p-books.com
Democracy and Education
by John Dewey
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

Representing both the necessities of life and the adornments with which the necessities have been clothed, they tap instincts at a deep level; they are saturated with facts and principles having a social quality.

To charge that the various activities of gardening, weaving, construction in wood, manipulation of metals, cooking, etc., which carry over these fundamental human concerns into school resources, have a merely bread and butter value is to miss their point. If the mass of mankind has usually found in its industrial occupations nothing but evils which had to be endured for the sake of maintaining existence, the fault is not in the occupations, but in the conditions under which they are carried on. The continually increasing importance of economic factors in contemporary life makes it the more needed that education should reveal their scientific content and their social value. For in schools, occupations are not carried on for pecuniary gain but for their own content. Freed from extraneous associations and from the pressure of wage-earning, they supply modes of experience which are intrinsically valuable; they are truly liberalizing in quality.

Gardening, for example, need not be taught either for the sake of preparing future gardeners, or as an agreeable way of passing time. It affords an avenue of approach to knowledge of the place farming and horticulture have had in the history of the race and which they occupy in present social organization. Carried on in an environment educationally controlled, they are means for making a study of the facts of growth, the chemistry of soil, the role of light, air, and moisture, injurious and helpful animal life, etc. There is nothing in the elementary study of botany which cannot be introduced in a vital way in connection with caring for the growth of seeds. Instead of the subject matter belonging to a peculiar study called botany, it will then belong to life, and will find, moreover, its natural correlations with the facts of soil, animal life, and human relations. As students grow mature, they will perceive problems of interest which may be pursued for the sake of discovery, independent of the original direct interest in gardening—problems connected with the germination and nutrition of plants, the reproduction of fruits, etc., thus making a transition to deliberate intellectual investigations.

The illustration is intended to apply, of course, to other school occupations,—wood-working, cooking, and on through the list. It is pertinent to note that in the history of the race the sciences grew gradually out from useful social occupations. Physics developed slowly out of the use of tools and machines; the important branch of physics known as mechanics testifies in its name to its original associations. The lever, wheel, inclined plane, etc., were among the first great intellectual discoveries of mankind, and they are none the less intellectual because they occurred in the course of seeking for means of accomplishing practical ends. The great advance of electrical science in the last generation was closely associated, as effect and as cause, with application of electric agencies to means of communication, transportation, lighting of cities and houses, and more economical production of goods. These are social ends, moreover, and if they are too closely associated with notions of private profit, it is not because of anything in them, but because they have been deflected to private uses:—a fact which puts upon the school the responsibility of restoring their connection, in the mind of the coming generation, with public scientific and social interests. In like ways, chemistry grew out of processes of dying, bleaching, metal working, etc., and in recent times has found innumerable new uses in industry.

Mathematics is now a highly abstract science; geometry, however, means literally earth-measuring: the practical use of number in counting to keep track of things and in measuring is even more important to-day than in the times when it was invented for these purposes. Such considerations (which could be duplicated in the history of any science) are not arguments for a recapitulation of the history of the race or for dwelling long in the early rule of thumb stage. But they indicate the possibilities—greater to-day than ever before—of using active occupations as opportunities for scientific study. The opportunities are just as great on the social side, whether we look at the life of collective humanity in its past or in its future. The most direct road for elementary students into civics and economics is found in consideration of the place and office of industrial occupations in social life. Even for older students, the social sciences would be less abstract and formal if they were dealt with less as sciences (less as formulated bodies of knowledge) and more in their direct subject-matter as that is found in the daily life of the social groups in which the student shares.

Connection of occupations with the method of science is at least as close as with its subject matter. The ages when scientific progress was slow were the ages when learned men had contempt for the material and processes of everyday life, especially for those concerned with manual pursuits. Consequently they strove to develop knowledge out of general principles—almost out of their heads—by logical reasons. It seems as absurd that learning should come from action on and with physical things, like dropping acid on a stone to see what would happen, as that it should come from sticking an awl with waxed thread through a piece of leather. But the rise of experimental methods proved that, given control of conditions, the latter operation is more typical of the right way of knowledge than isolated logical reasonings. Experiment developed in the seventeenth and succeeding centuries and became the authorized way of knowing when men's interests were centered in the question of control of nature for human uses. The active occupations in which appliances are brought to bear upon physical things with the intention of effecting useful changes is the most vital introduction to the experimental method.

3. Work and Play. What has been termed active occupation includes both play and work. In their intrinsic meaning, play and industry are by no means so antithetical to one another as is often assumed, any sharp contrast being due to undesirable social conditions. Both involve ends consciously entertained and the selection and adaptations of materials and processes designed to effect the desired ends. The difference between them is largely one of time-span, influencing the directness of the connection of means and ends. In play, the interest is more direct—a fact frequently indicated by saying that in play the activity is its own end, instead of its having an ulterior result. The statement is correct, but it is falsely taken, if supposed to mean that play activity is momentary, having no element of looking ahead and none of pursuit. Hunting, for example, is one of the commonest forms of adult play, but the existence of foresight and the direction of present activity by what one is watching for are obvious. When an activity is its own end in the sense that the action of the moment is complete in itself, it is purely physical; it has no meaning (See p. 77). The person is either going through motions quite blindly, perhaps purely imitatively, or else is in a state of excitement which is exhausting to mind and nerves. Both results may be seen in some types of kindergarten games where the idea of play is so highly symbolic that only the adult is conscious of it. Unless the children succeed in reading in some quite different idea of their own, they move about either as if in a hypnotic daze, or they respond to a direct excitation.

The point of these remarks is that play has an end in the sense of a directing idea which gives point to the successive acts. Persons who play are not just doing something (pure physical movement); they are trying to do or effect something, an attitude that involves anticipatory forecasts which stimulate their present responses. The anticipated result, however, is rather a subsequent action than the production of a specific change in things. Consequently play is free, plastic. Where some definite external outcome is wanted, the end has to be held to with some persistence, which increases as the contemplated result is complex and requires a fairly long series of intermediate adaptations. When the intended act is another activity, it is not necessary to look far ahead and it is possible to alter it easily and frequently. If a child is making a toy boat, he must hold on to a single end and direct a considerable number of acts by that one idea. If he is just "playing boat" he may change the material that serves as a boat almost at will, and introduce new factors as fancy suggests. The imagination makes what it will of chairs, blocks, leaves, chips, if they serve the purpose of carrying activity forward.

From a very early age, however, there is no distinction of exclusive periods of play activity and work activity, but only one of emphasis. There are definite results which even young children desire, and try to bring to pass. Their eager interest in sharing the occupations of others, if nothing else, accomplishes this. Children want to "help"; they are anxious to engage in the pursuits of adults which effect external changes: setting the table, washing dishes, helping care for animals, etc. In their plays, they like to construct their own toys and appliances. With increasing maturity, activity which does not give back results of tangible and visible achievement loses its interest. Play then changes to fooling and if habitually indulged in is demoralizing. Observable results are necessary to enable persons to get a sense and a measure of their own powers. When make-believe is recognized to be make-believe, the device of making objects in fancy alone is too easy to stimulate intense action. One has only to observe the countenance of children really playing to note that their attitude is one of serious absorption; this attitude cannot be maintained when things cease to afford adequate stimulation.

When fairly remote results of a definite character are foreseen and enlist persistent effort for their accomplishment, play passes into work. Like play, it signifies purposeful activity and differs not in that activity is subordinated to an external result, but in the fact that a longer course of activity is occasioned by the idea of a result. The demand for continuous attention is greater, and more intelligence must be shown in selecting and shaping means. To extend this account would be to repeat what has been said under the caption of aim, interest, and thinking. It is pertinent, however, to inquire why the idea is so current that work involves subordination of an activity to an ulterior material result. The extreme form of this subordination, namely drudgery, offers a clew. Activity carried on under conditions of external pressure or coercion is not carried on for any significance attached to the doing. The course of action is not intrinsically satisfying; it is a mere means for avoiding some penalty, or for gaining some reward at its conclusion. What is inherently repulsive is endured for the sake of averting something still more repulsive or of securing a gain hitched on by others. Under unfree economic conditions, this state of affairs is bound to exist. Work or industry offers little to engage the emotions and the imagination; it is a more or less mechanical series of strains. Only the hold which the completion of the work has upon a person will keep him going. But the end should be intrinsic to the action; it should be its end—a part of its own course. Then it affords a stimulus to effort very different from that arising from the thought of results which have nothing to do with the intervening action. As already mentioned, the absence of economic pressure in schools supplies an opportunity for reproducing industrial situations of mature life under conditions where the occupation can be carried on for its own sake. If in some cases, pecuniary recognition is also a result of an action, though not the chief motive for it, that fact may well increase the significance of the occupation. Where something approaching drudgery or the need of fulfilling externally imposed tasks exists, the demand for play persists, but tends to be perverted. The ordinary course of action fails to give adequate stimulus to emotion and imagination. So in leisure time, there is an imperious demand for their stimulation by any kind of means; gambling, drink, etc., may be resorted to. Or, in less extreme cases, there is recourse to idle amusement; to anything which passes time with immediate agreeableness. Recreation, as the word indicates, is recuperation of energy. No demand of human nature is more urgent or less to be escaped. The idea that the need can be suppressed is absolutely fallacious, and the Puritanic tradition which disallows the need has entailed an enormous crop of evils. If education does not afford opportunity for wholesome recreation and train capacity for seeking and finding it, the suppressed instincts find all sorts of illicit outlets, sometimes overt, sometimes confined to indulgence of the imagination. Education has no more serious responsibility than making adequate provision for enjoyment of recreative leisure; not only for the sake of immediate health, but still more if possible for the sake of its lasting effect upon habits of mind. Art is again the answer to this demand.

Summary. In the previous chapter we found that the primary subject matter of knowing is that contained in learning how to do things of a fairly direct sort. The educational equivalent of this principle is the consistent use of simple occupations which appeal to the powers of youth and which typify general modes of social activity. Skill and information about materials, tools, and laws of energy are acquired while activities are carried on for their own sake. The fact that they are socially representative gives a quality to the skill and knowledge gained which makes them transferable to out-of-school situations. It is important not to confuse the psychological distinction between play and work with the economic distinction. Psychologically, the defining characteristic of play is not amusement nor aimlessness. It is the fact that the aim is thought of as more activity in the same line, without defining continuity of action in reference to results produced. Activities as they grow more complicated gain added meaning by greater attention to specific results achieved. Thus they pass gradually into work. Both are equally free and intrinsically motivated, apart from false economic conditions which tend to make play into idle excitement for the well to do, and work into uncongenial labor for the poor. Work is psychologically simply an activity which consciously includes regard for consequences as a part of itself; it becomes constrained labor when the consequences are outside of the activity as an end to which activity is merely a means. Work which remains permeated with the play attitude is art—in quality if not in conventional designation.



Chapter Sixteen: The Significance of Geography and History

1. Extension of Meaning of Primary Activities. Nothing is more striking than the difference between an activity as merely physical and the wealth of meanings which the same activity may assume. From the outside, an astronomer gazing through a telescope is like a small boy looking through the same tube. In each case, there is an arrangement of glass and metal, an eye, and a little speck of light in the distance. Yet at a critical moment, the activity of an astronomer might be concerned with the birth of a world, and have whatever is known about the starry heavens as its significant content. Physically speaking, what man has effected on this globe in his progress from savagery is a mere scratch on its surface, not perceptible at a distance which is slight in comparison with the reaches even of the solar system. Yet in meaning what has been accomplished measures just the difference of civilization from savagery. Although the activities, physically viewed, have changed somewhat, this change is slight in comparison with the development of the meanings attaching to the activities. There is no limit to the meaning which an action may come to possess. It all depends upon the context of perceived connections in which it is placed; the reach of imagination in realizing connections is inexhaustible. The advantage which the activity of man has in appropriating and finding meanings makes his education something else than the manufacture of a tool or the training of an animal. The latter increase efficiency; they do not develop significance. The final educational importance of such occupations in play and work as were considered in the last chapter is that they afford the most direct instrumentalities for such extension of meaning. Set going under adequate conditions they are magnets for gathering and retaining an indefinitely wide scope of intellectual considerations. They provide vital centers for the reception and assimilation of information. When information is purveyed in chunks simply as information to be retained for its own sake, it tends to stratify over vital experience. Entering as a factor into an activity pursued for its own sake—whether as a means or as a widening of the content of the aim—it is informing. The insight directly gained fuses with what is told. Individual experience is then capable of taking up and holding in solution the net results of the experience of the group to which he belongs—including the results of sufferings and trials over long stretches of time. And such media have no fixed saturation point where further absorption is impossible. The more that is taken in, the greater capacity there is for further assimilation. New receptiveness follows upon new curiosity, and new curiosity upon information gained.

The meanings with which activities become charged, concern nature and man. This is an obvious truism, which however gains meaning when translated into educational equivalents. So translated, it signifies that geography and history supply subject matter which gives background and outlook, intellectual perspective, to what might otherwise be narrow personal actions or mere forms of technical skill. With every increase of ability to place our own doings in their time and space connections, our doings gain in significant content. We realize that we are citizens of no mean city in discovering the scene in space of which we are denizens, and the continuous manifestation of endeavor in time of which we are heirs and continuers. Thus our ordinary daily experiences cease to be things of the moment and gain enduring substance. Of course if geography and history are taught as ready-made studies which a person studies simply because he is sent to school, it easily happens that a large number of statements about things remote and alien to everyday experience are learned. Activity is divided, and two separate worlds are built up, occupying activity at divided periods. No transmutation takes place; ordinary experience is not enlarged in meaning by getting its connections; what is studied is not animated and made real by entering into immediate activity. Ordinary experience is not even left as it was, narrow but vital. Rather, it loses something of its mobility and sensitiveness to suggestions. It is weighed down and pushed into a corner by a load of unassimilated information. It parts with its flexible responsiveness and alert eagerness for additional meaning. Mere amassing of information apart from the direct interests of life makes mind wooden; elasticity disappears.

Normally every activity engaged in for its own sake reaches out beyond its immediate self. It does not passively wait for information to be bestowed which will increase its meaning; it seeks it out. Curiosity is not an accidental isolated possession; it is a necessary consequence of the fact that an experience is a moving, changing thing, involving all kinds of connections with other things. Curiosity is but the tendency to make these conditions perceptible. It is the business of educators to supply an environment so that this reaching out of an experience may be fruitfully rewarded and kept continuously active. Within a certain kind of environment, an activity may be checked so that the only meaning which accrues is of its direct and tangible isolated outcome. One may cook, or hammer, or walk, and the resulting consequences may not take the mind any farther than the consequences of cooking, hammering, and walking in the literal—or physical—sense. But nevertheless the consequences of the act remain far-reaching. To walk involves a displacement and reaction of the resisting earth, whose thrill is felt wherever there is matter. It involves the structure of the limbs and the nervous system; the principles of mechanics. To cook is to utilize heat and moisture to change the chemical relations of food materials; it has a bearing upon the assimilation of food and the growth of the body. The utmost that the most learned men of science know in physics, chemistry, physiology is not enough to make all these consequences and connections perceptible. The task of education, once more, is to see to it that such activities are performed in such ways and under such conditions as render these conditions as perceptible as possible. To "learn geography" is to gain in power to perceive the spatial, the natural, connections of an ordinary act; to "learn history" is essentially to gain in power to recognize its human connections. For what is called geography as a formulated study is simply the body of facts and principles which have been discovered in other men's experience about the natural medium in which we live, and in connection with which the particular acts of our life have an explanation. So history as a formulated study is but the body of known facts about the activities and sufferings of the social groups with which our own lives are continuous, and through reference to which our own customs and institutions are illuminated.

2. The Complementary Nature of History and Geography. History and geography—including in the latter, for reasons about to be mentioned, nature study—are the information studies par excellence of the schools. Examination of the materials and the method of their use will make clear that the difference between penetration of this information into living experience and its mere piling up in isolated heaps depends upon whether these studies are faithful to the interdependence of man and nature which affords these studies their justification. Nowhere, however, is there greater danger that subject matter will be accepted as appropriate educational material simply because it has become customary to teach and learn it. The idea of a philosophic reason for it, because of the function of the material in a worthy transformation of experience, is looked upon as a vain fancy, or as supplying a high-sounding phraseology in support of what is already done. The words "history" and "geography" suggest simply the matter which has been traditionally sanctioned in the schools. The mass and variety of this matter discourage an attempt to see what it really stands for, and how it can be so taught as to fulfill its mission in the experience of pupils. But unless the idea that there is a unifying and social direction in education is a farcical pretense, subjects that bulk as large in the curriculum as history and geography, must represent a general function in the development of a truly socialized and intellectualized experience. The discovery of this function must be employed as a criterion for trying and sifting the facts taught and the methods used.

The function of historical and geographical subject matter has been stated; it is to enrich and liberate the more direct and personal contacts of life by furnishing their context, their background and outlook. While geography emphasizes the physical side and history the social, these are only emphases in a common topic, namely, the associated life of men. For this associated life, with its experiments, its ways and means, its achievements and failures, does not go on in the sky nor yet in a vacuum. It takes place on the earth. This setting of nature does not bear to social activities the relation that the scenery of a theatrical performance bears to a dramatic representation; it enters into the very make-up of the social happenings that form history. Nature is the medium of social occurrences. It furnishes original stimuli; it supplies obstacles and resources. Civilization is the progressive mastery of its varied energies. When this interdependence of the study of history, representing the human emphasis, with the study of geography, representing the natural, is ignored, history sinks to a listing of dates with an appended inventory of events, labeled "important"; or else it becomes a literary phantasy—for in purely literary history the natural environment is but stage scenery.

Geography, of course, has its educative influence in a counterpart connection of natural facts with social events and their consequences. The classic definition of geography as an account of the earth as the home of man expresses the educational reality. But it is easier to give this definition than it is to present specific geographical subject matter in its vital human bearings. The residence, pursuits, successes, and failures of men are the things that give the geographic data their reason for inclusion in the material of instruction. But to hold the two together requires an informed and cultivated imagination. When the ties are broken, geography presents itself as that hodge-podge of unrelated fragments too often found. It appears as a veritable rag-bag of intellectual odds and ends: the height of a mountain here, the course of a river there, the quantity of shingles produced in this town, the tonnage of the shipping in that, the boundary of a county, the capital of a state. The earth as the home of man is humanizing and unified; the earth viewed as a miscellany of facts is scattering and imaginatively inert. Geography is a topic that originally appeals to imagination—even to the romantic imagination. It shares in the wonder and glory that attach to adventure, travel, and exploration. The variety of peoples and environments, their contrast with familiar scenes, furnishes infinite stimulation. The mind is moved from the monotony of the customary. And while local or home geography is the natural starting point in the reconstructive development of the natural environment, it is an intellectual starting point for moving out into the unknown, not an end in itself. When not treated as a basis for getting at the large world beyond, the study of the home geography becomes as deadly as do object lessons which simply summarize the properties of familiar objects. The reason is the same. The imagination is not fed, but is held down to recapitulating, cataloguing, and refining what is already known. But when the familiar fences that mark the limits of the village proprietors are signs that introduce an understanding of the boundaries of great nations, even fences are lighted with meaning. Sunlight, air, running water, inequality of earth's surface, varied industries, civil officers and their duties—all these things are found in the local environment. Treated as if their meaning began and ended in those confines, they are curious facts to be laboriously learned. As instruments for extending the limits of experience, bringing within its scope peoples and things otherwise strange and unknown, they are transfigured by the use to which they are put. Sunlight, wind, stream, commerce, political relations come from afar and lead the thoughts afar. To follow their course is to enlarge the mind not by stuffing it with additional information, but by remaking the meaning of what was previously a matter of course.

The same principle coordinates branches, or phases, of geographical study which tend to become specialized and separate. Mathematical or astronomical, physiographic, topographic, political, commercial, geography, all make their claims. How are they to be adjusted? By an external compromise that crowds in so much of each? No other method is to be found unless it be constantly borne in mind that the educational center of gravity is in the cultural or humane aspects of the subject. From this center, any material becomes relevant in so far as it is needed to help appreciate the significance of human activities and relations. The differences of civilization in cold and tropical regions, the special inventions, industrial and political, of peoples in the temperate regions, cannot be understood without appeal to the earth as a member of the solar system. Economic activities deeply influence social intercourse and political organization on one side, and reflect physical conditions on the other. The specializations of these topics are for the specialists; their interaction concerns man as a being whose experience is social.

To include nature study within geography doubtless seems forced; verbally, it is. But in educational idea there is but one reality, and it is pity that in practice we have two names: for the diversity of names tends to conceal the identity of meaning. Nature and the earth should be equivalent terms, and so should earth study and nature study. Everybody knows that nature study has suffered in schools from scrappiness of subject matter, due to dealing with a large number of isolated points. The parts of a flower have been studied, for example, apart from the flower as an organ; the flower apart from the plant; the plant apart from the soil, air, and light in which and through which it lives. The result is an inevitable deadness of topics to which attention is invited, but which are so isolated that they do not feed imagination. The lack of interest is so great that it was seriously proposed to revive animism, to clothe natural facts and events with myths in order that they might attract and hold the mind. In numberless cases, more or less silly personifications were resorted to. The method was silly, but it expressed a real need for a human atmosphere. The facts had been torn to pieces by being taken out of their context. They no longer belonged to the earth; they had no abiding place anywhere. To compensate, recourse was had to artificial and sentimental associations. The real remedy is to make nature study a study of nature, not of fragments made meaningless through complete removal from the situations in which they are produced and in which they operate. When nature is treated as a whole, like the earth in its relations, its phenomena fall into their natural relations of sympathy and association with human life, and artificial substitutes are not needed.

3. History and Present Social Life. The segregation which kills the vitality of history is divorce from present modes and concerns of social life. The past just as past is no longer our affair. If it were wholly gone and done with, there would be only one reasonable attitude toward it. Let the dead bury their dead. But knowledge of the past is the key to understanding the present. History deals with the past, but this past is the history of the present. An intelligent study of the discovery, explorations, colonization of America, of the pioneer movement westward, of immigration, etc., should be a study of the United States as it is to-day: of the country we now live in. Studying it in process of formation makes much that is too complex to be directly grasped open to comprehension. Genetic method was perhaps the chief scientific achievement of the latter half of the nineteenth century. Its principle is that the way to get insight into any complex product is to trace the process of its making,—to follow it through the successive stages of its growth. To apply this method to history as if it meant only the truism that the present social state cannot be separated from its past, is one-sided. It means equally that past events cannot be separated from the living present and retain meaning. The true starting point of history is always some present situation with its problems.

This general principle may be briefly applied to a consideration of its bearing upon a number of points. The biographical method is generally recommended as the natural mode of approach to historical study. The lives of great men, of heroes and leaders, make concrete and vital historic episodes otherwise abstract and incomprehensible. They condense into vivid pictures complicated and tangled series of events spread over so much space and time that only a highly trained mind can follow and unravel them. There can be no doubt of the psychological soundness of this principle. But it is misused when employed to throw into exaggerated relief the doings of a few individuals without reference to the social situations which they represent. When a biography is related just as an account of the doings of a man isolated from the conditions that aroused him and to which his activities were a response, we do not have a study of history, for we have no study of social life, which is an affair of individuals in association. We get only a sugar coating which makes it easier to swallow certain fragments of information. Much attention has been given of late to primitive life as an introduction to learning history. Here also there is a right and a wrong way of conceiving its value. The seemingly ready-made character and the complexity of present conditions, their apparently hard and fast character, is an almost insuperable obstacle to gaining insight into their nature. Recourse to the primitive may furnish the fundamental elements of the present situation in immensely simplified form. It is like unraveling a cloth so complex and so close to the eyes that its scheme cannot be seen, until the larger coarser features of the pattern appear. We cannot simplify the present situations by deliberate experiment, but resort to primitive life presents us with the sort of results we should desire from an experiment. Social relationships and modes of organized action are reduced to their lowest terms. When this social aim is overlooked, however, the study of primitive life becomes simply a rehearsing of sensational and exciting features of savagery. Primitive history suggests industrial history. For one of the chief reasons for going to more primitive conditions to resolve the present into more easily perceived factors is that we may realize how the fundamental problems of procuring subsistence, shelter, and protection have been met; and by seeing how these were solved in the earlier days of the human race, form some conception of the long road which has had to be traveled, and of the successive inventions by which the race has been brought forward in culture. We do not need to go into disputes regarding the economic interpretation of history to realize that the industrial history of mankind gives insight into two important phases of social life in a way which no other phase of history can possibly do. It presents us with knowledge of the successive inventions by which theoretical science has been applied to the control of nature in the interests of security and prosperity of social life. It thus reveals the successive causes of social progress. Its other service is to put before us the things that fundamentally concern all men in common—the occupations and values connected with getting a living. Economic history deals with the activities, the career, and fortunes of the common man as does no other branch of history. The one thing every individual must do is to live; the one thing that society must do is to secure from each individual his fair contribution to the general well being and see to it that a just return is made to him.

Economic history is more human, more democratic, and hence more liberalizing than political history. It deals not with the rise and fall of principalities and powers, but with the growth of the effective liberties, through command of nature, of the common man for whom powers and principalities exist.

Industrial history also offers a more direct avenue of approach to the realization of the intimate connection of man's struggles, successes, and failures with nature than does political history—to say nothing of the military history into which political history so easily runs when reduced to the level of youthful comprehension. For industrial history is essentially an account of the way in which man has learned to utilize natural energy from the time when men mostly exploited the muscular energies of other men to the time when, in promise if not in actuality, the resources of nature are so under command as to enable men to extend a common dominion over her. When the history of work, when the conditions of using the soil, forest, mine, of domesticating and cultivating grains and animals, of manufacture and distribution, are left out of account, history tends to become merely literary—a systematized romance of a mythical humanity living upon itself instead of upon the earth.

Perhaps the most neglected branch of history in general education is intellectual history. We are only just beginning to realize that the great heroes who have advanced human destiny are not its politicians, generals, and diplomatists, but the scientific discoverers and inventors who have put into man's hands the instrumentalities of an expanding and controlled experience, and the artists and poets who have celebrated his struggles, triumphs, and defeats in such language, pictorial, plastic, or written, that their meaning is rendered universally accessible to others. One of the advantages of industrial history as a history of man's progressive adaptation of natural forces to social uses is the opportunity which it affords for consideration of advance in the methods and results of knowledge. At present men are accustomed to eulogize intelligence and reason in general terms; their fundamental importance is urged. But pupils often come away from the conventional study of history, and think either that the human intellect is a static quantity which has not progressed by the invention of better methods, or else that intelligence, save as a display of personal shrewdness, is a negligible historic factor. Surely no better way could be devised of instilling a genuine sense of the part which mind has to play in life than a study of history which makes plain how the entire advance of humanity from savagery to civilization has been dependent upon intellectual discoveries and inventions, and the extent to which the things which ordinarily figure most largely in historical writings have been side issues, or even obstructions for intelligence to overcome.

Pursued in this fashion, history would most naturally become of ethical value in teaching. Intelligent insight into present forms of associated life is necessary for a character whose morality is more than colorless innocence. Historical knowledge helps provide such insight. It is an organ for analysis of the warp and woof of the present social fabric, of making known the forces which have woven the pattern. The use of history for cultivating a socialized intelligence constitutes its moral significance. It is possible to employ it as a kind of reservoir of anecdotes to be drawn on to inculcate special moral lessons on this virtue or that vice. But such teaching is not so much an ethical use of history as it is an effort to create moral impressions by means of more or less authentic material. At best, it produces a temporary emotional glow; at worst, callous indifference to moralizing. The assistance which may be given by history to a more intelligent sympathetic understanding of the social situations of the present in which individuals share is a permanent and constructive moral asset.

Summary. It is the nature of an experience to have implications which go far beyond what is at first consciously noted in it. Bringing these connections or implications to consciousness enhances the meaning of the experience. Any experience, however trivial in its first appearance, is capable of assuming an indefinite richness of significance by extending its range of perceived connections. Normal communication with others is the readiest way of effecting this development, for it links up the net results of the experience of the group and even the race with the immediate experience of an individual. By normal communication is meant that in which there is a joint interest, a common interest, so that one is eager to give and the other to take. It contrasts with telling or stating things simply for the sake of impressing them upon another, merely in order to test him to see how much he has retained and can literally reproduce.

Geography and history are the two great school resources for bringing about the enlargement of the significance of a direct personal experience. The active occupations described in the previous chapter reach out in space and time with respect to both nature and man. Unless they are taught for external reasons or as mere modes of skill their chief educational value is that they provide the most direct and interesting roads out into the larger world of meanings stated in history and geography. While history makes human implications explicit and geography natural connections, these subjects are two phases of the same living whole, since the life of men in association goes on in nature, not as an accidental setting, but as the material and medium of development.



Chapter Seventeen: Science in the Course of Study

1. The Logical and the Psychological. By science is meant, as already stated, that knowledge which is the outcome of methods of observation, reflection, and testing which are deliberately adopted to secure a settled, assured subject matter. It involves an intelligent and persistent endeavor to revise current beliefs so as to weed out what is erroneous, to add to their accuracy, and, above all, to give them such shape that the dependencies of the various facts upon one another may be as obvious as possible. It is, like all knowledge, an outcome of activity bringing about certain changes in the environment. But in its case, the quality of the resulting knowledge is the controlling factor and not an incident of the activity. Both logically and educationally, science is the perfecting of knowing, its last stage.

Science, in short, signifies a realization of the logical implications of any knowledge. Logical order is not a form imposed upon what is known; it is the proper form of knowledge as perfected. For it means that the statement of subject matter is of a nature to exhibit to one who understands it the premises from which it follows and the conclusions to which it points (See ante, p. 190). As from a few bones the competent zoologist reconstructs an animal; so from the form of a statement in mathematics or physics the specialist in the subject can form an idea of the system of truths in which it has its place.

To the non-expert, however, this perfected form is a stumbling block. Just because the material is stated with reference to the furtherance of knowledge as an end in itself, its connections with the material of everyday life are hidden. To the layman the bones are a mere curiosity. Until he had mastered the principles of zoology, his efforts to make anything out of them would be random and blind. From the standpoint of the learner scientific form is an ideal to be achieved, not a starting point from which to set out. It is, nevertheless, a frequent practice to start in instruction with the rudiments of science somewhat simplified. The necessary consequence is an isolation of science from significant experience. The pupil learns symbols without the key to their meaning. He acquires a technical body of information without ability to trace its connections with the objects and operations with which he is familiar—often he acquires simply a peculiar vocabulary. There is a strong temptation to assume that presenting subject matter in its perfected form provides a royal road to learning. What more natural than to suppose that the immature can be saved time and energy, and be protected from needless error by commencing where competent inquirers have left off? The outcome is written large in the history of education. Pupils begin their study of science with texts in which the subject is organized into topics according to the order of the specialist. Technical concepts, with their definitions, are introduced at the outset. Laws are introduced at a very early stage, with at best a few indications of the way in which they were arrived at. The pupils learn a "science" instead of learning the scientific way of treating the familiar material of ordinary experience. The method of the advanced student dominates college teaching; the approach of the college is transferred into the high school, and so down the line, with such omissions as may make the subject easier.

The chronological method which begins with the experience of the learner and develops from that the proper modes of scientific treatment is often called the "psychological" method in distinction from the logical method of the expert or specialist. The apparent loss of time involved is more than made up for by the superior understanding and vital interest secured. What the pupil learns he at least understands. Moreover by following, in connection with problems selected from the material of ordinary acquaintance, the methods by which scientific men have reached their perfected knowledge, he gains independent power to deal with material within his range, and avoids the mental confusion and intellectual distaste attendant upon studying matter whose meaning is only symbolic. Since the mass of pupils are never going to become scientific specialists, it is much more important that they should get some insight into what scientific method means than that they should copy at long range and second hand the results which scientific men have reached. Students will not go so far, perhaps, in the "ground covered," but they will be sure and intelligent as far as they do go. And it is safe to say that the few who go on to be scientific experts will have a better preparation than if they had been swamped with a large mass of purely technical and symbolically stated information. In fact, those who do become successful men of science are those who by their own power manage to avoid the pitfalls of a traditional scholastic introduction into it.

The contrast between the expectations of the men who a generation or two ago strove, against great odds, to secure a place for science in education, and the result generally achieved is painful. Herbert Spencer, inquiring what knowledge is of most worth, concluded that from all points of view scientific knowledge is most valuable. But his argument unconsciously assumed that scientific knowledge could be communicated in a ready-made form. Passing over the methods by which the subject matter of our ordinary activities is transmuted into scientific form, it ignored the method by which alone science is science. Instruction has too often proceeded upon an analogous plan. But there is no magic attached to material stated in technically correct scientific form. When learned in this condition it remains a body of inert information. Moreover its form of statement removes it further from fruitful contact with everyday experiences than does the mode of statement proper to literature. Nevertheless that the claims made for instruction in science were unjustifiable does not follow. For material so taught is not science to the pupil.

Contact with things and laboratory exercises, while a great improvement upon textbooks arranged upon the deductive plan, do not of themselves suffice to meet the need. While they are an indispensable portion of scientific method, they do not as a matter of course constitute scientific method. Physical materials may be manipulated with scientific apparatus, but the materials may be disassociated in themselves and in the ways in which they are handled, from the materials and processes used out of school. The problems dealt with may be only problems of science: problems, that is, which would occur to one already initiated in the science of the subject. Our attention may be devoted to getting skill in technical manipulation without reference to the connection of laboratory exercises with a problem belonging to subject matter. There is sometimes a ritual of laboratory instruction as well as of heathen religion. 1 It has been mentioned, incidentally, that scientific statements, or logical form, implies the use of signs or symbols. The statement applies, of course, to all use of language. But in the vernacular, the mind proceeds directly from the symbol to the thing signified. Association with familiar material is so close that the mind does not pause upon the sign. The signs are intended only to stand for things and acts. But scientific terminology has an additional use. It is designed, as we have seen, not to stand for the things directly in their practical use in experience, but for the things placed in a cognitive system. Ultimately, of course, they denote the things of our common sense acquaintance. But immediately they do not designate them in their common context, but translated into terms of scientific inquiry. Atoms, molecules, chemical formulae, the mathematical propositions in the study of physics—all these have primarily an intellectual value and only indirectly an empirical value. They represent instruments for the carrying on of science. As in the case of other tools, their significance can be learned only by use. We cannot procure understanding of their meaning by pointing to things, but only by pointing to their work when they are employed as part of the technique of knowledge. Even the circle, square, etc., of geometry exhibit a difference from the squares and circles of familiar acquaintance, and the further one proceeds in mathematical science the greater the remoteness from the everyday empirical thing. Qualities which do not count for the pursuit of knowledge about spatial relations are left out; those which are important for this purpose are accentuated. If one carries his study far enough, he will find even the properties which are significant for spatial knowledge giving way to those which facilitate knowledge of other things—perhaps a knowledge of the general relations of number. There will be nothing in the conceptual definitions even to suggest spatial form, size, or direction. This does not mean that they are unreal mental inventions, but it indicates that direct physical qualities have been transmuted into tools for a special end—the end of intellectual organization. In every machine the primary state of material has been modified by subordinating it to use for a purpose. Not the stuff in its original form but in its adaptation to an end is important. No one would have a knowledge of a machine who could enumerate all the materials entering into its structure, but only he who knew their uses and could tell why they are employed as they are. In like fashion one has a knowledge of mathematical conceptions only when he sees the problems in which they function and their specific utility in dealing with these problems. "Knowing" the definitions, rules, formulae, etc., is like knowing the names of parts of a machine without knowing what they do. In one case, as in the other, the meaning, or intellectual content, is what the element accomplishes in the system of which it is a member.

2. Science and Social Progress. Assuming that the development of the direct knowledge gained in occupations of social interest is carried to a perfected logical form, the question arises as to its place in experience. In general, the reply is that science marks the emancipation of mind from devotion to customary purposes and makes possible the systematic pursuit of new ends. It is the agency of progress in action. Progress is sometimes thought of as consisting in getting nearer to ends already sought. But this is a minor form of progress, for it requires only improvement of the means of action or technical advance. More important modes of progress consist in enriching prior purposes and in forming new ones. Desires are not a fixed quantity, nor does progress mean only an increased amount of satisfaction. With increased culture and new mastery of nature, new desires, demands for new qualities of satisfaction, show themselves, for intelligence perceives new possibilities of action. This projection of new possibilities leads to search for new means of execution, and progress takes place; while the discovery of objects not already used leads to suggestion of new ends.

That science is the chief means of perfecting control of means of action is witnessed by the great crop of inventions which followed intellectual command of the secrets of nature. The wonderful transformation of production and distribution known as the industrial revolution is the fruit of experimental science. Railways, steamboats, electric motors, telephone and telegraph, automobiles, aeroplanes and dirigibles are conspicuous evidences of the application of science in life. But none of them would be of much importance without the thousands of less sensational inventions by means of which natural science has been rendered tributary to our daily life.

It must be admitted that to a considerable extent the progress thus procured has been only technical: it has provided more efficient means for satisfying preexistent desires, rather than modified the quality of human purposes. There is, for example, no modern civilization which is the equal of Greek culture in all respects. Science is still too recent to have been absorbed into imaginative and emotional disposition. Men move more swiftly and surely to the realization of their ends, but their ends too largely remain what they were prior to scientific enlightenment. This fact places upon education the responsibility of using science in a way to modify the habitual attitude of imagination and feeling, not leave it just an extension of our physical arms and legs.

The advance of science has already modified men's thoughts of the purposes and goods of life to a sufficient extent to give some idea of the nature of this responsibility and the ways of meeting it. Science taking effect in human activity has broken down physical barriers which formerly separated men; it has immensely widened the area of intercourse. It has brought about interdependence of interests on an enormous scale. It has brought with it an established conviction of the possibility of control of nature in the interests of mankind and thus has led men to look to the future, instead of the past. The coincidence of the ideal of progress with the advance of science is not a mere coincidence. Before this advance men placed the golden age in remote antiquity. Now they face the future with a firm belief that intelligence properly used can do away with evils once thought inevitable. To subjugate devastating disease is no longer a dream; the hope of abolishing poverty is not utopian. Science has familiarized men with the idea of development, taking effect practically in persistent gradual amelioration of the estate of our common humanity.

The problem of an educational use of science is then to create an intelligence pregnant with belief in the possibility of the direction of human affairs by itself. The method of science engrained through education in habit means emancipation from rule of thumb and from the routine generated by rule of thumb procedure. The word empirical in its ordinary use does not mean "connected with experiment," but rather crude and unrational. Under the influence of conditions created by the non-existence of experimental science, experience was opposed in all the ruling philosophies of the past to reason and the truly rational. Empirical knowledge meant the knowledge accumulated by a multitude of past instances without intelligent insight into the principles of any of them. To say that medicine was empirical meant that it was not scientific, but a mode of practice based upon accumulated observations of diseases and of remedies used more or less at random. Such a mode of practice is of necessity happy-go-lucky; success depends upon chance. It lends itself to deception and quackery. Industry that is "empirically" controlled forbids constructive applications of intelligence; it depends upon following in an imitative slavish manner the models set in the past. Experimental science means the possibility of using past experiences as the servant, not the master, of mind. It means that reason operates within experience, not beyond it, to give it an intelligent or reasonable quality. Science is experience becoming rational. The effect of science is thus to change men's idea of the nature and inherent possibilities of experience. By the same token, it changes the idea and the operation of reason. Instead of being something beyond experience, remote, aloof, concerned with a sublime region that has nothing to do with the experienced facts of life, it is found indigenous in experience:—the factor by which past experiences are purified and rendered into tools for discovery and advance.

The term "abstract" has a rather bad name in popular speech, being used to signify not only that which is abstruse and hard to understand, but also that which is far away from life. But abstraction is an indispensable trait in reflective direction of activity. Situations do not literally repeat themselves. Habit treats new occurrences as if they were identical with old ones; it suffices, accordingly, when the different or novel element is negligible for present purposes. But when the new element requires especial attention, random reaction is the sole recourse unless abstraction is brought into play. For abstraction deliberately selects from the subject matter of former experiences that which is thought helpful in dealing with the new. It signifies conscious transfer of a meaning embedded in past experience for use in a new one. It is the very artery of intelligence, of the intentional rendering of one experience available for guidance of another.

Science carries on this working over of prior subject matter on a large scale. It aims to free an experience from all which is purely personal and strictly immediate; it aims to detach whatever it has in common with the subject matter of other experiences, and which, being common, may be saved for further use. It is, thus, an indispensable factor in social progress. In any experience just as it occurs there is much which, while it may be of precious import to the individual implicated in the experience, is peculiar and unreduplicable. From the standpoint of science, this material is accidental, while the features which are widely shared are essential. Whatever is unique in the situation, since dependent upon the peculiarities of the individual and the coincidence of circumstance, is not available for others; so that unless what is shared is abstracted and fixed by a suitable symbol, practically all the value of the experience may perish in its passing. But abstraction and the use of terms to record what is abstracted put the net value of individual experience at the permanent disposal of mankind. No one can foresee in detail when or how it may be of further use. The man of science in developing his abstractions is like a manufacturer of tools who does not know who will use them nor when. But intellectual tools are indefinitely more flexible in their range of adaptation than other mechanical tools.

Generalization is the counterpart of abstraction. It is the functioning of an abstraction in its application to a new concrete experience,—its extension to clarify and direct new situations. Reference to these possible applications is necessary in order that the abstraction may be fruitful, instead of a barren formalism ending in itself. Generalization is essentially a social device. When men identified their interests exclusively with the concerns of a narrow group, their generalizations were correspondingly restricted. The viewpoint did not permit a wide and free survey. Men's thoughts were tied down to a contracted space and a short time,—limited to their own established customs as a measure of all possible values. Scientific abstraction and generalization are equivalent to taking the point of view of any man, whatever his location in time and space. While this emancipation from the conditions and episodes of concrete experiences accounts for the remoteness, the "abstractness," of science, it also accounts for its wide and free range of fruitful novel applications in practice. Terms and propositions record, fix, and convey what is abstracted. A meaning detached from a given experience cannot remain hanging in the air. It must acquire a local habitation. Names give abstract meanings a physical locus and body. Formulation is thus not an after-thought or by-product; it is essential to the completion of the work of thought. Persons know many things which they cannot express, but such knowledge remains practical, direct, and personal. An individual can use it for himself; he may be able to act upon it with efficiency. Artists and executives often have their knowledge in this state. But it is personal, untransferable, and, as it were, instinctive. To formulate the significance of an experience a man must take into conscious account the experiences of others. He must try to find a standpoint which includes the experience of others as well as his own. Otherwise his communication cannot be understood. He talks a language which no one else knows. While literary art furnishes the supreme successes in stating of experiences so that they are vitally significant to others, the vocabulary of science is designed, in another fashion, to express the meaning of experienced things in symbols which any one will know who studies the science. Aesthetic formulation reveals and enhances the meaning of experiences one already has; scientific formulation supplies one with tools for constructing new experiences with transformed meanings.

To sum up: Science represents the office of intelligence, in projection and control of new experiences, pursued systematically, intentionally, and on a scale due to freedom from limitations of habit. It is the sole instrumentality of conscious, as distinct from accidental, progress. And if its generality, its remoteness from individual conditions, confer upon it a certain technicality and aloofness, these qualities are very different from those of merely speculative theorizing. The latter are in permanent dislocation from practice; the former are temporarily detached for the sake of wider and freer application in later concrete action. There is a kind of idle theory which is antithetical to practice; but genuinely scientific theory falls within practice as the agency of its expansion and its direction to new possibilities.

3. Naturalism and Humanism in Education. There exists an educational tradition which opposes science to literature and history in the curriculum. The quarrel between the representatives of the two interests is easily explicable historically. Literature and language and a literary philosophy were entrenched in all higher institutions of learning before experimental science came into being. The latter had naturally to win its way. No fortified and protected interest readily surrenders any monopoly it may possess. But the assumption, from whichever side, that language and literary products are exclusively humanistic in quality, and that science is purely physical in import, is a false notion which tends to cripple the educational use of both studies. Human life does not occur in a vacuum, nor is nature a mere stage setting for the enactment of its drama (ante, p. 211). Man's life is bound up in the processes of nature; his career, for success or defeat, depends upon the way in which nature enters it. Man's power of deliberate control of his own affairs depends upon ability to direct natural energies to use: an ability which is in turn dependent upon insight into nature's processes. Whatever natural science may be for the specialist, for educational purposes it is knowledge of the conditions of human action. To be aware of the medium in which social intercourse goes on, and of the means and obstacles to its progressive development is to be in command of a knowledge which is thoroughly humanistic in quality. One who is ignorant of the history of science is ignorant of the struggles by which mankind has passed from routine and caprice, from superstitious subjection to nature, from efforts to use it magically, to intellectual self-possession. That science may be taught as a set of formal and technical exercises is only too true. This happens whenever information about the world is made an end in itself. The failure of such instruction to procure culture is not, however, evidence of the antithesis of natural knowledge to humanistic concern, but evidence of a wrong educational attitude. Dislike to employ scientific knowledge as it functions in men's occupations is itself a survival of an aristocratic culture. The notion that "applied" knowledge is somehow less worthy than "pure" knowledge, was natural to a society in which all useful work was performed by slaves and serfs, and in which industry was controlled by the models set by custom rather than by intelligence. Science, or the highest knowing, was then identified with pure theorizing, apart from all application in the uses of life; and knowledge relating to useful arts suffered the stigma attaching to the classes who engaged in them (See below, Ch. XIX). The idea of science thus generated persisted after science had itself adopted the appliances of the arts, using them for the production of knowledge, and after the rise of democracy. Taking theory just as theory, however, that which concerns humanity is of more significance for man than that which concerns a merely physical world. In adopting the criterion of knowledge laid down by a literary culture, aloof from the practical needs of the mass of men, the educational advocates of scientific education put themselves at a strategic disadvantage. So far as they adopt the idea of science appropriate to its experimental method and to the movements of a democratic and industrial society, they have no difficulty in showing that natural science is more humanistic than an alleged humanism which bases its educational schemes upon the specialized interests of a leisure class. For, as we have already stated, humanistic studies when set in opposition to study of nature are hampered. They tend to reduce themselves to exclusively literary and linguistic studies, which in turn tend to shrink to "the classics," to languages no longer spoken. For modern languages may evidently be put to use, and hence fall under the ban. It would be hard to find anything in history more ironical than the educational practices which have identified the "humanities" exclusively with a knowledge of Greek and Latin. Greek and Roman art and institutions made such important contributions to our civilization that there should always be the amplest opportunities for making their acquaintance. But to regard them as par excellence the humane studies involves a deliberate neglect of the possibilities of the subject matter which is accessible in education to the masses, and tends to cultivate a narrow snobbery: that of a learned class whose insignia are the accidents of exclusive opportunity. Knowledge is humanistic in quality not because it is about human products in the past, but because of what it does in liberating human intelligence and human sympathy. Any subject matter which accomplishes this result is humane, and any subject matter which does not accomplish it is not even educational.

Summary. Science represents the fruition of the cognitive factors in experience. Instead of contenting itself with a mere statement of what commends itself to personal or customary experience, it aims at a statement which will reveal the sources, grounds, and consequences of a belief. The achievement of this aim gives logical character to the statements. Educationally, it has to be noted that logical characteristics of method, since they belong to subject matter which has reached a high degree of intellectual elaboration, are different from the method of the learner—the chronological order of passing from a cruder to a more refined intellectual quality of experience. When this fact is ignored, science is treated as so much bare information, which however is less interesting and more remote than ordinary information, being stated in an unusual and technical vocabulary. The function which science has to perform in the curriculum is that which it has performed for the race: emancipation from local and temporary incidents of experience, and the opening of intellectual vistas unobscured by the accidents of personal habit and predilection. The logical traits of abstraction, generalization, and definite formulation are all associated with this function. In emancipating an idea from the particular context in which it originated and giving it a wider reference the results of the experience of any individual are put at the disposal of all men. Thus ultimately and philosophically science is the organ of general social progress. 1 Upon the positive side, the value of problems arising in work in the garden, the shop, etc., may be referred to (See p. 200). The laboratory may be treated as an additional resource to supply conditions and appliances for the better pursuit of these problems.



Chapter Eighteen: Educational Values

The considerations involved in a discussion of educational values have already been brought out in the discussion of aims and interests.

The specific values usually discussed in educational theories coincide with aims which are usually urged. They are such things as utility, culture, information, preparation for social efficiency, mental discipline or power, and so on. The aspect of these aims in virtue of which they are valuable has been treated in our analysis of the nature of interest, and there is no difference between speaking of art as an interest or concern and referring to it as a value. It happens, however, that discussion of values has usually been centered about a consideration of the various ends subserved by specific subjects of the curriculum. It has been a part of the attempt to justify those subjects by pointing out the significant contributions to life accruing from their study. An explicit discussion of educational values thus affords an opportunity for reviewing the prior discussion of aims and interests on one hand and of the curriculum on the other, by bringing them into connection with one another.

1. The Nature of Realization or Appreciation. Much of our experience is indirect; it is dependent upon signs which intervene between the things and ourselves, signs which stand for or represent the former. It is one thing to have been engaged in war, to have shared its dangers and hardships; it is another thing to hear or read about it. All language, all symbols, are implements of an indirect experience; in technical language the experience which is procured by their means is "mediated." It stands in contrast with an immediate, direct experience, something in which we take part vitally and at first hand, instead of through the intervention of representative media. As we have seen, the scope of personal, vitally direct experience is very limited. If it were not for the intervention of agencies for representing absent and distant affairs, our experience would remain almost on the level of that of the brutes. Every step from savagery to civilization is dependent upon the invention of media which enlarge the range of purely immediate experience and give it deepened as well as wider meaning by connecting it with things which can only be signified or symbolized. It is doubtless this fact which is the cause of the disposition to identify an uncultivated person with an illiterate person—so dependent are we on letters for effective representative or indirect experience.

At the same time (as we have also had repeated occasion to see) there is always a danger that symbols will not be truly representative; danger that instead of really calling up the absent and remote in a way to make it enter a present experience, the linguistic media of representation will become an end in themselves. Formal education is peculiarly exposed to this danger, with the result that when literacy supervenes, mere bookishness, what is popularly termed the academic, too often comes with it. In colloquial speech, the phrase a "realizing sense" is used to express the urgency, warmth, and intimacy of a direct experience in contrast with the remote, pallid, and coldly detached quality of a representative experience. The terms "mental realization" and "appreciation" (or genuine appreciation) are more elaborate names for the realizing sense of a thing. It is not possible to define these ideas except by synonyms, like "coming home to one" "really taking it in," etc., for the only way to appreciate what is meant by a direct experience of a thing is by having it. But it is the difference between reading a technical description of a picture, and seeing it; or between just seeing it and being moved by it; between learning mathematical equations about light and being carried away by some peculiarly glorious illumination of a misty landscape. We are thus met by the danger of the tendency of technique and other purely representative forms to encroach upon the sphere of direct appreciations; in other words, the tendency to assume that pupils have a foundation of direct realization of situations sufficient for the superstructure of representative experience erected by formulated school studies. This is not simply a matter of quantity or bulk. Sufficient direct experience is even more a matter of quality; it must be of a sort to connect readily and fruitfully with the symbolic material of instruction. Before teaching can safely enter upon conveying facts and ideas through the media of signs, schooling must provide genuine situations in which personal participation brings home the import of the material and the problems which it conveys. From the standpoint of the pupil, the resulting experiences are worth while on their own account; from the standpoint of the teacher they are also means of supplying subject matter required for understanding instruction involving signs, and of evoking attitudes of open-mindedness and concern as to the material symbolically conveyed.

In the outline given of the theory of educative subject matter, the demand for this background of realization or appreciation is met by the provision made for play and active occupations embodying typical situations. Nothing need be added to what has already been said except to point out that while the discussion dealt explicitly with the subject matter of primary education, where the demand for the available background of direct experience is most obvious, the principle applies to the primary or elementary phase of every subject. The first and basic function of laboratory work, for example, in a high school or college in a new field, is to familiarize the student at first hand with a certain range of facts and problems—to give him a "feeling" for them. Getting command of technique and of methods of reaching and testing generalizations is at first secondary to getting appreciation. As regards the primary school activities, it is to be borne in mind that the fundamental intent is not to amuse nor to convey information with a minimum of vexation nor yet to acquire skill,—though these results may accrue as by-products,—but to enlarge and enrich the scope of experience, and to keep alert and effective the interest in intellectual progress.

The rubric of appreciation supplies an appropriate head for bringing out three further principles: the nature of effective or real (as distinct from nominal) standards of value; the place of the imagination in appreciative realizations; and the place of the fine arts in the course of study.

1. The nature of standards of valuation. Every adult has acquired, in the course of his prior experience and education, certain measures of the worth of various sorts of experience. He has learned to look upon qualities like honesty, amiability, perseverance, loyalty, as moral goods; upon certain classics of literature, painting, music, as aesthetic values, and so on. Not only this, but he has learned certain rules for these values—the golden rule in morals; harmony, balance, etc., proportionate distribution in aesthetic goods; definition, clarity, system in intellectual accomplishments. These principles are so important as standards of judging the worth of new experiences that parents and instructors are always tending to teach them directly to the young. They overlook the danger that standards so taught will be merely symbolic; that is, largely conventional and verbal. In reality, working as distinct from professed standards depend upon what an individual has himself specifically appreciated to be deeply significant in concrete situations. An individual may have learned that certain characteristics are conventionally esteemed in music; he may be able to converse with some correctness about classic music; he may even honestly believe that these traits constitute his own musical standards. But if in his own past experience, what he has been most accustomed to and has most enjoyed is ragtime, his active or working measures of valuation are fixed on the ragtime level. The appeal actually made to him in his own personal realization fixes his attitude much more deeply than what he has been taught as the proper thing to say; his habitual disposition thus fixed forms his real "norm" of valuation in subsequent musical experiences.

Probably few would deny this statement as to musical taste. But it applies equally well in judgments of moral and intellectual worth. A youth who has had repeated experience of the full meaning of the value of kindliness toward others built into his disposition has a measure of the worth of generous treatment of others. Without this vital appreciation, the duty and virtue of unselfishness impressed upon him by others as a standard remains purely a matter of symbols which he cannot adequately translate into realities. His "knowledge" is second-handed; it is only a knowledge that others prize unselfishness as an excellence, and esteem him in the degree in which he exhibits it. Thus there grows up a split between a person's professed standards and his actual ones. A person may be aware of the results of this struggle between his inclinations and his theoretical opinions; he suffers from the conflict between doing what is really dear to him and what he has learned will win the approval of others. But of the split itself he is unaware; the result is a kind of unconscious hypocrisy, an instability of disposition. In similar fashion, a pupil who has worked through some confused intellectual situation and fought his way to clearing up obscurities in a definite outcome, appreciates the value of clarity and definition. He has a standard which can be depended upon. He may be trained externally to go through certain motions of analysis and division of subject matter and may acquire information about the value of these processes as standard logical functions, but unless it somehow comes home to him at some point as an appreciation of his own, the significance of the logical norms—so-called—remains as much an external piece of information as, say, the names of rivers in China. He may be able to recite, but the recital is a mechanical rehearsal.

It is, then, a serious mistake to regard appreciation as if it were confined to such things as literature and pictures and music. Its scope is as comprehensive as the work of education itself. The formation of habits is a purely mechanical thing unless habits are also tastes—habitual modes of preference and esteem, an effective sense of excellence. There are adequate grounds for asserting that the premium so often put in schools upon external "discipline," and upon marks and rewards, upon promotion and keeping back, are the obverse of the lack of attention given to life situations in which the meaning of facts, ideas, principles, and problems is vitally brought home.

2. Appreciative realizations are to be distinguished from symbolic or representative experiences. They are not to be distinguished from the work of the intellect or understanding. Only a personal response involving imagination can possibly procure realization even of pure "facts." The imagination is the medium of appreciation in every field. The engagement of the imagination is the only thing that makes any activity more than mechanical. Unfortunately, it is too customary to identify the imaginative with the imaginary, rather than with a warm and intimate taking in of the full scope of a situation. This leads to an exaggerated estimate of fairy tales, myths, fanciful symbols, verse, and something labeled "Fine Art," as agencies for developing imagination and appreciation; and, by neglecting imaginative vision in other matters, leads to methods which reduce much instruction to an unimaginative acquiring of specialized skill and amassing of a load of information. Theory, and—to some extent—practice, have advanced far enough to recognize that play-activity is an imaginative enterprise. But it is still usual to regard this activity as a specially marked-off stage of childish growth, and to overlook the fact that the difference between play and what is regarded as serious employment should be not a difference between the presence and absence of imagination, but a difference in the materials with which imagination is occupied. The result is an unwholesome exaggeration of the phantastic and "unreal" phases of childish play and a deadly reduction of serious occupation to a routine efficiency prized simply for its external tangible results. Achievement comes to denote the sort of thing that a well-planned machine can do better than a human being can, and the main effect of education, the achieving of a life of rich significance, drops by the wayside. Meantime mind-wandering and wayward fancy are nothing but the unsuppressible imagination cut loose from concern with what is done.

An adequate recognition of the play of imagination as the medium of realization of every kind of thing which lies beyond the scope of direct physical response is the sole way of escape from mechanical methods in teaching. The emphasis put in this book, in accord with many tendencies in contemporary education, upon activity, will be misleading if it is not recognized that the imagination is as much a normal and integral part of human activity as is muscular movement. The educative value of manual activities and of laboratory exercises, as well as of play, depends upon the extent in which they aid in bringing about a sensing of the meaning of what is going on. In effect, if not in name, they are dramatizations. Their utilitarian value in forming habits of skill to be used for tangible results is important, but not when isolated from the appreciative side. Were it not for the accompanying play of imagination, there would be no road from a direct activity to representative knowledge; for it is by imagination that symbols are translated over into a direct meaning and integrated with a narrower activity so as to expand and enrich it. When the representative creative imagination is made merely literary and mythological, symbols are rendered mere means of directing physical reactions of the organs of speech.

3. In the account previously given nothing was explicitly said about the place of literature and the fine arts in the course of study. The omission at that point was intentional. At the outset, there is no sharp demarcation of useful, or industrial, arts and fine arts. The activities mentioned in Chapter XV contain within themselves the factors later discriminated into fine and useful arts. As engaging the emotions and the imagination, they have the qualities which give the fine arts their quality. As demanding method or skill, the adaptation of tools to materials with constantly increasing perfection, they involve the element of technique indispensable to artistic production. From the standpoint of product, or the work of art, they are naturally defective, though even in this respect when they comprise genuine appreciation they often have a rudimentary charm. As experiences they have both an artistic and an esthetic quality. When they emerge into activities which are tested by their product and when the socially serviceable value of the product is emphasized, they pass into useful or industrial arts. When they develop in the direction of an enhanced appreciation of the immediate qualities which appeal to taste, they grow into fine arts.

In one of its meanings, appreciation is opposed to depreciation. It denotes an enlarged, an intensified prizing, not merely a prizing, much less—like depreciation—a lowered and degraded prizing. This enhancement of the qualities which make any ordinary experience appealing, appropriable—capable of full assimilation—and enjoyable, constitutes the prime function of literature, music, drawing, painting, etc., in education. They are not the exclusive agencies of appreciation in the most general sense of that word; but they are the chief agencies of an intensified, enhanced appreciation. As such, they are not only intrinsically and directly enjoyable, but they serve a purpose beyond themselves. They have the office, in increased degree, of all appreciation in fixing taste, in forming standards for the worth of later experiences. They arouse discontent with conditions which fall below their measure; they create a demand for surroundings coming up to their own level. They reveal a depth and range of meaning in experiences which otherwise might be mediocre and trivial. They supply, that is, organs of vision. Moreover, in their fullness they represent the concentration and consummation of elements of good which are otherwise scattered and incomplete. They select and focus the elements of enjoyable worth which make any experience directly enjoyable. They are not luxuries of education, but emphatic expressions of that which makes any education worth while.

2. The Valuation of Studies. The theory of educational values involves not only an account of the nature of appreciation as fixing the measure of subsequent valuations, but an account of the specific directions in which these valuations occur. To value means primarily to prize, to esteem; but secondarily it means to apprise, to estimate. It means, that is, the act of cherishing something, holding it dear, and also the act of passing judgment upon the nature and amount of its value as compared with something else. To value in the latter sense is to valuate or evaluate. The distinction coincides with that sometimes made between intrinsic and instrumental values. Intrinsic values are not objects of judgment, they cannot (as intrinsic) be compared, or regarded as greater and less, better or worse. They are invaluable; and if a thing is invaluable, it is neither more nor less so than any other invaluable. But occasions present themselves when it is necessary to choose, when we must let one thing go in order to take another. This establishes an order of preference, a greater and less, better and worse. Things judged or passed upon have to be estimated in relation to some third thing, some further end. With respect to that, they are means, or instrumental values.

We may imagine a man who at one time thoroughly enjoys converse with his friends, at another the hearing of a symphony; at another the eating of his meals; at another the reading of a book; at another the earning of money, and so on. As an appreciative realization, each of these is an intrinsic value. It occupies a particular place in life; it serves its own end, which cannot be supplied by a substitute. There is no question of comparative value, and hence none of valuation. Each is the specific good which it is, and that is all that can be said. In its own place, none is a means to anything beyond itself. But there may arise a situation in which they compete or conflict, in which a choice has to be made. Now comparison comes in. Since a choice has to be made, we want to know the respective claims of each competitor. What is to be said for it? What does it offer in comparison with, as balanced over against, some other possibility? Raising these questions means that a particular good is no longer an end in itself, an intrinsic good. For if it were, its claims would be incomparable, imperative. The question is now as to its status as a means of realizing something else, which is then the invaluable of that situation. If a man has just eaten, or if he is well fed generally and the opportunity to hear music is a rarity, he will probably prefer the music to eating. In the given situation that will render the greater contribution. If he is starving, or if he is satiated with music for the time being, he will naturally judge food to have the greater worth. In the abstract or at large, apart from the needs of a particular situation in which choice has to be made, there is no such thing as degrees or order of value. Certain conclusions follow with respect to educational values. We cannot establish a hierarchy of values among studies. It is futile to attempt to arrange them in an order, beginning with one having least worth and going on to that of maximum value. In so far as any study has a unique or irreplaceable function in experience, in so far as it marks a characteristic enrichment of life, its worth is intrinsic or incomparable. Since education is not a means to living, but is identical with the operation of living a life which is fruitful and inherently significant, the only ultimate value which can be set up is just the process of living itself. And this is not an end to which studies and activities are subordinate means; it is the whole of which they are ingredients. And what has been said about appreciation means that every study in one of its aspects ought to have just such ultimate significance. It is true of arithmetic as it is of poetry that in some place and at some time it ought to be a good to be appreciated on its own account—just as an enjoyable experience, in short. If it is not, then when the time and place come for it to be used as a means or instrumentality, it will be in just that much handicapped. Never having been realized or appreciated for itself, one will miss something of its capacity as a resource for other ends.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse