|
Incandescent lamps and their manufacture....................149 Distributing systems and their control and regulation....... 77 Dynamo-electric machines and accessories....................106 Minor parts, such as sockets, switches, safety catches, meters, underground conductors and parts, etc............... 43
Quite naturally most of these patents cover inventions that are in the nature of improvements or based upon devices which he had already created; but there are a number that relate to inventions absolutely fundamental and original in their nature. Some of these have already been alluded to; but among the others there is one which is worthy of special mention in connection with the present consideration of a complete system. This is patent No. 274,290, applied for November 27, 1882, and is known as the "Three-wire" patent. It is described more fully in the Appendix.
The great importance of the "Feeder" and "Three-wire" inventions will be apparent when it is realized that without them it is a question whether electric light could be sold to compete with low-priced gas, on account of the large investment in conductors that would be necessary. If a large city area were to be lighted from a central station by means of copper conductors running directly therefrom to all parts of the district, it would be necessary to install large conductors, or suffer such a drop of pressure at the ends most remote from the station as to cause the lights there to burn with a noticeable diminution of candle-power. The Feeder invention overcame this trouble, and made it possible to use conductors ONLY ONE-EIGHTH THE SIZE that would otherwise have been necessary to produce the same results.
A still further economy in cost of conductors was effected by the "Three-wire" invention, by the use of which the already diminished conductors could be still further reduced TO ONE-THIRD of this smaller size, and at the same time allow of the successful operation of the station with far better results than if it were operated exactly as at first conceived. The Feeder and Three-wire systems are at this day used in all parts of the world, not only in central-station work, but in the installation and operation of isolated electric-light plants in large buildings. No sensible or efficient station manager or electric contractor would ever think of an installation made upon any other plan. Thus Mr. Edison's early conceptions of the necessities of a complete system, one of them made even in advance of practice, have stood firm, unimproved, and unchanged during the past twenty-eight years, a period of time which has witnessed more wonderful and rapid progress in electrical science and art than has been known during any similar art or period of time since the world began.
It must be remembered that the complete system in all its parts is not comprised in the few of Mr. Edison's patents, of which specific mention is here made. In order to comprehend the magnitude and extent of his work and the quality of his genius, it is necessary to examine minutely the list of patents issued for the various elements which go to make up such a system. To attempt any relation in detail of the conception and working-out of each part or element; to enter into any description of the almost innumerable experiments and investigations that were made would entail the writing of several volumes, for Mr. Edison's close-written note-books covering these subjects number nearly two hundred.
It is believed that enough evidence has been given in this chapter to lead to an appreciation of the assiduous work and practical skill involved in "inventing a system" of lighting that would surpass, and to a great extent, in one single quarter of a century, supersede all the other methods of illumination developed during long centuries. But it will be appropriate before passing on to note that on January 17, 1908, while this biography was being written, Mr. Edison became the fourth recipient of the John Fritz gold medal for achievement in industrial progress. This medal was founded in 1902 by the professional friends and associates of the veteran American ironmaster and metallurgical inventor, in honor of his eightieth birthday. Awards are made by a board of sixteen engineers appointed in equal numbers from the four great national engineering societies—the American Society of Civil Engineers, the American Institute of Mining Engineers, the American Society of Mechanical Engineers, and the American Institute of Electrical Engineers, whose membership embraces the very pick and flower of professional engineering talent in America. Up to the time of the Edison award, three others had been made. The first was to Lord Kelvin, the Nestor of physics in Europe, for his work in submarine-cable telegraphy and other scientific achievement. The second was to George Westinghouse for the air-brake. The third was to Alexander Graham Bell for the invention and introduction of the telephone. The award to Edison was not only for his inventions in duplex and quadruplex telegraphy, and for the phonograph, but for the development of a commercially practical incandescent lamp, and the development of a complete system of electric lighting, including dynamos, regulating devices, underground system, protective devices, and meters. Great as has been the genius brought to bear on electrical development, there is no other man to whom such a comprehensive tribute could be paid.
CHAPTER XV
INTRODUCTION OF THE EDISON ELECTRIC LIGHT
IN the previous chapter on the invention of a system, the narrative has been carried along for several years of activity up to the verge of the successful and commercial application of Edison's ideas and devices for incandescent electric lighting. The story of any one year in this period, if treated chronologically, would branch off in a great many different directions, some going back to earlier work, others forward to arts not yet within the general survey; and the effect of such treatment would be confusing. In like manner the development of the Edison lighting system followed several concurrent, simultaneous lines of advance; and an effort was therefore made in the last chapter to give a rapid glance over the whole movement, embracing a term of nearly five years, and including in its scope both the Old World and the New. What is necessary to the completeness of the story at this stage is not to recapitulate, but to take up some of the loose ends of threads woven in and follow them through until the clear and comprehensive picture of events can be seen.
Some things it would be difficult to reproduce in any picture of the art and the times. One of the greatest delusions of the public in regard to any notable invention is the belief that the world is waiting for it with open arms and an eager welcome. The exact contrary is the truth. There is not a single new art or device the world has ever enjoyed of which it can be said that it was given an immediate and enthusiastic reception. The way of the inventor is hard. He can sometimes raise capital to help him in working out his crude conceptions, but even then it is frequently done at a distressful cost of personal surrender. When the result is achieved the invention makes its appeal on the score of economy of material or of effort; and then "labor" often awaits with crushing and tyrannical spirit to smash the apparatus or forbid its very use. Where both capital and labor are agreed that the object is worthy of encouragement, there is the supreme indifference of the public to overcome, and the stubborn resistance of pre-existing devices to combat. The years of hardship and struggle are thus prolonged, the chagrin of poverty and neglect too frequently embitters the inventor's scanty bread; and one great spirit after another has succumbed to the defeat beyond which lay the procrastinated triumph so dearly earned. Even in America, where the adoption of improvements and innovations is regarded as so prompt and sure, and where the huge tolls of the Patent Office and the courts bear witness to the ceaseless efforts of the inventor, it is impossible to deny the sad truth that unconsciously society discourages invention rather than invites it. Possibly our national optimism as revealed in invention—the seeking a higher good—needs some check. Possibly the leaders would travel too fast and too far on the road to perfection if conservatism did not also play its salutary part in insisting that the procession move forward as a whole.
Edison and his electric light were happily more fortunate than other men and inventions, in the relative cordiality of the reception given them. The merit was too obvious to remain unrecognized. Nevertheless, it was through intense hostility and opposition that the young art made its way, pushed forward by Edison's own strong personality and by his unbounded, unwavering faith in the ultimate success of his system. It may seem strange that great effort was required to introduce a light so manifestly convenient, safe, agreeable, and advantageous, but the facts are matter of record; and to-day the recollection of some of the episodes brings a fierce glitter into the eye and keen indignation into the voice of the man who has come so victoriously through it all.
It was not a fact at any time that the public was opposed to the idea of the electric light. On the contrary, the conditions for its acceptance had been ripening fast. Yet the very vogue of the electric arc light made harder the arrival of the incandescent. As a new illuminant for the streets, the arc had become familiar, either as a direct substitute for the low gas lamp along the sidewalk curb, or as a novel form of moonlight, raised in groups at the top of lofty towers often a hundred and fifty feet high. Some of these lights were already in use for large indoor spaces, although the size of the unit, the deadly pressure of the current, and the sputtering sparks from the carbons made them highly objectionable for such purposes. A number of parent arc-lighting companies were in existence, and a great many local companies had been called into being under franchises for commercial business and to execute regular city contracts for street lighting. In this manner a good deal of capital and the energies of many prominent men in politics and business had been rallied distinctively to the support of arc lighting. Under the inventive leadership of such brilliant men as Brush, Thomson, Weston, and Van Depoele—there were scores of others—the industry had made considerable progress and the art had been firmly established. Here lurked, however, very vigorous elements of opposition, for Edison predicted from the start the superiority of the small electric unit of light, and devoted himself exclusively to its perfection and introduction. It can be readily seen that this situation made it all the more difficult for the Edison system to secure the large sums of money needed for its exploitation, and to obtain new franchises or city ordinances as a public utility. Thus in a curious manner the modern art of electric lighting was in a very true sense divided against itself, with intense rivalries and jealousies which were none the less real because they were but temporary and occurred in a field where ultimate union of forces was inevitable. For a long period the arc was dominant and supreme in the lighting branch of the electrical industries, in all respects, whether as to investment, employees, income, and profits, or in respect to the manufacturing side. When the great National Electric Light Association was formed in 1885, its organizers were the captains of arc lighting, and not a single Edison company or licensee could be found in its ranks, or dared to solicit membership. The Edison companies, soon numbering about three hundred, formed their own association—still maintained as a separate and useful body—and the lines were tensely drawn in a way that made it none too easy for the Edison service to advance, or for an impartial man to remain friendly with both sides. But the growing popularity of incandescent lighting, the flexibility and safety of the system, the ease with which other electric devices for heat, power, etc., could be put indiscriminately on the same circuits with the lamps, in due course rendered the old attitude of opposition obviously foolish and untenable. The United States Census Office statistics of 1902 show that the income from incandescent lighting by central stations had by that time become over 52 per cent. of the total, while that from arc lighting was less than 29; and electric-power service due to the ease with which motors could be introduced on incandescent circuits brought in 15 per cent. more. Hence twenty years after the first Edison stations were established the methods they involved could be fairly credited with no less than 67 per cent. of all central-station income in the country, and the proportion has grown since then. It will be readily understood that under these conditions the modern lighting company supplies to its customers both incandescent and arc lighting, frequently from the same dynamo-electric machinery as a source of current; and that the old feud as between the rival systems has died out. In fact, for some years past the presidents of the National Electric Light Association have been chosen almost exclusively from among the managers of the great Edison lighting companies in the leading cities.
The other strong opposition to the incandescent light came from the gas industry. There also the most bitter feeling was shown. The gas manager did not like the arc light, but it interfered only with his street service, which was not his largest source of income by any means. What did arouse his ire and indignation was to find this new opponent, the little incandescent lamp, pushing boldly into the field of interior lighting, claiming it on a great variety of grounds of superiority, and calmly ignoring the question of price, because it was so much better. Newspaper records and the pages of the technical papers of the day show to what an extent prejudice and passion were stirred up and the astounding degree to which the opposition to the new light was carried.
Here again was given a most convincing demonstration of the truth that such an addition to the resources of mankind always carries with it unsuspected benefits even for its enemies. In two distinct directions the gas art was immediately helped by Edison's work. The competition was most salutary in the stimulus it gave to improvements in processes for making, distributing, and using gas, so that while vast economies have been effected at the gas works, the customer has had an infinitely better light for less money. In the second place, the coming of the incandescent light raised the standard of illumination in such a manner that more gas than ever was wanted in order to satisfy the popular demand for brightness and brilliancy both indoors and on the street. The result of the operation of these two forces acting upon it wholly from without, and from a rival it was desired to crush, has been to increase enormously the production and use of gas in the last twenty-five years. It is true that the income of the central stations is now over $300,000,000 a year, and that isolated-plant lighting represents also a large amount of diverted business; but as just shown, it would obviously be unfair to regard all this as a loss from the standpoint of gas. It is in great measure due to new sources of income developed by electricity for itself.
A retrospective survey shows that had the men in control of the American gas-lighting art, in 1880, been sufficiently far-sighted, and had they taken a broader view of the situation, they might easily have remained dominant in the whole field of artificial lighting by securing the ownership of the patents and devices of the new industry. Apparently not a single step of that kind was undertaken, nor probably was there a gas manager who would have agreed with Edison in the opinion written down by him at the time in little note-book No. 184, that gas properties were having conferred on them an enhanced earning capacity. It was doubtless fortunate and providential for the electric-lighting art that in its state of immature development it did not fall into the hands of men who were opposed to its growth, and would not have sought its technical perfection. It was allowed to carve out its own career, and thus escaped the fate that is supposed to have attended other great inventions—of being bought up merely for purposes of suppression. There is a vague popular notion that this happens to the public loss; but the truth is that no discovery of any real value is ever entirely lost. It may be retarded; but that is all. In the case of the gas companies and the incandescent light, many of them to whom it was in the early days as great an irritant as a red flag to a bull, emulated the performance of that animal and spent a great deal of money and energy in bellowing and throwing up dirt in the effort to destroy the hated enemy. This was not long nor universally the spirit shown; and to-day in hundreds of cities the electric and gas properties are united under the one management, which does not find it impossible to push in a friendly and progressive way the use of both illuminants. The most conspicuous example of this identity of interest is given in New York itself.
So much for the early opposition, of which there was plenty. But it may be questioned whether inertia is not equally to be dreaded with active ill-will. Nothing is more difficult in the world than to get a good many hundreds of thousands or millions of people to do something they have never done before. A very real difficulty in the introduction of his lamp and lighting system by Edison lay in the absolute ignorance of the public at large, not only as to its merits, but as to the very appearance of the light, Some few thousand people had gone out to Menlo Park, and had there seen the lamps in operation at the laboratory or on the hillsides, but they were an insignificant proportion of the inhabitants of the United States. Of course, a great many accounts were written and read, but while genuine interest was aroused it was necessarily apathetic. A newspaper description or a magazine article may be admirably complete in itself, with illustrations, but until some personal experience is had of the thing described it does not convey a perfect mental picture, nor can it always make the desire active and insistent. Generally, people wait to have the new thing brought to them; and hence, as in the case of the Edison light, an educational campaign of a practical nature is a fundamental condition of success.
Another serious difficulty confronting Edison and his associates was that nowhere in the world were there to be purchased any of the appliances necessary for the use of the lighting system. Edison had resolved from the very first that the initial central station embodying his various ideas should be installed in New York City, where he could superintend the installation personally, and then watch the operation. Plans to that end were now rapidly maturing; but there would be needed among many other things—every one of them new and novel—dynamos, switchboards, regulators, pressure and current indicators, fixtures in great variety, incandescent lamps, meters, sockets, small switches, underground conductors, junction-boxes, service-boxes, manhole-boxes, connectors, and even specially made wire. Now, not one of these miscellaneous things was in existence; not an outsider was sufficiently informed about such devices to make them on order, except perhaps the special wire. Edison therefore started first of all a lamp factory in one of the buildings at Menlo Park, equipped it with novel machinery and apparatus, and began to instruct men, boys, and girls, as they could be enlisted, in the absolutely new art, putting Mr. Upton in charge.
With regard to the conditions attendant upon the manufacture of the lamps, Edison says: "When we first started the electric light we had to have a factory for manufacturing lamps. As the Edison Light Company did not seem disposed to go into manufacturing, we started a small lamp factory at Menlo Park with what money I could raise from my other inventions and royalties, and some assistance. The lamps at that time were costing about $1.25 each to make, so I said to the company: 'If you will give me a contract during the life of the patents, I will make all the lamps required by the company and deliver them for forty cents.' The company jumped at the chance of this offer, and a contract was drawn up. We then bought at a receiver's sale at Harrison, New Jersey, a very large brick factory building which had been used as an oil-cloth works. We got it at a great bargain, and only paid a small sum down, and the balance on mortgage. We moved the lamp works from Menlo Park to Harrison. The first year the lamps cost us about $1.10 each. We sold them for forty cents; but there were only about twenty or thirty thousand of them. The next year they cost us about seventy cents, and we sold them for forty. There were a good many, and we lost more money the second year than the first. The third year I succeeded in getting up machinery and in changing the processes, until it got down so that they cost somewhere around fifty cents. I still sold them for forty cents, and lost more money that year than any other, because the sales were increasing rapidly. The fourth year I got it down to thirty-seven cents, and I made all the money up in one year that I had lost previously. I finally got it down to twenty-two cents, and sold them for forty cents; and they were made by the million. Whereupon the Wall Street people thought it was a very lucrative business, so they concluded they would like to have it, and bought us out.
"One of the incidents which caused a very great cheapening was that, when we started, one of the important processes had to be done by experts. This was the sealing on of the part carrying the filament into the globe, which was rather a delicate operation in those days, and required several months of training before any one could seal in a fair number of parts in a day. When we got to the point where we employed eighty of these experts they formed a union; and knowing it was impossible to manufacture lamps without them, they became very insolent. One instance was that the son of one of these experts was employed in the office, and when he was told to do anything would not do it, or would give an insolent reply. He was discharged, whereupon the union notified us that unless the boy was taken back the whole body would go out. It got so bad that the manager came to me and said he could not stand it any longer; something had got to be done. They were not only more surly; they were diminishing the output, and it became impossible to manage the works. He got me enthused on the subject, so I started in to see if it were not possible to do that operation by machinery. After feeling around for some days I got a clew how to do it. I then put men on it I could trust, and made the preliminary machinery. That seemed to work pretty well. I then made another machine which did the work nicely. I then made a third machine, and would bring in yard men, ordinary laborers, etc., and when I could get these men to put the parts together as well as the trained experts, in an hour, I considered the machine complete. I then went secretly to work and made thirty of the machines. Up in the top loft of the factory we stored those machines, and at night we put up the benches and got everything all ready. Then we discharged the office-boy. Then the union went out. It has been out ever since.
"When we formed the works at Harrison we divided the interests into one hundred shares or parts at $100 par. One of the boys was hard up after a time, and sold two shares to Bob Cutting. Up to that time we had never paid anything; but we got around to the point where the board declared a dividend every Saturday night. We had never declared a dividend when Cutting bought his shares, and after getting his dividends for three weeks in succession, he called up on the telephone and wanted to know what kind of a concern this was that paid a weekly dividend. The works sold for $1,085,000."
Incidentally it may be noted, as illustrative of the problems brought to Edison, that while he had the factory at Harrison an importer in the Chinese trade went to him and wanted a dynamo to be run by hand power. The importer explained that in China human labor was cheaper than steam power. Edison devised a machine to answer the purpose, and put long spokes on it, fitted it up, and shipped it to China. He has not, however, heard of it since.
For making the dynamos Edison secured, as noted in the preceding chapter, the Roach Iron Works on Goerck Street, New York, and this was also equipped. A building was rented on Washington Street, where machinery and tools were put in specially designed for making the underground tube conductors and their various paraphernalia; and the faithful John Kruesi was given charge of that branch of production. To Sigmund Bergmann, who had worked previously with Edison on telephone apparatus and phonographs, and was already making Edison specialties in a small way in a loft on Wooster Street, New York, was assigned the task of constructing sockets, fixtures, meters, safety fuses, and numerous other details.
Thus, broadly, the manufacturing end of the problem of introduction was cared for. In the early part of 1881 the Edison Electric Light Company leased the old Bishop mansion at 65 Fifth Avenue, close to Fourteenth Street, for its headquarters and show-rooms. This was one of the finest homes in the city of that period, and its acquisition was a premonitory sign of the surrender of the famous residential avenue to commerce. The company needed not only offices, but, even more, such an interior as would display to advantage the new light in everyday use; and this house with its liberal lines, spacious halls, lofty ceilings, wide parlors, and graceful, winding stairway was ideal for the purpose. In fact, in undergoing this violent change, it did not cease to be a home in the real sense, for to this day many an Edison veteran's pulse is quickened by some chance reference to "65," where through many years the work of development by a loyal and devoted band of workers was centred. Here Edison and a few of his assistants from Menlo Park installed immediately in the basement a small generating plant, at first with a gas-engine which was not successful, and then with a Hampson high-speed engine and boiler, constituting a complete isolated plant. The building was wired from top to bottom, and equipped with all the appliances of the art. The experience with the little gas-engine was rather startling. "At an early period at '65' we decided," says Edison, "to light it up with the Edison system, and put a gas-engine in the cellar, using city gas. One day it was not going very well, and I went down to the man in charge and got exploring around. Finally I opened the pedestal—a storehouse for tools, etc. We had an open lamp, and when we opened the pedestal, it blew the doors off, and blew out the windows, and knocked me down, and the other man."
For the next four or five years "65" was a veritable beehive, day and night. The routine was very much the same as that at the laboratory, in its utter neglect of the clock. The evenings were not only devoted to the continuance of regular business, but the house was thrown open to the public until late at night, never closing before ten o'clock, so as to give everybody who wished an opportunity to see that great novelty of the time—the incandescent light—whose fame had meanwhile been spreading all over the globe. The first year, 1881, was naturally that which witnessed the greatest rush of visitors; and the building hardly ever closed its doors till midnight. During the day business was carried on under great stress, and Mr. Insull has described how Edison was to be found there trying to lead the life of a man of affairs in the conventional garb of polite society, instead of pursuing inventions and researches in his laboratory. But the disagreeable ordeal could not be dodged. After the experience Edison could never again be tempted to quit his laboratory and work for any length of time; but in this instance there were some advantages attached to the sacrifice, for the crowds of lion-hunters and people seeking business arrangements would only have gone out to Menlo Park; while, on the other hand, the great plans for lighting New York demanded very close personal attention on the spot.
As it was, not only Edison, but all the company's directors, officers, and employees, were kept busy exhibiting and explaining the light. To the public of that day, when the highest known form of house illuminant was gas, the incandescent lamp, with its ability to burn in any position, its lack of heat so that you could put your hand on the brilliant glass globe; the absence of any vitiating effect on the atmosphere, the obvious safety from fire; the curious fact that you needed no matches to light it, and that it was under absolute control from a distance—these and many other features came as a distinct revelation and marvel, while promising so much additional comfort, convenience, and beauty in the home, that inspection was almost invariably followed by a request for installation.
The camaraderie that existed at this time was very democratic, for all were workers in a common cause; all were enthusiastic believers in the doctrine they proclaimed, and hoped to profit by the opening up of the new art. Often at night, in the small hours, all would adjourn for refreshments to a famous resort nearby, to discuss the events of to-day and to-morrow, full of incident and excitement. The easy relationship of the time is neatly sketched by Edison in a humorous complaint as to his inability to keep his own cigars: "When at '65' I used to have in my desk a box of cigars. I would go to the box four or five times to get a cigar, but after it got circulated about the building, everybody would come to get my cigars, so that the box would only last about a day and a half. I was telling a gentleman one day that I could not keep a cigar. Even if I locked them up in my desk they would break it open. He suggested to me that he had a friend over on Eighth Avenue who made a superior grade of cigars, and who would show them a trick. He said he would have some of them made up with hair and old paper, and I could put them in without a word and see the result. I thought no more about the matter. He came in two or three months after, and said: 'How did that cigar business work?' I didn't remember anything about it. On coming to investigate, it appeared that the box of cigars had been delivered and had been put in my desk, and I had smoked them all! I was too busy on other things to notice."
It was no uncommon sight to see in the parlors in the evening John Pierpont Morgan, Norvin Green, Grosvenor P. Lowrey, Henry Villard, Robert L. Cutting, Edward D. Adams, J. Hood Wright, E. G. Fabbri, R. M. Galloway, and other men prominent in city life, many of them stock-holders and directors; all interested in doing this educational work. Thousands of persons thus came—bankers, brokers, lawyers, editors, and reporters, prominent business men, electricians, insurance experts, under whose searching and intelligent inquiries the facts were elicited, and general admiration was soon won for the system, which in advance had solved so many new problems. Edison himself was in universal request and the subject of much adulation, but altogether too busy and modest to be spoiled by it. Once in a while he felt it his duty to go over the ground with scientific visitors, many of whom were from abroad, and discuss questions which were not simply those of technique, but related to newer phenomena, such as the action of carbon, the nature and effects of high vacua; the principles of electrical subdivision; the value of insulation, and many others which, unfortunate to say, remain as esoteric now as they were then, ever fruitful themes of controversy.
Speaking of those days or nights, Edison says: "Years ago one of the great violinists was Remenyi. After his performances were over he used to come down to '65' and talk economics, philosophy, moral science, and everything else. He was highly educated and had great mental capacity. He would talk with me, but I never asked him to bring his violin. One night he came with his violin, about twelve o'clock. I had a library at the top of the house, and Remenyi came up there. He was in a genial humor, and played the violin for me for about two hours—$2000 worth. The front doors were closed, and he walked up and down the room as he played. After that, every time he came to New York he used to call at '65' late at night with his violin. If we were not there, he could come down to the slums at Goerck Street, and would play for an hour or two and talk philosophy. I would talk for the benefit of his music. Henry E. Dixey, then at the height of his 'Adonis' popularity, would come in in those days, after theatre hours, and would entertain us with stories—1882-84. Another visitor who used to give us a good deal of amusement and pleasure was Captain Shaw, the head of the London Fire Brigade. He was good company. He would go out among the fire-laddies and have a great time. One time Robert Lincoln and Anson Stager, of the Western Union, interested in the electric light, came on to make some arrangement with Major Eaton, President of the Edison Electric Light Company. They came to '65' in the afternoon, and Lincoln commenced telling stories—like his father. They told stories all the afternoon, and that night they left for Chicago. When they got to Cleveland, it dawned upon them that they had not done any business, so they had to come back on the next train to New York to transact it. They were interested in the Chicago Edison Company, now one of the largest of the systems in the world. Speaking of telling stories, I once got telling a man stories at the Harrison lamp factory, in the yard, as he was leaving. It was winter, and he was all in furs. I had nothing on to protect me against the cold. I told him one story after the other—six of them. Then I got pleurisy, and had to be shipped to Florida for cure."
The organization of the Edison Electric Light Company went back to 1878; but up to the time of leasing 65 Fifth Avenue it had not been engaged in actual business. It had merely enjoyed the delights of anxious anticipation, and the perilous pleasure of backing Edison's experiments. Now active exploitation was required. Dr. Norvin Green, the well-known President of the Western Union Telegraph Company, was president also of the Edison Company, but the pressing nature of his regular duties left him no leisure for such close responsible management as was now required. Early in 1881 Mr. Grosvenor P. Lowrey, after consultation with Mr. Edison, prevailed upon Major S. B. Eaton, the leading member of a very prominent law firm in New York, to accept the position of vice-president and general manager of the company, in which, as also in some of the subsidiary Edison companies, and as president, he continued actively and energetically for nearly four years, a critical, formative period in which the solidity of the foundation laid is attested by the magnitude and splendor of the superstructure.
The fact that Edison conferred at this point with Mr. Lowrey should, perhaps, be explained in justice to the distinguished lawyer, who for so many years was the close friend of the inventor, and the chief counsel in all the tremendous litigation that followed the effort to enforce and validate the Edison patents. As in England Mr. Edison was fortunate in securing the legal assistance of Sir Richard Webster, afterward Lord Chief Justice of England, so in America it counted greatly in his favor to enjoy the advocacy of such a man as Lowrey, prominent among the famous leaders of the New York bar. Born in Massachusetts, Mr. Lowrey, in his earlier days of straitened circumstances, was accustomed to defray some portion of his educational expenses by teaching music in the Berkshire villages, and by a curious coincidence one of his pupils was F. L. Pope, later Edison's partner for a time. Lowrey went West to "Bleeding Kansas" with the first Governor, Reeder, and both were active participants in the exciting scenes of the "Free State" war until driven away in 1856, like many other free-soilers, by the acts of the "Border Ruffian" legislature. Returning East, Mr. Lowrey took up practice in New York, soon becoming eminent in his profession, and upon the accession of William Orton to the presidency of the Western Union Telegraph Company in 1866, he was appointed its general counsel, the duties of which post he discharged for fifteen years. One of the great cases in which he thus took a leading and distinguished part was that of the quadruplex telegraph; and later he acted as legal adviser to Henry Villard in his numerous grandiose enterprises. Lowrey thus came to know Edison, to conceive an intense admiration for him, and to believe in his ability at a time when others could not detect the fire of genius smouldering beneath the modest exterior of a gaunt young operator slowly "finding himself." It will be seen that Mr Lowrey was in a peculiarly advantageous position to make his convictions about Edison felt, so that it was he and his friends who rallied quickly to the new banner of discovery, and lent to the inventor the aid that came at a critical period. In this connection it may be well to quote an article that appeared at the time of Mr. Lowrey's death, in 1893: "One of the most important services which Mr. Lowrey has ever performed was in furnishing and procuring the necessary financial backing for Thomas A. Edison in bringing out and perfecting his system of incandescent lighting. With characteristic pertinacity, Mr. Lowrey stood by the inventor through thick and thin, in spite of doubt, discouragement, and ridicule, until at last success crowned his efforts. In all the litigation which has resulted from the wide-spread infringements of the Edison patents, Mr. Lowrey has ever borne the burden and heat of the day, and perhaps in no other field has he so personally distinguished himself as in the successful advocacy of the claims of Edison to the invention of the incandescent lamp and everything 'hereunto pertaining.'"
This was the man of whom Edison had necessarily to make a confidant and adviser, and who supplied other things besides the legal direction and financial alliance, by his knowledge of the world and of affairs. There were many vital things to be done in the exploitation of the system that Edison simply could not and would not do; but in Lowrey's savoir faire, ready wit and humor, chivalry of devotion, graceful eloquence, and admirable equipoise of judgment were all the qualities that the occasion demanded and that met the exigencies.
We are indebted to Mr. Insull for a graphic sketch of Edison at this period, and of the conditions under which work was done and progress was made: "I do not think I had any understanding with Edison when I first went with him as to my duties. I did whatever he told me, and looked after all kinds of affairs, from buying his clothes to financing his business. I used to open the correspondence and answer it all, sometimes signing Edison's name with my initial, and sometimes signing my own name. If the latter course was pursued, and I was addressing a stranger, I would sign as Edison's private secretary. I held his power of attorney, and signed his checks. It was seldom that Edison signed a letter or check at this time. If he wanted personally to send a communication to anybody, if it was one of his close associates, it would probably be a pencil memorandum signed 'Edison.' I was a shorthand writer, but seldom took down from Edison's dictation, unless it was on some technical subject that I did not understand. I would go over the correspondence with Edison, sometimes making a marginal note in shorthand, and sometimes Edison would make his own notes on letters, and I would be expected to clean up the correspondence with Edison's laconic comments as a guide as to the character of answer to make. It was a very common thing for Edison to write the words 'Yes' or 'No,' and this would be all I had on which to base my answer. Edison marginalized documents extensively. He had a wonderful ability in pointing out the weak points of an agreement or a balance-sheet, all the while protesting he was no lawyer or accountant; and his views were expressed in very few words, but in a characteristic and emphatic manner.
"The first few months I was with Edison he spent most of the time in the office at 65 Fifth Avenue. Then there was a great deal of trouble with the life of the lamps there, and he disappeared from the office and spent his time largely at Menlo Park. At another time there was a great deal of trouble with some of the details of construction of the dynamos, and Edison spent a lot of time at Goerck Street, which had been rapidly equipped with the idea of turning out bi-polar dynamo-electric machines, direct-connected to the engine, the first of which went to Paris and London, while the next were installed in the old Pearl Street station of the Edison Electric Illuminating Company of New York, just south of Fulton Street, on the west side of the street. Edison devoted a great deal of his time to the engineering work in connection with the laying out of the first incandescent electric-lighting system in New York. Apparently at that time—between the end of 1881 and spring of 1882—the most serious work was the manufacture and installation of underground conductors in this territory. These conductors were manufactured by the Electric Tube Company, which Edison controlled in a shop at 65 Washington Street, run by John Kruesi. Half-round copper conductors were used, kept in place relatively to each other and in the tube, first of all by a heavy piece of cardboard, and later on by a rope; and then put in a twenty-foot iron pipe; and a combination of asphaltum and linseed oil was forced into the pipe for the insulation. I remember as a coincidence that the building was only twenty feet wide. These lengths of conductors were twenty feet six inches long, as the half-round coppers extended three inches beyond the drag-ends of the lengths of pipe; and in one of the operations we used to take the length of tubing out of the window in order to turn it around. I was elected secretary of the Electric Tube Company, and was expected to look after its finance; and it was in this position that my long intimacy with John Kruesi started."
At this juncture a large part of the correspondence referred very naturally to electric lighting, embodying requests for all kinds of information, catalogues, prices, terms, etc.; and all these letters were turned over to the lighting company by Edison for attention. The company was soon swamped with propositions for sale of territorial rights and with other negotiations, and some of these were accompanied by the offer of very large sums of money. It was the beginning of the electric-light furor which soon rose to sensational heights. Had the company accepted the cash offers from various localities, it could have gathered several millions of dollars at once into its treasury; but this was not at all in accord with Mr. Edison's idea, which was to prove by actual experience the commercial value of the system, and then to license central-station companies in large cities and towns, the parent company taking a percentage of their capital for the license under the Edison patents, and contracting also for the supply of apparatus, lamps, etc. This left the remainder of the country open for the cash sale of plants wherever requested. His counsels prevailed, and the wisdom of the policy adopted was seen in the swift establishment of Edison companies in centres of population both great and small, whose business has ever been a constant and growing source of income for the parent manufacturing interests.
From first to last Edison has been an exponent and advocate of the central-station idea of distribution now so familiar to the public mind, but still very far from being carried out to its logical conclusion. In this instance, demands for isolated plants for lighting factories, mills, mines, hotels, etc., began to pour in, and something had to be done with them. This was a class of plant which the inquirers desired to purchase outright and operate themselves, usually because of remoteness from any possible source of general supply of current. It had not been Edison's intention to cater to this class of customer until his broad central-station plan had been worked out, and he has always discouraged the isolated plant within the limits of urban circuits; but this demand was so insistent it could not be denied, and it was deemed desirable to comply with it at once, especially as it was seen that the steady call for supplies and renewals would benefit the new Edison manufacturing plants. After a very short trial, it was found necessary to create a separate organization for this branch of the industry, leaving the Edison Electric Light Company to continue under the original plan of operation as a parent, patent-holding and licensing company. Accordingly a new and distinct corporation was formed called the Edison Company for Isolated Lighting, to which was issued a special license to sell and operate plants of a self-contained character. As a matter of fact such work began in advance of almost every other kind. A small plant using the paper-carbon filament lamps was furnished by Edison at the earnest solicitation of Mr. Henry Villard for the steamship Columbia, in 1879, and it is amusing to note that Mr. Upton carried the lamps himself to the ship, very tenderly and jealously, like fresh eggs, in a market-garden basket. The installation was most successful. Another pioneer plant was that equipped and started in January, 1881, for Hinds & Ketcham, a New York firm of lithographers and color printers, who had previously been able to work only by day, owing to difficulties in color-printing by artificial light. A year later they said: "It is the best substitute for daylight we have ever known, and almost as cheap."
Mr. Edison himself describes various instances in which the demand for isolated plants had to be met: "One night at '65,'" he says, "James Gordon Bennett came in. We were very anxious to get into a printing establishment. I had caused a printer's composing case to be set up with the idea that if we could get editors and publishers in to see it, we should show them the advantages of the electric light. So ultimately Mr. Bennett came, and after seeing the whole operation of everything, he ordered Mr. Howland, general manager of the Herald, to light the newspaper offices up at once with electricity."
Another instance of the same kind deals with the introduction of the light for purely social purposes: "While at 65 Fifth Avenue," remarks Mr. Edison, "I got to know Christian Herter, then the largest decorator in the United States. He was a highly intellectual man, and I loved to talk to him. He was always railing against the rich people, for whom he did work, for their poor taste. One day Mr. W. H. Vanderbilt came to '65,' saw the light, and decided that he would have his new house lighted with it. This was one of the big 'box houses' on upper Fifth Avenue. He put the whole matter in the hands of his son-in-law, Mr. H. McK. Twombly, who was then in charge of the telephone department of the Western Union. Twombly closed the contract with us for a plant. Mr. Herter was doing the decoration, and it was extraordinarily fine. After a while we got the engines and boilers and wires all done, and the lights in position, before the house was quite finished, and thought we would have an exhibit of the light. About eight o'clock in the evening we lit up, and it was very good. Mr. Vanderbilt and his wife and some of his daughters came in, and were there a few minutes when a fire occurred. The large picture-gallery was lined with silk cloth interwoven with fine metallic thread. In some manner two wires had got crossed with this tinsel, which became red-hot, and the whole mass was soon afire. I knew what was the matter, and ordered them to run down and shut off. It had not burst into flame, and died out immediately. Mrs. Vanderbilt became hysterical, and wanted to know where it came from. We told her we had the plant in the cellar, and when she learned we had a boiler there she said she would not occupy the house. She would not live over a boiler. We had to take the whole installation out. The houses afterward went onto the New York Edison system."
The art was, however, very crude and raw, and as there were no artisans in existence as mechanics or electricians who had any knowledge of the practice, there was inconceivable difficulty in getting such isolated plants installed, as well as wiring the buildings in the district to be covered by the first central station in New York. A night school was, therefore, founded at Fifth Avenue, and was put in charge of Mr. E. H. Johnson, fresh from his successes in England. The most available men for the purpose were, of course, those who had been accustomed to wiring for the simpler electrical systems then in vogue—telephones, district-messenger calls, burglar alarms, house annunciators, etc., and a number of these "wiremen" were engaged and instructed patiently in the rudiments of the new art by means of a blackboard and oral lessons. Students from the technical schools and colleges were also eager recruits, for here was something that promised a career, and one that was especially alluring to youth because of its novelty. These beginners were also instructed in general engineering problems under the guidance of Mr. C. L. Clarke, who was brought in from the Menlo Park laboratory to assume charge of the engineering part of the company's affairs. Many of these pioneer students and workmen became afterward large and successful contractors, or have filled positions of distinction as managers and superintendents of central stations. Possibly the electrical industry may not now attract as much adventurous genius as it did then, for automobiles, aeronautics, and other new arts have come to the front in a quarter of a century to enlist the enthusiasm of a younger generation of mercurial spirits; but it is certain that at the period of which we write, Edison himself, still under thirty-five, was the centre of an extraordinary group of men, full of effervescing and aspiring talent, to which he gave glorious opportunity.
A very novel literary feature of the work was the issuance of a bulletin devoted entirely to the Edison lighting propaganda. Nowadays the "house organ," as it is called, has become a very hackneyed feature of industrial development, confusing in its variety and volume, and a somewhat doubtful adjunct to a highly perfected, widely circulating periodical technical press. But at that time, 1882, the Bulletin of the Edison Electric Light Company, published in ordinary 12mo form, was distinctly new in advertising and possibly unique, as it is difficult to find anything that compared with it. The Bulletin was carried on for some years, until its necessity was removed by the development of other opportunities for reaching the public; and its pages serve now as a vivid and lively picture of the period to which its record applies. The first issue, of January 12, 1882, was only four pages, but it dealt with the question of insurance; plants at Santiago, Chili, and Rio de Janeiro; the European Company with 3,500,000 francs subscribed; the work in Paris, London, Strasburg, and Moscow; the laying of over six miles of street mains in New York; a patent decision in favor of Edison; and the size of safety catch wire. By April of 1882, the Bulletin had attained the respectable size of sixteen pages; and in December it was a portly magazine of forty-eight. Every item bears testimony to the rapid progress being made; and by the end of 1882 it is seen that no fewer than 153 isolated Edison plants had been installed in the United States alone, with a capacity of 29,192 lamps. Moreover, the New York central station had gone into operation, starting at 3 P.M. on September 4, and at the close of 1882 it was lighting 225 houses wired for about 5000 lamps. This epochal story will be told in the next chapter. Most interesting are the Bulletin notes from England, especially in regard to the brilliant exhibition given by Mr. E. H. Johnson at the Crystal Palace, Sydenham, visited by the Duke and Duchess of Edinburgh, twice by the Dukes of Westminster and Sutherland, by three hundred members of the Gas Institute, and by innumerable delegations from cities, boroughs, etc. Describing this before the Royal Society of Arts, Sir W. H. Preece, F.R.S., remarked: "Many unkind things have been said of Mr. Edison and his promises; perhaps no one has been severer in this direction than myself. It is some gratification for me to announce my belief that he has at last solved the problem he set himself to solve, and to be able to describe to the Society the way in which he has solved it." Before the exhibition closed it was visited by the Prince and Princess of Wales—now the deceased Edward VII. and the Dowager Queen Alexandra—and the Princess received from Mr. Johnson as a souvenir a tiny electric chandelier fashioned like a bouquet of fern leaves and flowers, the buds being some of the first miniature incandescent lamps ever made.
The first item in the first Bulletin dealt with the "Fire Question," and all through the successive issues runs a series of significant items on the same subject. Many of them are aimed at gas, and there are several grim summaries of death and fires due to gas-leaks or explosions. A tendency existed at the time to assume that electricity was altogether safe, while its opponents, predicating their attacks on arc-lighting casualties, insisted it was most dangerous. Edison's problem in educating the public was rather difficult, for while his low-pressure, direct-current system has always been absolutely without danger to life, there has also been the undeniable fact that escaping electricity might cause a fire just as a leaky water-pipe can flood a house. The important question had arisen, therefore, of satisfying the fire underwriters as to the safety of the system. He had foreseen that there would be an absolute necessity for special devices to prevent fires from occurring by reason of any excess of current flowing in any circuit; and several of his earliest detail lighting inventions deal with this subject. The insurance underwriters of New York and other parts of the country gave a great deal of time and study to the question through their most expert representatives, with the aid of Edison and his associates, other electric-light companies cooperating; and the knowledge thus gained was embodied in insurance rules to govern wiring for electric lights, formulated during the latter part of 1881, adopted by the New York Board of Fire Underwriters, January 12, 1882, and subsequently endorsed by other boards in the various insurance districts. Under temporary rulings, however, a vast amount of work had already been done, but it was obvious that as the industry grew there would be less and less possibility of supervision except through such regulations, insisting upon the use of the best devices and methods. Indeed, the direct superintendence soon became unnecessary, owing to the increasing knowledge and greater skill acquired by the installing staff; and this system of education was notably improved by a manual written by Mr. Edison himself. Copies of this brochure are as scarce to-day as First Folio Shakespeares, and command prices equal to those of other American first editions. The little book is the only known incursion of its author into literature, if we except the brief articles he has written for technical papers and for the magazines. It contained what was at once a full, elaborate, and terse explanation of a complete isolated plant, with diagrams of various methods of connection and operation, and a carefully detailed description of every individual part, its functions and its characteristics. The remarkable success of those early years was indeed only achieved by following up with Chinese exactness the minute and intimate methods insisted upon by Edison as to the use of the apparatus and devices employed. It was a curious example of establishing standard practice while changing with kaleidoscopic rapidity all the elements involved. He was true to an ideal as to the pole-star, but was incessantly making improvements in every direction. With an iconoclasm that has often seemed ruthless and brutal he did not hesitate to sacrifice older devices the moment a new one came in sight that embodied a real advance in securing effective results. The process is heroic but costly. Nobody ever had a bigger scrap-heap than Edison; but who dare proclaim the process intrinsically wasteful if the losses occur in the initial stages, and the economies in all the later ones?
With Edison in this introduction of his lighting system the method was ruthless, but not reckless. At an early stage of the commercial development a standardizing committee was formed, consisting of the heads of all the departments, and to this body was intrusted the task of testing and criticising all existing and proposed devices, as well as of considering the suggestions and complaints of workmen offered from time to time. This procedure was fruitful in two principal results—the education of the whole executive force in the technical details of the system; and a constant improvement in the quality of the Edison installations; both contributing to the rapid growth of the industry.
For many years Goerck Street played an important part in Edison's affairs, being the centre of all his manufacture of heavy machinery. But it was not in a desirable neighborhood, and owing to the rapid growth of the business soon became disadvantageous for other reasons. Edison tells of his frequent visits to the shops at night, with the escort of "Jim" Russell, a well-known detective, who knew all the denizens of the place: "We used to go out at night to a little, low place, an all-night house—eight feet wide and twenty-two feet long—where we got a lunch at two or three o'clock in the morning. It was the toughest kind of restaurant ever seen. For the clam chowder they used the same four clams during the whole season, and the average number of flies per pie was seven. This was by actual count."
As to the shops and the locality: "The street was lined with rather old buildings and poor tenements. We had not much frontage. As our business increased enormously, our quarters became too small, so we saw the district Tammany leader and asked him if we could not store castings and other things on the sidewalk. He gave us permission—told us to go ahead, and he would see it was all right. The only thing he required for this was that when a man was sent with a note from him asking us to give him a job, he was to be put on. We had a hand-laborer foreman—'Big Jim'—a very powerful Irishman, who could lift above half a ton. When one of the Tammany aspirants appeared, he was told to go right to work at $1.50 per day. The next day he was told off to lift a certain piece, and if the man could not lift it he was discharged. That made the Tammany man all safe. Jim could pick the piece up easily. The other man could not, and so we let him out. Finally the Tammany leader called a halt, as we were running big engine lathes out on the sidewalk, and he was afraid we were carrying it a little too far. The lathes were worked right out in the street, and belted through the windows of the shop."
At last it became necessary to move from Goerck Street, and Mr. Edison gives a very interesting account of the incidents in connection with the transfer of the plant to Schenectady, New York: "After our works at Goerck Street got too small, we had labor troubles also. It seems I had rather a socialistic strain in me, and I raised the pay of the workmen twenty-five cents an hour above the prevailing rate of wages, whereupon Hoe & Company, our near neighbors, complained at our doing this. I said I thought it was all right. But the men, having got a little more wages, thought they would try coercion and get a little more, as we were considered soft marks. Whereupon they struck at a time that was critical. However, we were short of money for pay-rolls; and we concluded it might not be so bad after all, as it would give us a couple of weeks to catch up. So when the men went out they appointed a committee to meet us; but for two weeks they could not find us, so they became somewhat more anxious than we were. Finally they said they would like to go back. We said all right, and back they went. It was quite a novelty to the men not to be able to find us when they wanted to; and they didn't relish it at all.
"What with these troubles and the lack of room, we decided to find a factory elsewhere, and decided to try the locomotive works up at Schenectady. It seems that the people there had had a falling out among themselves, and one of the directors had started opposition works; but before he had completed all the buildings and put in machinery some compromise was made, and the works were for sale. We bought them very reasonably and moved everything there. These works were owned by me and my assistants until sold to the Edison General Electric Company. At one time we employed several thousand men; and since then the works have been greatly expanded.
"At these new works our orders were far in excess of our capital to handle the business, and both Mr. Insull and I were afraid we might get into trouble for lack of money. Mr. Insull was then my business manager, running the whole thing; and, therefore, when Mr. Henry Villard and his syndicate offered to buy us out, we concluded it was better to be sure than be sorry; so we sold out for a large sum. Villard was a very aggressive man with big ideas, but I could never quite understand him. He had no sense of humor. I remember one time we were going up on the Hudson River boat to inspect the works, and with us was Mr. Henderson, our chief engineer, who was certainly the best raconteur of funny stories I ever knew. We sat at the tail-end of the boat, and he started in to tell funny stories. Villard could not see a single point, and scarcely laughed at all; and Henderson became so disconcerted he had to give it up. It was the same way with Gould. In the early telegraph days I remember going with him to see Mackay in 'The Impecunious Country Editor.' It was very funny, full of amusing and absurd situations; but Gould never smiled once."
The formation of the Edison General Electric Company involved the consolidation of the immediate Edison manufacturing interests in electric light and power, with a capitalization of $12,000,000, now a relatively modest sum; but in those days the amount was large, and the combination caused a great deal of newspaper comment as to such a coinage of brain power. The next step came with the creation of the great General Electric Company of to-day, a combination of the Edison, Thomson-Houston, and Brush lighting interests in manufacture, which to this day maintains the ever-growing plants at Harrison, Lynn, and Schenectady, and there employs from twenty to twenty-five thousand people.
CHAPTER XVI
THE FIRST EDISON CENTRAL STATION
A NOTED inventor once said at the end of a lifetime of fighting to defend his rights, that he found there were three stages in all great inventions: the first, in which people said the thing could not be done; the second, in which they said anybody could do it; and the third, in which they said it had always been done by everybody. In his central-station work Edison has had very much this kind of experience; for while many of his opponents came to acknowledge the novelty and utility of his plans, and gave him unstinted praise, there are doubtless others who to this day profess to look upon him merely as an adapter. How different the view of so eminent a scientist as Lord Kelvin was, may be appreciated from his remark when in later years, in reply to the question why some one else did not invent so obvious and simple a thing as the Feeder System, he said: "The only answer I can think of is that no one else was Edison."
Undaunted by the attitude of doubt and the predictions of impossibility, Edison had pushed on until he was now able to realize all his ideas as to the establishment of a central station in the work that culminated in New York City in 1882. After he had conceived the broad plan, his ambition was to create the initial plant on Manhattan Island, where it would be convenient of access for watching its operation, and where the demonstration of its practicability would have influence in financial circles. The first intention was to cover a district extending from Canal Street on the north to Wall Street on the south; but Edison soon realized that this territory was too extensive for the initial experiment, and he decided finally upon the district included between Wall, Nassau, Spruce, and Ferry streets, Peck Slip and the East River, an area nearly a square mile in extent. One of the preliminary steps taken to enable him to figure on such a station and system was to have men go through this district on various days and note the number of gas jets burning at each hour up to two or three o'clock in the morning. The next step was to divide the region into a number of sub-districts and institute a house-to-house canvass to ascertain precisely the data and conditions pertinent to the project. When the canvass was over, Edison knew exactly how many gas jets there were in every building in the entire district, the average hours of burning, and the cost of light; also every consumer of power, and the quantity used; every hoistway to which an electric motor could be applied; and other details too numerous to mention, such as related to the gas itself, the satisfaction of the customers, and the limitations of day and night demand. All this information was embodied graphically in large maps of the district, by annotations in colored inks; and Edison thus could study the question with every detail before him. Such a reconnaissance, like that of a coming field of battle, was invaluable, and may help give a further idea of the man's inveterate care for the minutiae of things.
The laboratory note-books of this period—1878-80, more particularly—show an immense amount of calculation by Edison and his chief mathematician, Mr. Upton, on conductors for the distribution of current over large areas, and then later in the district described. With the results of this canvass before them, the sizes of the main conductors to be laid throughout the streets of this entire territory were figured, block by block; and the results were then placed on the map. These data revealed the fact that the quantity of copper required for the main conductors would be exceedingly large and costly; and, if ever, Edison was somewhat dismayed. But as usual this apparently insurmountable difficulty only spurred him on to further effort. It was but a short time thereafter that he solved the knotty problem by an invention mentioned in a previous chapter. This is known as the "feeder and main" system, for which he signed the application for a patent on August 4, 1880. As this invention effected a saving of seven-eighths of the cost of the chief conductors in a straight multiple arc system, the mains for the first district were refigured, and enormous new maps were made, which became the final basis of actual installation, as they were subsequently enlarged by the addition of every proposed junction-box, bridge safety-catch box, and street-intersection box in the whole area.
When this patent, after protracted fighting, was sustained by Judge Green in 1893, the Electrical Engineer remarked that the General Electric Company "must certainly feel elated" because of its importance; and the journal expressed its fear that although the specifications and claims related only to the maintenance of uniform pressure of current on lighting circuits, the owners might naturally seek to apply it also to feeders used in the electric-railway work already so extensive. At this time, however, the patent had only about a year of life left, owing to the expiration of the corresponding English patent. The fact that thirteen years had elapsed gives a vivid idea of the ordeal involved in sustaining a patent and the injustice to the inventor, while there is obviously hardship to those who cannot tell from any decision of the court whether they are infringing or not. It is interesting to note that the preparation for hearing this case in New Jersey was accompanied by models to show the court exactly the method and its economy, as worked out in comparison with what is known as the "tree system" of circuits—the older alternative way of doing it. As a basis of comparison, a district of thirty-six city blocks in the form of a square was assumed. The power station was placed at the centre of the square; each block had sixteen consumers using fifteen lights each. Conductors were run from the station to supply each of the four quarters of the district with light. In one example the "feeder" system was used; in the other the "tree." With these models were shown two cubes which represented one one-hundredth of the actual quantity of copper required for each quarter of the district by the two-wire tree system as compared with the feeder system under like conditions. The total weight of copper for the four quarter districts by the tree system was 803,250 pounds, but when the feeder system was used it was only 128,739 pounds! This was a reduction from $23.24 per lamp for copper to $3.72 per lamp. Other models emphasized this extraordinary contrast. At the time Edison was doing this work on economizing in conductors, much of the criticism against him was based on the assumed extravagant use of copper implied in the obvious "tree" system, and it was very naturally said that there was not enough copper in the world to supply his demands. It is true that the modern electrical arts have been a great stimulator of copper production, now taking a quarter of all made; yet evidently but for such inventions as this such arts could not have come into existence at all, or else in growing up they would have forced copper to starvation prices. [11]
[Footnote 11: For description of feeder patent see Appendix.]
It should be borne in mind that from the outset Edison had determined upon installing underground conductors as the only permanent and satisfactory method for the distribution of current from central stations in cities; and that at Menlo Park he laid out and operated such a system with about four hundred and twenty-five lamps. The underground system there was limited to the immediate vicinity of the laboratory and was somewhat crude, as well as much less complicated than would be the network of over eighty thousand lineal feet, which he calculated to be required for the underground circuits in the first district of New York City. At Menlo Park no effort was made for permanency; no provision was needed in regard to occasional openings of the street for various purposes; no new customers were to be connected from time to time to the mains, and no repairs were within contemplation. In New York the question of permanency was of paramount importance, and the other contingencies were sure to arise as well as conditions more easy to imagine than to forestall. These problems were all attacked in a resolute, thoroughgoing manner, and one by one solved by the invention of new and unprecedented devices that were adequate for the purposes of the time, and which are embodied in apparatus of slight modification in use up to the present day.
Just what all this means it is hard for the present generation to imagine. New York and all the other great cities in 1882, and for some years thereafter, were burdened and darkened by hideous masses of overhead wires carried on ugly wooden poles along all the main thoroughfares. One after another rival telegraph and telephone, stock ticker, burglar-alarm, and other companies had strung their circuits without any supervision or restriction; and these wires in all conditions of sag or decay ramified and crisscrossed in every direction, often hanging broken and loose-ended for months, there being no official compulsion to remove any dead wire. None of these circuits carried dangerous currents; but the introduction of the arc light brought an entirely new menace in the use of pressures that were even worse than the bully of the West who "kills on sight," because this kindred peril was invisible, and might lurk anywhere. New poles were put up, and the lighting circuits on them, with but a slight insulation of cotton impregnated with some "weather-proof" compound, straggled all over the city exposed to wind and rain and accidental contact with other wires, or with the metal of buildings. So many fatalities occurred that the insulated wire used, called "underwriters," because approved by the insurance bodies, became jocularly known as "undertakers," and efforts were made to improve its protective qualities. Then came the overhead circuits for distributing electrical energy to motors for operating elevators, driving machinery, etc., and these, while using a lower, safer potential, were proportionately larger. There were no wires underground. Morse had tried that at the very beginning of electrical application, in telegraphy, and all agreed that renewals of the experiment were at once costly and foolish. At last, in cities like New York, what may be styled generically the "overhead system" of wires broke down under its own weight; and various methods of underground conductors were tried, hastened in many places by the chopping down of poles and wires as the result of some accident that stirred the public indignation. One typical tragic scene was that in New York, where, within sight of the City Hall, a lineman was killed at his work on the arc light pole, and his body slowly roasted before the gaze of the excited populace, which for days afterward dropped its silver and copper coin into the alms-box nailed to the fatal pole for the benefit of his family. Out of all this in New York came a board of electrical control, a conduit system, and in the final analysis the Public Service Commission, that is credited to Governor Hughes as the furthest development of utility corporation control.
The "road to yesterday" back to Edison and his insistence on underground wires is a long one, but the preceding paragraph traces it. Even admitting that the size and weight of his low-tension conductors necessitated putting them underground, this argues nothing against the propriety and sanity of his methods. He believed deeply and firmly in the analogy between electrical supply and that for water and gas, and pointed to the trite fact that nobody hoisted the water and gas mains into the air on stilts, and that none of the pressures were inimical to human safety. The arc-lighting methods were unconsciously and unwittingly prophetic of the latter-day long-distance transmissions at high pressure that, electrically, have placed the energy of Niagara at the command of Syracuse and Utica, and have put the power of the falling waters of the Sierras at the disposal of San Francisco, two hundred miles away. But within city limits overhead wires, with such space-consuming potentials, are as fraught with mischievous peril to the public as the dynamite stored by a nonchalant contractor in the cellar of a schoolhouse. As an offset, then, to any tendency to depreciate the intrinsic value of Edison's lighting work, let the claim be here set forth modestly and subject to interference, that he was the father of underground wires in America, and by his example outlined the policy now dominant in every city of the first rank. Even the comment of a cynic in regard to electrical development may be accepted: "Some electrical companies wanted all the air; others apparently had use for all the water; Edison only asked for the earth."
The late Jacob Hess, a famous New York Republican politician, was a member of the commission appointed to put the wires underground in New York City, in the "eighties." He stated that when the commission was struggling with the problem, and examining all kinds of devices and plans, patented and unpatented, for which fabulous sums were often asked, the body turned to Edison in its perplexity and asked for advice. Edison said: "All you have to do, gentlemen, is to insulate your wires, draw them through the cheapest thing on earth—iron pipe—run your pipes through channels or galleries under the street, and you've got the whole thing done." This was practically the system adopted and in use to this day. What puzzled the old politician was that Edison would accept nothing for his advice.
Another story may also be interpolated here as to the underground work done in New York for the first Edison station. It refers to the "man higher up," although the phrase had not been coined in those days of lower public morality. That a corporation should be "held up" was accepted philosophically by the corporation as one of the unavoidable incidents of its business; and if the corporation "got back" by securing some privilege without paying for it, the public was ready to condone if not applaud. Public utilities were in the making, and no one in particular had a keen sense of what was right or what was wrong, in the hard, practical details of their development. Edison tells this illuminating story: "When I was laying tubes in the streets of New York, the office received notice from the Commissioner of Public Works to appear at his office at a certain hour. I went up there with a gentleman to see the Commissioner, H. O. Thompson. On arrival he said to me: 'You are putting down these tubes. The Department of Public Works requires that you should have five inspectors to look after this work, and that their salary shall be $5 per day, payable at the end of each week. Good-morning.' I went out very much crestfallen, thinking I would be delayed and harassed in the work which I was anxious to finish, and was doing night and day. We watched patiently for those inspectors to appear. The only appearance they made was to draw their pay Saturday afternoon."
Just before Christmas in 1880—December 17—as an item for the silk stocking of Father Knickerbocker—the Edison Electric Illuminating Company of New York was organized. In pursuance of the policy adhered to by Edison, a license was issued to it for the exclusive use of the system in that territory—Manhattan Island—in consideration of a certain sum of money and a fixed percentage of its capital in stock for the patent rights. Early in 1881 it was altogether a paper enterprise, but events moved swiftly as narrated already, and on June 25, 1881, the first "Jumbo" prototype of the dynamo-electric machines to generate current at the Pearl Street station was put through its paces before being shipped to Paris to furnish new sensations to the flaneur of the boulevards. A number of the Edison officers and employees assembled at Goerck Street to see this "gigantic" machine go into action, and watched its performance with due reverence all through the night until five o'clock on Sunday morning, when it respected the conventionalities by breaking a shaft and suspending further tests. After this dynamo was shipped to France, and its successors to England for the Holborn Viaduct plant, Edison made still further improvements in design, increasing capacity and economy, and then proceeded vigorously with six machines for Pearl Street.
An ideal location for any central station is at the very centre of the district served. It may be questioned whether it often goes there. In the New York first district the nearest property available was a double building at Nos. 255 and 257 Pearl Street, occupying a lot so by 100 feet. It was four stories high, with a fire-wall dividing it into two equal parts. One of these parts was converted for the uses of the station proper, and the other was used as a tube-shop by the underground construction department, as well as for repair-shops, storage, etc. Those were the days when no one built a new edifice for station purposes; that would have been deemed a fantastic extravagance. One early station in New York for arc lighting was an old soap-works whose well-soaked floors did not need much additional grease to render them choice fuel for the inevitable flames. In this Pearl Street instance, the building, erected originally for commercial uses, was quite incapable of sustaining the weight of the heavy dynamos and steam-engines to be installed on the second floor; so the old flooring was torn out and a new one of heavy girders supported by stiff columns was substituted. This heavy construction, more familiar nowadays, and not unlike the supporting metal structure of the Manhattan Elevated road, was erected independent of the enclosing walls, and occupied the full width of 257 Pearl Street, and about three-quarters of its depth. This change in the internal arrangements did not at all affect the ugly external appearance, which did little to suggest the stately and ornate stations since put up by the New York Edison Company, the latest occupying whole city blocks.
Of this episode Edison gives the following account: "While planning for my first New York station—Pearl Street—of course, I had no real estate, and from lack of experience had very little knowledge of its cost in New York; so I assumed a rather large, liberal amount of it to plan my station on. It occurred to me one day that before I went too far with my plans I had better find out what real estate was worth. In my original plan I had 200 by 200 feet. I thought that by going down on a slum street near the water-front I would get some pretty cheap property. So I picked out the worst dilapidated street there was, and found I could only get two buildings, each 25 feet front, one 100 feet deep and the other 85 feet deep. I thought about $10,000 each would cover it; but when I got the price I found that they wanted $75,000 for one and $80,000 for the other. Then I was compelled to change my plans and go upward in the air where real estate was cheap. I cleared out the building entirely to the walls and built my station of structural ironwork, running it up high." |
|