and that they have been from time to time dividing and subdividing. But it does not suggest the yet more important fact, that the divisions and subdivisions thus arising do not remain separate, but now and again reunite in direct and indirect ways. They inosculate; they severally send off and receive connecting growths; and the intercommunion has been ever becoming more frequent, more intricate, more widely ramified. There has all along been higher specialisation, that there might be a larger generalisation; and a deeper analysis, that there might be a better synthesis. Each larger generalisation has lifted sundry specialisations still higher; and each better synthesis has prepared the way for still deeper analysis.

And here we may fitly enter upon the task awhile since indicated—a sketch of the Genesis of Science, regarded as a gradual outgrowth from common knowledge—an extension of the perceptions by the aid of the reason. We propose to treat it as a psychological process historically displayed; tracing at the same time the advance from qualitative to quantitative prevision; the progress from concrete facts to abstract facts, and the application of such abstract facts to the analysis of new orders of concrete facts; the simultaneous advance in generalisation and specialisation; the continually increasing subdivision and reunion of the sciences; and their constantly improving consensus.

To trace out scientific evolution from its deepest roots would, of course, involve a complete analysis of the mind. For as science is a development of that common knowledge acquired by the unaided senses and uncultured reason, so is that common knowledge itself gradually built up out of the simplest perceptions. We must, therefore, begin somewhere abruptly; and the most appropriate stage to take for our point of departure will be the adult mind of the savage.

Commencing thus, without a proper preliminary analysis, we are naturally somewhat at a loss how to present, in a satisfactory manner, those fundamental processes of thought out of which science ultimately originates. Perhaps our argument may be best initiated by the proposition, that all intelligent action whatever depends upon the discerning of distinctions among surrounding things. The condition under which only it is possible for any creature to obtain food and avoid danger is, that it shall be differently affected by different objects—that it shall be led to act in one way by one object, and in another way by another. In the lower orders of creatures this condition is fulfilled by means of an apparatus which acts automatically. In the higher orders the actions are partly automatic, partly conscious. And in man they are almost wholly conscious.

Throughout, however, there must necessarily exist a certain classification of things according to their properties—a classification which is either organically registered in the system, as in the inferior creation, or is formed by experience, as in ourselves. And it may be further remarked, that the extent to which this classification is carried, roughly indicates the height of intelligence—that while the lowest organisms are able to do little more than discriminate organic from inorganic matter; while the generality of animals carry their classifications no further than to a limited number of plants or creatures serving for food, a limited number of beasts of prey, and a limited number of places and materials; the most degraded of the human race possess a knowledge of the distinctive natures of a great variety of substances, plants, animals, tools, persons, etc., not only as classes but as individuals.

What now is the mental process by which classification is effected? Manifestly it is a recognition of the likeness or unlikeness of things, either in respect of their sizes, colours, forms, weights, textures, tastes, etc., or in respect of their modes of action. By some special mark, sound, or motion, the savage identifies a certain four-legged creature he sees, as one that is good for food, and to be caught in a particular way; or as one that is dangerous; and acts accordingly. He has classed together all the creatures that are alike in this particular. And manifestly in choosing the wood out of which to form his bow, the plant with which to poison his arrows, the bone from which to make his fish-hooks, he identifies them through their chief sensible properties as belonging to the general classes, wood, plant, and bone, but distinguishes them as belonging to sub-classes by virtue of certain properties in which they are unlike the rest of the general classes they belong to; and so forms genera and species.

And here it becomes manifest that not only is classification carried on by grouping together in the mind things that are like; but that classes and sub-classes are formed and arranged according to the degrees of unlikeness. Things widely contrasted are alone distinguished in the lower stages of mental evolution; as may be any day observed in an infant. And gradually as the powers of discrimination increase, the widely contrasted classes at first distinguished, come to be each divided into sub-classes, differing from each other less than the classes differ; and these sub-classes are again divided after the same manner. By the continuance of which process, things are gradually arranged into groups, the members of which are less and less unlike; ending, finally, in groups whose members differ only as individuals, and not specifically. And thus there tends ultimately to arise the notion of complete likeness. For, manifestly, it is impossible that groups should continue to be subdivided in virtue of smaller and smaller differences, without there being a simultaneous approximation to the notion of no difference.

Let us next notice that the recognition of likeness and unlikeness, which underlies classification, and out of which continued classification evolves the idea of complete likeness—let us next notice that it also underlies the process of naming, and by consequence language. For all language consists, at the beginning, of symbols which are as like to the things symbolised as it is practicable to make them. The language of signs is a means of conveying ideas by mimicking the actions or peculiarities of the things referred to. Verbal language is also, at the beginning, a mode of suggesting objects or acts by imitating the sounds which the objects make, or with which the acts are accompanied. Originally these two languages were used simultaneously. It needs but to watch the gesticulations with which the savage accompanies his speech—to see a Bushman or a Kaffir dramatising before an audience his mode of catching game—or to note the extreme paucity of words in all primitive vocabularies; to infer that at first, attitudes, gestures, and sounds, were all combined to produce as good a likeness as possible, of the things, animals, persons, or events described; and that as the sounds came to be understood by themselves the gestures fell into disuse: leaving traces, however, in the manners of the more excitable civilised races. But be this as it may, it suffices simply to observe, how many of the words current among barbarous peoples are like the sounds appertaining to the things signified; how many of our own oldest and simplest words have the same peculiarity; how children tend to invent imitative words; and how the sign-language spontaneously formed by deaf mutes is invariably based upon imitative actions—to at once see that the nation of likeness is that from which the nomenclature of objects takes its rise.

Were there space we might go on to point out how this law of life is traceable, not only in the origin but in the development of language; how in primitive tongues the plural is made by a duplication of the singular, which is a multiplication of the word to make it like the multiplicity of the things; how the use of metaphor—that prolific source of new words—is a suggesting of ideas that are like the ideas to be conveyed in some respect or other; and how, in the copious use of simile, fable, and allegory among uncivilised races, we see that complex conceptions, which there is yet no direct language for, are rendered, by presenting known conceptions more or less like them.

This view is further confirmed, and the predominance of this notion of likeness in primitive times further illustrated, by the fact that our system of presenting ideas to the eye originated after the same fashion. Writing and printing have descended from picture-language. The earliest mode of permanently registering a fact was by depicting it on a wall; that is—by exhibiting something as like to the thing to be remembered as it could be made. Gradually as the practice grew habitual and extensive, the most frequently repeated forms became fixed, and presently abbreviated; and, passing through the hieroglyphic and ideographic phases, the symbols lost all apparent relations to the things signified: just as the majority of our spoken words have done.

Observe again, that the same thing is true respecting the genesis of reasoning. The likeness that is perceived to exist between cases, is the essence of all early reasoning and of much of our present reasoning. The savage, having by experience discovered a relation between a certain object and a certain act, infers that the like relation will be found in future cases. And the expressions we constantly use in our arguments—"analogy implies," "the cases are not parallel," "by parity of reasoning," "there is no similarity,"—show how constantly the idea of likeness underlies our ratiocinative processes.

Still more clearly will this be seen on recognising the fact that there is a certain parallelism between reasoning and classification; that the two have a common root; and that neither can go on without the other. For on the one hand, it is a familiar truth that the attributing to a body in consequence of some of its properties, all those other properties in virtue of which it is referred to a particular class, is an act of inference. And, on the other hand, the forming of a generalisation is the putting together in one class all those cases which present like relations; while the drawing a deduction is essentially the perception that a particular case belongs to a certain class of cases previously generalised. So that as classification is a grouping together of like things; reasoning is a grouping together of like relations among things. Add to which, that while the perfection gradually achieved in classification consists in the formation of groups of objects which are completely alike; the perfection gradually achieved in reasoning consists in the formation of groups of cases which are completely alike.

Once more we may contemplate this dominant idea of likeness as exhibited in art. All art, civilised as well as savage, consists almost wholly in the making of objects like other objects; either as found in Nature, or as produced by previous art. If we trace back the varied art-products now existing, we find that at each stage the divergence from previous patterns is but small when compared with the agreement; and in the earliest art the persistency of imitation is yet more conspicuous. The old forms and ornaments and symbols were held sacred, and perpetually copied. Indeed, the strong imitative tendency notoriously displayed by the lowest human races, ensures among them a constant reproducing of likeness of things, forms, signs, sounds, actions, and whatever else is imitable; and we may even suspect that this aboriginal peculiarity is in some way connected with the culture and development of this general conception, which we have found so deep and widespread in its applications.

And now let us go on to consider how, by a further unfolding of this same fundamental notion, there is a gradual formation of the first germs of science. This idea of likeness which underlies classification, nomenclature, language spoken and written, reasoning, and art; and which plays so important a part because all acts of intelligence are made possible only by distinguishing among surrounding things, or grouping them into like and unlike;—this idea we shall find to be the one of which science is the especial product. Already during the stage we have been describing, there has existed qualitative prevision in respect to the commoner phenomena with which savage life is familiar; and we have now to inquire how the elements of quantitative prevision are evolved. We shall find that they originate by the perfecting of this same idea of likeness; that they have their rise in that conception of complete likeness which, as we have seen, necessarily results from the continued process of classification.

For when the process of classification has been carried as far as it is possible for the uncivilised to carry it—when the animal kingdom has been grouped not merely into quadrupeds, birds, fishes, and insects, but each of these divided into kinds—when there come to be sub-classes, in each of which the members differ only as individuals, and not specifically; it is clear that there must occur a frequent observation of objects which differ so little as to be indistinguishable. Among several creatures which the savage has killed and carried home, it must often happen that some one, which he wished to identify, is so exactly like another that he cannot tell which is which. Thus, then, there originates the notion of equality. The things which among ourselves are called equal—whether lines, angles, weights, temperatures, sounds or colours—are things which produce in us sensations that cannot be distinguished from each other. It is true we now apply the word equal chiefly to the separate phenomena which objects exhibit, and not to groups of phenomena; but this limitation of the idea has evidently arisen by subsequent analysis. And that the notion of equality did thus originate, will, we think, become obvious on remembering that as there were no artificial objects from which it could have been abstracted, it must have been abstracted from natural objects; and that the various families of the animal kingdom chiefly furnish those natural objects which display the requisite exactitude of likeness.

The same order of experiences out of which this general idea of equality is evolved, gives birth at the same time to a more complex idea of equality; or, rather, the process just described generates an idea of equality which further experience separates into two ideas—equality of things and equality of relations. While organic, and more especially animal forms, occasionally exhibit this perfection of likeness out of which the notion of simple equality arises, they more frequently exhibit only that kind of likeness which we call similarity; and which is really compound equality. For the similarity of two creatures of the same species but of different sizes, is of the same nature as the similarity of two geometrical figures. In either case, any two parts of the one bear the same ratio to one another as the homologous parts of the other. Given in any species, the proportions found to exist among the bones, and we may, and zoologists do, predict from any one, the dimensions of the rest; just as, when knowing the proportions subsisting among the parts of a geometrical figure, we may, from the length of one, calculate the others. And if, in the case of similar geometrical figures, the similarity can be established only by proving exactness of proportion among the homologous parts; if we express this relation between two parts in the one, and the corresponding parts in the other, by the formula A is to B as a is to b; if we otherwise write this, A to B = a to b; if, consequently, the fact we prove is that the relation of A to B equals the relation of a to b; then it is manifest that the fundamental conception of similarity is equality of relations.

With this explanation we shall be understood when we say that the notion of equality of relations is the basis of all exact reasoning. Already it has been shown that reasoning in general is a recognition of likeness of relations; and here we further find that while the notion of likeness of things ultimately evolves the idea of simple equality, the notion of likeness of relations evolves the idea of equality of relations: of which the one is the concrete germ of exact science, while the other is its abstract germ.

Those who cannot understand how the recognition of similarity in creatures of the same kind can have any alliance with reasoning, will get over the difficulty on remembering that the phenomena among which equality of relations is thus perceived, are phenomena of the same order and are present to the senses at the same time; while those among which developed reason perceives relations, are generally neither of the same order, nor simultaneously present. And if further, they will call to mind how Cuvier and Owen, from a single part of a creature, as a tooth, construct the rest by a process of reasoning based on this equality of relations, they will see that the two things are intimately connected, remote as they at first seem. But we anticipate. What it concerns us here to observe is, that from familiarity with organic forms there simultaneously arose the ideas of simple equality, and equality of relations.

At the same time, too, and out of the same mental processes, came the first distinct ideas of number. In the earliest stages, the presentation of several like objects produced merely an indefinite conception of multiplicity; as it still does among Australians, and Bushmen, and Damaras, when the number presented exceeds three or four. With such a fact before us we may safely infer that the first clear numerical conception was that of duality as contrasted with unity. And this notion of duality must necessarily have grown up side by side with those of likeness and equality; seeing that it is impossible to recognise the likeness of two things without also perceiving that there are two. From the very beginning the conception of number must have been as it is still, associated with the likeness or equality of the things numbered. If we analyse it, we find that simple enumeration is a registration of repeated impressions of any kind. That these may be capable of enumeration it is needful that they be more or less alike; and before any absolutely true numerical results can be reached, it is requisite that the units be absolutely equal. The only way in which we can establish a numerical relationship between things that do not yield us like impressions, is to divide them into parts that do yield us like impressions. Two unlike magnitudes of extension, force, time, weight, or what not, can have their relative amounts estimated only by means of some small unit that is contained many times in both; and even if we finally write down the greater one as a unit and the other as a fraction of it, we state, in the denominator of the fraction, the number of parts into which the unit must be divided to be comparable with the fraction.

It is, indeed, true, that by an evidently modern process of abstraction, we occasionally apply numbers to unequal units, as the furniture at a sale or the various animals on a farm, simply as so many separate entities; but no true result can be brought out by calculation with units of this order. And, indeed, it is the distinctive peculiarity of the calculus in general, that it proceeds on the hypothesis of that absolute equality of its abstract units, which no real units possess; and that the exactness of its results holds only in virtue of this hypothesis. The first ideas of number must necessarily then have been derived from like or equal magnitudes as seen chiefly in organic objects; and as the like magnitudes most frequently observed magnitudes of extension, it follows that geometry and arithmetic had a simultaneous origin.

Not only are the first distinct ideas of number co-ordinate with ideas of likeness and equality, but the first efforts at numeration displayed the same relationship. On reading the accounts of various savage tribes, we find that the method of counting by the fingers, still followed by many children, is the aboriginal method. Neglecting the several cases in which the ability to enumerate does not reach even to the number of fingers on one hand, there are many cases in which it does not extend beyond ten—the limit of the simple finger notation. The fact that in so many instances, remote, and seemingly unrelated nations, have adopted ten as their basic number; together with the fact that in the remaining instances the basic number is either five (the fingers of one hand) or twenty (the fingers and toes); almost of themselves show that the fingers were the original units of numeration. The still surviving use of the word digit, as the general name for a figure in arithmetic, is significant; and it is even said that our word ten (Sax. tyn; Dutch, tien; German, zehn) means in its primitive expanded form two hands. So that originally, to say there were ten things, was to say there were two hands of them.

From all which evidence it is tolerably clear that the earliest mode of conveying the idea of any number of things, was by holding up as many fingers as there were things; that is—using a symbol which was equal, in respect of multiplicity, to the group symbolised. For which inference there is, indeed, strong confirmation in the recent statement that our own soldiers are even now spontaneously adopting this device in their dealings with the Turks. And here it should be remarked that in this recombination of the notion of equality with that of multiplicity, by which the first steps in numeration are effected, we may see one of the earliest of those inosculations between the diverging branches of science, which are afterwards of perpetual occurrence.

Indeed, as this observation suggests, it will be well, before tracing the mode in which exact science finally emerges from the merely approximate judgments of the senses, and showing the non-serial evolution of its divisions, to note the non-serial character of those preliminary processes of which all after development is a continuation. On reconsidering them it will be seen that not only are they divergent growths from a common root, not only are they simultaneous in their progress; but that they are mutual aids; and that none can advance without the rest. That completeness of classification for which the unfolding of the perceptions paves the way, is impossible without a corresponding progress in language, by which greater varieties of objects are thinkable and expressible. On the one hand it is impossible to carry classification far without names by which to designate the classes; and on the other hand it is impossible to make language faster than things are classified.

Again, the multiplication of classes and the consequent narrowing of each class, itself involves a greater likeness among the things classed together; and the consequent approach towards the notion of complete likeness itself allows classification to be carried higher. Moreover, classification necessarily advances pari passu with rationality—the classification of things with the classification of relations. For things that belong to the same class are, by implication, things of which the properties and modes of behaviour—the co-existences and sequences—are more or less the same; and the recognition of this sameness of co-existences and sequences is reasoning. Whence it follows that the advance of classification is necessarily proportionate to the advance of generalisations. Yet further, the notion of likeness, both in things and relations, simultaneously evolves by one process of culture the ideas of equality of things and equality of relations; which are the respective bases of exact concrete reasoning and exact abstract reasoning—Mathematics and Logic. And once more, this idea of equality, in the very process of being formed, necessarily gives origin to two series of relations—those of magnitude and those of number: from which arise geometry and the calculus. Thus the process throughout is one of perpetual subdivision and perpetual intercommunication of the divisions. From the very first there has been that consensus of different kinds of knowledge, answering to the consensus of the intellectual faculties, which, as already said, must exist among the sciences.

Let us now go on to observe how, out of the notions of equality and number, as arrived at in the manner described, there gradually arose the elements of quantitative prevision.

Equality, once having come to be definitely conceived, was readily applicable to other phenomena than those of magnitude. Being predicable of all things producing indistinguishable impressions, there naturally grew up ideas of equality in weights, sounds, colours, etc.; and indeed it can scarcely be doubted that the occasional experience of equal weights, sounds, and colours, had a share in developing the abstract conception of equality—that the ideas of equality in size, relations, forces, resistances, and sensible properties in general, were evolved during the same period. But however this may be, it is clear that as fast as the notion of equality gained definiteness, so fast did that lowest kind of quantitative prevision which is achieved without any instrumental aid, become possible.

The ability to estimate, however roughly, the amount of a foreseen result, implies the conception that it will be equal to a certain imagined quantity; and the correctness of the estimate will manifestly depend upon the accuracy at which the perceptions of sensible equality have arrived. A savage with a piece of stone in his hand, and another piece lying before him of greater bulk of the same kind (a fact which he infers from the equality of the two in colour and texture) knows about what effort he must put forth to raise this other piece; and he judges accurately in proportion to the accuracy with which he perceives that the one is twice, three times, four times, etc., as large as the other; that is—in proportion to the precision of his ideas of equality and number. And here let us not omit to notice that even in these vaguest of quantitative previsions, the conception of equality of relations is also involved. For it is only in virtue of an undefined perception that the relation between bulk and weight in the one stone is equal to the relation between bulk and weight in the other, that even the roughest approximation can be made.

But how came the transition from those uncertain perceptions of equality which the unaided senses give, to the certain ones with which science deals? It came by placing the things compared in juxtaposition. Equality being predicated of things which give us indistinguishable impressions, and no accurate comparison of impressions being possible unless they occur in immediate succession, it results that exactness of equality is ascertainable in proportion to the closeness of the compared things. Hence the fact that when we wish to judge of two shades of colour whether they are alike or not, we place them side by side; hence the fact that we cannot, with any precision, say which of two allied sounds is the louder, or the higher in pitch, unless we hear the one immediately after the other; hence the fact that to estimate the ratio of weights, we take one in each hand, that we may compare their pressures by rapidly alternating in thought from the one to the other; hence the fact, that in a piece of music we can continue to make equal beats when the first beat has been given, but cannot ensure commencing with the same length of beat on a future occasion; and hence, lastly, the fact, that of all magnitudes, those of linear extension are those of which the equality is most accurately ascertainable, and those to which by consequence all others have to be reduced. For it is the peculiarity of linear extension that it alone allows its magnitudes to be placed in absolute juxtaposition, or, rather, in coincident position; it alone can test the equality of two magnitudes by observing whether they will coalesce, as two equal mathematical lines do, when placed between the same points; it alone can test equality by trying whether it will become identity. Hence, then, the fact, that all exact science is reducible, by an ultimate analysis, to results measured in equal units of linear extension.

Still it remains to be noticed in what manner this determination of equality by comparison of linear magnitudes originated. Once more may we perceive that surrounding natural objects supplied the needful lessons. From the beginning there must have been a constant experience of like things placed side by side—men standing and walking together; animals from the same herd; fish from the same shoal. And the ceaseless repetition of these experiences could not fail to suggest the observation, that the nearer together any objects were, the more visible became any inequality between them. Hence the obvious device of putting in apposition things of which it was desired to ascertain the relative magnitudes. Hence the idea of measure. And here we suddenly come upon a group of facts which afford a solid basis to the remainder of our argument; while they also furnish strong evidence in support of the foregoing speculations. Those who look sceptically on this attempted rehabilitation of the earliest epochs of mental development, and who more especially think that the derivation of so many primary notions from organic forms is somewhat strained, will perhaps see more probability in the several hypotheses that have been ventured, on discovering that all measures of extension and force originated from the lengths and weights of organic bodies; and all measures of time from the periodic phenomena of either organic or inorganic bodies.

Thus, among linear measures, the cubit of the Hebrews was the length of the forearm from the elbow to the end of the middle finger; and the smaller scriptural dimensions are expressed in hand-breadths and spans. The Egyptian cubit, which was similarly derived, was divided into digits, which were finger-breadths; and each finger-breadth was more definitely expressed as being equal to four grains of barley placed breadthwise. Other ancient measures were the orgyia or stretch of the arms, the pace, and the palm. So persistent has been the use of these natural units of length in the East, that even now some of the Arabs mete out cloth by the forearm. So, too, is it with European measures. The foot prevails as a dimension throughout Europe, and has done since the time of the Romans, by whom, also, it was used: its lengths in different places varying not much more than men's feet vary. The heights of horses are still expressed in hands. The inch is the length of the terminal joint of the thumb; as is clearly shown in France, where pouce means both thumb and inch. Then we have the inch divided into three barley-corns.

So completely, indeed, have these organic dimensions served as the substrata of all mensuration, that it is only by means of them that we can form any estimate of some of the ancient distances. For example, the length of a degree on the Earth's surface, as determined by the Arabian astronomers shortly after the death of Haroun-al-Raschid, was fifty-six of their miles. We know nothing of their mile further than that it was 4000 cubits; and whether these were sacred cubits or common cubits, would remain doubtful, but that the length of the cubit is given as twenty-seven inches, and each inch defined as the thickness of six barley-grains. Thus one of the earliest measurements of a degree comes down to us in barley-grains. Not only did organic lengths furnish those approximate measures which satisfied men's needs in ruder ages, but they furnished also the standard measures required in later times. One instance occurs in our own history. To remedy the irregularities then prevailing, Henry I. commanded that the ulna, or ancient ell, which answers to the modern yard, should be made of the exact length of his own arm.

Measures of weight again had a like derivation. Seeds seem commonly to have supplied the unit. The original of the carat used for weighing in India is a small bean. Our own systems, both troy and avoirdupois, are derived primarily from wheat-corns. Our smallest weight, the grain, is a grain of wheat. This is not a speculation; it is an historically registered fact. Henry III. enacted that an ounce should be the weight of 640 dry grains of wheat from the middle of the ear. And as all the other weights are multiples or sub-multiples of this, it follows that the grain of wheat is the basis of our scale. So natural is it to use organic bodies as weights, before artificial weights have been established, or where they are not to be had, that in some of the remoter parts of Ireland the people are said to be in the habit, even now, of putting a man into the scales to serve as a measure for heavy commodities.

Similarly with time. Astronomical periodicity, and the periodicity of animal and vegetable life, are simultaneously used in the first stages of progress for estimating epochs. The simplest unit of time, the day, nature supplies ready made. The next simplest period, the mooneth or month, is also thrust upon men's notice by the conspicuous changes constituting a lunation. For larger divisions than these, the phenomena of the seasons, and the chief events from time to time occurring, have been used by early and uncivilised races. Among the Egyptians the rising of the Nile served as a mark. The New Zealanders were found to begin their year from the reappearance of the Pleiades above the sea. One of the uses ascribed to birds, by the Greeks, was to indicate the seasons by their migrations. Barrow describes the aboriginal Hottentot as denoting periods by the number of moons before or after the ripening of one of his chief articles of food. He further states that the Kaffir chronology is kept by the moon, and is registered by notches on sticks—the death of a favourite chief, or the gaining of a victory, serving for a new era. By which last fact, we are at once reminded that in early history, events are commonly recorded as occurring in certain reigns, and in certain years of certain reigns: a proceeding which practically made a king's reign a measure of duration.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse