|
About four months before I had to revise this essay on "The Constitution of the Sun," while staying near Pewsey, in Wiltshire, I was fortunate enough to witness a phenomenon which furnished, by analogy, a verification of the above hypothesis, and served more especially to elucidate one of the traits of solar spots, otherwise difficult to understand. It was at the close of August, when there had been a spell of very hot weather. A slight current of air from the West, moving along the line of the valley, had persisted through the day, which, up to 5 o'clock, had been cloudless, and, with the exception now to be named, remained cloudless. The exception was furnished by a strange-looking cloud almost directly overhead. Its central part was comparatively dense and structureless. Its peripheral part, or to speak strictly, the two-thirds of it which were nearest and most clearly visible, consisted of converging streaks of comparatively thin cloud. Possibly the third part on the remoter side was similarly constituted; but this I could not see. It did not occur to me at the time to think about its cause, though, had the question been raised, I should doubtless have concluded that as the sky still remained cloudless everywhere else, this precipitated mass of vapour must have resulted from a local eddy. In the space of perhaps half-an-hour, the gentle breeze had carried this cloud some miles to the East; and now its nature became obvious. That central part which, seen from underneath, seemed simply a dense, confused part, apparently no nearer than the rest, now, seen sideways, was obviously much lower than the rest and rudely funnel-shaped—nipple-shaped one might say; while the wide thin portion of cloud above it was disk-shaped: the converging streaks of cloud being now, in perspective, merged together. It thus became manifest that the cloud was produced by a feeble whirlwind, perhaps a quarter to half-a-mile in diameter. Further, the appearances made it clear that this feeble whirlwind was limited to the lower stratum of air: the stratum of air above it was not implicated in the cyclonic action. And then, lastly, there was the striking fact that the upper stratum, though not involved in the whirl, was, by its proximity to a region of diminished pressure, slightly rarified; and that its precipitated vapour was, by the draught set up towards the vortex below, drawn into converging streaks. Here, then, was an action analogous to that which, as above suggested, happens around a sun-spot, where the masses of illuminated vapour constituting the photosphere are drawn towards the vortex of the cyclone, and simultaneously elongated into striae: so forming the penumbra. At the same time there was furnished an answer to the chief objection to the cyclonic theory of solar spots. For if, as here seen, a cyclone in a lower stratum may fail to communicate a vortical motion to the stratum above it, we may comprehend how, in a solar cyclone, the photosphere commonly fails to give any indication of the revolving currents below, and is only occasionally so entangled in these currents as itself to display a vortical motion.
Let me add that apart from the elucidations furnished by the phenomenon above described, the probabilities are greatly in favour of the cyclonic origin of the solar spots. That some of them exhibit clear marks of vortical motion is undeniable; and if this is so, the question arises—What is the degree of likelihood that there are two causes for spots? Considering that they have so many characters in common, it is extremely improbable that their common characters are in some cases the concomitants of vortical motion and in other cases the concomitants of a different kind of action. Recognizing this great improbability, even in the absence of a reconciliation between the apparently conflicting traits, it is, I think, clear that when, in the way above shown, we are enabled to understand how it happens that the vortical motion, not ordinarily implicating the photosphere, may consequently be in most cases unapparent, the reasons for accepting the cyclonic theory become almost conclusive.]
FOOTNOTES:
[Footnote 25: If the "rice-grain" appearance is thus produced by the tops of the ascending currents (and M. Faye accepts this interpretation), then I think it excludes M. Faye's hypothesis that the Sun is gaseous throughout. The comparative smallness of the light-giving spots and their comparative uniformity of size, show us that they have ascended through a stratum of but moderate depth (say 10,000 miles), and that this stratum has a definite lower limit. This favours the hypothesis of a molten shell.]
[Footnote 26: I should add that while M. Faye ascribes solar spots to clouds formed within cyclones, we differ concerning the nature of the cloud. I have argued that it is formed by rarefaction, and consequent refrigeration, of the metallic gases constituting the stratum in which the cyclone exists. He argues that it is formed within the mass of cooled hydrogen drawn from the chromosphere into the vortex of the cyclone. Speaking of the cyclones he says:—"Dans leur embouchure evasee ils entraineront l'hydrogene froid de la chromosphere, produisant partout sur leur trajet vertical un abaissement notable de temperature et une obscurite relative, due a l'opacite de l'hydrogene froid englouti." (Revue Scientifique, 24 March 1883.) Considering the intense cold required to reduce hydrogen to the "critical point," it is a strong supposition that the motion given to it by fluid friction on entering the vortex of the cyclone, can produce a rotation, rarefaction, and cooling, great enough to produce precipitation in a region so intensely heated.]
ILLOGICAL GEOLOGY.
[First published in The Universal Review for July, 1859.]
That proclivity to generalization which is possessed in greater or less degree by all minds, and without which, indeed, intelligence cannot exist, has unavoidable inconveniences. Through it alone can truth be reached; and yet it almost inevitably betrays into error. But for the tendency to predicate of every other case, that which has been found in the observed cases, there could be no rational thinking; and yet by this indispensable tendency, men are perpetually led to found, on limited experience, propositions which they wrongly assume to be universal or absolute. In one sense, however, this can scarcely be regarded as an evil; for without premature generalizations the true generalization would never be arrived at. If we waited till all the facts were accumulated before trying to formulate them, the vast unorganized mass would be unmanageable. Only by provisional grouping can they be brought into such order as to be dealt with; and this provisional grouping is but another name for premature generalization. How uniformly men follow this course, and how needful the errors are as steps to truth, is well illustrated in the history of Astronomy. The heavenly bodies move round the Earth in circles, said the earliest observers: led partly by the appearances, and partly by their experiences of central motions in terrestrial objects, with which, as all circular, they classed the celestial motions from lack of any alternative conception. Without this provisional belief, wrong as it was, there could not have been that comparison of positions which showed that the motions are not representable by circles; and which led to the hypothesis of epicycles and eccentrics. Only by the aid of this hypothesis, equally untrue, but capable of accounting more nearly for the appearances, and so of inducing more accurate observations—only thus did it become possible for Copernicus to show that the heliocentric theory is more feasible than the geocentric theory; or for Kepler to show that the planets move round the sun in ellipses. Yet again, without the aid of Kepler's more advanced theory of the Solar system, Newton could not have established that general law from which it follows, that the motion of a heavenly body is not necessarily in an ellipse, but may be in any conic section. And lastly, it was only after the law of gravitation had been verified, that it became possible to determine the actual courses of planets, satellites, and comets; and to prove that, in consequence of perturbations, their orbits always deviate, more or less, from regular curves. In these successive theories we may trace both the tendency men have to leap from scanty data to wide generalizations, that are either untrue or but partially true; and the necessity there is for such transitional generalizations as steps to the final one.
In the progress of geological speculation, the same laws of thought are displayed. We have dogmas that were more than half false, passing current for a time as universal truths. We have evidence collected in proof of these dogmas; by and by a colligation of facts in antagonism with them; and eventually a consequent modification. In conformity with this improved hypothesis, we have a better classification of facts; a greater power of arranging and interpreting the new facts now rapidly gathered together; and further resulting corrections of hypothesis. Being, as we are at present, in the midst of this process, it is not possible to give an adequate account of the development of geological science as thus regarded: the earlier stages are alone known to us. Not only, however, is it interesting to observe how the more advanced views now received respecting the Earth's history, have been evolved out of the crude views which preceded them; but we shall find it extremely instructive to observe this. We shall see how greatly the old ideas still sway both the general mind and the minds of geologists themselves. We shall see how the kind of evidence that has in part abolished these old ideas, is still daily accumulating, and threatens to make other like revolutions. In brief, we shall see whereabouts we are in the elaboration of a true theory of the Earth; and, seeing our whereabouts, shall be the better able to judge, among various conflicting opinions, which best conform to the ascertained direction of geological discovery.
It is needless here to enumerate the many speculations which were in earlier ages propounded by acute men—speculations some of which contained portions of truth. Falling in unfit times, these speculations did not germinate; and hence do not concern us. We have nothing to do with ideas, however good, out of which no science grew; but only with those which gave origin to the existing system of Geology. We therefore begin with Werner.
Taking for data the appearances of the Earth's crust in a narrow district of Germany; observing the constant order of superposition of strata, and their respective physical characters; Werner drew the inference that strata of like characters succeeded each other in like order over the entire surface of the Earth. And seeing, from the laminated structure of many formations and the organic remains contained in others, that they were sedimentary; he further inferred that these universal strata had been in succession precipitated from a chaotic menstruum which once covered our planet. Thus, on a very incomplete acquaintance with a thousandth part of the Earth's crust, he based a sweeping generalization applying to the whole of it. This Neptunist hypothesis, mark, borne out though it seemed to be by the most conspicuous surrounding facts, was quite untenable if analyzed. That a universal chaotic menstruum should deposit a series of numerous sharply-defined strata, differing from one another in composition, is incomprehensible. That the strata so deposited should contain the remains of plants and animals, which could not have lived under the supposed conditions, is still more incomprehensible. Physically absurd, however, as was this hypothesis, it recognized, though under a distorted form, one of the great agencies of geological change—the action of water. It served also to express the fact, that the formations of the Earth's crust stand in some kind of order. Further, it did a little towards supplying a nomenclature, without which much progress was impossible. Lastly, it furnished a standard with which successions of strata in various regions could be compared, the differences noted, and the actual sections tabulated. It was the first provisional generalization; and was useful, if not indispensable, as a step to truer ones.
Following this rude conception, which ascribed geological phenomena to one agency, acting during one primeval epoch, there came a greatly-improved conception, which ascribed them to two agencies, acting alternately during successive epochs. Hutton, perceiving that sedimentary deposits were still being formed at the bottom of the sea from the detritus carried down by rivers; perceiving, further, that the strata of which the visible surface chiefly consists, bore marks of having been similarly formed out of pre-existing land; and inferring that these strata could have become land only by upheaval after their deposit; concluded that throughout an indefinite past, there had been periodic convulsions, by which continents were raised, with intervening eras of repose, during which such continents were worn down and transformed into new marine strata, fated to be in their turns elevated above the surface of the ocean. And finding that igneous action, to which sundry earlier geologists had ascribed basaltic rocks, was in countless places a cause of disturbance, he taught that from it resulted these periodic convulsions. In this theory we see:—first, that the previously-recognized agency of water was conceived to act, not as by Werner, after a manner of which we have no experience, but after a manner daily displayed to us; and secondly, that the igneous agency, before considered only as originating special formations, was recognized as a universal agency, but assumed to act in an unproved way. Werner's sole process Hutton developed from the catastrophic and inexplicable into the uniform and explicable; while that antagonistic second process, of which he first adequately estimated the importance, was regarded by him as a catastrophic one, and was not assimilated to known processes—not explained. We have here to note, however, that the facts collected and provisionally arranged in conformity with Werner's theory, served, after a time, to establish Hutton's more rational theory—in so far, at least, as aqueous formations are concerned; while the doctrine of periodic subterranean convulsions, crudely as it was conceived by Hutton, was a temporary generalization needful as a step towards the theory of igneous action.
Since Hutton's time, the development of geological thought has gone still further in the same direction. These early sweeping doctrines have received additional qualifications. It has been discovered that more numerous and more heterogeneous agencies have been at work, than was at first believed. The conception of igneous action has been rationalized, as the conception of aqueous action had previously been. The gratuitous assumption that vast elevations suddenly occurred after long intervals of quiescence, has grown into the consistent theory, that islands and continents are the accumulated results of successive small upheavals, like those experienced in ordinary earthquakes. To speak more specifically, we find, in the first place, that instead of assuming the denudation produced by rain and rivers to be the sole means of wearing down lands and producing their irregularities of surface, geologists now see that denudation is only a part-cause of such irregularities; and further, that the new strata deposited at the bottom of the sea, are not the products of river-sediment solely, but are in part due to the actions of waves and tidal currents on the coasts. In the second place, we find that Hutton's conception of upheaval by subterranean forces, has not only been modified by assimilating these subterranean forces to ordinary earthquake-forces; but modern inquiries have shown that, besides elevations of surface, subsidences are thus produced; that local upheavals, as well as the general upheavals which raise continents, come within the same category; and that all these changes are probably consequent on the progressive collapse of the Earth's crust upon its cooling and contracting nucleus. In the third place, we find that beyond these two great antagonistic agencies, modern Geology recognizes sundry minor ones: those of glaciers and icebergs, those of coral-polypes; those of Protozoa having siliceous or calcareous shells—each of which agencies, insignificant as it seems, is found capable of slowly working terrestrial changes of considerable magnitude. Thus, then, the recent progress of Geology has been a still further departure from primitive conceptions. Instead of one catastrophic cause, once in universal action, as supposed by Werner—instead of one general continuous cause, antagonized at long intervals by a catastrophic cause, as taught by Hutton; we now recognize several causes, all more or less general and continuous. We no longer resort to hypothetical agencies to explain the phenomena displayed by the Earth's crust; but we are day by day more clearly perceiving that these phenomena have arisen from forces like those now at work, which have acted in all varieties of combination, through immeasurable periods of time.
* * * * *
Having thus briefly traced the evolution of geologic science, and noted its present form, let us go on to observe the way in which it is still swayed by the crude hypotheses it set out with; so that even now, doctrines long since abandoned as untenable in theory, continue in practice to mould the ideas of geologists, and to foster sundry beliefs that are logically indefensible. We shall see, both how those simple sweeping conceptions with which the science commenced, are those which every student is apt at first to seize hold of, and how several influences conspire to maintain the twist thus resulting—how the original nomenclature of periods and formations necessarily keeps alive the original implications; and how the need for arranging new data in some order, results in their being thrust into the old classification, unless their incongruity with it is very glaring. A few facts will best prepare the way for criticism.
Up to 1839 it was inferred, from their crystalline character, that the metamorphic rocks of Anglesea were more ancient than any rocks of the adjacent main land; but it has since been shown that they are of the same age with the slates and grits of Carnarvon and Merioneth. Again, slaty cleavage having been first found only in the lowest rocks, was taken as an indication of the highest antiquity: whence resulted serious mistakes; for this mineral characteristic is now known to occur in the Carboniferous system. Once more, certain red conglomerates and grits on the north-west coast of Scotland, long supposed from their lithological aspect to belong to the Old Red Sandstone, are now identified with the Lower Silurians. These are a few instances of the small trust to be placed in mineral qualities, as evidence of the ages or relative positions of strata. From the recently-published third edition of Siluria, may be culled numerous facts of like implication. Sir R. Murchison considers it ascertained, that the siliceous Stiper stones of Shropshire are the equivalents of the Tremadock slates of North Wales. Judged by their fossils, Bala slate and limestone are of the same age as the Caradoc sandstone, lying forty miles off. In Radnorshire, the formation classed as upper Llandovery rock, is described at different spots, as "sandstone or conglomerate," "impure limestone," "hard coarse grits," "siliceous grit"—a considerable variation for so small an area as that of a county. Certain sandy beds on the left bank of the Towy, which Sir R. Murchison had, in his Silurian System, classed as Caradoc sandstone (evidently from their mineral characters), he now finds, from their fossils, belong to the Llandeilo formation. Nevertheless, inferences from mineral characters are still habitually drawn and received. Though Siluria, in common with other geological works, supplies numerous proofs that rocks of the same age are often of widely-different composition a few miles off, while rocks of widely-different ages are often of similar composition; and though Sir R. Murchison shows us, as in the case just cited, that he has himself in past times been misled by trusting to lithological evidence; yet his reasoning all through Siluria, shows that he still thinks it natural to expect formations of the same age to be chemically similar, even in remote regions. For example, in treating of the Silurian rocks of South Scotland, he says:—"When traversing the tract between Dumfries and Moffat, in 1850, it occurred to me, that the dull reddish or purple sandstone and schist to the north of the former town, which so resembled the bottom rocks of Longmynd, Llanberis, and St. David's, would prove to be of the same age;" and further on, he again insists upon the fact that these strata "are absolutely of the same composition as the bottom rocks of the Silurian region." On this unity of mineral character it is, that this Scottish formation is concluded to be contemporaneous with the lowest formations in Wales; for the scanty paleontological evidence suffices for neither proof nor disproof. Now, had there been a continuity of like strata in like order between Wales and Scotland, there might have been little to criticize in this conclusion. But since Sir R. Murchison himself admits, that in Westmoreland and Cumberland, some members of the system "assume a lithological aspect different from what they maintain in the Silurian and Welsh region," there seems no reason to expect mineralogical continuity in Scotland. Obviously, therefore, the assumption that these Scottish formations are of the same age with the Longmynd of Shropshire, implies the latent belief that certain mineral characters indicate certain eras. Far more striking instances, however, of the influence of this latent belief remain to be given. Not in such comparatively near districts as the Scottish lowlands only, does Sir R. Murchison expect a repetition of the Longmynd strata; but in the Rhenish provinces, certain "quartzose flagstones and grits, like those of the Longmynd," are seemingly concluded to be of contemporaneous origin, because of their likeness. "Quartzites in roofing-slates with a greenish tinge that reminded us of the lower slates of Cumberland and Westmoreland," are evidently suspected to be of the same age. In Russia, he remarks that the carboniferous limestones "are overlaid along the western edge of the Ural chain by sandstones and grits, which occupy much the same place in the general series as the millstone grit of England;" and in calling this group, as he does, the "representative of the millstone grit," Sir R. Murchison clearly shows that he thinks likeness of mineral composition some evidence of equivalence in time, even at that great distance. Nay, on the flanks of the Andes and in the United States, such similarities are looked for, and considered as significant of certain ages. Not that Sir R. Murchison contends theoretically for this relation between lithological character and date. For on the page from which we have just quoted (Siluria, p. 387), he says, that "whilst the soft Lower Silurian clays and sands of St. Petersburg have their equivalents in the hard schists and quartz rocks with gold veins in the heart of the Ural mountains, the equally soft red and green Devonian marls of the Valdai Hills are represented on the western flank of that chain by hard, contorted, and fractured limestones." But these, and other such admissions, seem to go for little. While himself asserting that the Potsdam-sandstone of North America, the Lingula-flags of England, and the alum-slates of Scandinavia are of the same period—while fully aware that among the Silurian formations of Wales, there are oolitic strata like those of secondary age; yet his reasoning is more or less coloured by the assumption, that formations of like qualities probably belong to the same era. Is it not manifest, then, that the exploded hypothesis of Werner continues to influence geological speculation?
"But," it will perhaps be said, "though individual strata are not continuous over large areas, yet systems of strata are. Though within a few miles the same bed gradually passes from clay into sand, or thins out and disappears, yet the group of strata to which it belongs does not do so; but maintains in remote regions the same relations to other groups."
This is the generally-current belief. On this assumption the received geological classifications appear to be framed. The Silurian system, the Devonian system, the Carboniferous system, etc., are set down in our books as groups of formations which everywhere succeed each other in a given order; and are severally everywhere of the same age. Though it may not be asserted that these successive systems are universal; yet it seems to be tacitly assumed that they are. In North and South America, in Asia, in Australia, sets of strata are assimilated to one or other of these groups; and their possession of certain mineral characters and a certain order of superposition are among the reasons assigned for so assimilating them. Though, probably, no competent geologist would contend that the European classification of strata is applicable to the globe as a whole; yet most, if not all geologists, write as though it were. Among readers of works on Geology, nine out of ten carry away the impression that the divisions, Primary, Secondary and Tertiary, are of absolute and uniform application; that these great divisions are separable into subdivisions, each of which is definitely distinguishable from the rest, and is everywhere recognizable by its characters as such or such; and that in all parts of the Earth, these minor systems severally began and ended at the same time. When they meet with the term "Carboniferous era," they take for granted that it was an era universally carboniferous—that it was, what Hugh Miller indeed actually describes it, an era when the Earth bore a vegetation far more luxuriant than it has since done; and were they in any of our colonies to meet with a coal-bed, they would conclude that, as a matter of course, it was of the same age as the English coal-beds.
Now this belief that geologic "systems" are universal, is no more tenable than the other. It is just as absurd when considered a priori; and it is equally inconsistent with the facts. Though some series of strata classed together as Oolite, may range over a wider district than any one stratum of the series; yet we have but to ask what were the circumstances under which it was deposited, to see that the Oolitic series, like one of its individual strata, must be of local origin; and that there is not likely to be anywhere else, a series which corresponds, either in its characters or in its commencement and termination. For the formation of such a series implies an area of subsidence, in which its component beds were thrown down. Every area of subsidence is necessarily limited; and to suppose that there exist elsewhere groups of beds completely answering to those known as Oolite, is to suppose that, in contemporaneous areas of subsidence, like processes were going on. There is no reason to suppose this; but good reason to suppose the reverse. That in contemporaneous areas of subsidence throughout the globe, the conditions would cause the formation of Oolite, is an assumption which no modern geologist would openly make. He would say that the equivalent series of beds found elsewhere, would probably be of dissimilar mineral character. Moreover, in these contemporaneous areas of subsidence, the processes going on would not only be different in kind; but in no two cases would they be likely to agree in their commencements and terminations. The probabilities are greatly against separate portions of the Earth's surface beginning to subside at the same time, and ceasing to subside at the same time—a coincidence which alone could produce equivalent groups of strata. Subsidences in different places begin and end with utter irregularity; and hence the groups of strata thrown down in them can but rarely correspond. Measured against each other in time, their limits must disagree. On turning to the evidence, we find that it daily tends more and more to justify these a priori positions. Take, as an example, the Old Red Sandstone system. In the north of England this is represented by a single stratum of conglomerate. In Herefordshire, Worcestershire, and Shropshire, it expands into a series of strata from eight to ten thousand feet thick, made up of conglomerates, red, green, and white sandstones, red, green, and spotted marls, and concretionary limestones. To the south-west, as between Caermarthen and Pembroke, these Old Red Sandstone strata exhibit considerable lithological changes; on the other side of the Bristol Channel, they display further changes in mineral characters; while in South Devon and Cornwall, the equivalent strata, consisting chiefly of slates, schists, and limestones, are so wholly different, that they were for a long time classed as Silurian. When we thus see that in certain directions the whole group of deposits thins out, and that its mineral characters change within moderate distances; does it not become clear that the whole group of deposits was a local one? And when we find, in other regions, formations analogous to these Old Red Sandstone or Devonian formations, is it certain—is it even probable—that they severally began and ended at the same time with them? Should it not require overwhelming evidence to make us believe as much?
Yet so strongly is geological speculation swayed by the tendency to regard the phenomena as general instead of local, that even those most on their guard against it seem unable to escape its influence. At page 158 of his Principles of Geology, Sir Charles Lyell says:—
"A group of red marl and red sandstone, containing salt and gypsum, being interposed in England between the Lias and the Coal, all other red marls and sandstones, associated some of them with salt, and others with gypsum, and occurring not only in different parts of Europe, but in North America, Peru, India, the salt deserts of Asia, those of Africa—in a word, in every quarter of the globe, were referred to one and the same period.... It was in vain to urge as an objection the improbability of the hypothesis which implies that all the moving waters on the globe were once simultaneously charged with sediment of a red colour. But the rashness of pretending to identify, in age, all the red sandstones and marls in question, has at length been sufficiently exposed, by the discovery that, even in Europe, they belong decidedly to many different epochs."
Nevertheless, while in this and many kindred passages Sir C. Lyell protests against the bias here illustrated, he seems himself not completely free from it. Though he utterly rejects the old hypothesis that all over the Earth the same continuous strata lie one upon another in regular order, like the coats of an onion, he still writes as though geologic "systems" do thus succeed each other. A reader of his Manual would certainly suppose him to believe, that the Primary epoch ended, and the secondary epoch began, all over the world at the same time—that these terms really correspond to distinct universal eras. When he assumes, as he does, that the division between Cambrian and Lower Silurian in America, answers chronologically to the division between Cambrian and Lower Silurian in Wales—when he takes for granted that the partings of Lower from Middle Silurian, and of Middle Silurian from Upper, in the one region, are of the same dates as the like partings in the other region; does it not seem that he believes geologic "systems" to be universal, in the sense that their separations were in all places contemporaneous? Though he would, doubtless, disown this as an article of faith, is not his thinking unconsciously influenced by it? Must we not say that, though the onion-coat hypothesis is dead, its spirit is traceable, under a transcendental form, even in the conclusions of its antagonists?
* * * * *
Let us now consider another leading geological doctrine,—the doctrine that strata of the same age contain like fossils; and that, therefore, the age and relative position of any stratum may be known by its fossils. While the theory that strata of like mineral characters were everywhere deposited simultaneously, has been ostensibly abandoned, there has been accepted the theory that in each geologic epoch similar plants and animals existed everywhere; and that, therefore, the epoch to which any formation belongs may be known by the organic remains contained in the formation. Though, perhaps, no leading geologist would openly commit himself to an unqualified assertion of this theory, yet it is tacitly assumed in current geological reasoning.
This theory, however, is scarcely more tenable than the other. It cannot be concluded with any certainty, that formations in which similar organic remains are found, were of contemporaneous origin; nor can it be safely concluded that strata containing different organic remains are of different ages. To most readers these will be startling propositions; but they are fully admitted by the highest authorities. Sir Charles Lyell confesses that the test of organic remains must be used "under very much the same restrictions as the test of mineral composition." Sir Henry de la Beche, who variously illustrates this truth, remarks on the great incongruity there must be between the fossils of our carboniferous rocks and those of the marine strata deposited at the same period. But though, in the abstract, the danger of basing positive conclusions on evidence derived from fossils, is recognized; yet, in the concrete, this danger is generally disregarded. The established convictions respecting the ages of strata, have been formed in spite of it; and by some geologists it seems altogether ignored. Throughout his Siluria, Sir R. Murchison habitually assumes that the same, or kindred, species, lived in all parts of the Earth at the same time. In Russia, in Bohemia, in the United States, in South America, strata are classed as belonging to this or that part of the Silurian system, because of the similar fossils contained in them—are concluded to be everywhere contemporaneous if they enclose a proportion of identical or allied forms. In Russia the relative position of a stratum is inferred from the fact that, along with some Wenlock forms, it yields the Pentamerus oblongus. Certain crustaceans called Eurypteri, being characteristic of the Upper Ludlow rock, it is remarked that "large Eurypteri occur in a so-called black grey-wacke slate in Westmoreland, in Oneida County, New York, which will probably be found to be on the parallel of the Upper Ludlow rock:" in which word "probably," we see both how dominant is this belief of universal distribution of similar creatures at the same period, and how apt this belief is to make its own proof, by raising the expectation that the ages are identical when the forms are alike. Besides thus interpreting the formations of Russia, England, and America, Sir R. Murchison thus interprets those of the antipodes. Fossils from Victoria Colony, he agrees with the Government-surveyor in classing as of Lower Silurian or Llandovery age: that is, he takes for granted that when certain crustaceans and mollusks were living in Wales, certain similar crustaceans and mollusks were living in Australia. Yet the improbability of this assumption may be readily shown from Sir R. Murchison's own facts. If, as he points out, the fossil crustaceans of the uppermost Silurian rocks in Lanarkshire are, "with one doubtful exception," all "distinct from any of the forms known on the same horizon in England;" how can it be fairly presumed that the forms existing on the other side of the Earth during the Silurian period, were nearly allied to those existing here? Not only, indeed, do Sir R. Murchison's conclusions tacitly assume this doctrine of universal distribution, but he distinctly enunciates it. "The mere presence of a graptolite," he says, "will at once decide that the enclosing rock is Silurian;" and he says this, notwithstanding repeated warnings against such generalizations. During the progress of Geology, it has over and over again happened that a particular fossil, long considered characteristic of a particular formation, has been afterwards discovered in other formations. Until some twelve years ago, Goniatites had not been found lower than the Devonian rocks; but now, in Bohemia, they have been found in rocks classed as Silurian. Quite recently, the Orthoceras, previously supposed to be a type exclusively palaeozoic, has been detected along with mesozoic Ammonites and Belemnites. Yet hosts of such experiences fail to extinguish the assumption, that the age of a stratum may be determined by the occurrence in it of a single fossil form. Nay, this assumption survives evidence of even a still more destructive kind. Referring to the Silurian system in Western Ireland, Sir R. Murchison says, "in the beds near Maam, Professor Nicol and myself collected remains, some of which would be considered Lower, and others Upper, Silurian;" and he then names sundry fossils which, in England, belong to the summit of the Ludlow rocks, or highest Silurian strata; "some, which elsewhere are known only in rocks of Llandovery age"—that is, of middle Silurian age; and some, only before known in Lower Silurian strata, not far above the most ancient fossiliferous beds. Now what do these facts prove? Clearly, they prove that species which in Wales are separated by strata more than twenty thousand feet deep, and therefore seem to belong to periods far more remote from each other, were really co-existent. They prove that the mollusks and crinoids held to be characteristic of early Silurian strata, and supposed to have become extinct long before the mollusks and crinoids of the later Silurian strata came into existence, were really flourishing at the same time with these last; and that these last possibly date back to as early a period as the first. They prove that not only the mineral characters of sedimentary formations, but also the collections of organic forms they contain, depend, to a great extent, on local circumstances. They prove that the fossils met with in any series of strata, cannot be taken as representing anything like the whole Flora and Fauna of the period they belong to. In brief, they throw great doubt upon numerous geological generalizations.
Notwithstanding facts like these, and notwithstanding his avowed opinion that the test of organic remains must be used "under very much the same restrictions as the test of mineral composition," Sir Charles Lyell, too, considers sundry positive conclusions to be justified by this test: even where the community of fossils is slight and the distance great. Having decided that in various places in Europe, middle Eocene strata are distinguished by Nummulites; he infers, without any other assigned evidence, that wherever Nummulites are found—in Morocco, Algeria, Egypt, in Persia, Scinde, Cutch, Eastern Bengal, and the frontiers of China—the containing formation is Middle Eocene. And from this inference he draws the following important corollary:—
"When we have once arrived at the conviction that the nummulitic formation occupies a middle place in the Eocene series, we are struck with the comparatively modern date to which some of the greatest revolutions in the physical geography of Europe, Asia, and northern Africa must be referred. All the mountain chains, such as the Alps, Pyrenees, Carpathians, and Himalayas, into the composition of whose central and loftiest parts the nummulitic strata enter bodily, could have had no existence till after the Middle Eocene period."—Manual, p. 232.
A still more marked case follows on the next page. Because a certain bed at Claiborne in Alabama, which contains "four hundred species of marine shells," includes among them the Cardita planicosta, "and some others identical with European species, or very nearly allied to them," Sir C. Lyell says it is "highly probable the Claiborne beds agree in age with the central or Bracklesham group of England." When we find contemporaneity alleged on the strength of a community no greater than that which sometimes exists between strata of widely-different ages in the same country, it seems as though the above-quoted caution had been forgotten. It appears to be assumed for the occasion, that species which had a wide range in space had a narrow range in time; which is the reverse of the fact. The tendency to systematize overrides the evidence, and thrusts Nature into a formula too rigid to fit her endless variety.
"But," it may be urged, "surely, when in different places the order of superposition, the mineral characters, and the fossils, agree, it may safely be concluded that the formations thus corresponding date back to the same time. If, for example, the United States display a succession of Silurian, Devonian, and Carboniferous systems, lithologically similar to those known here by those names, and characterized by like fossils, it is a fair inference that these groups of strata were severally being deposited in America while their equivalents were being deposited here."
On this position, which seems a strong one, we have, in the first place, to remark, that the evidence of correspondence is always more or less suspicious. We have already adverted to the several "idols"—if we may use Bacon's metaphor—to which geologists unconsciously sacrifice, when interpreting the structures of unexplored regions. Carrying with them the classification of strata existing in Europe, and assuming that groups of strata in other parts of the world must answer to some of the groups of strata known here, they are necessarily prone to assert parallelism on insufficient evidence. They scarcely entertain the previous question, whether the formations they are examining have or have not any European equivalents; but the question is—with which of the European series shall they be classed?—with which do they most agree?—from which do they differ least? And this being the mode of inquiry, there is apt to result great laxity of interpretation. How lax the interpretation really is, may be readily shown. When strata are discontinuous, as between Europe and America, no evidence can be derived from the order of superposition, apart from mineral characters and organic remains; for, unless strata can be continuously traced, mineral characters and organic remains afford the only means of classing them as such or such. As to the test of mineral characters, we have seen that it is almost worthless; and no modern geologist would dare to say it should be relied on. If the Old Red Sandstone series in mid-England, differs wholly in lithological aspect from the equivalent series in South Devon, it is clear that similarities of texture and composition cannot justify us in classing a system of strata in another quarter of the globe with some European system. The test of fossils is the only one that remains; and with how little strictness this test is applied, one case will show. Of forty-six species of British Devonian corals, only six occur in America; and this, notwithstanding the wide range which the Anthozoa are known to have. Similarly of the Mollusca and Crinoidea, it appears that, while there are sundry genera found in America which are found here, there are scarcely any of the same species. And Sir Charles Lyell admits that "the difficulty of deciding on the exact parallelism of the New York subdivisions, as above enumerated, with the members of the European Devonian, is very great, so few are the species in common." Yet it is on the strength of community of fossils, that the whole Devonian series of the United States is assumed to be contemporaneous with the whole Devonian series of England. And it is partly on the ground that the Devonian of the United States corresponds in time with our own Devonian, that Sir Charles Lyell concludes the superjacent coal-measures of the two countries to be of the same age. Is it not, then, as we said, that the evidence in these cases is very suspicious? Should it be replied, as it may fairly be, that this correspondence from which the synchronism of distant formations is inferred, is not a correspondence between particular species or particular genera, but between the general characters of the contained assemblages of fossils—between the facies of the two Faunas; the rejoinder is, that though such correspondence is a stronger evidence of synchronism it is still an insufficient one. To infer synchronism from such correspondence, involves the postulate that throughout each geologic era there has habitually existed a recognizable similarity between the groups of organic forms inhabiting all the different parts of the Earth; and that the causes which have in one part of the Earth changed the organic forms into those which characterize the next era, have simultaneously acted in all other parts of the Earth, in such ways as to produce parallel changes of their organic forms. Now this is not only a large assumption to make; but it is an assumption contrary to probability. The probability is, that the causes which have changed Faunas have been local rather than universal; that hence while the Faunas of some regions have been rapidly changing, those of others have been almost quiescent; and that when those of others have been changed, it has been, not in such ways as to maintain parallelism, but in such ways as to produce divergence.
Even supposing, however, that districts some hundreds of miles apart, furnished groups of strata which completely agreed in their order of superposition, their mineral characters, and their fossils, we should still have inadequate proof of contemporaneity. For there are conditions, very likely to occur, under which such groups might differ widely in age. If there be a continent of which the strata crop out on the surface obliquely to the line of coast—running, say, west-north-west, while the coast runs east and west—it is clear that each group of strata will crop out on the beach at a particular part of the coast; that further west the next group of strata will crop out on the beach; and so continuously. As the localization of marine plants and animals, is in a considerable degree determined by the natures of the rocks and their detritus, it follows that each part of this coast will have its more or less distinct Flora and Fauna. What now must result from the action of the waves in the course of a geologic epoch? As the sea makes slow inroads on the land, the place at which each group of strata crops out on the beach will gradually move towards the west: its distinctive fish, mollusks, crustaceans, and sea-weeds, migrating with it. Further, the detritus of each of these groups of strata will, as the point of outcrop moves westwards, be deposited over the detritus of the group in advance of it. And the consequence of these actions, carried on for one of those enormous periods which a geologic change takes, will be that, corresponding to each eastern stratum, there will arise a stratum far to the west, which, though occupying the same position relatively to other beds, formed of like materials, and containing like fossils, will yet be perhaps a million years later in date.
* * * * *
But the illegitimacy, or at any rate the great doubtfulness, of many current geological inferences, is best seen when we contemplate terrestrial changes now going on; and ask how far such inferences are countenanced by them. If we carry out rigorously the modern method of interpreting geological phenomena, which Sir Charles Lyell has done so much to establish—that of referring them to causes like those at present in action—we cannot fail to see how improbable are sundry of the received conclusions.
Along each shore which is being worn away by the waves, there are being formed mud, sand, and pebbles. This detritus has, in each locality, a more or less special character; determined by the nature of the strata destroyed. In the English Channel it is not the same as in the Irish Channel; on the east coast of Ireland it is not the same as on the west coast; and so throughout. At the mouth of each great river, there is being deposited sediment differing more or less from that deposited at the mouths of other rivers in colour and quality; forming strata which are here red, there yellow, and elsewhere brown, grey, or dirty white. Besides which various formations, going on in deltas and along shores, there are some much wider, and still more strongly contrasted, formations. At the bottom of the AEgean Sea, there is accumulating a bed of Pteropod shells, which will eventually, no doubt, become a calcareous rock. For some hundreds of thousands of square miles, the ocean-bed between Great Britain and North America, is being covered with a stratum of chalk; and over large areas in the Pacific, there are going on deposits of coralline limestone. Thus, there are at this moment being produced in different places multitudinous strata differing from one another in lithological characters. Name at random any part of the sea-bottom, and ask whether the deposit there taking place is like the deposit taking place at some distant part of the sea-bottom, and the almost-certainly correct answer will be—No. The chances are not in favour of similarity, but against it—many to one against it.
In the order of superposition of strata there is being established a like variety. Each region of the Earth's surface has its special history of elevations, subsidences, periods of rest: and this history in no case fits chronologically with the history of any other portion. River deltas are now being thrown down on formations of different ages: some very ancient, some quite modern. While here there has been deposited a series of beds many hundreds of feet thick, there has elsewhere been deposited but a single bed of fine mud. While one region of the Earth's crust, continuing for a vast epoch above the surface of the ocean, bears record of no changes save those resulting from denudation; another region of the Earth's crust gives proof of sundry changes of level, with their several resulting masses of stratified detritus. If anything is to be judged from current processes, we must infer, not only that everywhere the succession of sedimentary formations differs more or less from the succession elsewhere; but also that in each place, there exist groups of strata to which many other places have no equivalents.
With respect to the organic bodies imbedded in formations now in progress, a like truth is equally manifest, if not more manifest. Even along the same coast, within moderate distances, the forms of life differ very considerably; and they differ much more on coasts that are remote from one another. Again, dissimilar creatures which are living together near the same shore, do not leave their remains in the same beds of sediment. For instance, at the bottom of the Adriatic, where the prevailing currents cause the deposits to be here of mud, and there of calcareous matter, it is proved that different species of co-existing shells are being buried in these respective formations. On our own coasts, the marine remains found a few miles from shore, in banks where fish congregate, are different from those found close to the shore, where littoral species flourish. A large proportion of aquatic creatures have structures which do not admit of fossilization; while of the rest, the great majority are destroyed, when dead, by various kinds of scavengers. So that no one deposit near our shores can contain anything like a true representation of the Fauna of the surrounding sea; much less of the co-existing Faunas of other seas in the same latitude; and still less of the Faunas of seas in distant latitudes. Were it not that the assertion seems needful, it would be almost absurd to say, that the organic remains now being buried in the Dogger Bank, can tell us next to nothing about the fish, crustaceans, mollusks, and corals, which are being buried in the Bay of Bengal. Still stronger is the argument in the case of terrestrial life. With more numerous and greater contrasts between the types inhabiting one continent and those inhabiting another, there is a far more imperfect registry of them. Schouw marks out on the Earth more than twenty botanical regions, occupied by groups of forms so distinct, that, if fossilized, geologists would scarcely be disposed to refer them all to the same period. Of Faunas, the Arctic differs from the Temperate; the Temperate from the Tropical; and the South Temperate from the North Temperate. Nay, in the South Temperate Zone itself, the two regions of South Africa and South America are unlike in their mammals, birds, reptiles, fishes, mollusks, insects. The shells and bones now lying at the bottoms of lakes and estuaries in these several regions, have certainly not that similarity which is usually looked for in those of contemporaneous strata; and the recent forms exhumed in any one of these regions would very untruly represent the present Flora and Fauna of the Earth. In conformity with the current style of geological reasoning, an exhaustive examination of deposits in the Arctic circle, might be held to prove that though at this period there were sundry mammals existing, there were no reptiles; while the absence of mammals in the deposits of the Galapagos Archipelago, where there are plenty of reptiles, might be held to prove the reverse. And at the same time, from the formations extending for two thousand miles along the great barrier-reef of Australia—formations in which are imbedded nothing but corals, echinoderms, mollusks, crustaceans, and fish, along with an occasional turtle, or bird, or cetacean—it might be inferred that there lived in our epoch neither terrestrial reptiles, nor terrestrial mammals. The mention of Australia, indeed, suggests an illustration which, even alone, would amply prove our case. The Fauna of this region differs widely from any that is found elsewhere. On land, all the indigenous mammals, except bats, belong to the lowest, or implacental division; and the insects are singularly different from those found elsewhere. The surrounding seas contain numerous forms which are more or less strange; and among the fish there exists a species of shark, which is the only living representative of a genus that flourished in early geologic epochs. If, now, the modern fossiliferous deposits of Australia were to be examined by one ignorant of the existing Australian Fauna; and if he were to reason in the usual manner; he would be very unlikely to class these deposits with those of the present time. How, then, can we place confidence in the tacit assumption that certain formations in remote parts of the Earth are referable to the same period, because the organic remains contained in them display a certain community of character? or that certain others are referable to different periods, because the facies of their Faunas are different?
"But," it will be replied, "in past eras the same, or similar, organic forms were more widely distributed than now." It may be so; but the evidence adduced by no means proves it. The argument by which this conclusion is reached, runs a risk of being quoted as an example of reasoning in a circle. As already pointed out, between formations in remote regions the accepted test of equivalence is community of fossils. If, then, the contemporaneity of remote formations is concluded from the likeness of their fossils; how can it be said that similar plants and animals were once more widely distributed, because they are found in contemporaneous strata in remote regions? Is not the fallacy manifest? Even supposing there were no such fatal objection as this, the evidence commonly assigned would still be insufficient. For we must bear in mind that the community of organic remains usually thought sufficient proof of correspondence in time, is a very imperfect community. When the compared sedimentary beds are far apart, it is scarcely expected that there will be many species common to the two: it is enough if there be discovered a considerable number of common genera. Now had it been proved that throughout geologic time, each genus lived but for a short period—a period measured by a single group of strata—something might be inferred. But what if we learn that many of the same genera continued to exist throughout enormous epochs, measured by several vast systems of strata? "Among molluscs, the genera Avicula, Modiola, Terebratula, Lingula, and Orbicula, are found from the Silurian rocks upwards to the present day." If, then, between the lowest fossiliferous formations and the most recent, there exists this degree of community; must we not infer that there will probably often exist a great degree of community between strata that are far from contemporaneous?
Thus the reasoning from which it is concluded that similar organic forms were once more widely spread than now, is doubly fallacious; and, consequently, the classifications of foreign strata based on the conclusion are untrustworthy. Judging from the present distribution of life, we cannot expect to find similar remains in geographically remote strata of the same age; and where, between the fossils of geographically remote strata, we do find much similarity, it is probably due rather to likeness of conditions than to contemporaneity. If from causes and effects such as we now witness, we reason back to the causes and effects of past epochs, we discover inadequate warrant for sundry of the received doctrines. Seeing, as we do, that in large areas of the Pacific this is a period characterized by abundance of corals; that in the North Atlantic it is a period in which a great chalk-deposit is being formed; and that in the valley of the Mississippi it is a period of new coal-basins—seeing also, as we do, that in one extensive continent this is peculiarly an era of implacental mammals, and that in another extensive continent it is peculiarly an era of placental mammals; we have good reason to hesitate before accepting these sweeping generalizations which are based on a cursory examination of strata occupying but a tenth part of the Earth's surface.
* * * * *
At the outset, this article was to have been a review of the works of Hugh Miller; but it has grown into something much more general. Nevertheless, the remaining two doctrines which we propose to criticize, may conveniently be treated in connexion with his name, as that of one who fully committed himself to them. And first, a few words respecting his position.
That he was a man whose life was one of meritorious achievement, every one knows. That he was a diligent and successful working geologist, scarcely needs saying. That with indomitable perseverance he struggled up from obscurity to a place in the world of literature and science, shows him to have been highly endowed in character and intelligence. And that he had a remarkable power of presenting his facts and arguments in an attractive form, a glance at any of his books will quickly prove. By all means, let us respect him as a man of activity and sagacity, joined with a large amount of poetry. But while saying this we must add, that his reputation stands by no means so high in the scientific world as in the world at large. Partly from the fact that our Scotch neighbours are in the habit of blowing the trumpet rather loudly before their notabilities—partly because the charming style in which his books are written has gained him a large circle of readers—partly, perhaps, through a praiseworthy sympathy with him as a self-made man; Hugh Miller has met with an amount of applause which, little as we wish to diminish it, must not be allowed to blind the public to his defects as a man of science. The truth is, he was so far committed to a foregone conclusion, that he could not become a philosophical geologist. He might be aptly described as a theologian studying geology. The dominant idea with which he wrote, may be seen in the titles of two of his books—Footprints of the Creator,—The Testimony of the Rocks. Regarding geological facts as evidence for or against certain religious conclusions, it was scarcely possible for him to deal with geological facts impartially. His ruling aim was to disprove the Development Hypothesis, the assumed implications of which were repugnant to him; and in proportion to the strength of his feeling, was the one-sidedness of his reasoning. He admitted that "God might as certainly have originated the species by a law of development, as he maintains it by a law of development;—the existence of a First Great Cause is as perfectly compatible with the one scheme as with the other." Nevertheless, he considered the hypothesis at variance with Christianity; and therefore combated with it. He apparently overlooked the fact, that the doctrines of geology in general, as held by himself, had been rejected by many on similar grounds; and that he had himself been repeatedly attacked for his anti-Christian teachings. He seems not to have perceived that, just as his antagonists were wrong in condemning as irreligious, theories which he saw were not irreligious; so might he be wrong in condemning, on like grounds, the Theory of Evolution. In brief, he fell short of that highest faith which knows that all truths must harmonize; and which is, therefore, content trustfully to follow the evidence whithersoever it leads.
Of course it is impossible to criticize his works without entering on this great question to which he chiefly devoted himself. The two remaining doctrines to be here discussed, bear directly on this question; and, as above said, we propose to treat them in connexion with Hugh Miller's name, because, throughout his reasonings, he assumes their truth. Let it not be supposed, however, that we shall aim to prove what he has aimed to disprove. While we purpose showing that his geological arguments against the Development Hypothesis are based on invalid assumptions; we do not purpose showing that the geological arguments urged in support of it are based on valid assumptions. We hope to make it apparent that the geological evidence at present obtained, is insufficient for either side; further, that there seems little probability that sufficient evidence will ever be obtained; and that if the question is eventually decided, it must be decided on other than geological grounds.
* * * * *
The first of the current doctrines to which we have just referred, is, that there occur in the serial records of former life on our planet, two great blanks; whence it is inferred that, on at least two occasions, the previously existing inhabitants of the Earth were almost wholly destroyed, and a different class of inhabitants created. Comparing the general life on the Earth to a thread, Hugh Miller says:—
"It is continuous from the present time up to the commencement of the Tertiary period; and then so abrupt a break occurs, that, with the exception of the microscopic diatomaceae, to which I last evening referred, and of one shell and one coral, not a single species crossed the gap. On its farther or remoter side, however, where the Secondary division closes, the intermingling of species again begins, and runs on till the commencement of this great Secondary division; and then, just where the Palaeozoic division closes, we find another abrupt break, crossed, if crossed at all,—for there still exists some doubt on the subject,—by but two species of plant."
These breaks are supposed to imply actual new creations on the surface of our planet—supposed not by Hugh Miller only, but by the majority of geologists. And the terms Palaeozoic, Mesozoic, and Cainozoic, are used to indicate these three successive systems of life. It is true that some accept this belief with caution; knowing how geologic research has been all along tending to fill up what were once thought wide gaps. Sir Charles Lyell points out that "the hiatus which exists in Great Britain between the fossils of the Lias and those of the Magnesian Limestone, is supplied in Germany by the rich fauna and flora of the Muschelkalk, Keuper, and Bunter Sandstein, which we know to be of a date precisely intermediate." Again he remarks that "until lately the fossils of the coal-measures were separated from those of the antecedent Silurian group by a very abrupt and decided line of demarcation; but recent discoveries have brought to light in Devonshire, Belgium, the Eifel, and Westphalia, the remains of a fauna of an intervening period." And once more, he says, "we have also in like manner had some success of late years in diminishing the hiatus which still separates the Cretaceous and Eocene periods in Europe." To which let us add that, since Hugh Miller penned the passage above quoted, the second of the great gaps he refers to has been very considerably narrowed by the discovery of strata containing Palaeozoic genera and Mesozoic genera intermingled. Nevertheless, the occurrence of two great revolutions in the Earth's Flora and Fauna appears still to be held by many; and geologic nomenclature habitually assumes it.
Before seeking a solution of the problem thus raised, let us glance at the several minor causes which produce breaks in the geological succession of organic forms; taking first, the more general ones which modify climate, and, therefore, the distribution of life. Among these may be noted one which has not, we believe, been named by writers on the subject. We mean that resulting from a certain slow astronomic rhythm, by which the northern and southern hemispheres are alternately subject to greater extremes of temperature. In consequence of the slight ellipticity of its orbit, the Earth's distance from the sun varies to the extent of some 3,000,000 of miles. At present, the aphelion occurs at the time of our northern summer; and the perihelion during the summer of the southern hemisphere. In consequence, however, of that slow movement of the Earth's axis which produces the precession of the equinoxes, this state of things will in time be reversed: the Earth will be nearest to the sun during the summer of the northern hemisphere, and furthest from it during the southern summer or northern winter. The period required to complete the slow movement producing these changes, is nearly 26,000 years; and were there no modifying process, the two hemispheres would alternately experience this coincidence of summer with relative nearness to the sun, during a period of 13,000 years. But there is also a still slower change in the direction of the axis major of the Earth's orbit; from which it results that the alternation we have described is completed in about 21,000 years. That is to say, if at a given time the Earth is nearest to the sun at our mid-summer, and furthest from the sun at our mid-winter; then, in 10,500 years afterwards, it will be furthest from the sun at our mid-summer, and nearest at our mid-winter. Now the difference between the distances from the sun at the two extremes of this alternation, amounts to one-thirtieth; and hence, the difference between the quantities of heat received from the sun on a summer's day under these opposite conditions amounts to one-fifteenth. Estimating this, not with reference to the zero of our thermometers, but with reference to the temperature of the celestial spaces, Sir John Herschel calculates "23 deg. Fahrenheit, as the least variation of temperature under such circumstances which can reasonably be attributed to the actual variation of the sun's distance." Thus, then, each hemisphere has at a certain epoch, a short summer of extreme heat, followed by a long and very cold winter. Through the slow change in the direction of the Earth's axis, these extremes are gradually mitigated. And at the end of 10,500 years, there is reached the opposite state—a long and moderate summer, with a short and mild winter. At present, in consequence of the predominance of sea in the southern hemisphere, the extremes to which its astronomical conditions subject it, are much ameliorated; while the great proportion of land in the northern hemisphere, tends to exaggerate such contrast as now exists in it between winter and summer: whence it results that the climates of the two hemispheres are not widely unlike. But 10,000 years hence, the northern hemisphere will undergo annual variations of temperature far more marked than now.
In the last edition of his Outlines of Astronomy, Sir John Herschel recognizes this as an element in geological processes; regarding it as possibly a part-cause of those climatic changes indicated by the records of the Earth's past. That it has had much to do with those larger changes of climate of which we have evidence, seems unlikely, since there is reason to think that these have been far slower and more lasting; but that it must have entailed a rhythmical exaggeration and mitigation of the climates otherwise produced, seems beyond question. And it seems also beyond question that there must have been a consequent rhythmical change in the distribution of organisms—a rhythmical change to which we here wish to draw attention, as one cause of minor breaks in the succession of fossil remains. Each species of plant and animal has certain limits of heat and cold within which only it can exist; and these limits in a great degree determine its geographical position. It will not spread north of a certain latitude, because it cannot bear a more northern winter, nor south of a certain latitude, because the summer heat is too great; or else it is indirectly restrained from spreading further by the effect of temperature on the humidity of the air, or on the distribution of the organisms it lives upon. But now, what will result from a slow alteration of climate, produced as above described? Supposing the period we set out from is that in which the contrast of seasons is least marked, it is manifest that during the progress towards the period of most violent contrast, each species of plant and animal will gradually change its limits of distribution—will be driven back, here by the winter's increasing cold, and there by the summer's increasing heat—will retire into those localities that are still fit for it. Thus during 10,000 years, each species will ebb away from certain regions it was inhabiting; and during the succeeding 10,000 years will flow back into those regions. From the strata there forming, its remains will disappear; they will be absent from some of the superposed strata; and will be found in strata higher up. But in what shapes will they re-appear? Exposed during the 21,000 years of their slow recession and their slow return, to changing conditions of life, they are likely to have undergone modifications; and will probably re-appear with slight differences of constitution and perhaps of form—will be new varieties or perhaps new sub-species.
To this cause of minor breaks in the succession of organic forms—a cause on which we have dwelt because it has not been taken into account—we must add sundry others. Besides these periodically-recurring changes of climate, there are the irregular ones produced by redistributions of land and sea; and these, sometimes less, sometimes greater, in degree, than the rhythmical changes, must, like them, cause in each region emigrations and immigrations of species; and consequent breaks, small or large as the case may be, in the paleontological series. Other and more special geological changes must produce other and more local blanks in the succession. By some inland elevation the natural drainage of a continent is modified; and instead of the sediment previously brought down to the sea by it, a great river brings down sediment unfavourable to various plants and animals living in its delta: whereupon these disappear from the locality, perhaps to re-appear in a changed form after a long epoch. Upheavals or subsidences of shores or sea-bottoms, involving deviations of marine currents, remove the habitats of many species to which such currents are salutary or injurious; and further, this redistribution of currents alters the places of sedimentary deposits, and thus stops the burying of organic remains in some localities, while commencing it in others. Had we space, many more such causes of blanks in our paleontological records might be added. But it is needless here to enumerate them. They are admirably explained and illustrated in Sir Charles Lyell's Principles of Geology.
Now, if these minor changes of the Earth's surface produce minor breaks in the series of fossilized remains; must not great changes produce great breaks? If a local upheaval or subsidence causes throughout its small area the absence of some links in the chain of fossil forms; does it not follow that an upheaval or subsidence extending over a large part of the Earth's surface, must cause the absence of a great number of such links throughout a very wide area?
When during a long epoch a continent, slowly sinking, gives place to a far-spreading ocean some miles in depth, at the bottom of which no deposits from rivers or abraded shores can be thrown down; and when, after some enormous period, this ocean-bottom is gradually elevated and becomes the site for new strata; it is clear that the fossils contained in these new strata are likely to have but little in common with the fossils of the strata below them. Take, in illustration, the case of the North Atlantic. We have already named the fact that between this country and the United States, the ocean-bottom is being covered with a deposit of chalk—a deposit which has been forming, probably, ever since there occurred that great depression of the Earth's crust from which the Atlantic resulted in remote geologic times. This chalk consists of the minute shells of Foraminifera, sprinkled with remains of small Entomostraca, and probably a few Pteropod-shells; though the sounding lines have not yet brought up any of these last. Thus, in so far as all high forms of life are concerned, this new chalk-formation must be a blank. At rare intervals, perhaps, a polar bear, drifted on an iceberg, may have its bones scattered over the bed; or a dead, decaying whale may similarly leave traces. But such remains must be so rare, that this new chalk-formation, if accessible, might be examined for a century before any of them were disclosed. If now, some millions of years hence, the Atlantic-bed should be raised, and estuary deposits or shore deposits laid upon it, these would contain remains of a Flora and a Fauna so distinct from everything below them, as to appear like a new creation.
Thus, along with continuity of life on the Earth's surface, there not only may be, but there must be, great gaps in the series of fossils; and hence these gaps are no evidence against the doctrine of Evolution.
* * * * *
One other current assumption remains to be criticized; and it is the one on which, more than on any other, depends the view taken respecting the question of development.
From the beginning of the controversy, the arguments for and against have turned upon the evidence of progression in organic forms, found in the ascending series of our sedimentary formations. On the one hand, those who contend that higher organisms have been evolved out of lower, joined with those who contend that successively higher organisms have been created at successively later periods, appeal for proof to the facts of Paleontology; which, they say, countenance their views. On the other hand, the Uniformitarians, who not only reject the hypothesis of development, but deny that the modern forms of life are higher than the ancient ones, reply that the paleontological evidence is at present very incomplete; that though we have not yet found remains of highly-organized creatures in strata of the greatest antiquity, we must not assume that no such creatures existed when those strata were deposited; and that, probably, search will eventually disclose them.
It must be admitted that thus far, the evidence has gone in favour of the latter party. Geological discovery has year after year shown the small value of negative facts. The conviction that there are no traces of higher organisms in earlier strata, has resulted not from the absence of such traces, but from incomplete examination. At p. 460 of his Manual of Elementary Geology, Sir Charles Lyell gives a list in illustration of this. It appears that in 1709, fishes were not known lower than the Permian system. In 1793 they were found in the subjacent Carboniferous system; in 1828 in the Devonian; in 1840 in the Upper Silurian. Of reptiles, we read that in 1710 the lowest known were in the Permian; in 1844 they were detected in the Carboniferous; and in 1852 in the Upper Devonian. While of the Mammalia the list shows that in 1798 none had been discovered below the Middle Eocene: but that in 1818 they were discovered in the Lower Oolite; and in 1847 in the Upper Trias.
The fact is, however, that both parties set out with an inadmissible postulate. Of the Uniformitarians, not only such writers as Hugh Miller, but also such as Sir Charles Lyell,[27] reason as though we had found the earliest, or something like the earliest, strata. Their antagonists, whether defenders of the Development Hypothesis or simply Progressionists, almost uniformly do the like. Sir R. Murchison, who is a Progressionist, calls the lowest fossiliferous strata, "Protozoic." Prof. Ansted uses the same term. Whether avowedly or not, all the disputants stand on this assumption as their common ground.
Yet is this assumption indefensible, as some who make it very well know. Facts may be cited against it which show that it is a more than questionable one—that it is a highly improbable one; while the evidence assigned in its favour will not bear criticism.
Because in Bohemia, Great Britain, and portions of North America, the lowest unmetamorphosed strata yet discovered, contain but slight traces of life, Sir R. Murchison conceives that they were formed while yet few, if any, plants or animals had been created; and, therefore, classes them as "Azoic." His own pages, however, show the illegitimacy of the conclusion that there existed at that period no considerable amount of life. Such traces of life as have been found in the Longmynd rocks, for many years considered unfossiliferous, have been found in some of the lowest beds; and the twenty thousand feet of superposed beds, still yield no organic remains. If now these superposed strata throughout a depth of four miles, are without fossils, though the strata over which they lie prove that life had commenced; what becomes of Sir R. Murchison's inference? At page 189 of Siluria, a still more conclusive fact will be found. The "Glengariff grits," and other accompanying strata there described as 13,500 feet thick, contain no signs of contemporaneous life. Yet Sir R. Murchison refers them to the Devonian period—a period which had a large and varied marine Fauna. How then, from the absence of fossils in the Longmynd beds and their equivalents, can we conclude that the Earth was "azoic" when they were formed?
"But," it may be asked, "if living creatures then existed, why do we not find fossiliferous strata of that age, or an earlier age?" One reply is, that the non-existence of such strata is but a negative fact—we have not found them. And considering how little we know even of the two-fifths of the Earth's surface now above the sea, and how absolutely ignorant we are of the three-fifths below the sea, it is rash to say that no such strata exist. But the chief reply is, that these records of the Earth's earlier history have been in great part destroyed, by agencies which are ever tending to destroy such records.
It is an established geological doctrine, that sedimentary strata are liable to be changed, more or less profoundly, by igneous action. The rocks originally classed as "transition," because they were intermediate in character between the igneous rocks found below them, and the sedimentary strata found above them, are now known to be nothing else than sedimentary strata altered in texture and appearance by the intense heat of adjacent molten matter; and hence are renamed "metamorphic rocks." Modern researches have shown, too, that these metamorphic rocks are not, as was once supposed, all of the same age. Besides primary and secondary strata which have been transformed by igneous action, there are similarly-changed deposits of tertiary origin—deposits changed, even as far as a quarter of a mile from the point of contact with neighbouring granite. By this process fossils are of course destroyed. "In some cases," says Sir Charles Lyell, "dark limestones, replete with shells and corals, have been turned into white statuary marble, and hard clays, containing vegetable or other remains, into slates called mica-schist or hornblende-schist; every vestige of the organic bodies having been obliterated." Again, it is fast becoming an acknowledged truth that igneous rock, of whatever kind, is the product of sedimentary strata which have been completely melted. Granite and gneiss, which are of like chemical composition, have been shown, in various cases, to pass one into the other; as at Valorsine, near Mont Blanc, where the two, in contact, are observed to "both undergo a modification of mineral character. The granite still remaining unstratified, becomes charged with green particles; and the talcose gneiss assumes a granitiform structure without losing its stratification." In the Aberdeen-granite, lumps of unmelted gneiss are abundant; and we can ourselves bear witness that the granite on the banks of Loch Sunart yields proofs that, when molten, it contained incompletely-fused clots of sedimentary strata. Nor is this all. Fifty years ago, it was thought that all granitic rocks were primitive, or existed before any sedimentary strata; but it is now "no easy task to point out a single mass of granite demonstrably more ancient than all the known fossiliferous deposits." In brief, accumulated evidence shows, that by contact with, or proximity to, the molten matter of the Earth's nucleus, all beds of sediment are liable to be actually melted, or partially fused, or so heated as to agglutinate their particles; and that according to the temperature they have been raised to, and the circumstances under which they cool, they assume the forms of granite, porphyry, trap, gneiss, or rock otherwise altered. Further, it is manifest that though strata of various ages have been thus changed, yet the most ancient strata have been so changed to the greatest extent; both because they have been nearer to the centre of igneous agency; and because they have been for longer periods liable to be affected by it. Whence it follows, that sedimentary strata passing a certain antiquity, are unlikely to be found in an unmetamorphosed state; and that strata much earlier than these are certain to have been melted up. Thus if, throughout a past of indefinite duration, there had been at work those aqueous and igneous agencies which we see still at work, the state of the Earth's crust might be just what we find it. We have no evidence which puts a limit to the period throughout which this formation and destruction of strata has been going on. For aught the facts prove, it may have been going on for ten times the period measured by our whole series of sedimentary deposits.
Besides having, in the present appearances of the Earth's crust, no data for fixing a commencement to these processes—besides finding that the evidence permits us to assume such commencement to have been inconceivably remote, as compared even with the vast eras of geology; we are not without positive grounds for inferring the inconceivable remoteness of such commencement. Modern geology has established truths which are irreconcilable with the belief that the formation and destruction of strata began when the Cambrian rocks were formed; or at anything like so recent a time. One fact from Siluria will suffice. Sir R. Murchison estimates the vertical thickness of Silurian strata in Wales, at from 26,000 to 27,000 feet, or about five miles; and if to this we add the vertical depth of the Cambrian strata, on which the Silurians lie conformably, there results, on the lowest computation, a total depth of some seven miles. Now it is held by geologists, that this vast series of formations must have been deposited in an area of gradual subsidence. These beds could not have been thus laid one on another in regular order, unless the Earth's crust had been at that place sinking, either continuously or by small steps. Such an immense subsidence, however, must have been impossible without a crust of great thickness. The Earth's molten nucleus tends ever, with enormous force, to assume the form of a regular oblate spheroid. Any depression of its crust below the surface of equilibrium, and any elevation of its crust above that surface, have to withstand immense resistances. It follows inevitably that, with a thin crust, nothing but small elevations and subsidences would have been possible; and that, conversely, a subsidence of seven miles implies a crust of great strength, or, in other words, of great thickness. Indeed, if we compare this inferred subsidence in the Silurian period, with such elevations and depressions as our existing continents and oceans display, we see no evidence that the Earth's crust was appreciably thinner then than now. What are the implications? If, as geologists generally admit, the Earth's crust has resulted from that slow cooling which is even still going on—if we see no sign that at the time when the earliest Cambrian strata were formed, this crust was appreciably thinner than now; we are forced to conclude that the era during which it acquired that great thickness possessed in the Cambrian period, was enormous as compared with the interval between the Cambrian period and our own. But during the incalculable series of epochs thus implied, there existed an ocean, tides, winds, waves, rain, rivers. The agencies by which the denudation of continents and filling up of seas have all along been carried on, were as active then as now. Endless successions of strata must have been formed. And when we ask—Where are they? Nature's obvious reply is—They have been destroyed by that igneous action to which so great a part of our oldest-known strata owe their fusion or metamorphosis. |
|