p-books.com
Essays on Education and Kindred Subjects - Everyman's Library
by Herbert Spencer
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

In Christian art we may clearly trace a parallel re-genesis. All early paintings and sculptures throughout Europe were religious in subject—represented Christs, crucifixions, virgins, holy families, apostles, saints. They formed integral parts of church architecture, and were among the means of exciting worship; as in Roman Catholic countries they still are. Moreover, the early sculptures of Christ on the cross, of virgins, of saints, were coloured: and it needs but to call to mind the painted madonnas and crucifixes still abundant in continental churches and highways, to perceive the significant fact that painting and sculpture continue in closest connection with each other where they continue in closest connection with their parent. Even when Christian sculpture was pretty clearly differentiated from painting, it was still religious and governmental in its subjects—was used for tombs in churches and statues of kings: while, at the same time, painting, where not purely ecclesiastical, was applied to the decoration of palaces, and besides representing royal personages, was almost wholly devoted to sacred legends. Only in quite recent times have painting and sculpture become entirely secular arts. Only within these few centuries has painting been divided into historical, landscape, marine, architectural, genre, animal, still-life, etc., and sculpture grown heterogeneous in respect of the variety of real and ideal subjects with which it occupies itself.

Strange as it seems then, we find it no less true, that all forms of written language, of painting, and of sculpture, have a common root in the politico-religious decorations of ancient temples and palaces. Little resemblance as they now have, the bust that stands on the console, the landscape that hangs against the wall, and the copy of the Times lying upon the table, are remotely akin; not only in nature, but by extraction. The brazen face of the knocker which the postman has just lifted, is related not only to the woodcuts of the Illustrated London News which he is delivering, but to the characters of the billet-doux which accompanies it. Between the painted window, the prayer-book on which its light falls, and the adjacent monument, there is consanguinity. The effigies on our coins, the signs over shops, the figures that fill every ledger, the coats of arms outside the carriage panel, and the placards inside the omnibus, are, in common with dolls, blue-books, paper-hangings, lineally descended from the rude sculpture-paintings in which the Egyptians represented the triumphs and worship of their god-kings. Perhaps no example can be given which more vividly illustrates the multiplicity and heterogeneity of the products that in course of time may arise by successive differentiations from a common stock.

Before passing to other classes of facts, it should be observed that the evolution of the homogeneous into the heterogeneous is displayed not only in the separation of Painting and Sculpture from Architecture and from each other, and in the greater variety of subjects they embody, but it is further shown in the structure of each work. A modern picture or statue is of far more heterogeneous nature than an ancient one. An Egyptian sculpture-fresco represents all its figures as on one plane—that is, at the same distance from the eye; and so is less heterogeneous than a painting that represents them as at various distances from the eye. It exhibits all objects as exposed to the same degree of light; and so is less heterogeneous than a painting which exhibits different objects and different parts of each object as in different degrees of light. It uses scarcely any but the primary colours, and these in their full intensity; and so is less heterogeneous than a painting which, introducing the primary colours but sparingly, employs an endless variety of intermediate tints, each of heterogeneous composition, and differing from the rest not only in quality but in intensity. Moreover, we see in these earliest works a great uniformity of conception. The same arrangement of figures is perpetually reproduced—the same actions, attitudes, faces, dresses. In Egypt the modes of representation were so fixed that it was sacrilege to introduce a novelty; and indeed it could have been only in consequence of a fixed mode of representation that a system of hieroglyphics became possible. The Assyrian bas-reliefs display parallel characters. Deities, kings, attendants, winged figures and animals, are severally depicted in like positions, holding like implements, doing like things, and with like expression or non-expression of face. If a palm-grove is introduced, all the trees are of the same height, have the same number of leaves, and are equidistant. When water is imitated, each wave is a counterpart of the rest; and the fish, almost always of one kind, are evenly distributed over the surface. The beards of the kings, the gods, and the winged figures, are every where similar: as are the names of the lions, and equally so those of the horses. Hair is represented throughout by one form of curl. The king's beard is quite architecturally built up of compound tiers of uniform curls, alternating with twisted tiers placed in a transverse direction, and arranged with perfect regularity; and the terminal tufts of the bulls' tails are represented in exactly the same manner. Without tracing out analogous facts in early Christian art, in which, though less striking, they are still visible, the advance in heterogeneity will be sufficiently manifest on remembering that in the pictures of our own day the composition is endlessly varied; the attitudes, faces, expressions, unlike; the subordinate objects different in size, form, position, texture; and more or less of contrast even in the smallest details. Or, if we compare an Egyptian statue, seated bolt upright on a block with hands on knees, fingers outspread and parallel, eyes looking straight forward, and the two sides perfectly symmetrical in every particular, with a statue of the advanced Greek or the modern school, which is asymmetrical in respect of the position of the head, the body, the limbs, the arrangement of the hair, dress, appendages, and in its relations to neighbouring objects, we shall see the change from the homogeneous to the heterogeneous clearly manifested.

In the co-ordinate origin and gradual differentiation of Poetry, Music and Dancing, we have another series of illustrations. Rhythm in speech, rhythm in sound, and rhythm in motion, were in the beginning parts of the same thing, and have only in process of time become separate things. Among various existing barbarous tribes we find them still united. The dances of savages are accompanied by some kind of monotonous chant, the clapping of hands, the striking of rude instruments: there are measured movements, measured words, and measured tones; and the whole ceremony, usually having reference to war or sacrifice, is of governmental character. In the early records of the historic races we similarly find these three forms of metrical action united in religious festivals. In the Hebrew writings we read that the triumphal ode composed by Moses on the defeat of the Egyptians, was sung to an accompaniment of dancing and timbrels. The Israelites danced and sung "at the inauguration of the golden calf. And as it is generally agreed that this representation of the Deity was borrowed from the mysteries of Apis, it is probable that the dancing was copied from that of the Egyptians on those occasions." There was an annual dance in Shiloh on the sacred festival; and David danced before the ark. Again, in Greece the like relation is everywhere seen; the original type being there, as probably in other cases, a simultaneous chanting and mimetic representation of the life and adventures of the god. The Spartan dances were accompanied by hymns and songs; and in general the Greeks had "no festivals or religious assemblies but what were accompanied with songs and dances"—both of them being forms of worship used before altars. Among the Romans, too, there were sacred dances: the Salian and Lupercalian being named as of that kind. And even in Christian countries, as at Limoges, in comparatively recent times, the people have danced in the choir in honour of a saint. The incipient separation of these once united arts from each other and from religion, was early visible in Greece. Probably diverging from dances partly religious, partly warlike, as the Corybantian, came the war dances proper, of which there were various kinds; and from these resulted secular dances. Meanwhile Music and Poetry, though still united, came to have an existence separate from dancing. The aboriginal Greek poems, religious in subject, were not recited, but chanted; and though at first the chant of the poet was accompanied by the dance of the chorus, it ultimately grew into independence. Later still, when the poem had been differentiated into epic and lyric—when it became the custom to sing the lyric and recite the epic—poetry proper was born. As during the same period musical instruments were being multiplied, we may presume that music came to have an existence apart from words. And both of them were beginning to assume other forms besides the religious. Facts having like implications might be cited from the histories of later times and people: as the practices of our own early minstrels, who sang to the harp heroic narratives versified by themselves to music of their own composition: thus uniting the now separate offices of poet, composer, vocalist, and instrumentalist. But, without further illustration, the common origin and gradual differentiation of Dancing, Poetry, and Music will be sufficiently manifest.

The advance from the homogeneous to the heterogeneous is displayed not only in the separation of these arts from each other and from religion, but also in the multiplied differentiations which each of them afterwards undergoes. Not to dwell upon the numberless kinds of dancing that have, in course of time, come into use; and not to occupy space in detaining the progress of poetry, as seen in the development of the various forms of metre, of rhyme, and of general organisation; let us confine our attention to music as a type of the group. As argued by Dr. Burney, and as implied by the customs of still extant barbarous races, the first musical instruments were, without doubt, percussive—sticks, calabashes, tom-toms—and were used simply to mark the time of the dance; and in this constant repetition of the same sound, we see music in its most homogeneous form.

The Egyptians had a lyre with three strings. The early lyre of the Greeks had four, constituting their tetrachord. In course of some centuries lyres of seven and eight strings were employed. And, by the expiration of a thousand years, they had advanced to their "great system" of the double octave. Through all which changes there of course arose a greater heterogeneity of melody. Simultaneously there came into use the different modes—Dorian, Ionian, Phrygian, AEolian, and Lydian—answering to our keys; and of these there were ultimately fifteen. As yet, however, there was but little heterogeneity in the time of their music.

Instrumental music during this period being merely the accompaniment of vocal music, and vocal music being completely subordinated to words, the singer being also the poet, chanting his own compositions and making the lengths of his notes agree with the feet of his verses,—there unavoidably arose a tiresome uniformity of measure, which, as Dr. Burney says, "no resources of melody could disguise." Lacking the complex rhythm obtained by our equal bars and unequal notes the only rhythm was that produced by the quantity of the syllables and was of necessity comparatively monotonous. And further, it may be observed that the chant thus resulting, being like recitative, was much less clearly differentiated from ordinary speech than is our modern song.

Nevertheless, in virtue of the extended range of notes in use, the variety of modes, the occasional variations of time consequent on changes of metre, and the multiplication of instruments, music had, towards the close of Greek civilisation, attained to considerable heterogeneity—not indeed as compared with our music, but as compared with that which preceded it. As yet, however, there existed nothing but melody: harmony was unknown. It was not until Christian church-music had reached some development, that music in parts was evolved; and then it came into existence through a very unobtrusive differentiation. Difficult as it may be to conceive a priori how the advance from melody to harmony could take place without a sudden leap, it is none the less true that it did so. The circumstance which prepared the way for it was the employment of two choirs singing alternately the same air. Afterwards it became the practice—very possibly first suggested by a mistake—for the second choir to commence before the first had ceased; thus producing a fugue.

With the simple airs then in use, a partially harmonious fugue might not improbably thus result: and a very partially harmonious fugue satisfied the ears of that age, as we know from still preserved examples. The idea having once been given, the composing of airs productive of fugal harmony would naturally grow up; as in some way it did grow up out of this alternate choir-singing. And from the fugue to concerted music of two, three, four, and more parts, the transition was easy. Without pointing out in detail the increasing complexity that resulted from introducing notes of various lengths, from the multiplication of keys, from the use of accidentals, from varieties of time, and so forth, it needs but to contrast music as it is, with music as it was, to see how immense is the increase of heterogeneity. We see this if, looking at music in its ensemble, we enumerate its many different genera and species—if we consider the divisions into vocal, instrumental, and mixed; and their subdivisions into music for different voices and different instruments—if we observe the many forms of sacred music, from the simple hymn, the chant, the canon, motet, anthem, etc., up to the oratorio; and the still more numerous forms of secular music, from the ballad up to the serenata, from the instrumental solo up to the symphony.

Again, the same truth is seen on comparing any one sample of aboriginal music with a sample of modern music—even an ordinary song for the piano; which we find to be relatively highly heterogeneous, not only in respect of the varieties in the pitch and in the length of the notes, the number of different notes sounding at the same instant in company with the voice, and the variations of strength with which they are sounded and sung, but in respect of the changes of key, the changes of time, the changes of timbre of the voice, and the many other modifications of expression. While between the old monotonous dance-chant and a grand opera of our own day, with its endless orchestral complexities and vocal combinations, the contrast in heterogeneity is so extreme that it seems scarcely credible that the one should have been the ancestor of the other.

Were they needed, many further illustrations might be cited. Going back to the early time when the deeds of the god-king, chanted and mimetically represented in dances round his altar, were further narrated in picture-writings on the walls of temples and palaces, and so constituted a rude literature, we might trace the development of Literature through phases in which, as in the Hebrew Scriptures, it presents in one work theology, cosmogony, history, biography, civil law, ethics, poetry; through other phases in which, as in the Iliad, the religious, martial, historical, the epic, dramatic, and lyric elements are similarly commingled; down to its present heterogeneous development, in which its divisions and subdivisions are so numerous and varied as to defy complete classification. Or we might trace out the evolution of Science; beginning with the era in which it was not yet differentiated from Art, and was, in union with Art, the handmaid of Religion; passing through the era in which the sciences were so few and rudimentary, as to be simultaneously cultivated by the same philosophers; and ending with the era in which the genera and species are so numerous that few can enumerate them, and no one can adequately grasp even one genus. Or we might do the like with Architecture, with the Drama, with Dress.

But doubtless the reader is already weary of illustrations; and our promise has been amply fulfilled. We believe we have shown beyond question, that that which the German physiologists have found to be the law of organic development, is the law of all development. The advance from the simple to the complex, through a process of successive differentiations, is seen alike in the earliest changes of the Universe to which we can reason our way back; and in the earliest changes which we can inductively establish; it is seen in the geologic and climatic evolution of the Earth, and of every single organism on its surface; it is seen in the evolution of Humanity, whether contemplated in the civilised individual, or in the aggregation of races; it is seen in the evolution of Society in respect alike of its political, its religious, and its economical organisation; and it is seen in the evolution of all those endless concrete and abstract products of human activity which constitute the environment of our daily life. From the remotest past which Science can fathom, up to the novelties of yesterday, that in which Progress essentially consists, is the transformation of the homogeneous into the heterogeneous.

* * * * *

And now, from this uniformity of procedure, may we not infer some fundamental necessity whence it results? May we not rationally seek for some all-pervading principle which determines this all-pervading process of things? Does not the universality of the law imply a universal cause?

That we can fathom such cause, noumenally considered, is not to be supposed. To do this would be to solve that ultimate mystery which must ever transcend human intelligence. But it still may be possible for us to reduce the law of all Progress, above established, from the condition of an empirical generalisation, to the condition of a rational generalisation. Just as it was possible to interpret Kepler's laws as necessary consequences of the law of gravitation; so it may be possible to interpret this law of Progress, in its multiform manifestations, as the necessary consequence of some similarly universal principle. As gravitation was assignable as the cause of each of the groups of phenomena which Kepler formulated; so may some equally simple attribute of things be assignable as the cause of each of the groups of phenomena formulated in the foregoing pages. We may be able to affiliate all these varied and complex evolutions of the homogeneous into the heterogeneous, upon certain simple facts of immediate experience, which, in virtue of endless repetition, we regard as necessary.

The probability of a common cause, and the possibility of formulating it, being granted, it will be well, before going further, to consider what must be the general characteristics of such cause, and in what direction we ought to look for it. We can with certainty predict that it has a high degree of generality; seeing that it is common to such infinitely varied phenomena: just in proportion to the universality of its application must be the abstractness of its character. We need not expect to see in it an obvious solution of this or that form of Progress; because it equally refers to forms of Progress bearing little apparent resemblance to them: its association with multiform orders of facts, involves its dissociation from any particular order of facts. Being that which determines Progress of every kind—astronomic, geologic, organic, ethnologic, social, economic, artistic, etc.—it must be concerned with some fundamental attribute possessed in common by these; and must be expressible in terms of this fundamental attribute. The only obvious respect in which all kinds of Progress are alike, is, that they are modes of change; and hence, in some characteristic of changes in general, the desired solution will probably be found. We may suspect a priori that in some law of change lies the explanation of this universal transformation of the homogeneous into the heterogeneous.

Thus much premised, we pass at once to the statement of the law, which is this:—Every active force produces more than one changeevery cause produces more than one effect.

Before this law can be duly comprehended, a few examples must be looked at. When one body is struck against another, that which we usually regard as the effect, is a change of position or motion in one or both bodies. But a moment's thought shows us that this is a careless and very incomplete view of the matter. Besides the visible mechanical result, sound is produced; or, to speak accurately, a vibration in one or both bodies, and in the surrounding air: and under some circumstances we call this the effect. Moreover, the air has not only been made to vibrate, but has had sundry currents caused in it by the transit of the bodies. Further, there is a disarrangement of the particles of the two bodies in the neighbourhood of their point of collision; amounting in some cases to a visible condensation. Yet more, this condensation is accompanied by the disengagement of heat. In some cases a spark—that is, light—results, from the incandescence of a portion struck off; and sometimes this incandescence is associated with chemical combination.

Thus, by the original mechanical force expended in the collision, at least five, and often more, different kinds of changes have been produced. Take, again, the lighting of a candle. Primarily this is a chemical change consequent on a rise of temperature. The process of combination having once been set going by extraneous heat, there is a continued formation of carbonic acid, water, etc.—in itself a result more complex than the extraneous heat that first caused it. But accompanying this process of combination there is a production of heat; there is a production of light; there is an ascending column of hot gases generated; there are currents established in the surrounding air. Moreover the decomposition of one force into many forces does not end here: each of the several changes produced becomes the parent of further changes. The carbonic acid given off will by and by combine with some base; or under the influence of sunshine give up its carbon to the leaf of a plant. The water will modify the hygrometric state of the air around; or, if the current of hot gases containing it come against a cold body, will be condensed: altering the temperature, and perhaps the chemical state, of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which it is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. And thus it is with all changes whatever. No case can be named in which an active force does not evolve forces of several kinds, and each of these, other groups of forces. Universally the effect is more complex than the cause.

Doubtless the reader already foresees the course of our argument. This multiplication of results, which is displayed in every event of to-day, has been going on from the beginning; and is true of the grandest phenomena of the universe as of the most insignificant. From the law that every active force produces more than one change, it is an inevitable corollary that through all time there has been an ever-growing complication of things. Starting with the ultimate fact that every cause produces more than one effect, we may readily see that throughout creation there must have gone on, and must still go on, a never-ceasing transformation of the homogeneous into the heterogeneous. But let us trace out this truth in detail.

Without committing ourselves to it as more than a speculation, though a highly probable one, let us again commence with the evolution of the solar system out of a nebulous medium.[3] From the mutual attraction of the atoms of a diffused mass whose form is unsymmetrical, there results not only condensation but rotation: gravitation simultaneously generates both the centripetal and the centrifugal forces. While the condensation and the rate of rotation are progressively increasing, the approach of the atoms necessarily generates a progressively increasing temperature. As this temperature rises, light begins to be evolved; and ultimately there results a revolving sphere of fluid matter radiating intense heat and light—a sun.

There are good reasons for believing that, in consequence of the high tangential velocity, and consequent centrifugal force, acquired by the outer parts of the condensing nebulous mass, there must be a periodical detachment of rotating rings; and that, from the breaking up of these nebulous rings, there must arise masses which in the course of their condensation repeat the actions of the parent mass, and so produce planets and their satellites—an inference strongly supported by the still extant rings of Saturn.

Should it hereafter be satisfactorily shown that planets and satellites were thus generated, a striking illustration will be afforded of the highly heterogeneous effects produced by the primary homogeneous cause; but it will serve our present purpose to point to the fact that from the mutual attraction of the particles of an irregular nebulous mass there result condensation, rotation, heat, and light.

It follows as a corollary from the Nebular Hypothesis, that the Earth must at first have been incandescent; and whether the Nebular Hypothesis be true or not, this original incandescence of the Earth is now inductively established—or, if not established, at least rendered so highly probable that it is a generally admitted geological doctrine. Let us look first at the astronomical attributes of this once molten globe. From its rotation there result the oblateness of its form, the alternations of day and night, and (under the influence of the moon) the tides, aqueous and atmospheric. From the inclination of its axis, there result the precession of the equinoxes and the many differences of the seasons, both simultaneous and successive, that pervade its surface. Thus the multiplication of effects is obvious. Several of the differentiations due to the gradual cooling of the Earth have been already noticed—as the formation of a crust, the solidification of sublimed elements, the precipitation of water, etc.,—and we here again refer to them merely to point out that they are simultaneous effects of the one cause, diminishing heat.

Let us now, however, observe the multiplied changes afterwards arising from the continuance of this one cause. The cooling of the Earth involves its contraction. Hence the solid crust first formed is presently too large for the shrinking nucleus; and as it cannot support itself, inevitably follows the nucleus. But a spheroidal envelope cannot sink down into contact with a smaller internal spheroid, without disruption; it must run into wrinkles as the rind of an apple does when the bulk of its interior decreases from evaporation. As the cooling progresses and the envelope thickens, the ridges consequent on these contractions must become greater, rising ultimately into hills and mountains; and the later systems of mountains thus produced must not only be higher, as we find them to be, but they must be longer, as we also find them to be. Thus, leaving out of view other modifying forces, we see what immense heterogeneity of surface has arisen from the one cause, loss of heat—a heterogeneity which the telescope shows us to be paralleled on the face of the moon, where aqueous and atmospheric agencies have been absent.

But we have yet to notice another kind of heterogeneity of surface similarly and simultaneously caused. While the Earth's crust was still thin, the ridges produced by its contraction must not only have been small, but the spaces between these ridges must have rested with great evenness upon the subjacent liquid spheroid; and the water in those arctic and antarctic regions in which it first condensed, must have been evenly distributed. But as fast as the crust grew thicker and gained corresponding strength, the lines of fracture from time to time caused in it, must have occurred at greater distances apart; the intermediate surfaces must have followed the contracting nucleus with less uniformity; and there must have resulted larger areas of land and water. If any one, after wrapping up an orange in wet tissue paper, and observing not only how small are the wrinkles, but how evenly the intervening spaces lie upon the surface of the orange, will then wrap it up in thick cartridge-paper, and note both the greater height of the ridges and the much larger spaces throughout which the paper does not touch the orange, he will realise the fact, that as the Earth's solid envelope grew thicker, the areas of elevation and depression must have become greater. In place of islands more or less homogeneously scattered over an all-embracing sea, there must have gradually arisen heterogeneous arrangements of continent and ocean, such as we now know.

Once more, this double change in the extent and in the elevation of the lands, involved yet another species of heterogeneity, that of coast-line. A tolerably even surface raised out of the ocean, must have a simple, regular sea-margin; but a surface varied by table-lands and intersected by mountain-chains must, when raised out of the ocean, have an outline extremely irregular both in its leading features and in its details. Thus endless is the accumulation of geological and geographical results slowly brought about by this one cause—the contraction of the Earth.

When we pass from the agency which geologists term igneous, to aqueous and atmospheric agencies, we see the like ever growing complications of effects. The denuding actions of air and water have, from the beginning, been modifying every exposed surface; everywhere causing many different changes. Oxidation, heat, wind, frost, rain, glaciers, rivers, tides, waves, have been unceasingly producing disintegration; varying in kind and amount according to local circumstances. Acting upon a tract of granite, they here work scarcely an appreciable effect; there cause exfoliations of the surface, and a resulting heap of debris and boulders; and elsewhere, after decomposing the feldspar into a white clay, carry away this and the accompanying quartz and mica, and deposit them in separate beds, fluviatile and marine. When the exposed land consists of several unlike formations, sedimentary and igneous, the denudation produces changes proportionably more heterogeneous. The formations being disintegrable in different degrees, there follows an increased irregularity of surface. The areas drained by different rivers being differently constituted, these rivers carry down to the sea different combinations of ingredients; and so sundry new strata of distinct composition are formed.

And here indeed we may see very simply illustrated, the truth, which we shall presently have to trace out in more involved cases, that in proportion to the heterogeneity of the object or objects on which any force expends itself, is the heterogeneity of the results. A continent of complex structure, exposing many strata irregularly distributed, raised to various levels, tilted up at all angles, must, under the same denuding agencies, give origin to immensely multiplied results; each district must be differently modified; each river must carry down a different kind of detritus; each deposit must be differently distributed by the entangled currents, tidal and other, which wash the contorted shores; and this multiplication of results must manifestly be greatest where the complexity of the surface is greatest.

It is out of the question here to trace in detail the genesis of those endless complications described by Geology and Physical Geography: else we might show how the general truth, that every active force produces more than one change, is exemplified in the highly involved flow of the tides, in the ocean currents, in the winds, in the distribution of rain, in the distribution of heat, and so forth. But not to dwell upon these, let us, for the fuller elucidation of this truth in relation to the inorganic world, consider what would be the consequences of some extensive cosmical revolution—say the subsidence of Central America.

The immediate results of the disturbance would themselves be sufficiently complex. Besides the numberless dislocations of strata, the ejections of igneous matter, the propagation of earthquake vibrations thousands of miles around, the loud explosions, and the escape of gases; there would be the rush of the Atlantic and Pacific Oceans to supply the vacant space, the subsequent recoil of enormous waves, which would traverse both these oceans and produce myriads of changes along their shores, the corresponding atmospheric waves complicated by the currents surrounding each volcanic vent, and the electrical discharges with which such disturbances are accompanied. But these temporary effects would be insignificant compared with the permanent ones. The complex currents of the Atlantic and Pacific would be altered in direction and amount. The distribution of heat achieved by these ocean currents would be different from what it is. The arrangement of the isothermal lines, not even on the neighbouring continents, but even throughout Europe, would be changed. The tides would flow differently from what they do now. There would be more or less modification of the winds in their periods, strengths, directions, qualities. Rain would fall scarcely anywhere at the same times and in the same quantities as at present. In short, the meteorological conditions thousands of miles off, on all sides, would be more or less revolutionised.

Thus, without taking into account the infinitude of modifications which these changes of climate would produce upon the flora and fauna, both of land and sea, the reader will see the immense heterogeneity of the results wrought out by one force, when that force expends itself upon a previously complicated area; and he will readily draw the corollary that from the beginning the complication has advanced at an increasing rate.

Before going on to show how organic progress also depends upon the universal law that every force produces more than one change, we have to notice the manifestation of this law in yet another species of inorganic progress—namely, chemical. The same general causes that have wrought out the heterogeneity of the Earth, physically considered, have simultaneously wrought out its chemical heterogeneity. Without dwelling upon the general fact that the forces which have been increasing the variety and complexity of geological formations, have, at the same time, been bringing into contact elements not previously exposed to each other under conditions favourable to union, and so have been adding to the number of chemical compounds, let us pass to the more important complications that have resulted from the cooling of the Earth.

There is every reason to believe that at an extreme heat the elements cannot combine. Even under such heat as can be artificially produced, some very strong affinities yield, as for instance, that of oxygen for hydrogen; and the great majority of chemical compounds are decomposed at much lower temperatures. But without insisting upon the highly probable inference, that when the Earth was in its first state of incandescence there were no chemical combinations at all, it will suffice our purpose to point to the unquestionable fact that the compounds that can exist at the highest temperatures, and which must, therefore, have been the first that were formed as the Earth cooled, are those of the simplest constitutions. The protoxides—including under that head the alkalies, earths, etc.—are, as a class, the most stable compounds we know: most of them resisting decomposition by any heat we can generate. These, consisting severally of one atom of each component element, are combinations of the simplest order—are but one degree less homogeneous than the elements themselves. More heterogeneous than these, less stable, and therefore later in the Earth's history, are the deutoxides, tritoxides, peroxides, etc.; in which two, three, four, or more atoms of oxygen are united with one atom of metal or other element. Higher than these in heterogeneity are the hydrates; in which an oxide of hydrogen, united with an oxide of some other element, forms a substance whose atoms severally contain at least four ultimate atoms of three different kinds. Yet more heterogeneous and less stable still are the salts; which present us with compound atoms each made up of five, six, seven, eight, ten, twelve, or more atoms, of three, if not more, kinds. Then there are the hydrated salts, of a yet greater heterogeneity, which undergo partial decomposition at much lower temperatures. After them come the further-complicated supersalts and double salts, having a stability again decreased; and so throughout. Without entering into qualifications for which we lack space, we believe no chemist will deny it to be a general law of these inorganic combinations that, other things equal, the stability decreases as the complexity increases.

And then when we pass to the compounds of organic chemistry, we find this general law still further exemplified: we find much greater complexity and much less stability. An atom of albumen, for instance, consists of 482 ultimate atoms of five different kinds. Fibrine, still more intricate in constitution, contains in each atom, 298 atoms of carbon, 40 of nitrogen, 2 of sulphur, 228 of hydrogen, and 92 of oxygen—in all, 660 atoms; or, more strictly speaking—equivalents. And these two substances are so unstable as to decompose at quite ordinary temperatures; as that to which the outside of a joint of roast meat is exposed. Thus it is manifest that the present chemical heterogeneity of the Earth's surface has arisen by degrees, as the decrease of heat has permitted; and that it has shown itself in three forms—first, in the multiplication of chemical compounds; second, in the greater number of different elements contained in the more modern of these compounds: and third, in the higher and more varied multiples in which these more numerous elements combine.

To say that this advance in chemical heterogeneity is due to the one cause, diminution of the Earth's temperature, would be to say too much; for it is clear that aqueous and atmospheric agencies have been concerned; and, further, that the affinities of the elements themselves are implied. The cause has all along been a composite one: the cooling of the Earth having been simply the most general of the concurrent causes, or assemblage of conditions. And here, indeed, it may be remarked that in the several classes of facts already dealt with (excepting, perhaps, the first), and still more in those with which we shall presently deal, the causes are more or less compound; as indeed are nearly all causes with which we are acquainted. Scarcely any change can with logical accuracy be wholly ascribed to one agency, to the neglect of the permanent or temporary conditions under which only this agency produces the change. But as it does not materially affect our argument, we prefer, for simplicity's sake, to use throughout the popular mode of expression.

Perhaps it will be further objected, that to assign loss of heat as the cause of any changes, is to attribute these changes not to a force, but to the absence of a force. And this is true. Strictly speaking, the changes should be attributed to those forces which come into action when the antagonist force is withdrawn. But though there is an inaccuracy in saying that the freezing of water is due to the loss of its heat, no practical error arises from it; nor will a parallel laxity of expression vitiate our statements respecting the multiplication of effects. Indeed, the objection serves but to draw attention to the fact, that not only does the exertion of a force produce more than one change, but the withdrawal of a force produces more than one change. And this suggests that perhaps the most correct statement of our general principle would be its most abstract statement—every change is followed by more than one other change.

Returning to the thread of our exposition, we have next to trace out, in organic progress, this same all-pervading principle. And here, where the evolution of the homogeneous into the heterogeneous was first observed, the production of many changes by one cause is least easy to demonstrate. The development of a seed into a plant, or an ovum into an animal, is so gradual, while the forces which determine it are so involved, and at the same time so unobtrusive, that it is difficult to detect the multiplication of effects which is elsewhere so obvious. Nevertheless, guided by indirect evidence, we may pretty safely reach the conclusion that here too the law holds.

Observe, first, how numerous are the effects which any marked change works upon an adult organism—a human being, for instance. An alarming sound or sigh, besides the impressions on the organs of sense and the nerves, may produce a start, a scream, a distortion of the face, a trembling consequent upon a general muscular relaxation, a burst of perspiration, an excited action of the heart, a rush of blood to the brain, followed possibly by arrest of the heart's action and by syncope: and if the system be feeble, an indisposition with its long train of complicated symptoms may set in. Similarly in cases of disease. A minute portion of the small-pox virus introduced into the system, will, in a severe case, cause, during the first stage, rigors, heat of skin, accelerated pulse, furred tongue, loss of appetite, thirst, epigastric uneasiness, vomiting, headache, pains in the back and limbs, muscular weakness, convulsions, delirium, etc.; in the second stage, cutaneous eruption, itching, tingling, sore throat, swelled fauces, salivation, cough, hoarseness, dyspnoea, etc.; and in the third stage, oedematous inflammations, pneumonia, pleurisy, diarrhoea, inflammation of the brain, ophthalmia, erysipelas, etc.; each of which enumerated symptoms is itself more or less complex. Medicines, special foods, better air, might in like manner be instanced as producing multiplied results.

Now it needs only to consider that the many changes thus wrought by one force upon an adult organism, will be in part paralleled in an embryo organism, to understand how here also, the evolution of the homogeneous into the heterogeneous may be due to the production of many effects by one cause. The external heat and other agencies which determine the first complications of the germ, may, by acting upon these, superinduce further complications; upon these still higher and more numerous ones; and so on continually: each organ as it is developed serving, by its actions and reactions upon the rest, to initiate new complexities. The first pulsations of the foetal heart must simultaneously aid the unfolding of every part. The growth of each tissue, by taking from the blood special proportions of elements, must modify the constitution of the blood; and so must modify the nutrition of all the other tissues. The heart's action, implying as it does a certain waste, necessitates an addition to the blood of effete matters, which must influence the rest of the system, and perhaps, as some think, cause the formation of excretory organs. The nervous connections established among the viscera must further multiply their mutual influences: and so continually.

Still stronger becomes the probability of this view when we call to mind the fact, that the same germ may be evolved into different forms according to circumstances. Thus, during its earlier stages, every embryo is sexless—becomes either male or female as the balance of forces acting upon it determines. Again, it is a well-established fact that the larva of a working-bee will develop into a queen-bee, if, before it is too late, its food be changed to that on which the larvae of queen-bees are fed. Even more remarkable is the case of certain entozoa. The ovum of a tape-worm, getting into its natural habitat, the intestine, unfolds into the well-known form of its parent; but if carried, as it frequently is, into other parts of the system, it becomes a sac-like creature, called by naturalists the Echinococcus—a creature so extremely different from the tape-worm in aspect and structure, that only after careful investigations has it been proved to have the same origin. All which instances imply that each advance in embryonic complication results from the action of incident forces upon the complication previously existing.

Indeed, we may find a priori reason to think that the evolution proceeds after this manner. For since it is now known that no germ, animal or vegetable, contains the slightest rudiment, trace, or indication of the future organism—now that the microscope has shown us that the first process set up in every fertilised germ, is a process of repeated spontaneous fissions ending in the production of a mass of cells, not one of which exhibits any special character: there seems no alternative but to suppose that the partial organisation at any moment subsisting in a growing embryo, is transformed by the agencies acting upon it into the succeeding phase of organisation, and this into the next, until, through ever-increasing complexities, the ultimate form is reached. Thus, though the subtilty of the forces and the slowness of the results, prevent us from directly showing that the stages of increasing heterogeneity through which every embryo passes, severally arise from the production of many changes by one force, yet, indirectly, we have strong evidence that they do so.

We have marked how multitudinous are the effects which one cause may generate in an adult organism; that a like multiplication of effects must happen in the unfolding organism, we have observed in sundry illustrative cases; further, it has been pointed out that the ability which like germs have to originate unlike forms, implies that the successive transformations result from the new changes superinduced on previous changes; and we have seen that structureless as every germ originally is, the development of an organism out of it is otherwise incomprehensible. Not indeed that we can thus really explain the production of any plant or animal. We are still in the dark respecting those mysterious properties in virtue of which the germ, when subject to fit influences, undergoes the special changes that begin the series of transformations. All we aim to show, is, that given a germ possessing these mysterious properties, the evolution of an organism from it, probably depends upon that multiplication of effects which we have seen to be the cause of progress in general, so far as we have yet traced it.

When, leaving the development of single plants and animals, we pass to that of the Earth's flora and fauna, the course of our argument again becomes clear and simple. Though, as was admitted in the first part of this article, the fragmentary facts Palaeontology has accumulated, do not clearly warrant us in saying that, in the lapse of geologic time, there have been evolved more heterogeneous organisms, and more heterogeneous assemblages of organisms, yet we shall now see that there must ever have been a tendency towards these results. We shall find that the production of many effects by one cause, which, as already shown, has been all along increasing the physical heterogeneity of the Earth, has further involved an increasing heterogeneity in its flora and fauna, individually and collectively. An illustration will make this clear.

Suppose that by a series of upheavals, occurring, as they are now known to do, at long intervals, the East Indian Archipelago were to be, step by step, raised into a continent, and a chain of mountains formed along the axis of elevation. By the first of these upheavals, the plants and animals inhabiting Borneo, Sumatra, New Guinea, and the rest, would be subjected to slightly modified sets of conditions. The climate in general would be altered in temperature, in humidity, and in its periodical variations; while the local differences would be multiplied. These modifications would affect, perhaps inappreciably, the entire flora and fauna of the region. The change of level would produce additional modifications: varying in different species, and also in different members of the same species, according to their distance from the axis of elevation. Plants, growing only on the sea-shore in special localities, might become extinct. Others, living only in swamps of a certain humidity, would, if they survived at all, probably undergo visible changes of appearance. While still greater alterations would occur in the plants gradually spreading over the lands newly raised above the sea. The animals and insects living on these modified plants, would themselves be in some degree modified by change of food, as well as by change of climate; and the modification would be more marked where, from the dwindling or disappearance of one kind of plant, an allied kind was eaten. In the lapse of the many generations arising before the next upheaval, the sensible or insensible alterations thus produced in each species would become organised—there would be a more or less complete adaptation to the new conditions. The next upheaval would superinduce further organic changes, implying wider divergences from the primary forms; and so repeatedly.

But now let it be observed that the revolution thus resulting would not be a substitution of a thousand more or less modified species for the thousand original species; but in place of the thousand original species there would arise several thousand species, or varieties, or changed forms. Each species being distributed over an area of some extent, and tending continually to colonise the new area exposed, its different members would be subject to different sets of changes. Plants and animals spreading towards the equator would not be affected in the same way with others spreading from it. Those spreading towards the new shores would undergo changes unlike the changes undergone by those spreading into the mountains. Thus, each original race of organisms, would become the root from which diverged several races differing more or less from it and from each other; and while some of these might subsequently disappear, probably more than one would survive in the next geologic period: the very dispersion itself increasing the chances of survival. Not only would there be certain modifications thus caused by change of physical conditions and food, but also in some cases other modifications caused by change of habit. The fauna of each island, peopling, step by step, the newly-raised tracts, would eventually come in contact with the faunas of other islands; and some members of these other faunas would be unlike any creatures before seen. Herbivores meeting with new beasts of prey, would, in some cases, be led into modes of defence or escape differing from those previously used; and simultaneously the beasts of prey would modify their modes of pursuit and attack. We know that when circumstances demand it, such changes of habit do take place in animals; and we know that if the new habits become the dominant ones, they must eventually in some degree alter the organisation.

Observe, now, however, a further consequence. There must arise not simply a tendency towards the differentiation of each race of organisms into several races; but also a tendency to the occasional production of a somewhat higher organism. Taken in the mass, these divergent varieties which have been caused by fresh physical conditions and habits of life, will exhibit changes quite indefinite in kind and degree; and changes that do not necessarily constitute an advance. Probably in most cases the modified type will be neither more nor less heterogeneous than the original one. In some cases the habits of life adopted being simpler than before, a less heterogeneous structure will result: there will be a retrogradation. But it must now and then occur, that some division of a species, falling into circumstances which give it rather more complex experiences, and demand actions somewhat more involved, will have certain of its organs further differentiated in proportionately small degrees,—will become slightly more heterogeneous.

Thus, in the natural course of things, there will from time to time arise an increased heterogeneity both of the Earth's flora and fauna, and of individual races included in them. Omitting detailed explanations, and allowing for the qualifications which cannot here be specified, we think it is clear that geological mutations have all along tended to complicate the forms of life, whether regarded separately or collectively. The same causes which have led to the evolution of the Earth's crust from the simple into the complex, have simultaneously led to a parallel evolution of the Life upon its surface. In this case, as in previous ones, we see that the transformation of the homogeneous into the heterogeneous is consequent upon the universal principle, that every active force produces more than one change.

The deduction here drawn from the established truths of geology and the general laws of life, gains immensely in weight on finding it to be in harmony with an induction drawn from direct experience. Just that divergence of many races from one race, which we inferred must have been continually occurring during geologic time, we know to have occurred during the pre-historic and historic periods, in man and domestic animals. And just that multiplication of effects which we concluded must have produced the first, we see has produced the last. Single causes, as famine, pressure of population, war, have periodically led to further dispersions of mankind and of dependent creatures: each such dispersion initiating new modifications, new varieties of type. Whether all the human races be or be not derived from one stock, philology makes it clear that whole groups of races now easily distinguishable from each other, were originally one race,—that the diffusion of one race into different climates and conditions of existence, has produced many modified forms of it.

Similarly with domestic animals. Though in some cases—as that of dogs—community of origin will perhaps be disputed, yet in other cases—as that of the sheep or the cattle of our own country—it will not be questioned that local differences of climate, food, and treatment, have transformed one original breed into numerous breeds now become so far distinct as to produce unstable hybrids. Moreover, through the complications of effects flowing from single causes, we here find, what we before inferred, not only an increase of general heterogeneity, but also of special heterogeneity. While of the divergent divisions and subdivisions of the human race, many have undergone changes not constituting an advance; while in some the type may have degraded; in others it has become decidedly more heterogeneous. The civilised European departs more widely from the vertebrate archetype than does the savage. Thus, both the law and the cause of progress, which, from lack of evidence, can be but hypothetically substantiated in respect of the earlier forms of life on our globe, can be actually substantiated in respect of the latest forms.

If the advance of Man towards greater heterogeneity is traceable to the production of many effects by one cause, still more clearly may the advance of Society towards greater heterogeneity be so explained. Consider the growth of an industrial organisation. When, as must occasionally happen, some individual of a tribe displays unusual aptitude for making an article of general use—a weapon, for instance—which was before made by each man for himself, there arises a tendency towards the differentiation of that individual into a maker of such weapon. His companions—warriors and hunters all of them,—severally feel the importance of having the best weapons that can be made; and are therefore certain to offer strong inducements to this skilled individual to make weapons for them. He, on the other hand, having not only an unusual faculty, but an unusual liking, for making such weapons (the talent and the desire for any occupation being commonly associated), is predisposed to fulfil these commissions on the offer of an adequate reward: especially as his love of distinction is also gratified. This first specialisation of function, once commenced, tends ever to become more decided. On the side of the weapon-maker continued practice gives increased skill—increased superiority to his products: on the side of his clients, cessation of practice entails decreased skill. Thus the influences that determine this division of labour grow stronger in both ways; and the incipient heterogeneity is, on the average of cases, likely to become permanent for that generation, if no longer.

Observe now, however, that this process not only differentiates the social mass into two parts, the one monopolising, or almost monopolising, the performance of a certain function, and the other having lost the habit, and in some measure the power, of performing that function; but it tends to imitate other differentiations. The advance we have described implies the introduction of barter,—the maker of weapons has, on each occasion, to be paid in such other articles as he agrees to take in exchange. But he will not habitually take in exchange one kind of article, but many kinds. He does not want mats only, or skins, or fishing gear, but he wants all these; and on each occasion will bargain for the particular things he most needs. What follows? If among the members of the tribe there exist any slight differences of skill in the manufacture of these various things, as there are almost sure to do, the weapon-maker will take from each one the thing which that one excels in making: he will exchange for mats with him whose mats are superior, and will bargain for the fishing gear of whoever has the best. But he who has bartered away his mats or his fishing gear, must make other mats or fishing gear for himself; and in so doing must, in some degree, further develop his aptitude. Thus it results that the small specialities of faculty possessed by various members of the tribe, will tend to grow more decided. If such transactions are from time to time repeated, these specialisations may become appreciable. And whether or not there ensue distinct differentiations of other individuals into makers of particular articles, it is clear that incipient differentiations take place throughout the tribe: the one original cause produces not only the first dual effect, but a number of secondary dual effects, like in kind, but minor in degree. This process, of which traces may be seen among groups of schoolboys, cannot well produce any lasting effects in an unsettled tribe; but where there grows up a fixed and multiplying community, these differentiations become permanent, and increase with each generation. A larger population, involving a greater demand for every commodity, intensifies the functional activity of each specialised person or class; and this renders the specialisation more definite where it already exists, and establishes it where it is nascent. By increasing the pressure on the means of subsistence, a larger population again augments these results; seeing that each person is forced more and more to confine himself to that which he can do best, and by which he can gain most. This industrial progress, by aiding future production, opens the way for a further growth of population, which reacts as before: in all which the multiplication of effects is manifest. Presently, under these same stimuli, new occupations arise. Competing workers, ever aiming to produce improved articles, occasionally discover better processes or raw materials. In weapons and cutting tools, the substitution of bronze for stone entails upon him who first makes it a great increase of demand—so great an increase that he presently finds all his time occupied in making the bronze for the articles he sells, and is obliged to depute the fashioning of these to others: and, eventually, the making of bronze, thus gradually differentiated from a pre-existing occupation, becomes an occupation by itself.

But now mark the ramified changes which follow this change. Bronze soon replaces stone, not only in the articles it was first used for, but in many others—in arms, tools, and utensils of various kinds; and so affects the manufacture of these things. Further, it affects the processes which these utensils subserve, and the resulting products—modifies buildings, carvings, dress, personal decorations. Yet again, it sets going sundry manufactures which were before impossible, from lack of a material fit for the requisite tools. And all these changes react on the people—increase their manipulative skill, their intelligence, their comfort,—refine their habits and tastes. Thus the evolution of a homogeneous society into a heterogeneous one, is clearly consequent on the general principle, that many effects are produced by one cause.

Our limits will not allow us to follow out this process in its higher complications: else might we show how the localisation of special industries in special parts of a kingdom, as well as the minute subdivision of labour in the making of each commodity, are similarly determined. Or, turning to a somewhat different order of illustrations, we might dwell on the multitudinous changes—material, intellectual, moral—caused by printing; or the further extensive series of changes wrought by gunpowder. But leaving the intermediate phases of social development, let us take a few illustrations from its most recent and its passing phases. To trace the effects of steam-power, in its manifold applications to mining, navigation, and manufactures of all kinds, would carry us into unmanageable detail. Let us confine ourselves to the latest embodiment of steam-power—the locomotive engine.

This, as the proximate cause of our railway system, has changed the face of the country, the course of trade, and the habits of the people. Consider, first, the complicated sets of changes that precede the making of every railway—the provisional arrangements, the meetings, the registration, the trial section, the parliamentary survey, the lithographed plans, the books of reference, the local deposits and notices, the application to Parliament, the passing Standing-Orders Committee, the first, second, and third readings: each of which brief heads indicates a multiplicity of transactions, and the development of sundry occupations—as those of engineers, surveyors, lithographers, parliamentary agents, share-brokers; and the creation of sundry others—as those of traffic-takers, reference-takers. Consider, next, the yet more marked changes implied in railway construction—the cuttings, embankings, tunnellings, diversions of roads; the building of bridges, and stations; the laying down of ballast, sleepers, and rails; the making of engines, tenders, carriages, and waggons: which processes, acting upon numerous trades, increase the importation of timber, the quarrying of stone, the manufacture of iron, the mining of coal, the burning of bricks: institute a variety of special manufactures weekly advertised in the Railway Times; and, finally, open the way to sundry new occupations, as those of drivers, stokers, cleaners, plate-layers, etc., etc. And then consider the changes, more numerous and involved still, which railways in action produce on the community at large. The organisation of every business is more or less modified: ease of communication makes it better to do directly what was before done by proxy; agencies are established where previously they would not have paid; goods are obtained from remote wholesale houses instead of near retail ones; and commodities are used which distance once rendered inaccessible. Again, the rapidity and small cost of carriage tend to specialise more than ever the industries of different districts—to confine each manufacture to the parts in which, from local advantages, it can be best carried on. Further, the diminished cost of carriage, facilitating distribution, equalises prices, and also, on the average, lowers prices: thus bringing divers articles within the means of those before unable to buy them, and so increasing their comforts and improving their habits. At the same time the practice of travelling is immensely extended. Classes who never before thought of it, take annual trips to the sea; visit their distant relations; make tours; and so we are benefited in body, feelings, and intellect. Moreover, the more prompt transmission of letters and of news produces further changes—makes the pulse of the nation faster. Yet more, there arises a wide dissemination of cheap literature through railway book-stalls, and of advertisements in railway carriages: both of them aiding ulterior progress.

And all the innumerable changes here briefly indicated are consequent on the invention of the locomotive engine. The social organism has been rendered more heterogeneous in virtue of the many new occupations introduced, and the many old ones further specialised; prices in every place have been altered; each trader has, more or less, modified his way of doing business; and almost every person has been affected in his actions, thoughts, emotions.

Illustrations to the same effect might be indefinitely accumulated. That every influence brought to bear upon society works multiplied effects; and that increase of heterogeneity is due to this multiplication of effects; may be seen in the history of every trade, every custom, every belief. But it is needless to give additional evidence of this. The only further fact demanding notice, is, that we here see still more clearly than ever, the truth before pointed out, that in proportion as the area on which any force expends itself becomes heterogeneous, the results are in a yet higher degree multiplied in number and kind. While among the primitive tribes to whom it was first known, caoutchouc caused but a few changes, among ourselves the changes have been so many and varied that the history of them occupies a volume.[4] Upon the small, homogeneous community inhabiting one of the Hebrides, the electric telegraph would produce, were it used, scarcely any results; but in England the results it produces are multitudinous. The comparatively simple organisation under which our ancestors lived five centuries ago, could have undergone but few modifications from an event like the recent one at Canton; but now the legislative decision respecting it sets up many hundreds of complex modifications, each of which will be the parent of numerous future ones.

Space permitting, we could willingly have pursued the argument in relation to all the subtler results of civilisation. As before, we showed that the law of Progress to which the organic and inorganic worlds conform, is also conformed to by Language, Sculpture, Music, etc.; so might we here show that the cause which we have hitherto found to determine Progress holds in these cases also. We might demonstrate in detail how, in Science, an advance of one division presently advances other divisions—how Astronomy has been immensely forwarded by discoveries in Optics, while other optical discoveries have initiated Microscopic Anatomy, and greatly aided the growth of Physiology—how Chemistry has indirectly increased our knowledge of Electricity, Magnetism, Biology, Geology—how Electricity has reacted on Chemistry and Magnetism, developed our views of Light and Heat, and disclosed sundry laws of nervous action.

In Literature the same truth might be exhibited in the manifold effects of the primitive mystery-play, not only as originating the modern drama, but as affecting through it other kinds of poetry and fiction; or in the still multiplying forms of periodical literature that have descended from the first newspaper, and which have severally acted and reacted on other forms of literature and on each other. The influence which a new school of Painting—as that of the pre-Raffaelites—exercises upon other schools; the hints which all kinds of pictorial art are deriving from Photography; the complex results of new critical doctrines, as those of Mr. Ruskin, might severally be dwelt upon as displaying the like multiplication of effects. But it would needlessly tax the reader's patience to pursue, in their many ramifications, these various changes: here become so involved and subtle as to be followed with some difficulty.

Without further evidence, we venture to think our case is made out. The imperfections of statement which brevity has necessitated, do not, we believe, militate against the propositions laid down. The qualifications here and there demanded would not, if made, affect the inferences. Though in one instance, where sufficient evidence is not attainable, we have been unable to show that the law of Progress applies; yet there is high probability that the same generalisation holds which holds throughout the rest of creation. Though, in tracing the genesis of Progress, we have frequently spoken of complex causes as if they were simple ones; it still remains true that such causes are far less complex than their results. Detailed criticisms cannot affect our main position. Endless facts go to show that every kind of progress is from the homogeneous to the heterogeneous; and that it is so because each change is followed by many changes. And it is significant that where the facts are most accessible and abundant, there are these truths most manifest.

However, to avoid committing ourselves to more than is yet proved, we must be content with saying that such are the law and the cause of all progress that is known to us. Should the Nebular Hypothesis ever be established, then it will become manifest that the Universe at large, like every organism, was once homogeneous; that as a whole, and in every detail, it has unceasingly advanced towards greater heterogeneity; and that its heterogeneity is still increasing. It will be seen that as in each event of to-day, so from the beginning, the decomposition of every expended force into several forces has been perpetually producing a higher complication; that the increase of heterogeneity so brought about is still going on, and must continue to go on; and that thus Progress is not an accident, not a thing within human control, but a beneficent necessity.

A few words must be added on the ontological bearings of our argument. Probably not a few will conclude that here is an attempted solution of the great questions with which Philosophy in all ages has perplexed itself. Let none thus deceive themselves. Only such as know not the scope and the limits of Science can fall into so grave an error. The foregoing generalisations apply, not to the genesis of things in themselves, but to their genesis as manifested to the human consciousness. After all that has been said, the ultimate mystery remains just as it was. The explanation of that which is explicable, does but bring out into greater clearness the inexplicableness of that which remains behind. However we may succeed in reducing the equation to its lowest terms, we are not thereby enabled to determine the unknown quantity: on the contrary, it only becomes more manifest that the unknown quantity can never be found.

Little as it seems to do so, fearless inquiry tends continually to give a firmer basis to all true Religion. The timid sectarian, alarmed at the progress of knowledge, obliged to abandon one by one the superstitions of his ancestors, and daily finding his cherished beliefs more and more shaken, secretly fears that all things may some day be explained; and has a corresponding dread of Science: thus evincing the profoundest of all infidelity—the fear lest the truth be bad. On the other hand, the sincere man of science, content to follow wherever the evidence leads him, becomes by each new inquiry more profoundly convinced that the Universe is an insoluble problem. Alike in the external and the internal worlds, he sees himself in the midst of perpetual changes, of which he can discover neither the beginning nor the end. If, tracing back the evolution of things, he allows himself to entertain the hypothesis that all matter once existed in a diffused form, he finds it utterly impossible to conceive how this came to be so; and equally, if he speculates on the future, he can assign no limit to the grand succession of phenomena ever unfolding themselves before him. On the other hand, if he looks inward, he perceives that both terminations of the thread of consciousness are beyond his grasp: he cannot remember when or how consciousness commenced, and he cannot examine the consciousness that at any moment exists; for only a state of consciousness that is already past can become the object of thought, and never one which is passing.

When, again, he turns from the succession of phenomena, external or internal, to their essential nature, he is equally at fault. Though he may succeed in resolving all properties of objects into manifestations of force, he is not thereby enabled to realise what force is; but finds, on the contrary, that the more he thinks about it, the more he is baffled. Similarly, though analysis of mental actions may finally bring him down to sensations as the original materials out of which all thought is woven, he is none the forwarder; for he cannot in the least comprehend sensation—cannot even conceive how sensation is possible. Inward and outward things he thus discovers to be alike inscrutable in their ultimate genesis and nature. He sees that the Materialist and Spiritualist controversy is a mere war of words; the disputants being equally absurd—each believing he understands that which it is impossible for any man to understand. In all directions his investigations eventually bring him face to face with the unknowable; and he ever more clearly perceives it to be the unknowable. He learns at once the greatness and the littleness of human intellect—its power in dealing with all that comes within the range of experience; its impotence in dealing with all that transcends experience. He feels, with a vividness which no others can, the utter incomprehensibleness of the simplest fact, considered in itself. He alone truly sees that absolute knowledge is impossible. He alone knows that under all things there lies an impenetrable mystery.

[1] Westminster Review, April 1857.

[2] For detailed proof of these assertions see essay on "Manners and Fashion."

[3] The idea that the Nebular Hypothesis has been disproved because what were thought to be existing nebulae have been resolved into clusters of stars is almost beneath notice. A priori it was highly improbable, if not impossible, that nebulous masses should still remain uncondensed, while others have been condensed millions of years ago.

[4] Personal Narrative of the Origin of the Caoutchouc, or India-Rubber Manufacture in England. By Thomas Hancock.



ON MANNERS AND FASHION[1]

Whoever has studied the physiognomy of political meetings, cannot fail to have remarked a connection between democratic opinions and peculiarities of costume. At a Chartist demonstration, a lecture on Socialism, or a soiree of the Friends of Italy, there will be seen many among the audience, and a still larger ratio among the speakers, who get themselves up in a style more or less unusual. One gentleman on the platform divides his hair down the centre, instead of on one side; another brushes it back off the forehead, in the fashion known as "bringing out the intellect;" a third has so long forsworn the scissors, that his locks sweep his shoulders. A considerable sprinkling of moustaches may be observed; here and there an imperial; and occasionally some courageous breaker of conventions exhibits a full-grown beard.[2] This nonconformity in hair is countenanced by various nonconformities in dress, shown by others of the assemblage. Bare necks, shirt-collars a la Byron, waistcoats cut Quaker fashion, wonderfully shaggy great coats, numerous oddities in form and colour, destroy the monotony usual in crowds. Even those exhibiting no conspicuous peculiarity, frequently indicate by something in the pattern or make-up of their clothes, that they pay small regard to what their tailors tell them about the prevailing taste. And when the gathering breaks up, the varieties of head-gear displayed—the number of caps, and the abundance of felt hats—suffice to prove that were the world at large like-minded, the black cylinders which tyrannise over us would soon be deposed.

The foreign correspondence of our daily press shows that this relationship between political discontent and the disregard of customs exists on the Continent also. Red republicanism has always been distinguished by its hirsuteness. The authorities of Prussia, Austria, and Italy, alike recognise certain forms of hat as indicative of disaffection, and fulminate against them accordingly. In some places the wearer of a blouse runs a risk of being classed among the suspects; and in others, he who would avoid the bureau of police, must beware how he goes out in any but the ordinary colours. Thus, democracy abroad, as at home, tends towards personal singularity.

Nor is this association of characteristics peculiar to modern times, or to reformers of the State. It has always existed; and it has been manifested as much in religious agitations as in political ones. Along with dissent from the chief established opinions and arrangements, there has ever been some dissent from the customary social practices. The Puritans, disapproving of the long curls of the Cavaliers, as of their principles, cut their own hair short, and so gained the name of "Roundheads." The marked religious nonconformity of the Quakers was accompanied by an equally-marked nonconformity of manners—in attire, in speech, in salutation. The early Moravians not only believed differently, but at the same time dressed differently, and lived differently, from their fellow Christians.

That the association between political independence and independence of personal conduct, is not a phenomenon of to-day only, we may see alike in the appearance of Franklin at the French court in plain clothes, and in the white hats worn by the last generation of radicals. Originality of nature is sure to show itself in more ways than one. The mention of George Fox's suit of leather, or Pestalozzi's school name, "Harry Oddity," will at once suggest the remembrance that men who have in great things diverged from the beaten track, have frequently done so in small things likewise. Minor illustrations of this truth may be gathered in almost every circle. We believe that whoever will number up his reforming and rationalist acquaintances, will find among them more than the usual proportion of those who in dress or behaviour exhibit some degree of what the world calls eccentricity.

If it be a fact that men of revolutionary aims in politics or religion, are commonly revolutionists in custom also, it is not less a fact that those whose office it is to uphold established arrangements in State and Church, are also those who most adhere to the social forms and observances bequeathed to us by past generations. Practices elsewhere extinct still linger about the headquarters of government. The monarch still gives assent to Acts of Parliament in the old French of the Normans; and Norman French terms are still used in law. Wigs, such as those we see depicted in old portraits, may yet be found on the heads of judges and barristers. The Beefeaters at the Tower wear the costume of Henry VIIth's bodyguard. The University dress of the present year varies but little from that worn soon after the Reformation. The claret-coloured coat, knee-breeches, lace shirt frills, ruffles, white silk stockings, and buckled shoes, which once formed the usual attire of a gentleman, still survive as the court-dress. And it need scarcely be said that at levees and drawing-rooms, the ceremonies are prescribed with an exactness, and enforced with a rigour, not elsewhere to be found.

Can we consider these two series of coincidences as accidental and unmeaning? Must we not rather conclude that some necessary relationship obtains between them? Are there not such things as a constitutional conservatism, and a constitutional tendency to change? Is there not a class which clings to the old in all things; and another class so in love with progress as often to mistake novelty for improvement? Do we not find some men ready to bow to established authority of whatever kind; while others demand of every such authority its reason, and reject it if it fails to justify itself? And must not the minds thus contrasted tend to become respectively conformist and nonconformist, not only in politics and religion, but in other things? Submission, whether to a government, to the dogmas of ecclesiastics, or to that code of behaviour which society at large has set up, is essentially of the same nature; and the sentiment which induces resistance to the despotism of rulers, civil or spiritual, likewise induces resistance to the despotism of the world's opinion. Look at them fundamentally, and all enactments, alike of the legislature, the consistory, and the saloon—all regulations, formal or virtual, have a common character: they are all limitations of men's freedom. "Do this—Refrain from that," are the blank formulas into which they may all be written: and in each case the understanding is that obedience will bring approbation here and paradise hereafter; while disobedience will entail imprisonment, or sending to Coventry, or eternal torments, as the case may be. And if restraints, however named, and through whatever apparatus of means exercised, are one in their action upon men, it must happen that those who are patient under one kind of restraint, are likely to be patient under another; and conversely, that those impatient of restraint in general, will, on the average, tend to show their impatience in all directions.

That Law, Religion, and Manners are thus related—that their respective kinds of operation come under one generalisation—that they have in certain contrasted characteristics of men a common support and a common danger—will, however, be most clearly seen on discovering that they have a common origin. Little as from present appearances we should suppose it, we shall yet find that at first, the control of religion, the control of laws and the control of manners, were all one control. However incredible it may now seem, we believe it to be demonstrable that the rules of etiquette, the provisions of the statute-book, and the commands of the decalogue, have grown from the same root. If we go far enough back into the ages of primeval Fetishism, it becomes manifest that originally Deity, Chief, and Master of the ceremonies were identical. To make good these positions, and to show their bearing on what is to follow, it will be necessary here to traverse ground that is in part somewhat beaten, and at first sight irrelevant to our topic. We will pass over it as quickly as consists with the exigencies of the argument.

* * * * *

That the earliest social aggregations were ruled solely by the will of the strong man, few dispute. That from the strong man proceeded not only Monarchy, but the conception of a God, few admit: much as Carlyle and others have said in evidence of it. If, however, those who are unable to believe this, will lay aside the ideas of God and man in which they have been educated, and study the aboriginal ideas of them, they will at least see some probability in the hypothesis. Let them remember that before experience had yet taught men to distinguish between the possible and the impossible; and while they were ready on the slightest suggestion to ascribe unknown powers to any object and make a fetish of it; their conceptions of humanity and its capacities were necessarily vague, and without specific limits. The man who by unusual strength, or cunning, achieved something that others had failed to achieve, or something which they did not understand, was considered by them as differing from themselves; and, as we see in the belief of some Polynesians that only their chiefs have souls, or in that of the ancient Peruvians that their nobles were divine by birth, the ascribed difference was apt to be not one of degree only, but one of kind.

Let them remember next, how gross were the notions of God, or rather of gods, prevalent during the same era and afterwards—how concretely gods were conceived as men of specific aspects dressed in specific ways—how their names were literally "the strong," "the destroyer," "the powerful one,"—how, according to the Scandinavian mythology, the "sacred duty of blood-revenge" was acted on by the gods themselves,—and how they were not only human in their vindictiveness, their cruelty, and their quarrels with each other, but were supposed to have amours on earth, and to consume the viands placed on their altars. Add to which, that in various mythologies, Greek, Scandinavian, and others, the oldest beings are giants; that according to a traditional genealogy the gods, demi-gods, and in some cases men, are descended from these after the human fashion; and that while in the East we hear of sons of God who saw the daughters of men that they were fair, the Teutonic myths tell of unions between the sons of men and the daughters of the gods.

Let them remember, too, that at first the idea of death differed widely from that which we have; that there are still tribes who, on the decease of one of their number, attempt to make the corpse stand, and put food into his mouth; that the Peruvians had feasts at which the mummies of their dead Incas presided, when, as Prescott says, they paid attention "to these insensible remains as if they were instinct with life;" that among the Fejees it is believed that every enemy has to be killed twice; that the Eastern Pagans give extension and figure to the soul, and attribute to it all the same substances, both solid and liquid, of which our bodies are composed; and that it is the custom among most barbarous races to bury food, weapons, and trinkets along with the dead body, under the manifest belief that it will presently need them.

Lastly, let them remember that the other world, as originally conceived, is simply some distant part of this world—some Elysian fields, some happy hunting-ground, accessible even to the living, and to which, after death, men travel in anticipation of a life analogous in general character to that which they led before. Then, co-ordinating these general facts—the ascription of unknown powers to chiefs and medicine men; the belief in deities having human forms, passions, and behaviour; the imperfect comprehension of death as distinguished from life; and the proximity of the future abode to the present, both in position and character—let them reflect whether they do not almost unavoidably suggest the conclusion that the aboriginal god is the dead chief; the chief not dead in our sense, but gone away carrying with him food and weapons to some rumoured region of plenty, some promised land, whither he had long intended to lead his followers, and whence he will presently return to fetch them.

This hypothesis once entertained, is seen to harmonise with all primitive ideas and practices. The sons of the deified chief reigning after him, it necessarily happens that all early kings are held descendants of the gods; and the fact that alike in Assyria, Egypt, among the Jews, Phoenicians, and ancient Britons, kings' names were formed out of the names of the gods, is fully explained. The genesis of Polytheism out of Fetishism, by the successive migrations of the race of god-kings to the other world—a genesis illustrated in the Greek mythology, alike by the precise genealogy of the deities, and by the specifically asserted apotheosis of the later ones—tends further to bear it out. It explains the fact that in the old creeds, as in the still extant creed of the Otaheitans, every family has its guardian spirit, who is supposed to be one of their departed relatives; and that they sacrifice to these as minor gods—a practice still pursued by the Chinese and even by the Russians. It is perfectly congruous with the Grecian myths concerning the wars of the Gods with the Titans and their final usurpation; and it similarly agrees with the fact that among the Teutonic gods proper was one Freir who came among them by adoption, "but was born among the Vanes, a somewhat mysterious other dynasty of gods, who had been conquered and superseded by the stronger and more warlike Odin dynasty." It harmonises, too, with the belief that there are different gods to different territories and nations, as there were different chiefs; that these gods contend for supremacy as chiefs do; and it gives meaning to the boast of neighbouring tribes—"Our god is greater than your god." It is confirmed by the notion universally current in early times, that the gods come from this other abode, in which they commonly live, and appear among men—speak to them, help them, punish them. And remembering this, it becomes manifest that the prayers put up by primitive peoples to their gods for aid in battle, are meant literally—that their gods are expected to come back from the other kingdom they are reigning over, and once more fight the old enemies they had before warred against so implacably; and it needs but to name the Iliad, to remind every one how thoroughly they believed the expectation fulfilled.

All government, then, being originally that of the strong man who has become a fetish by some manifestation of superiority, there arises, at his death—his supposed departure on a long projected expedition, in which he is accompanied by his slaves and concubines sacrificed at his tomb—their arises, then, the incipient division of religious from political control, of civil rule from spiritual. His son becomes deputed chief during his absence; his authority is cited as that by which his son acts; his vengeance is invoked on all who disobey his son; and his commands, as previously known or as asserted by his son, become the germ of a moral code; a fact we shall the more clearly perceive if we remember, that early moral codes inculcate mainly the virtues of the warrior, and the duty of exterminating some neighbouring tribe whose existence is an offence to the deity.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse