|
DARWINISM
AN EXPOSITION OF THE
THEORY OF NATURAL SELECTION
WITH SOME OF ITS APPLICATIONS
BY
ALFRED RUSSEL WALLACE
LL.D., F.L.S., ETC.
WITH A PORTRAIT OF THE AUTHOR, MAP AND ILLUSTRATIONS
MACMILLAN AND CO. LONDON AND NEW YORK [Second Edition] 1889
* * * * *
* * * * *
PREFACE TO SECOND EDITION
The present edition is a reprint of the first, with a few verbal corrections and the alteration of some erroneous or doubtful statements. Of these latter the following are the most important:—
P. 30. The statement as to the fulmar petrel, which Professor A. Newton assures me is erroneous, has been modified.
P. 34. A note is added as to Darwin's statement about the missel and song-thrushes in Scotland.
P. 172. An error as to the differently-coloured herds of cattle in the Falkland Islands, is corrected.
PARKSTONE, DORSET August, 1889.
PREFACE TO FIRST EDITION
The present work treats the problem of the Origin of Species on the same general lines as were adopted by Darwin; but from the standpoint reached after nearly thirty years of discussion, with an abundance of new facts and the advocacy of many new or old theories.
While not attempting to deal, even in outline, with the vast subject of evolution in general, an endeavour has been made to give such an account of the theory of Natural Selection as may enable any intelligent reader to obtain a clear conception of Darwin's work, and to understand something of the power and range of his great principle.
Darwin wrote for a generation which had not accepted evolution, and which poured contempt on those who upheld the derivation of species from species by any natural law of descent. He did his work so well that "descent with modification" is now universally accepted as the order of nature in the organic world; and the rising generation of naturalists can hardly realise the novelty of this idea, or that their fathers considered it a scientific heresy to be condemned rather than seriously discussed.
The objections now made to Darwin's theory apply, solely, to the particular means by which the change of species has been brought about, not to the fact of that change. The objectors seek to minimise the agency of natural selection and to subordinate it to laws of variation, of use and disuse, of intelligence, and of heredity. These views and objections are urged with much force and more confidence, and for the most part by the modern school of laboratory naturalists, to whom the peculiarities and distinctions of species, as such, their distribution and their affinities, have little interest as compared with the problems of histology and embryology, of physiology and morphology. Their work in these departments is of the greatest interest and of the highest importance, but it is not the kind of work which, by itself, enables one to form a sound judgment on the questions involved in the action of the law of natural selection. These rest mainly on the external and vital relations of species to species in a state of nature—on what has been well termed by Semper the "physiology of organisms," rather than on the anatomy or physiology of organs.
* * * * *
It has always been considered a weakness in Darwin's work that he based his theory, primarily, on the evidence of variation in domesticated animals and cultivated plants. I have endeavoured to secure a firm foundation for the theory in the variations of organisms in a state of nature; and as the exact amount and precise character of these variations is of paramount importance in the numerous problems that arise when we apply the theory to explain the facts of nature, I have endeavoured, by means of a series of diagrams, to exhibit to the eye the actual variations as they are found to exist in a sufficient number of species. By doing this, not only does the reader obtain a better and more precise idea of variation than can be given by any number of tabular statements or cases of extreme individual variation, but we obtain a basis of fact by which to test the statements and objections usually put forth on the subject of specific variability; and it will be found that, throughout the work, I have frequently to appeal to these diagrams and the facts they illustrate, just as Darwin was accustomed to appeal to the facts of variation among dogs and pigeons.
I have also made what appears to me an important change in the arrangement of the subject. Instead of treating first the comparatively difficult and unfamiliar details of variation, I commence with the Struggle for Existence, which is really the fundamental phenomenon on which natural selection depends, while the particular facts which illustrate it are comparatively familiar and very interesting. It has the further advantage that, after discussing variation and the effects of artificial selection, we proceed at once to explain how natural selection acts.
Among the subjects of novelty or interest discussed in this volume, and which have important bearings on the theory of natural selection, are: (1) A proof that all specific characters are (or once have been) either useful in themselves or correlated with useful characters (Chap. VI); (2) a proof that natural selection can, in certain cases, increase the sterility of crosses (Chap. VII); (3) a fuller discussion of the colour relations of animals, with additional facts and arguments on the origin of sexual differences of colour (Chaps. VIII-X); (4) an attempted solution of the difficulty presented by the occurrence of both very simple and very complex modes of securing the cross-fertilisation of plants (Chap. XI); (5) some fresh facts and arguments on the wind-carriage of seeds, and its bearing on the wide dispersal of many arctic and alpine plants (Chap. XII); (6) some new illustrations of the non-heredity of acquired characters, and a proof that the effects of use and disuse, even if inherited, must be overpowered by natural selection (Chap. XIV); and (7) a new argument as to the nature and origin of the moral and intellectual faculties of man (Chap. XV).
* * * * *
Although I maintain, and even enforce, my differences from some of Darwin's views, my whole work tends forcibly to illustrate the overwhelming importance of Natural Selection over all other agencies in the production of new species. I thus take up Darwin's earlier position, from which he somewhat receded in the later editions of his works, on account of criticisms and objections which I have endeavoured to show are unsound. Even in rejecting that phase of sexual selection depending on female choice, I insist on the greater efficacy of natural selection. This is pre-eminently the Darwinian doctrine, and I therefore claim for my book the position of being the advocate of pure Darwinism.
I wish to express my obligation to Mr. Francis Darwin for lending me some of his father's unused notes, and to many other friends for facts or information, which have, I believe, been acknowledged either in the text or footnotes. Mr. James Sime has kindly read over the proofs and given me many useful suggestions; and I have to thank Professor Meldola, Mr. Hemsley, and Mr. E.B. Poulton for valuable notes or corrections in the later chapters in which their special subjects are touched upon.
GODALMING, March 1889.
CONTENTS
CHAPTER I
WHAT ARE "SPECIES" AND WHAT IS MEANT BY THEIR "ORIGIN"
Definition of species—Special creation—The early transmutationists—Scientific opinion before Darwin—The problem before Darwin—The change of opinion effected by Darwin—The Darwinian theory—Proposed mode of treatment of the subject
CHAPTER II
THE STRUGGLE FOR EXISTENCE
Its importance—The struggle among plants—Among animals—Illustrative cases—Succession of trees in forests of Denmark—The struggle for existence on the Pampas—Increase of organisms in a geometrical ratio—Examples of rapid increase of animals—Rapid increase and wide spread of plants—Great fertility not essential to rapid increase—Struggle between closely allied species most severe—The ethical aspect of the struggle for existence
CHAPTER III
THE VARIABILITY OF SPECIES IN A STATE OF NATURE
Importance of variability—Popular ideas regarding it—Variability of the lower animals—The variability of insects—Variation among lizards—Variation among birds—Diagrams of bird-variation—Number of varying individuals—Variation in the mammalia—Variation in internal organs—Variations in the skull—Variations in the habits of animals—The variability of plants—Species which vary little—Concluding remarks
CHAPTER IV
VARIATION OF DOMESTICATED ANIMALS AND CULTIVATED PLANTS
The facts of variation and artificial selection—Proofs of the generality of variation—Variations of apples and melons—Variations of flowers—Variations of domestic animals—Domestic pigeons—Acclimatisation—Circumstances favourable to selection by man—Conditions favourable to variation—Concluding remarks
CHAPTER V
NATURAL SELECTION BY VARIATION AND SURVIVAL OF THE FITTEST
Effect of struggle for existence under unchanged conditions—The effect under change of conditions—Divergence of character—In insects—In birds—In mammalia—Divergence leads to a maximum of life in each area—Closely allied species inhabit distinct areas—Adaptation to conditions at various periods of life—The continued existence of low forms of life—Extinction of low types among the higher animals—Circumstances favourable to the origin of new species—Probable origin of the dippers—The importance of isolation—On the advance of organisation by natural selection—Summary of the first five chapters
CHAPTER VI
DIFFICULTIES AND OBJECTIONS
Difficulty as to smallness of variations—As to the right variations occurring when required—The beginnings of important organs—The mammary glands—The eyes of flatfish—Origin of the eye—Useless or non-adaptive characters—Recent extension of the region of utility in plants—The same in animals—Uses of tails—Of the horns of deer—Of the scale-ornamentation of reptiles—Instability of non-adaptive characters—Delboeuf's law—No "specific" character proved to be useless—The swamping effects of intercrossing—Isolation as preventing intercrossing—Gulick on the effects of isolation—Cases in which isolation is ineffective
CHAPTER VII
ON THE INFERTILITY OF CROSSES BETWEEN DISTINCT SPECIES AND THE USUAL STERILITY OF THEIR HYBRID OFFSPRING
Statement of the problem—Extreme susceptibility of the reproductive functions—Reciprocal crosses—Individual differences in respect to cross-fertilisation—Dimorphism and trimorphism among plants—Cases of the fertility of hybrids and of the infertility of mongrels—The effects of close interbreeding—Mr. Huth's objections—Fertile hybrids among animals—Fertility of hybrids among plants—Cases of sterility of mongrels—Parallelism between crossing and change of conditions—Remarks on the facts of hybridity—Sterility due to changed conditions and usually correlated with other characters—Correlation of colour with constitutional peculiarities—The isolation of varieties by selective association—The influence of natural selection upon sterility and fertility—Physiological selection—Summary and concluding remarks
CHAPTER VIII
THE ORIGIN AND USES OF COLOUR IN ANIMALS
The Darwinian theory threw new light on organic colour—The problem to be solved—The constancy of animal colour indicates utility—Colour and environment—Arctic animals white—Exceptions prove the rule—Desert, forest, nocturnal, and oceanic animals—General theories of animal colour—Variable protective colouring—Mr. Poulton's experiments—Special or local colour adaptations—Imitation of particular objects—How they have been produced—Special protective colouring of butterflies—Protective resemblance among marine animals—Protection by terrifying enemies—Alluring coloration—The coloration of birds' eggs—Colour as a means of recognition—Summary of the preceding exposition—Influence of locality or of climate on colour—Concluding remarks
CHAPTER IX
WARNING COLORATION AND MIMICRY
The skunk as an example of warning coloration—Warning colours among insects—Butterflies—Caterpillars—Mimicry—How mimicry has been produced—Heliconidae—Perfection of the imitation—Other cases of mimicry among Lepidoptera—Mimicry among protected groups—Its explanation—Extension of the principle—Mimicry in other orders of insects—Mimicry among the vertebrata—Snakes—The rattlesnake and the cobra—Mimicry among birds—Objections to the theory of mimicry—Concluding remarks on warning colours and mimicry
CHAPTER X
COLOURS AND ORNAMENTS CHARACTERISTIC OF SEX
Sex colours in the mollusca and crustacea—In insects—In butterflies and moths—Probable causes of these colours—Sexual selection as a supposed cause—Sexual coloration of birds—Cause of dull colours of female birds—Relation of sex colour to nesting habits—Sexual colours of other vertebrates—Sexual selection by the struggles of males—Sexual characters due to natural selection—Decorative plumage of males and its effect on the females—Display of decorative plumage by the males—A theory of animal coloration—The origin of accessory plumes—Development of accessory plumes and their display—The effect of female preference will be neutralised by natural selection—General laws of animal coloration—Concluding remarks
CHAPTER XI
THE SPECIAL COLOURS OF PLANTS: THEIR ORIGIN AND PURPOSE
The general colour relations of plants—Colours of fruits—The meaning of nuts—Edible or attractive fruits—The colours of flowers—Modes of securing cross-fertilisation—The interpretation of the facts—Summary of additional facts bearing on insect fertilisation—Fertilisation of flowers by birds—Self-fertilisation of flowers—Difficulties and contradictions—Intercrossing not necessarily advantageous—Supposed evil results of close interbreeding—How the struggle for existence acts among flowers—Flowers the product of insect agency—Concluding remarks on colour in nature
CHAPTER XII
THE GEOGRAPHICAL DISTRIBUTION OF ORGANISMS
The facts to be explained—The conditions which have determined distribution—The permanence of oceans—Oceanic and continental areas—Madagascar and New Zealand—The teachings of the thousand-fathom line—The distribution of marsupials—The distribution of tapirs—Powers of dispersal as illustrated by insular organisms—Birds and insects at sea—Insects at great altitudes—The dispersal of plants—Dispersal of seeds by the wind—Mineral matter carried by the wind—Objections to the theory of wind-dispersal answered—Explanation of north temperate plants in the southern hemisphere—No proof of glaciation in the tropics—Lower temperature not needed to explain the facts—Concluding remarks
CHAPTER XIII
THE GEOLOGICAL EVIDENCES OF EVOLUTION
What we may expect—The number of known species of extinct animals—Causes of the imperfection of the geological record—Geological evidences of evolution—Shells—Crocodiles—The rhinoceros tribe—The pedigree of the horse tribe—Development of deer's horns—Brain development—Local relations of fossil and living animals—Cause of extinction of large animals—Indications of general progress in plants and animals—The progressive development of plants—Possible cause of sudden late appearance of exogens—Geological distribution of insects—Geological succession of vertebrata—Concluding remarks
CHAPTER XIV
FUNDAMENTAL PROBLEMS IN RELATION TO VARIATION AND HEREDITY
Fundamental difficulties and objections—Mr. Herbert Spencer's factors of organic evolution—Disuse and effects of withdrawal of natural selection—Supposed effects of disuse among wild animals—Difficulty as to co-adaptation of parts by variation and selection—Direct action of the environment—The American school of evolutionists—Origin of the feet of the ungulates—Supposed action of animal intelligence—Semper on the direct influence of the environment—Professor Geddes's theory of variation in plants—Objections to the theory—On the origin of spines—Variation and selection overpower the effects of use and disuse—Supposed action of the environment in imitating variations—Weismann's theory of heredity—The cause of variation—The non-heredity of acquired characters—The theory of instinct—Concluding remarks
CHAPTER XV
DARWINISM APPLIED TO MAN
General identity of human and animal structure—Rudiments and variations showing relation of man to other mammals—The embryonic development of man and other mammalia—Diseases common to man and the lower animals—The animals most nearly allied to man—The brains of man and apes—External differences of man and apes—Summary of the animal characteristics of man—The geological antiquity of man—The probable birthplace of man—The origin of the moral and intellectual nature of man—The argument from continuity—The origin of the mathematical faculty—The origin of the musical and artistic faculties—Independent proof that these faculties have not been developed by natural selection—The interpretation of the facts—Concluding remarks
LIST OF ILLUSTRATIONS
PORTRAIT OF AUTHOR MAP SHOWING THE 1000-FATHOM LINE 1. DIAGRAM OF VARIATIONS OF LACERTA MURALIS 2. " VARIATION OF LIZARDS 3. " VARIATION OF WINGS AND TAIL OF BIRDS 4. " VARIATION OF DOLICHONYX ORYZIVORUS 5. " VARIATION OF AGELAEUS PHOENICEUS 6. " VARIATION OF CARDINALIS VIRGINIANUS 7. " VARIATION OF TARSUS AND TOES 8. " VARIATION OF BIRDS IN LEYDEN MUSEUM 9. " VARIATION OF ICTERUS BALTIMORE 10. " VARIATION OF AGELAEUS PHOENICEUS 11. " CURVES OF VARIATION 12. " VARIATION OF CARDINALIS VIRGINIANUS 13. " VARIATION OF SCIURUS CAROLINENSIS 14. " VARIATION OF SKULLS OF WOLF 15. " VARIATION OF SKULLS OF URSUS LABIATUS 16. " VARIATION OF SKULLS OF SUS CRISTATUS 17. PRIMULA VERIS (Cowslip). From Darwin's Forms of Flowers 18. GAZELLA SOEMMERRINGI (to show recognition marks) 19. RECOGNITION MARKS OF AFRICAN PLOVERS (from Seebohm's Charadriadae) 20. RECOGNITION OF OEDICNEMUS VERMICULATUS AND OE. SENEGALENSIS (from Seebohm's Charadriadae) 21. RECOGNITION OF CURSORIUS CHALCOPTERUS AND C. GALLICUS (from Seebohm's Charadriadae) 22. RECOGNITION OF SCOLOPAX MEGALA AND S. STENURA (from Seebohm's Charadriadae) 23. METHONA PSIDII AND LEPTALIS ORISE 24. OPTHALMIS LINCEA AND ARTAXA SIMULANS (from the Official Narrative of the Voyage of the Challenger) 25. WINGS OF ITUNA ILIONE AND THYRIDIA MEGISTO (from Proceedings of the Entomological Society) 26. MYGNIMIA AVICULUS AND COLOBORHOMBUS FASCIATIPENNIS 27. MIMICKING INSECTS FROM THE PHILIPPINES (from Semper's Animal Life) 28. MALVA SYLVESTRIS AND M. ROTUNDIFOLIA (from Lubbock's British Wild Flowers in Relation to Insects) 29. LYTHRUM SALICARIA, THREE FORMS OF (from Lubbock's British Wild Flowers in Relation to Insects) 30. ORCHIS PYRAMIDALIS (from Darwin's Fertilisation of Orchids) 31. HUMMING-BIRD FERTILISING MARCGRAVIA NEPENTHOIDES 32. DIAGRAM OF MEAN HEIGHT OF LAND AND DEPTH OF OCEANS 33. GEOLOGICAL DEVELOPMENT OF THE HORSE TRIBE (from Huxley's American Addresses) 34. DIAGRAM ILLUSTRATING THE GEOLOGICAL DISTRIBUTION OF PLANTS (from Ward's Sketch of Palaeobotany) 35. TRANSFORMATION OF ARTEMIA SALINA TO A. MILHAUSENII (from Semper's Animal Life) 36. BRANCHIPUS STAGNALIS AND ARTEMIA SALINA (from Semper's Animal Life) 37. CHIMPANZEE (TROGLODYTES NIGER)
CHAPTER I
WHAT ARE "SPECIES," AND WHAT IS MEANT BY THEIR "ORIGIN"
Definition of species—Special creation—The early Transmutationists—Scientific opinion before Darwin—The problem before Darwin—The change of opinion effected by Darwin—The Darwinian theory—Proposed mode of treatment of the subject.
The title of Mr. Darwin's great work is—On the Origin of Species by means of Natural Selection and the Preservation of Favoured Races in the Struggle for Life. In order to appreciate fully the aim and object of this work, and the change which it has effected not only in natural history but in many other sciences, it is necessary to form a clear conception of the meaning of the term "species," to know what was the general belief regarding them at the time when Mr. Darwin's book first appeared, and to understand what he meant, and what was generally meant, by discovering their "origin." It is for want of this preliminary knowledge that the majority of educated persons who are not naturalists are so ready to accept the innumerable objections, criticisms, and difficulties of its opponents as proofs that the Darwinian theory is unsound, while it also renders them unable to appreciate, or even to comprehend, the vast change which that theory has effected in the whole mass of thought and opinion on the great question of evolution.
The term "species" was thus defined by the celebrated botanist De Candolle: "A species is a collection of all the individuals which resemble each other more than they resemble anything else, which can by mutual fecundation produce fertile individuals, and which reproduce themselves by generation, in such a manner that we may from analogy suppose them all to have sprung from one single individual." And the zoologist Swainson gives a somewhat similar definition: "A species, in the usual acceptation of the term, is an animal which, in a state of nature, is distinguished by certain peculiarities of form, size, colour, or other circumstances, from another animal. It propagates, 'after its kind,' individuals perfectly resembling the parent; its peculiarities, therefore, are permanent."[1]
To illustrate these definitions we will take two common English birds, the rook (Corvus frugilegus) and the crow (Corvus corone). These are distinct species, because, in the first place, they always differ from each other in certain slight peculiarities of structure, form, and habits, and, in the second place, because rooks always produce rooks, and crows produce crows, and they do not interbreed. It was therefore concluded that all the rooks in the world had descended from a single pair of rooks, and the crows in like manner from a single pair of crows, while it was considered impossible that crows could have descended from rooks or vice versa. The "origin" of the first pair of each kind was a mystery. Similar remarks may be applied to our two common plants, the sweet violet (Viola odorata) and the dog violet (Viola canina). These also produce their like and never produce each other or intermingle, and they were therefore each supposed to have sprung from a single individual whose "origin" was unknown. But besides the crow and the rook there are about thirty other kinds of birds in various parts of the world, all so much like our species that they receive the common name of crows; and some of them differ less from each other than does our crow from our rook. These are all species of the genus Corvus, and were therefore believed to have been always as distinct as they are now, neither more nor less, and to have each descended from one pair of ancestral crows of the same identical species, which themselves had an unknown "origin." Of violets there are more than a hundred different kinds in various parts of the world, all differing very slightly from each other and forming distinct species of the genus Viola. But, as these also each produce their like and do not intermingle, it was believed that every one of them had always been as distinct from all the others as it is now, that all the individuals of each kind had descended from one ancestor, but that the "origin" of these hundred slightly differing ancestors was unknown. In the words of Sir John Herschel, quoted by Mr. Darwin, the origin of such species was "the mystery of mysteries."
The Early Transmutationists.
A few great naturalists, struck by the very slight difference between many of these species, and the numerous links that exist between the most different forms of animals and plants, and also observing that a great many species do vary considerably in their forms, colours, and habits, conceived the idea that they might be all produced one from the other. The most eminent of these writers was a great French naturalist, Lamarck, who published an elaborate work, the Philosophie Zoologique, in which he endeavoured to prove that all animals whatever are descended from other species of animals. He attributed the change of species chiefly to the effect of changes in the conditions of life—such as climate, food, etc.—and especially to the desires and efforts of the animals themselves to improve their condition, leading to a modification of form or size in certain parts, owing to the well-known physiological law that all organs are strengthened by constant use, while they are weakened or even completely lost by disuse. The arguments of Lamarck did not, however, satisfy naturalists, and though a few adopted the view that closely allied species had descended from each other, the general belief of the educated public was, that each species was a "special creation" quite independent of all others; while the great body of naturalists equally held, that the change from one species to another by any known law or cause was impossible, and that the "origin of species" was an unsolved and probably insoluble problem. The only other important work dealing with the question was the celebrated Vestiges of Creation, published anonymously, but now acknowledged to have been written by the late Robert Chambers. In this work the action of general laws was traced throughout the universe as a system of growth and development, and it was argued that the various species of animals and plants had been produced in orderly succession from each other by the action of unknown laws of development aided by the action of external conditions. Although this work had a considerable effect in influencing public opinion as to the extreme improbability of the doctrine of the independent "special creation" of each species, it had little effect upon naturalists, because it made no attempt to grapple with the problem in detail, or to show in any single case how the allied species of a genus could have arisen, and have preserved their numerous slight and apparently purposeless differences from each other. No clue whatever was afforded to a law which should produce from any one species one or more slightly differing but yet permanently distinct species, nor was any reason given why such slight yet constant differences should exist at all.
Scientific Opinion before Darwin.
In order to show how little effect these writers had upon the public mind, I will quote a few passages from the writings of Sir Charles Lyell, as representing the opinions of the most advanced thinkers in the period immediately preceding that of Darwin's work. When recapitulating the facts and arguments in favour of the invariability and permanence of species, he says: "The entire variation from the original type which any given kind of change can produce may usually be effected in a brief period of time, after which no further deviation can be obtained by continuing to alter the circumstances, though ever so gradually, indefinite divergence either in the way of improvement or deterioration being prevented, and the least possible excess beyond the defined limits being fatal to the existence of the individual." In another place he maintains that "varieties of some species may differ more than other species do from each other without shaking our confidence in the reality of species." He further adduces certain facts in geology as being, in his opinion, "fatal to the theory of progressive development," and he explains the fact that there are so often distinct species in countries of similar climate and vegetation by "special creations" in each country; and these conclusions were arrived at after a careful study of Lamarck's work, a full abstract of which is given in the earlier editions of the Principles of Geology.[2]
Professor Agassiz, one of the greatest naturalists of the last generation, went even further, and maintained not only that each species was specially created, but that it was created in the proportions and in the localities in which we now find it to exist. The following extract from his very instructive book on Lake Superior explains this view: "There are in animals peculiar adaptations which are characteristic of their species, and which cannot be supposed to have arisen from subordinate influences. Those which live in shoals cannot be supposed to have been created in single pairs. Those which are made to be the food of others cannot have been created in the same proportions as those which live upon them. Those which are everywhere found in innumerable specimens must have been introduced in numbers capable of maintaining their normal proportions to those which live isolated and are comparatively and constantly fewer. For we know that this harmony in the numerical proportions between animals is one of the great laws of nature. The circumstance that species occur within definite limits where no obstacles prevent their wider distribution leads to the further inference that these limits were assigned to them from the beginning, and so we should come to the final conclusion that the order which prevails throughout nature is intentional, that it is regulated by the limits marked out on the first day of creation, and that it has been maintained unchanged through ages with no other modifications than those which the higher intellectual powers of man enable him to impose on some few animals more closely connected with him."[3]
These opinions of some of the most eminent and influential writers of the pre-Darwinian age seem to us, now, either altogether obsolete or positively absurd; but they nevertheless exhibit the mental condition of even the most advanced section of scientific men on the problem of the nature and origin of species. They render it clear that, notwithstanding the vast knowledge and ingenious reasoning of Lamarck, and the more general exposition of the subject by the author of the Vestiges of Creation, the first step had not been taken towards a satisfactory explanation of the derivation of any one species from any other. Such eminent naturalists as Geoffroy Saint Hilaire, Dean Herbert, Professor Grant, Von Buch, and some others, had expressed their belief that species arose as simple varieties, and that the species of each genus were all descended from a common ancestor; but none of them gave a clue as to the law or the method by which the change had been effected. This was still "the great mystery." As to the further question—how far this common descent could be carried; whether distinct families, such as crows and thrushes, could possibly have descended from each other; or, whether all birds, including such widely distinct types as wrens, eagles, ostriches, and ducks, could all be the modified descendants of a common ancestor; or, still further, whether mammalia, birds, reptiles, and fishes, could all have had a common origin;—these questions had hardly come up for discussion at all, for it was felt that, while the very first step along the road of "transmutation of species" (as it was then called) had not been made, it was quite useless to speculate as to how far it might be possible to travel in the same direction, or where the road would ultimately lead to.
The Problem before Darwin.
It is clear, then, that what was understood by the "origin" or the "transmutation" of species before Darwin's work appeared, was the comparatively simple question whether the allied species of each genus had or had not been derived from one another and, remotely, from some common ancestor, by the ordinary method of reproduction and by means of laws and conditions still in action and capable of being thoroughly investigated. If any naturalist had been asked at that day whether, supposing it to be clearly shown that all the different species of each genus had been derived from some one ancestral species, and that a full and complete explanation were to be given of how each minute difference in form, colour, or structure might have originated, and how the several peculiarities of habit and of geographical distribution might have been brought about—whether, if this were done, the "origin of species" would be discovered, the great mystery solved, he would undoubtedly have replied in the affirmative. He would probably have added that he never expected any such marvellous discovery to be made in his lifetime. But so much as this assuredly Mr. Darwin has done, not only in the opinion of his disciples and admirers, but by the admissions of those who doubt the completeness of his explanations. For almost all their objections and difficulties apply to those larger differences which separate genera, families, and orders from each other, not to those which separate one species from the species to which it is most nearly allied, and from the remaining species of the same genus. They adduce such difficulties as the first development of the eye, or of the milk-producing glands of the mammalia; the wonderful instincts of bees and of ants; the complex arrangements for the fertilisation of orchids, and numerous other points of structure or habit, as not being satisfactorily explained. But it is evident that these peculiarities had their origin at a very remote period of the earth's history, and no theory, however complete, can do more than afford a probable conjecture as to how they were produced. Our ignorance of the state of the earth's surface and of the conditions of life at those remote periods is very great; thousands of animals and plants must have existed of which we have no record; while we are usually without any information as to the habits and general life-history even of those of which we possess some fragmentary remains; so that the truest and most complete theory would not enable us to solve all the difficult problems which the whole course of the development of life upon our globe presents to us.
What we may expect a true theory to do is to enable us to comprehend and follow out in some detail those changes in the form, structure, and relations of animals and plants which are effected in short periods of time, geologically speaking, and which are now going on around us. We may expect it to explain satisfactorily most of the lesser and superficial differences which distinguish one species from another. We may expect it to throw light on the mutual relations of the animals and plants which live together in any one country, and to give some rational account of the phenomena presented by their distribution in different parts of the world. And, lastly, we may expect it to explain many difficulties and to harmonise many incongruities in the excessively complex affinities and relations of living things. All this the Darwinian theory undoubtedly does. It shows us how, by means of some of the most universal and ever-acting laws in nature, new species are necessarily produced, while the old species become extinct; and it enables us to understand how the continuous action of these laws during the long periods with which geology makes us acquainted is calculated to bring about those greater differences presented by the distinct genera, families, and orders into which all living things are classified by naturalists. The differences which these present are all of the same nature as those presented by the species of many large genera, but much greater in amount; and they can all be explained by the action of the same general laws and by the extinction of a larger or smaller number of intermediate species. Whether the distinctions between the higher groups termed Classes and Sub-kingdoms may be accounted for in the same way is a much more difficult question. The differences which separate the mammals, birds, reptiles, and fishes from each other, though vast, yet seem of the same nature as those which distinguish a mouse from an elephant or a swallow from a goose. But the vertebrate animals, the mollusca, and the insects, are so radically distinct in their whole organisation and in the very plan of their structure, that objectors may not unreasonably doubt whether they can all have been derived from a common ancestor by means of the very same laws as have sufficed for the differentiation of the various species of birds or of reptiles.
The Change of Opinion effected by Darwin.
The point I wish especially to urge is this. Before Darwin's work appeared, the great majority of naturalists, and almost without exception the whole literary and scientific world, held firmly to the belief that species were realities, and had not been derived from other species by any process accessible to us; the different species of crow and of violet they are now, and to have originated by some totally unknown process so far removed from ordinary reproduction that it was usually spoken of as "special creation." There was, then, no question of the origin of families, orders, and classes, because the very first step of all, the "origin of species," was believed to be an insoluble problem. But now this is all changed. The whole scientific and literary world, even the whole educated public, accepts, as a matter of common knowledge, the origin of species from other allied species by the ordinary process of natural birth. The idea of special creation or any altogether exceptional mode of production is absolutely extinct! Yet more: this is held also to apply to many higher groups as well as to the species of a genus, and not even Mr. Darwin's severest critics venture to suggest that the primeval bird, reptile, or fish must have been "specially created." And this vast, this totally unprecedented change in public opinion has been the result of the work of one man, and was brought about in the short space of twenty years! This is the answer to those who continue to maintain that the "origin of species" is not yet discovered; that there are still doubts and difficulties; that there are divergencies of structure so great that we cannot understand how they had their beginning. We may admit all this, just as we may admit that there are enormous difficulties in the way of a complete comprehension of the origin and nature of all the parts of the solar system and of the stellar universe. But we claim for Darwin that he is the Newton of natural history, and that, just so surely as that the discovery and demonstration by Newton of the law of gravitation established order in place of chaos and laid a sure foundation for all future study of the starry heavens, so surely has Darwin, by his discovery of the law of natural selection and his demonstration of the great principle of the preservation of useful variations in the struggle for life, not only thrown a flood of light on the process of development of the whole organic world, but also established a firm foundation for all future study of nature.
In order to show the view Darwin took of his own work, and what it was that he alone claimed to have done, the concluding passage of the introduction to the Origin of Species should be carefully considered. It is as follows: "Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate and dispassionate judgment of which I am capable, that the view which most naturalists until recently entertained and which I formerly entertained—namely, that each species has been independently created—is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the most important, but not the exclusive, means of modification."
It should be especially noted that all which is here claimed is now almost universally admitted, while the criticisms of Darwin's works refer almost exclusively to those numerous questions which, as he himself says, "will long remain obscure."
The Darwinian Theory.
As it will be necessary, in the following chapters, to set forth a considerable body of facts in almost every department of natural history, in order to establish the fundamental propositions on which the theory of natural selection rests, I propose to give a preliminary statement of what the theory really is, in order that the reader may better appreciate the necessity for discussing so many details, and may thus feel a more enlightened interest in them. Many of the facts to be adduced are so novel and so curious that they are sure to be appreciated by every one who takes an interest in nature, but unless the need of them is clearly seen it may be thought that time is being wasted on mere curious details and strange facts which have little bearing on the question at issue.
The theory of natural selection rests on two main classes of facts which apply to all organised beings without exception, and which thus take rank as fundamental principles or laws. The first is, the power of rapid multiplication in a geometrical progression; the second, that the offspring always vary slightly from the parents, though generally very closely resembling them. From the first fact or law there follows, necessarily, a constant struggle for existence; because, while the offspring always exceed the parents in number, generally to an enormous extent, yet the total number of living organisms in the world does not, and cannot, increase year by year. Consequently every year, on the average, as many die as are born, plants as well as animals; and the majority die premature deaths. They kill each other in a thousand different ways; they starve each other by some consuming the food that others want; they are destroyed largely by the powers of nature—by cold and heat, by rain and storm, by flood and fire. There is thus a perpetual struggle among them which shall live and which shall die; and this struggle is tremendously severe, because so few can possibly remain alive—one in five, one in ten, often only one in a hundred or even one in a thousand.
Then comes the question, Why do some live rather than others? If all the individuals of each species were exactly alike in every respect, we could only say it is a matter of chance. But they are not alike. We find that they vary in many different ways. Some are stronger, some swifter, some hardier in constitution, some more cunning. An obscure colour may render concealment more easy for some, keener sight may enable others to discover prey or escape from an enemy better than their fellows. Among plants the smallest differences may be useful or the reverse. The earliest and strongest shoots may escape the slug; their greater vigour may enable them to flower and seed earlier in a wet autumn; plants best armed with spines or hairs may escape being devoured; those whose flowers are most conspicuous may be soonest fertilised by insects. We cannot doubt that, on the whole, any beneficial variations will give the possessors of it a greater probability of living through the tremendous ordeal they have to undergo. There may be something left to chance, but on the whole the fittest will survive.
Then we have another important fact to consider, the principle of heredity or transmission of variations. If we grow plants from seed or breed any kind of animals year after year, consuming or giving away all the increase we do not wish to keep just as they come to hand, our plants or animals will continue much the same; but if every year we carefully save the best seed to sow and the finest or brightest coloured animals to breed from, we shall soon find that an improvement will take place, and that the average quality of our stock will be raised. This is the way in which all our fine garden fruits and vegetables and flowers have been produced, as well as all our splendid breeds of domestic animals; and they have thus become in many cases so different from the wild races from which they originally sprang as to be hardly recognisable as the same. It is therefore proved that if any particular kind of variation is preserved and bred from, the variation itself goes on increasing in amount to an enormous extent; and the bearing of this on the question of the origin of species is most important. For if in each generation of a given animal or plant the fittest survive to continue the breed, then whatever may be the special peculiarity that causes "fitness" in the particular case, that peculiarity will go on increasing and strengthening so long as it is useful to the species. But the moment it has reached its maximum of usefulness, and some other quality or modification would help in the struggle, then the individuals which vary in the new direction will survive; and thus a species may be gradually modified, first in one direction, then in another, till it differs from the original parent form as much as the greyhound differs from any wild dog or the cauliflower from any wild plant. But animals or plants which thus differ in a state of nature are always classed as distinct species, and thus we see how, by the continuous survival of the fittest or the preservation of favoured races in the struggle for life, new species may be originated.
This self-acting process which, by means of a few easily demonstrated groups of facts, brings about change in the organic world, and keeps each species in harmony with the conditions of its existence, will appear to some persons so clear and simple as to need no further demonstration. But to the great majority of naturalists and men of science endless difficulties and objections arise, owing to the wonderful variety of animal and vegetable forms, and the intricate relations of the different species and groups of species with each other; and it was to answer as many of these objections as possible, and to show that the more we know of nature the more we find it to harmonise with the development hypothesis, that Darwin devoted the whole of his life to collecting facts and making experiments, the record of a portion of which he has given us in a series of twelve masterly volumes.
Proposed Mode of Treatment of the Subject.
It is evidently of the most vital importance to any theory that its foundations should be absolutely secure. It is therefore necessary to show, by a wide and comprehensive array of facts, that animals and plants do perpetually vary in the manner and to the amount requisite; and that this takes place in wild animals as well as in those which are domesticated. It is necessary also to prove that all organisms do tend to increase at the great rate alleged, and that this increase actually occurs, under favourable conditions. We have to prove, further, that variations of all kinds can be increased and accumulated by selection; and that the struggle for existence to the extent here indicated actually occurs in nature, and leads to the continued preservation of favourable variations.
These matters will be discussed in the four succeeding chapters, though in a somewhat different order—the struggle for existence and the power of rapid multiplication, which is its cause, occupying the first place, as comprising those facts which are the most fundamental and those which can be perfectly explained without any reference to the less generally understood facts of variation. These chapters will be followed by a discussion of certain difficulties, and of the vexed question of hybridity. Then will come a rather full account of the more important of the complex relations of organisms to each other and to the earth itself, which are either fully explained or greatly elucidated by the theory. The concluding chapter will treat of the origin of man and his relations to the lower animals.
FOOTNOTES:
[Footnote 1: Geography and Classification of Animals, p. 350.]
[Footnote 2: These expressions occur in Chapter IX. of the earlier editions (to the ninth) of the Principles of Geology.]
[Footnote 3: L. Agassiz, Lake Superior, p. 377.]
CHAPTER II
THE STRUGGLE FOR EXISTENCE
Its importance—The struggle among plants—Among animals—Illustrative cases—Succession of trees in forests of Denmark—The struggle for existence on the Pampas—Increase of organisms in a geometrical ratio—Examples of great powers of increase of animals—Rapid increase and wide spread of plants—Great fertility not essential to rapid increase—Struggle between closely allied species most severe—The ethical aspect of the struggle for existence.
There is perhaps no phenomenon of nature that is at once so important, so universal; and so little understood, as the struggle for existence continually going on among all organised beings. To most persons nature appears calm, orderly, and peaceful. They see the birds singing in the trees, the insects hovering over the flowers, the squirrel climbing among the tree-tops, and all living things in the possession of health and vigour, and in the enjoyment of a sunny existence. But they do not see, and hardly ever think of, the means by which this beauty and harmony and enjoyment is brought about. They do not see the constant and daily search after food, the failure to obtain which means weakness or death; the constant effort to escape enemies; the ever-recurring struggle against the forces of nature. This daily and hourly struggle, this incessant warfare, is nevertheless the very means by which much of the beauty and harmony and enjoyment in nature is produced, and also affords one of the most important elements in bringing about the origin of species. We must, therefore, devote some time to the consideration of its various aspects and of the many curious phenomena to which it gives rise.
It is a matter of common observation that if weeds are allowed to grow unchecked in a garden they will soon destroy a number of the flowers. It is not so commonly known that if a garden is left to become altogether wild, the weeds that first take possession of it, often covering the whole surface of the ground with two or three different kinds, will themselves be supplanted by others, so that in a few years many of the original flowers and of the earliest weeds may alike have disappeared. This is one of the very simplest cases of the struggle for existence, resulting in the successive displacement of one set of species by another; but the exact causes of this displacement are by no means of such a simple nature. All the plants concerned may be perfectly hardy, all may grow freely from seed, yet when left alone for a number of years, each set is in turn driven out by a succeeding set, till at the end of a considerable period—a century or a few centuries perhaps—hardly one of the plants which first monopolised the ground would be found there.
Another phenomenon of an analogous kind is presented by the different behaviour of introduced wild plants or animals into countries apparently quite as well suited to them as those which they naturally inhabit. Agassiz, in his work on Lake Superior, states that the roadside weeds of the northeastern United States, to the number of 130 species, are all European, the native weeds having disappeared westwards; and in New Zealand there are no less than 250 species of naturalised European plants, more than 100 species of which have spread widely over the country, often displacing the native vegetation. On the other hand, of the many hundreds of hardy plants which produce seed freely in our gardens, very few ever run wild, and hardly any have become common. Even attempts to naturalise suitable plants usually fail; for A. de Candolle states that several botanists of Paris, Geneva, and especially of Montpellier, have sown the seeds of many hundreds of species of hardy exotic plants in what appeared to be the most favourable situations, but that, in hardly a single case, has any one of them become naturalised.[4] Even a plant like the potato—so widely cultivated, so hardy, and so well adapted to spread by means of its many-eyed tubers—has not established itself in a wild state in any part of Europe. It would be thought that Australian plants would easily run wild in New Zealand. But Sir Joseph Hooker informs us that the late Mr. Bidwell habitually scattered Australian seeds during his extensive travels in New Zealand, yet only two or three Australian plants appear to have established themselves in that country, and these only in cultivated or newly moved soil.
These few illustrations sufficiently show that all the plants of a country are, as De Candolle says, at war with each other, each one struggling to occupy ground at the expense of its neighbour. But, besides this direct competition, there is one not less powerful arising from the exposure of almost all plants to destruction by animals. The buds are destroyed by birds, the leaves by caterpillars, the seeds by weevils; some insects bore into the trunk, others burrow in the twigs and leaves; slugs devour the young seedlings and the tender shoots, wire-worms gnaw the roots. Herbivorous mammals devour many species bodily, while some uproot and devour the buried tubers.
In animals, it is the eggs or the very young that suffer most from their various enemies; in plants, the tender seedlings when they first appear above the ground. To illustrate this latter point Mr. Darwin cleared and dug a piece of ground three feet long and two feet wide, and then marked all the seedlings of weeds and other plants which came up, noting what became of them. The total number was 357, and out of these no less than 295 were destroyed by slugs and insects. The direct strife of plant with plant is almost equally fatal when the stronger are allowed to smother the weaker. When turf is mown or closely browsed by animals, a number of strong and weak plants live together, because none are allowed to grow much beyond the rest; but Mr. Darwin found that when the plants which compose such turf are allowed to grow up freely, the stronger kill the weaker. In a plot of turf three feet by four, twenty distinct species of plants were found to be growing, and no less than nine of these perished altogether when the other species were allowed to grow up to their full size.[5]
But besides having to protect themselves against competing plants and against destructive animals, there is a yet deadlier enemy in the forces of inorganic nature. Each species can sustain a certain amount of heat and cold, each requires a certain amount of moisture at the right season, each wants a proper amount of light or of direct sunshine, each needs certain elements in the soil; the failure of a due proportion in these inorganic conditions causes weakness, and thus leads to speedy death. The struggle for existence in plants is, therefore, threefold in character and infinite in complexity, and the result is seen in their curiously irregular distribution over the face of the earth. Not only has each country its distinct plants, but every valley, every hillside, almost every hedgerow, has a different set of plants from its adjacent valley, hillside, or hedgerow—if not always different in the actual species yet very different in comparative abundance, some which are rare in the one being common in the other. Hence it happens that slight changes of conditions often produce great changes in the flora of a country. Thus in 1740 and the two following years the larva of a moth (Phalaena graminis) committed such destruction in many of the meadows of Sweden that the grass was greatly diminished in quantity, and many plants which were before choked by the grass sprang up, and the ground became variegated with a multitude of different species of flowers. The introduction of goats into the island of St. Helena led to the entire destruction of the native forests, consisting of about a hundred distinct species of trees and shrubs, the young plants being devoured by the goats as fast as they grew up. The camel is a still greater enemy to woody vegetation than the goat, and Mr. Marsh believes that forests would soon cover considerable tracts of the Arabian and African deserts if the goat and the camel were removed from them.[6] Even in many parts of our own country the existence of trees is dependent on the absence of cattle. Mr. Darwin observed, on some extensive heaths near Farnham, in Surrey, a few clumps of old Scotch firs, but no young trees over hundreds of acres. Some portions of the heath had, however, been enclosed a few years before, and these enclosures were crowded with young fir-trees growing too close together for all to live; and these were not sown or planted, nothing having been done to the ground beyond enclosing it so as to keep out cattle. On ascertaining this, Mr. Darwin was so much surprised that he searched among the heather in the unenclosed parts, and there he found multitudes of little trees and seedlings which had been perpetually browsed down by the cattle. In one square yard, at a point about a hundred yards from one of the old clumps of firs, he counted thirty-two little trees, and one of them had twenty-six rings of growth, showing that it had for many years tried to raise its head above the stems of the heather and had failed. Yet this heath was very extensive and very barren, and, as Mr. Darwin remarks, no one would ever have imagined that cattle would have so closely and so effectually searched it for food.
In the case of animals, the competition and struggle are more obvious. The vegetation of a given district can only support a certain number of animals, and the different kinds of plant-eaters will compete together for it. They will also have insects for their competitors, and these insects will be kept down by birds, which will thus assist the mammalia. But there will also be carnivora destroying the herbivora; while small rodents, like the lemming and some of the field-mice, often destroy so much vegetation as materially to affect the food of all the other groups of animals. Droughts, floods, severe winters, storms and hurricanes will injure these in various degrees, but no one species can be diminished in numbers without the effect being felt in various complex ways by all the rest. A few illustrations of this reciprocal action must be given.
Illustrative Cases of the Struggle for Life.
Sir Charles Lyell observes that if, by the attacks of seals or other marine foes, salmon are reduced in numbers, the consequence will be that otters, living far inland, will be deprived of food and will then destroy many young birds or quadrupeds, so that the increase of a marine animal may cause the destruction of many land animals hundreds of miles away. Mr. Darwin carefully observed the effects produced by planting a few hundred acres of Scotch fir, in Staffordshire, on part of a very extensive heath which had never been cultivated. After the planted portion was about twenty-five years old he observed that the change in the native vegetation was greater than is often seen in passing from one quite different soil to another. Besides a great change in the proportional numbers of the native heath-plants, twelve species which could not be found on the heath flourished in the plantations. The effect on the insect life must have been still greater, for six insectivorous birds which were very common in the plantations were not to be seen on the heath, which was, however, frequented by two or three different species of insectivorous birds. It would have required continued study for several years to determine all the differences in the organic life of the two areas, but the facts stated by Mr. Darwin are sufficient to show how great a change may be effected by the introduction of a single kind of tree and the keeping out of cattle.
The next case I will give in Mr. Darwin's own words: "In several parts of the world insects determine the existence of cattle. Perhaps Paraguay offers the most curious instance of this; for here neither cattle nor horses nor dogs have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater numbers, in Paraguay, of a certain fly which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by other parasitic insects. Hence, if certain insectivorous birds were to decrease in Paraguay, the parasitic insects would probably increase; and this would lessen the number of the navel-frequenting flies—then cattle and horses would become feral, and this would greatly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects, and this, as we have just seen in Staffordshire, the insectivorous birds, and so onward in ever-increasing circles of complexity. Not that under nature the relations will ever be as simple as this. Battle within battle must be continually recurring with varying success; and yet in the long run the forces are so nicely balanced, that the face of nature remains for a long time uniform, though assuredly the merest trifle would give the victory to one organic being over another."[7]
Such cases as the above may perhaps be thought exceptional, but there is good reason to believe that they are by no means rare, but are illustrations of what is going on in every part of the world, only it is very difficult for us to trace out the complex reactions that are everywhere occurring. The general impression of the ordinary observer seems to be that wild animals and plants live peaceful lives and have few troubles, each being exactly suited to its place and surroundings, and therefore having no difficulty in maintaining itself. Before showing that this view is, everywhere and always, demonstrably untrue, we will consider one other case of the complex relations of distinct organisms adduced by Mr. Darwin, and often quoted for its striking and almost eccentric character. It is now well known that many flowers require to be fertilised by insects in order to produce seed, and this fertilisation can, in some cases, only be effected by one particular species of insect to which the flower has become specially adapted. Two of our common plants, the wild heart's-ease (Viola tricolor) and the red clover (Trifolium pratense), are thus fertilised by humble-bees almost exclusively, and if these insects are prevented from visiting the flowers, they produce either no seed at all or exceedingly few. Now it is known that field-mice destroy the combs and nests of humble-bees, and Colonel Newman, who has paid great attention to these insects, believes that more than two-thirds of all the humble-bees' nests in England are thus destroyed. But the number of mice depends a good deal on the number of cats; and the same observer says that near villages and towns he has found the nests of humble-bees more numerous than elsewhere, which he attributes to the number of cats that destroy the mice. Hence it follows, that the abundance of red clover and wild heart's-ease in a district will depend on a good supply of cats to kill the mice, which would otherwise destroy and keep down the humble-bees and prevent them from fertilising the flowers. A chain of connection has thus been found between such totally distinct organisms as flesh-eating mammalia and sweet-smelling flowers, the abundance or scarcity of the one closely corresponding to that of the other!
The following account of the struggle between trees in the forests of Denmark, from the researches of M. Hansten-Blangsted, strikingly illustrates our subject.[8] The chief combatants are the beech and the birch, the former being everywhere successful in its invasions. Forests composed wholly of birch are now only found in sterile, sandy tracts; everywhere else the trees are mixed, and wherever the soil is favourable the beech rapidly drives out the birch. The latter loses its branches at the touch of the beech, and devotes all its strength to the upper part where it towers above the beech. It may live long in this way, but it succumbs ultimately in the fight—of old age if of nothing else, for the life of the birch in Denmark is shorter than that of the beech. The writer believes that light (or rather shade) is the cause of the superiority of the latter, for it has a greater development of its branches than the birch, which is more open and thus allows the rays of the sun to pass through to the soil below, while the tufted, bushy top of the beech preserves a deep shade at its base. Hardly any young plants can grow under the beech except its own shoots; and while the beech can nourish under the shade of the birch, the latter dies immediately under the beech. The birch has only been saved from total extermination by the facts that it had possession of the Danish forests long before the beech ever reached the country, and that certain districts are unfavourable to the growth of the latter. But wherever the soil has been enriched by the decomposition of the leaves of the birch the battle begins. The birch still flourishes on the borders of lakes and other marshy places, where its enemy cannot exist. In the same way, in the forests of Zeeland, the fir forests are disappearing before the beech. Left to themselves, the firs are soon displaced by the beech. The struggle between the latter and the oak is longer and more stubborn, for the branches and foliage of the oak are thicker, and offer much resistance to the passage of light. The oak, also, has greater longevity; but, sooner or later, it too succumbs, because it cannot develop in the shadow of the beech. The earliest forests of Denmark were mainly composed of aspens, with which the birch was apparently associated; gradually the soil was raised, and the climate grew milder; then the fir came and formed large forests. This tree ruled for centuries, and then ceded the first place to the holm-oak, which is now giving way to the beech. Aspen, birch, fir, oak, and beech appear to be the steps in the struggle for the survival of the fittest among the forest-trees of Denmark.
It may be added that in the time of the Romans the beech was the principal forest-tree of Denmark as it is now, while in the much earlier bronze age, represented by the later remains found in the peat bogs, there were no beech-trees, or very few, the oak being the prevailing tree, while in the still earlier stone period the fir was the most abundant. The beech is a tree essentially of the temperate zone, having its northern limit considerably southward of the oak, fir, birch, or aspen, and its entrance into Denmark was no doubt due to the amelioration of the climate after the glacial epoch had entirely passed away. We thus see how changes of climate, which are continually occurring owing either to cosmical or geographical causes, may initiate a struggle among plants which may continue for thousands of years, and which must profoundly modify the relations of the animal world, since the very existence of innumerable insects, and even of many birds and mammals, is dependent more or less completely on certain species of plants.
The Struggle for Existence on the Pampas.
Another illustration of the struggle for existence, in which both plants and animals are implicated, is afforded by the pampas of the southern part of South America. The absence of trees from these vast plains has been imputed by Mr. Darwin to the supposed inability of the tropical and sub-tropical forms of South America to thrive on them, and there being no other source from which they could obtain a supply; and that explanation was adopted by such eminent botanists as Mr. Ball and Professor Asa Gray. This explanation has always seemed to me unsatisfactory, because there are ample forests both in the temperate regions of the Andes and on the whole west coast down to Terra del Fuego; and it is inconsistent with what we know of the rapid variation and adaptation of species to new conditions. What seems a more satisfactory explanation has been given by Mr. Edwin Clark, a civil engineer, who resided nearly two years in the country and paid much attention to its natural history. He says: "The peculiar characteristics of these vast level plains which descend from the Andes to the great river basin in unbroken monotony, are the absence of rivers or water-storage, and the periodical occurrence of droughts, or 'siccos,' in the summer months. These conditions determine the singular character both of its flora and fauna.
"The soil is naturally fertile and favourable for the growth of trees, and they grow luxuriantly wherever they are protected. The eucalyptus is covering large tracts wherever it is enclosed, and willows, poplars, and the fig surround every estancia when fenced in.
"The open plains are covered with droves of horses and cattle, and overrun by numberless wild rodents, the original tenants of the pampas. During the long periods of drought, which are so great a scourge to the country, these animals are starved by thousands, destroying, in their efforts to live, every vestige of vegetation. In one of these 'siccos,' at the time of my visit, no less than 50,000 head of oxen and sheep and horses perished from starvation and thirst, after tearing deep out of the soil every trace of vegetation, including the wiry roots of the pampas-grass. Under such circumstances the existence of an unprotected tree is impossible. The only plants that hold their own, in addition to the indestructible thistles, grasses, and clover, are a little herbaceous oxalis, producing viviparous buds of extraordinary vitality, a few poisonous species, such as the hemlock, and a few tough, thorny dwarf-acacias and wiry rushes, which even a starving rat refuses.
"Although the cattle are a modern introduction, the numberless indigenous rodents must always have effectually prevented the introduction of any other species of plants; large tracts are still honeycombed by the ubiquitous biscacho, a gigantic rabbit; and numerous other rodents still exist, including rats and mice, pampas-hares, and the great nutria and carpincho (capybara) on the river banks."[9]
Mr. Clark further remarks on the desperate struggle for existence which characterises the bordering fertile zones, where rivers and marshy plains permit a more luxuriant and varied vegetable and animal life. After describing how the river sometimes rose 30 feet in eight hours, doing immense destruction, and the abundance of the larger carnivora and large reptiles on its banks, he goes on: "But it was among the flora that the principle of natural selection was most prominently displayed. In such a district—overrun with rodents and escaped cattle, subject to floods that carried away whole islands of botany, and especially to droughts that dried up the lakes and almost the river itself—no ordinary plant could live, even on this rich and watered alluvial debris. The only plants that escaped the cattle were such as were either poisonous, or thorny, or resinous, or indestructibly tough. Hence we had only a great development of solanums, talas, acacias, euphorbias, and laurels. The buttercup is replaced by the little poisonous yellow oxalis with its viviparous buds; the passion-flowers, asclepiads, bignonias, convolvuluses, and climbing leguminous plants escape both floods and cattle by climbing the highest trees and towering overhead in a flood of bloom. The ground plants are the portulacas, turneras, and cenotheras, bitter and ephemeral, on the bare rock, and almost independent of any other moisture than the heavy dews. The pontederias, alismas, and plantago, with grasses and sedges, derive protection from the deep and brilliant pools; and though at first sight the 'monte' doubtless impresses the traveller as a scene of the wildest confusion and ruin, yet, on closer examination, we found it far more remarkable as a manifestation of harmony and law, and a striking example of the marvellous power which plants, like animals, possess, of adapting themselves to the local peculiarities of their habitat, whether in the fertile shades of the luxuriant 'monte' or on the arid, parched-up plains of the treeless pampas."
A curious example of the struggle between plants has been communicated to me by Mr. John Ennis, a resident in New Zealand. The English water-cress grows so luxuriantly in that country as to completely choke up the rivers, sometimes leading to disastrous floods, and necessitating great outlay to keep the stream open. But a natural remedy has now been found in planting willows on the banks. The roots of these trees penetrate the bed of the stream in every direction, and the water-cress, unable to obtain the requisite amount of nourishment, gradually disappears.
Increase of Organisms in a Geometrical Ratio.
The facts which have now been adduced, sufficiently prove that there is a continual competition, and struggle, and war going on in nature, and that each species of animal and plant affects many others in complex and often unexpected ways. We will now proceed to show the fundamental cause of this struggle, and to prove that it is ever acting over the whole field of nature, and that no single species of animal or plant can possibly escape from it. This results from the fact of the rapid increase, in a geometrical ratio, of all the species of animals and plants. In the lower orders this increase is especially rapid, a single flesh-fly (Musca carnaria) producing 20,000 larvae, and these growing so quickly that they reach their full size in five days; hence the great Swedish naturalist, Linnaeus, asserted that a dead horse would be devoured by three of these flies as quickly as by a lion. Each of these larvae remains in the pupa state about five or six days, so that each parent fly may be increased ten thousand-fold in a fortnight. Supposing they went on increasing at this rate during only three months of summer, there would result one hundred millions of millions of millions for each fly at the commencement of summer,—a number greater probably than exists at any one time in the whole world. And this is only one species, while there are thousands of other species increasing also at an enormous rate; so that, if they were unchecked, the whole atmosphere would be dense with flies, and all animal food and much of animal life would be destroyed by them. To prevent this tremendous increase there must be incessant war against these insects, by insectivorous birds and reptiles as well as by other insects, in the larva as well as in the perfect state, by the action of the elements in the form of rain, hail, or drought, and by other unknown causes; yet we see nothing of this ever-present war, though by its means alone, perhaps, we are saved from famine and pestilence.
Let us now consider a less extreme and more familiar case. We possess a considerable number of birds which, like the redbreast, sparrow, the four common titmice, the thrush, and the blackbird, stay with us all the year round These lay on an average six eggs, but, as several of them have two or more broods a year, ten will be below the average of the year's increase. Such birds as these often live from fifteen to twenty years in confinement, and we cannot suppose them to live shorter lives in a state of nature, if unmolested; but to avoid possible exaggeration we will take only ten years as the average duration of their lives. Now, if we start with a single pair, and these are allowed to live and breed, unmolested, till they die at the end of ten years,—as they might do if turned loose into a good-sized island with ample vegetable and insect food, but no other competing or destructive birds or quadrupeds—their numbers would amount to more than twenty millions. But we know very well that our bird population is no greater, on the average, now than it was ten years ago. Year by year it may fluctuate a little according as the winters are more or less severe, or from other causes, but on the whole there is no increase. What, then, becomes of the enormous surplus population annually produced? It is evident they must all die or be killed, somehow; and as the increase is, on the average, about five to one, it follows that, if the average number of birds of all kinds in our islands is taken at ten millions—and this is probably far under the mark—then about fifty millions of birds, including eggs as possible birds, must annually die or be destroyed. Yet we see nothing, or almost nothing, of this tremendous slaughter of the innocents going on all around us. In severe winters a few birds are found dead, and a few feathers or mangled remains show us where a wood-pigeon or some other bird has been destroyed by a hawk, but no one would imagine that five times as many birds as the total number in the country in early spring die every year. No doubt a considerable proportion of these do not die here but during or after migration to other countries, but others which are bred in distant countries come here, and thus balance the account. Again, as the average number of young produced is four or five times that of the parents, we ought to have at least five times as many birds in the country at the end of summer as at the beginning, and there is certainly no such enormous disproportion as this. The fact is, that the destruction commences, and is probably most severe, with nestling birds, which are often killed by heavy rains or blown away by severe storms, or left to die of hunger if either of the parents is killed; while they offer a defenceless prey to jackdaws, jays, and magpies, and not a few are ejected from their nests by their foster-brothers the cuckoos. As soon as they are fledged and begin to leave the nest great numbers are destroyed by buzzards, sparrow-hawks, and shrikes. Of those which migrate in autumn a considerable proportion are probably lost at sea or otherwise destroyed before they reach a place of safety; while those which remain with us are greatly thinned by cold and starvation during severe winters. Exactly the same thing goes on with every species of wild animal and plant from the lowest to the highest. All breed at such a rate, that in a few years the progeny of any one species would, if allowed to increase unchecked, alone monopolise the land; but all alike are kept within bounds by various destructive agencies, so that, though the numbers of each may fluctuate, they can never permanently increase except at the expense of some others, which must proportionately decrease.
Cases showing the Great Powers of Increase of Animals.
As the facts now stated are the very foundation of the theory we are considering, and the enormous increase and perpetual destruction continually going on require to be kept ever present in the mind, some direct evidence of actual cases of increase must be adduced. That even the larger animals, which breed comparatively slowly, increase enormously when placed under favourable conditions in new countries, is shown by the rapid spread of cattle and horses in America. Columbus, in his second voyage, left a few black cattle at St. Domingo, and these ran wild and increased so much that, twenty-seven years afterwards, herds of from 4000 to 8000 head were not uncommon. Cattle were afterwards taken from this island to Mexico and to other parts of America, and in 1587, sixty-five years after the conquest of Mexico, the Spaniards exported 64,350 hides from that country and 35,444 from St. Domingo, an indication of the vast numbers of these animals which must then have existed there, since those captured and killed could have been only a small portion of the whole. In the pampas of Buenos Ayres there were, at the end of the last century, about twelve million cows and three million horses, besides great numbers in all other parts of America where open pastures offered suitable conditions. Asses, about fifty years after their introduction, ran wild and multiplied so amazingly in Quito, that the Spanish traveller Ulloa describes them as being a nuisance. They grazed together in great herds, defending themselves with their mouths, and if a horse strayed among them they all fell upon him and did not cease biting and kicking till they left him dead. Hogs were turned out in St. Domingo by Columbus in 1493, and the Spaniards took them to other places where they settled, the result being, that in about half a century these animals were found in great numbers over a large part of America, from 25 deg. north to 40 deg. south latitude. More recently, in New Zealand, pigs have multiplied so greatly in a wild state as to be a serious nuisance and injury to agriculture. To give some idea of their numbers, it is stated that in the province of Nelson there were killed in twenty months 25,000 wild pigs.[10] Now, in the case of all these animals, we know that in their native countries, and even in America at the present time, they do not increase at all in numbers; therefore the whole normal increase must be kept down, year by year, by natural or artificial means of destruction.
Rapid Increase and Wide Spread of Plants.
In the case of plants, the power of increase is even greater and its effects more distinctly visible. Hundreds of square miles of the plains of La Plata are now covered with two or three species of European thistle, often to the exclusion of almost every other plant; but in the native countries of these thistles they occupy, except in cultivated or waste ground, a very subordinate part in the vegetation. Some American plants, like the cotton-weed (Asclepias cuiussayica), have now become common weeds over a large portion of the tropics. White clover (Trifolium repens) spreads over all the temperate regions of the world, and in New Zealand is exterminating many native species, including even the native flax (Phormium tenax), a large plant with iris-like leaves 5 or 6 feet high. Mr. W.L. Travers has paid much attention to the effects of introduced plants in New Zealand, and notes the following species as being especially remarkable. The common knotgrass (Polygonum aviculare) grows most luxuriantly, single plants covering a space 4 or 5 feet in diameter, and sending their roots 3 or 4 feet deep. A large sub-aquatic dock (Rumex obtusifolius) abounds in every river-bed, even far up among the mountains. The common sow-thistle (Sonchus oleraceus) grows all over the country up to an elevation of 6000 feet. The water-cress (Nasturtium officinale) grows with amazing vigour in many of the rivers, forming stems 12 feet long and 3/4 inch in diameter, and completely choking them up. It cost L300 a year to keep the Avon at Christchurch free from it. The sorrel (Rumex acetosella) covers hundreds of acres with a sheet of red. It forms a dense mat, exterminating other plants, and preventing cultivation. It can, however, be itself exterminated by sowing the ground with red clover, which will also vanquish the Polygonum aviculare. The most noxious weed in New Zealand appears, however, to be the Hypochaeris radicata, a coarse yellow-flowered composite not uncommon in our meadows and waste places. This has been introduced with grass seeds from England, and is very destructive. It is stated that excellent pasture was in three years destroyed by this weed, which absolutely displaced every other plant on the ground. It grows in every kind of soil, and is said even to drive out the white clover, which is usually so powerful in taking possession of the soil.
In Australia another composite plant, called there the Cape-weed (Cryptostemma calendulaceum), did much damage, and was noticed by Baron Von Hugel in 1833 as "an unexterminable weed"; but, after forty years' occupation, it was found to give way to the dense herbage formed by lucerne and choice grasses. |
|