|
Well, that is a very curious thing! The fact is that the dog and the horse—when one gets a look at them without the outward impediments of the skin—are found to be made in very much the same sort of fashion. And if I were to make a transverse section of the dog, I should find the same organs that I have already shown you as forming parts of the horse. Well, here is another skeleton—that of a kind of lemur—you see he has just the same bones; and if I were to make a transverse section of it, it would be just the same again. In your mind's eye turn him round, so as to put his backbone in a position inclined obliquely upwards and forwards, just as in the next three diagrams, which represent the skeletons of an orang, a chimpanzee, and a gorilla, and you find you have no trouble in identifying the bones throughout; and lastly turn to the end of the series, the diagram representing a man's skeleton, and still you find no great structural feature essentially altered. There are the same bones in the same relations. From the horse we pass on and on, with gradual steps until we arrive at last at the highest known forms. On the other hand, take the other line of diagrams, and pass from the horse downwards in the scale to this fish; and still, though the modifications are vastly greater, the essential framework of the organisation remains unchanged. Here, for instance, is a porpoise: here is its strong backbone, with the cavity running through it, which contains the spinal cord; here are the ribs, here the shoulder-blade; here is the little short upper-arm bone, here are the two forearm bones, the wrist-bone, and the finger-bones.
Strange, is it not, that the porpoise should have in this queer-looking affair—its flapper (as it is called), the same fundamental elements as the fore-leg of the horse or the dog, or the ape or man; and here you will notice a very curious thing,—the hinder limbs are absent. Now, let us make another jump. Let us go to the codfish: here you see is the forearm, in this large pectoral fin—carrying your mind's eye onward from the flapper of the porpoise. And here you have the hinder limbs restored in the shape of these ventral fins. If I were to make a transverse section of this, I should find just the same organs that we have before noticed. So that, you see, there comes out this strange conclusion as the result of our investigations, that the horse, when examined and compared with other animals, is found by no means to stand alone in Nature; but that there are an enormous number of other creatures which have backbones, ribs, and legs, and other parts arranged in the same general manner, and in all their formation exhibiting the same broad peculiarities.
I am sure that you cannot have followed me even in this extremely elementary exposition of the structural relations of animals, without seeing what I have been driving at all through, which is, to show you that, step by step, naturalists have come to the idea of a unity of plan, or conformity of construction, among animals which appeared at first sight to be extremely dissimilar.
And here you have evidence of such a unity of plan among all the animals which have backbones, and which we technically call Vertebrata. But there are multitudes of other animals, such as crabs, lobsters, spiders, and so on, which we term Annulosa. In these I could not point out to you the parts that correspond with those of the horse,—the backbone, for instance,—as they are constructed upon a very different principle, which is also common to all of them; that is to say, the lobster, the spider, and the centipede, have a common plan running through their whole arrangement, in just the same way that the horse, the dog, and the porpoise assimilate to each other.
Yet other creatures—whelks, cuttlefishes, oysters, snails, and all their tribe (Mollusca)—resemble one another in the same way, but differ from both Vertebrata and Annulosa; and the like is true of the animals called Coelenterata (Polypes) and Protozoa (animalcules and sponges).
Now, by pursuing this sort of comparison, naturalists have arrived at the conviction that there are,—some think five, and some seven,—but certainly not more than the latter number—and perhaps it is simpler to assume five—distinct plans or constructions in the whole of the animal world; and that the hundreds of thousands of species of creatures on the surface of the earth, are all reducible to those five, or, at most, seven, plans of organisation.
But can we go no further than that? When one has got so far, one is tempted to go on a step and inquire whether we cannot go back yet further and bring down the whole to modifications of one primordial unit. The anatomist cannot do this; but if he call to his aid the study of development, he can do it. For we shall find that, distinct as those plans are, whether it be a porpoise or man, or lobster, or any of those other kinds I have mentioned, every one begins its existence with one and the same primitive form,—that of the egg, consisting, as we have seen, of a nitrogenous substance, having a small particle or nucleus in the centre of it. Furthermore, the earlier changes of each are substantially the same. And it is in this that lies that true "unity of organisation" of the animal kingdom which has been guessed at and fancied for many years; but which it has been left to the present time to be demonstrated by the careful study of development. But is it possible to go another step further still, and to show that in the same way the whole of the organic world is reducible to one primitive condition of form? Is there among the plants the same primitive form of organisation, and is that identical with that of the animal kingdom? The reply to that question, too, is not uncertain or doubtful. It is now proved that every plant begins its existence under the same form; that is to say, in that of a cell—a particle of nitrogenous matter having substantially the same conditions. So that if you trace back the oak to its first germ, or a man, or a horse, or lobster, or oyster, or any other animal you choose to name, you shall find each and all of these commencing their existence in forms essentially similar to each other; and, furthermore, that the first processes of growth, and many of the subsequent modifications, are essentially the same in principle in almost all.
In conclusion, let me, in a few words, recapitulate the positions which I have laid down. And you must understand that I have not been talking mere theory; I have been speaking of matters which are as plainly demonstrable as the commonest propositions of Euclid—of facts that must form the basis of all speculations and beliefs in Biological science. We have gradually traced down all organic forms, or, in other words, we have analysed the present condition of animated nature, until we found that each species took its origin in a form similar to that under which all the others commenced their existence. We have found the whole of the vast array of living forms with which we are surrounded, constantly growing, increasing, decaying and disappearing; the animal constantly attracting, modifying, and applying to its sustenance the matter of the vegetable kingdom, which derived its support from the absorption and conversion of inorganic matter. And so constant and universal is this absorption, waste, and reproduction, that it may be said with perfect certainty that there is left in no one of our bodies at the present moment a millionth part of the matter of which they were originally formed! We have seen, again, that not only is the living matter derived from the inorganic world, but that the forces of that matter are all of them correlative with and convertible into those of inorganic nature.
This, for our present purposes, is the best view of the present condition of organic nature which I can lay before you: it gives you the great outlines of a vast picture, which you must fill up by your own study.
In the next lecture I shall endeavour in the same way to go back into the past, and to sketch in the same broad manner the history of life in epochs preceding our own.
II. THE PAST CONDITION OF ORGANIC NATURE
In the lecture which I delivered last Monday evening, I endeavoured to sketch in a very brief manner, but as well as the time at my disposal would permit, the present condition of organic nature, meaning by that large title simply an indication of the great, broad, and general principles which are to be discovered by those who look attentively at the phenomena of organic nature as at present displayed. The general result of our investigations might be summed up thus: we found that the multiplicity of the forms of animal life, great as that may be, may be reduced to a comparatively few primitive plans or types of construction; that a further study of the development of those different forms revealed to us that they were again reducible, until we at last brought the infinite diversity of animal, and even vegetable life, down to the primordial form of a single cell.
We found that our analysis of the organic world, whether animals or plants, showed, in the long run, that they might both be reduced into, and were, in fact, composed of, the same constituents. And we saw that the plant obtained the materials constituting its substance by a peculiar combination of matters belonging entirely to the inorganic world; that, then, the animal was constantly appropriating the nitrogenous matters of the plant to its own nourishment, and returning them back to the inorganic world, in what we spoke of as its waste; and that finally, when the animal ceased to exist, the constituents of its body were dissolved and transmitted to that inorganic world whence they had been at first abstracted. Thus we saw in both the blade of grass and the horse but the same elements differently combined and arranged. We discovered a continual circulation going on,—the plant drawing in the elements of inorganic nature and combining them into food for the animal creation; the animal borrowing from the plant the matter for its own support, giving off during its life products which returned immediately to the inorganic world; and that, eventually, the constituent materials of the whole structure of both animals and plants were thus returned to their original source: there was a constant passage from one state of existence to another, and a returning back again.
Lastly, when we endeavoured to form some notion of the nature of the forces exercised by living beings, we discovered that they—if not capable of being subjected to the same minute analysis as the constituents of those beings themselves—that they were correlative with—that they were the equivalents of the forces of inorganic nature—that they were, in the sense in which the term is now used, convertible with them. That was our general result.
And now, leaving the Present, I must endeavour in the same manner to put before you the facts that are to be discovered in the Past history of the living world, in the past conditions of organic nature. We have, to-night, to deal with the facts of that history—a history involving periods of time before which our mere human records sink into utter insignificance—a history the variety and physical magnitude of whose events cannot even be foreshadowed by the history of human life and human phenomena—a history of the most varied and complex character.
We must deal with the history, then, in the first place, as we should deal with all other histories. The historical student knows that his first business should be to inquire into the validity of his evidence, and the nature of the record in which the evidence is contained, that he may be able to form a proper estimate of the correctness of the conclusions which have been drawn from that evidence. So, here we must pass, in the first place, to the consideration of a matter which may seem foreign to the question under discussion. We must dwell upon the nature of the records, and the credibility of the evidence they contain; we must look to the completeness or incompleteness of those records themselves, before we turn to that which they contain and reveal. The question of the credibility of the history, happily for us, will not require much consideration, for, in this history, unlike those of human origin, there can be no cavilling, no differences as to the reality and truth of the facts of which it is made up; the facts state themselves, and are laid out clearly before us.
But, although one of the greatest difficulties of the historical student is cleared out of our path, there are other difficulties—difficulties in rightly interpreting the facts as they are presented to us—which may be compared with the greatest difficulties of any other kinds of historical study.
What is this record of the past history of the globe, and what are the questions which are involved in an inquiry into its completeness or incompleteness? That record is composed of mud; and the question which we have to investigate this evening resolves itself into a question of the formation of mud. You may think, perhaps, that this is a vast step—of almost from the sublime to the ridiculous—from the contemplation of the history of the past ages of the world's existence to the consideration of the history of the formation of mud! But, in Nature, there is nothing mean and unworthy of attention; there is nothing ridiculous or contemptible in any of her works; and this inquiry, you will soon see, I hope, takes us to the very root and foundations of our subject.
How, then, is mud formed? Always, with some trifling exceptions, which I need not consider now—always, as the result of the action of water, wearing down and disintegrating the surface of the earth and rocks with which it comes in contact—pounding and grinding it down, and carrying the particles away to places where they cease to be disturbed by this mechanical action, and where they can subside and rest. For the ocean, urged by winds, washes, as we know, a long extent of coast, and every wave, loaded as it is with particles of sand and gravel as it breaks upon the shore, does something towards the disintegrating process. And thus, slowly but surely, the hardest rocks are gradually ground down to a powdery substance; and the mud thus formed, coarser or finer, as the case may be, is carried by the rush of the tides, or currents, till it reaches the comparatively deeper parts of the ocean, in which it can sink to the bottom, that is, to parts where there is a depth of about fourteen or fifteen fathoms, a depth at which the water is, usually, nearly motionless, and in which, of course, the finer particles of this detritus, or mud as we call it, sinks to the bottom.
Or, again, if you take a river, rushing down from its mountain sources, brawling over the stones and rocks that intersect its path, loosening, removing, and carrying with it in its downward course the pebbles and lighter matters from its banks, it crushes and pounds down the rocks and earths in precisely the same way as the wearing action of the sea waves. The matters forming the deposit are torn from the mountain-side and whirled impetuously into the valley, more slowly over the plain, thence into the estuary, and from the estuary they are swept into the sea. The coarser and heavier fragments are obviously deposited first, that is, as soon as the current begins to lose its force by becoming amalgamated with the stiller depths of the ocean, but the finer and lighter particles are carried further on, and eventually deposited in a deeper and stiller portion of the ocean.
It clearly follows from this that mud gives us a chronology; for it is evident that supposing this, which I now sketch, to be the sea bottom, and supposing this to be a coast-line; from the washing action of the sea upon the rock, wearing and grinding it down into a sediment of mud, the mud will be carried down, and, at length, deposited in the deeper parts of this sea bottom, where it will form a layer; and then, while that first layer is hardening, other mud which is coming from the same source will, of course, be carried to the same place; and, as it is quite impossible for it to get beneath the layer already there, it deposits itself above it, and forms another layer, and in that way you gradually have layers of mud constantly forming and hardening one above the other, and conveying a record of time.
It is a necessary result of the operation of the law of gravitation that the uppermost layer shall be the youngest and the lowest the oldest, and that the different beds shall be older at any particular point or spot in exactly the ratio of their depth from the surface. So that if they were upheaved afterwards, and you had a series of these different layers of mud, converted into sandstone, or limestone, as the case might be, you might be sure that the bottom layer was deposited first, and that the upper layers were formed afterwards. Here, you see, is the first step in the history—these layers of mud give us an idea of time.
The whole surface of the earth,—I speak broadly, and leave out minor qualifications,—is made up of such layers of mud, so hard, the majority of them, that we call them rock whether limestone or sandstone, or other varieties of rock. And, seeing that every part of the crust of the earth is made up in this way, you might think that the determination of the chronology, the fixing of the time which it has taken to form this crust is a comparatively simple matter. Take a broad average, ascertain how fast the mud is deposited upon the bottom of the sea, or in the estuary of rivers; take it to be an inch, or two, or three inches a year, or whatever you may roughly estimate it at; then take the total thickness of the whole series of stratified rocks, which geologists estimate at twelve or thirteen miles, or about seventy thousand feet, make a sum in short division, divide the total thickness by that of the quantity deposited in one year, and the result will, of course, give you the number of years which the crust has taken to form.
Truly, that looks a very simple process! It would be so except for certain difficulties, the very first of which is that of finding how rapidly sediments are deposited; but the main difficulty—a difficulty which renders any certain calculations of such a matter out of the question—is this, the sea-bottom on which the deposit takes place is continually shifting.
Instead of the surface of the earth being that stable, fixed thing that it is popularly believed to be, being, in common parlance, the very emblem of fixity itself, it is incessantly moving, and is, in fact, as unstable as the surface of the sea, except that its undulations are infinitely slower and enormously higher and deeper.
Now, what is the effect of this oscillation? Take the case to which I have previously referred. The finer or coarser sediments that are carried down by the current of the river, will only be carried out a certain distance, and eventually, as we have already seen, on reaching the stiller part of the ocean, will be deposited at the bottom.
Let C y (Fig. 4) be the sea-bottom, y D the shore, x y the sea-level, then the coarser deposit will subside over the region B, the finer over A, while beyond A there will be no deposit at all; and, consequently, no record will be kept, simply because no deposit is going on. Now, suppose that the whole land, C, D, which we have regarded as stationary, goes down, as it does so, both A and B go further out from the shore, which will be at y1; x1, y1, being the new sea-level. The consequence will be that the layer of mud (A), being now, for the most part, further than the force of the current is strong enough to convey even the finest debris, will, of course, receive no more deposits, and having attained a certain thickness will now grow no thicker.
We should be misled in taking the thickness of that layer, whenever it may be exposed to our view, as a record of time in the manner in which we are now regarding this subject, as it would give us only an imperfect and partial record: it would seem to represent too short a period of time.
Suppose, on the other hand, that the land (C D) had gone on rising slowly and gradually—say an inch or two inches in the course of a century,—what would be the practical effect of that movement? Why, that the sediment A and B which has been already deposited, would eventually be brought nearer to the shore-level and again subjected to the wear and tear of the sea; and directly the sea begins to act upon it, it would of course soon cut up and carry it way, to a greater or less extent, to be re-deposited further out.
Well, as there is, in all probability, not one single spot on the whole surface of the earth, which has not been up and down in this way a great many times, it follows that the thickness of the deposits formed at any particular spot cannot be taken (even supposing we had at first obtained correct data as to the rate at which they took place), as affording reliable information as to the period of time occupied in its deposit. So that you see it is absolutely necessary from these facts, seeing that our record entirely consists of accumulations of mud, superimposed one on the other; seeing in the next place that any particular spots on which accumulations have occurred, have been constantly moving up and down, and sometimes out of the reach of a deposit, and at other times its own deposit broken up and carried away, it follows that our record must be in the highest degree imperfect, and we have hardly a trace left of thick deposits, or any definite knowledge of the area that they occupied, in a great many cases. And mark this! That supposing even that the whole surface of the earth had been accessible to the geologist,—that man had had access to every part of the earth, and had made sections of the whole, and put them all together,—even then his record must of necessity be imperfect.
But to how much has man really access? If you will look at this map you will see that it represents the proportion of the sea to the earth: this coloured part indicates all the dry land, and this other portion is the water. You will notice at once that the water covers three-fifths of the whole surface of the globe, and has covered it in the same manner ever since man has kept any record of his own observations, to say nothing of the minute period during which he has cultivated geological inquiry. So that three-fifths of the surface of the earth is shut out from us because it is under the sea. Let us look at the other two-fifths, and see what are the countries in which anything that may be termed searching geological inquiry has been carried out: a good deal of France, Germany, and Great Britain and Ireland, bits of Spain, of Italy, and of Russia, have been examined, but of the whole great mass of Africa, except parts of the southern extremity, we know next to nothing; little bits of India, but of the greater part of the Asiatic continent nothing; bits of the Northern American States and of Canada, but of the greater part of the continent of North America, and in still larger proportion, of South America, nothing!
Under these circumstances, it follows that even with reference to that kind of imperfect information which we can possess, it is only of about the ten-thousandth part of the accessible parts of the earth that has been examined properly. Therefore, it is with justice that the most thoughtful of those who are concerned in these inquiries insist continually upon the imperfection of the geological record; for, I repeat, it is absolutely necessary, from the nature of things, that that record should be of the most fragmentary and imperfect character. Unfortunately this circumstance has been constantly forgotten. Men of science, like young colts in a fresh pasture, are apt to be exhilarated on being turned into a new field of inquiry, to go off at a hand-gallop, in total disregard of hedges and ditches, to lose sight of the real limitation of their inquiries, and to forget the extreme imperfection of what is really known. Geologists have imagined that they could tell us what was going on at all parts of the earth's surface during a given epoch; they have talked of this deposit being contemporaneous with that deposit, until, from our little local histories of the changes at limited spots of the earth's surface, they have constructed a universal history of the globe as full of wonders and portents as any other story of antiquity.
But what does this attempt to construct a universal history of the globe imply? It implies that we shall not only have a precise knowledge of the events which have occurred at any particular point, but that we shall be able to say what events, at any one spot, took place at the same time with those at other spots.
Let us see how far that is in the nature of things practicable. Suppose that here I make a section of the Lake of Killarney, and here the section of another lake—that of Loch Lomond in Scotland for instance. The rivers that flow into them are constantly carrying down deposits of mud, and beds, or strata, are being as constantly formed, one above the other, at the bottom of those lakes. Now, there is not a shadow of doubt that in these two lakes the lower beds are all older than the upper—there is no doubt about that; but what does this tell us about the age of any given bed in Loch Lomond, as compared with that of any given bed in the Lake of Killarney? It is, indeed, obvious that if any two sets of deposits are separated and discontinuous, there is absolutely no means whatever given you by the nature of the deposit of saying whether one is much younger or older than the other; but you may say, as many have said and think, that the case is very much altered if the beds which we are comparing are continuous. Suppose two beds of mud hardened into rock,—A and B—are seen in section. (Fig. 5.)
Well, you say, it is admitted that the lowermost bed is always the older. Very well; B, therefore, is older than A. No doubt, as a whole, it is so; or if any parts of the two beds which are in the same vertical line are compared, it is so. But suppose you take what seems a very natural step further, and say that the part a of the bed A is younger than the part b of the bed B. Is this sound reasoning? If you find any record of changes taking place at b, did they occur before any events which took place while a was being deposited? It looks all very plain sailing, indeed, to say that they did; and yet there is no proof of anything of the kind. As the former Director of this Institution, Sir H. De la Beche, long ago showed, this reasoning may involve an entire fallacy. It is extremely possible that a may have been deposited ages before b. It is very easy to understand how that can be. To return to Fig. 4; when A and B were deposited, they were substantially contemporaneous; A being simply the finer deposit, and B the coarser of the same detritus or waste of land. Now suppose that that sea-bottom goes down (as shown in Fig. 4), so that the first deposit is carried no farther than a, forming the bed A1, and the coarse no farther than b, forming the bed B1, the result will be the formation of two continuous beds, one of fine sediment (A A1) over-lapping another of coarse sediment (B B1). Now suppose the whole sea-bottom is raised up, and a section exposed about the point A1; no doubt, at this spot, the upper bed is younger than the lower. But we should obviously greatly err if we concluded that the mass of the upper bed at A was younger than the lower bed at B; for we have just seen that they are contemporaneous deposits. Still more should we be in error if we supposed the upper bed at A to be younger than the continuation of the lower bed at B1; for A was deposited long before B1. In fine, if, instead of comparing immediately adjacent parts of two beds, one of which lies upon another, we compare distant parts, it is quite possible that the upper may be any number of years older than the under, and the under any number of years younger than the upper.
Now you must not suppose that I put this before you for the purpose of raising a paradoxical difficulty; the fact is, that the great mass of deposits have taken place in sea-bottoms which are gradually sinking, and have been formed under the very conditions I am here supposing.
Do not run away with the notion that this subverts the principle I laid down at first. The error lies in extending a principle which is perfectly applicable to deposits in the same vertical line to deposits which are not in that relation to one another.
It is in consequence of circumstances of this kind, and of others that I might mention to you, that our conclusions on and interpretations of the record are really and strictly only valid so long as we confine ourselves to one vertical section. I do not mean to tell you that there are no qualifying circumstances, so that, even in very considerable areas, we may safely speak of conformably superimposed beds being older or younger than others at many different points. But we can never be quite sure in coming to that conclusion, and especially we cannot be sure if there is any break in their continuity, or any very great distance between the points to be compared.
Well now, so much for the record itself,—so much for its imperfections,—so much for the conditions to be observed in interpreting it, and its chronological indications, the moment we pass beyond the limits of a vertical linear section.
Now let us pass from the record to that which it contains,—from the book itself to the writing and the figures on its pages. This writing and these figures consist of remains of animals and plants which, in the great majority of cases, have lived and died in the very spot in which we now find them, or at least in the immediate vicinity. You must all of you be aware—and I referred to the fact in my last lecture—that there are vast numbers of creatures living at the bottom of the sea. These creatures, like all others, sooner or later die, and their shells and hard parts lie at the bottom; and then the fine mud which is being constantly brought down by rivers and the action of the wear and tear of the sea, covers them over and protects them from any further change or alteration; and, of course, as in process of time the mud becomes hardened and solidified, the shells of these animals are preserved and firmly imbedded in the limestone or sandstone which is being thus formed. You may see in the galleries of the Museum up stairs specimens of limestones in which such fossil remains of existing animals are imbedded. There are some specimens in which turtles' eggs have been imbedded in calcareous sand, and before the sun had hatched the young turtles, they became covered over with calcareous mud, and thus have been preserved and fossilised.
Not only does this process of imbedding and fossilisation occur with marine and other aquatic animals and plants, but it affects those land animals and plants which are drifted away to sea, or become buried in bogs or morasses; and the animals which have been trodden down by their fellows and crushed in the mud at the river's bank, as the herd have come to drink. In any of these cases, the organisms may be crushed or be mutilated, before or after putrefaction, in such a manner that perhaps only a part will be left in the form in which it reaches us. It is, indeed, a most remarkable fact, that it is quite an exceptional case to find a skeleton of any one of all the thousands of wild land animals that we know are constantly being killed, or dying in the course of nature: they are preyed on and devoured by other animals, or die in places where their bodies are not afterwards protected by mud. There are other animals existing on the sea, the shells of which form exceedingly large deposits. You are probably aware that before the attempt was made to lay the Atlantic telegraphic cable, the Government employed vessels in making a series of very careful observations and soundings of the bottom of the Atlantic; and although, as we must all regret, that up to the present time that project has not succeeded, we have the satisfaction of knowing that it yielded some most remarkable results to science. The Atlantic Ocean had to be sounded right across, to depths of several miles in some places, and the nature of its bottom was carefully ascertained. Well, now, a space of about 1,000 miles wide from east to west, and I do not exactly know how many from north to south, but at any rate 600 or 700 miles, was carefully examined, and it was found that over the whole of that immense area an excessively fine chalky mud is being deposited; and this deposit is entirely made up of animals whose hard parts are deposited in this part of the ocean, and are doubtless gradually acquiring solidity and becoming metamorphosed into a chalky limestone. Thus, you see, it is quite possible in this way to preserve unmistakable records of animal and vegetable life. Whenever the sea-bottom, by some of those undulations of the earth's crust that I have referred to, becomes up-heaved, and sections or borings are made, or pits are dug, then we become able to examine the contents and constituents of these ancient sea-bottoms, and find out what manner of animals lived at that period.
Now it is a very important consideration in its bearing on the completeness of the record, to inquire how far the remains contained in these fossiliferous limestones are able to convey anything like an accurate or complete account of the animals which were in existence at the time of its formation. Upon that point we can form a very clear judgment, and one in which there is no possible room for any mistake. There are of course a great number of animals—such as jellyfishes, and other animals—without any hard parts, of which we cannot reasonably expect to find any traces whatever: there is nothing of them to preserve. Within a very short time, you will have noticed, after they are removed from the water, they dry up to a mere nothing; certainly they are not of a nature to leave any very visible traces of their existence on such bodies as chalk or mud. Then again, look at land animals; it is, as I have said, a very uncommon thing to find a land animal entire after death. Insects and other carnivorous animals very speedily pull them to pieces, putrefaction takes place, and so, out of the hundreds of thousands that are known to die every year, it is the rarest thing in the world to see one imbedded in such a way that its remains would be preserved for a lengthened period. Not only is this the case, but even when animal remains have been safely imbedded, certain natural agents may wholly destroy and remove them.
Almost all the hard parts of animals—the bones and so on—are composed chiefly of phosphate of lime and carbonate of lime. Some years ago, I had to make an inquiry into the nature of some very curious fossils sent to me from the North of Scotland. Fossils are usually hard bony structures that have become imbedded in the way I have described, and have gradually acquired the nature and solidity of the body with which they are associated; but in this case I had a series of holes in some pieces of rock, and nothing else. Those holes, however, had a certain definite shape about them, and when I got a skilful workman to make castings of the interior of these holes, I found that they were the impressions of the joints of a backbone and of the armour of a great reptile, twelve or more feet long. This great beast had died and got buried in the sand; the sand had gradually hardened over the bones, but remained porous. Water had trickled through it, and that water being probably charged with a superfluity of carbonic acid, had dissolved all the phosphate and carbonate of lime, and the bones themselves had thus decayed and entirely disappeared; but as the sandstone happened to have consolidated by that time, the precise shape of the bones was retained. If that sandstone had remained soft a little longer, we should have known nothing whatsoever of the existence of the reptile whose bones it had encased.
How certain it is that a vast number of animals which have existed at one period on this earth have entirely perished, and left no trace whatever of their forms, may be proved to you by other considerations. There are large tracts of sandstone in various parts of the world, in which nobody has yet found anything but footsteps. Not a bone of any description, but an enormous number of traces of footsteps. There is no question about them. There is a whole valley in Connecticut covered with these footsteps, and not a single fragment of the animals which made them have yet been found. Let me mention another case while upon that matter, which is even more surprising than those to which I have yet referred. There is a limestone formation near Oxford, at a place called Stonesfield, which has yielded the remains of certain very interesting mammalian animals, and up to this time, if I recollect rightly, there have been found seven specimens of its lower jaws, and not a bit of anything else, neither limb-bones nor skull, nor any part whatever; not a fragment of the whole system! Of course, it would be preposterous to imagine that the beasts had nothing else but a lower jaw! The probability is, as Dr. Buckland showed, as the result of his observations on dead dogs in the river Thames, that the lower jaw, not being secured by very firm ligaments to the bones of the head, and being a weighty affair, would easily be knocked off, or might drop away from the body as it floated in water in a state of decomposition. The jaw would thus be deposited immediately, while the rest of the body would float and drift away altogether, ultimately reaching the sea, and perhaps becoming destroyed. The jaw becomes covered up and preserved in the river silt, and thus it comes that we have such a curious circumstance as that of the lower jaws in the Stonesfield slates. So that, you see, faulty as these layers of stone in the earth's crust are, defective as they necessarily are as a record, the account of contemporaneous vital phenomena presented by them is, by the necessity of the case, infinitely more defective and fragmentary.
It was necessary that I should put all this very strongly before you, because, otherwise, you might have been led to think differently of the completeness of our knowledge by the next facts I shall state to you.
The researches of the last three-quarters of a century have, in truth, revealed a wonderful richness of organic life in those rocks. Certainly not fewer than thirty or forty thousand different species of fossils have been discovered. You have no more ground for doubting that these creatures really lived and died at or near the places in which we find them than you have for like scepticism about a shell on the sea-shore. The evidence is as good in the one case as in the other.
Our next business is to look at the general character of these fossil remains, and it is a subject which will be requisite to consider carefully; and the first point for us is to examine how much the extinct Flora and Fauna as a whole—disregarding altogether the succession of their constituents, of which I shall speak afterwards—differ from the Flora and Fauna of the present day;—how far they differ in what we do know about them, leaving altogether out of consideration speculations based upon what we do not know.
I strongly imagine that if it were not for the peculiar appearance that fossilised animals have, any of you might readily walk through a museum which contains fossil remains mixed up with those of the present forms of life, and I doubt very much whether your uninstructed eyes would lead you to see any vast or wonderful difference between the two. If you looked closely, you would notice, in the first place, a great many things very like animals with which you are acquainted now: you would see differences of shape and proportion, but on the whole a close similarity.
I explained what I meant by ORDERS the other day, when I described the animal kingdom as being divided into sub-kingdoms, classes and orders. If you divide the animal kingdom into orders you will find that there are above one hundred and twenty. The number may vary on one side or the other, but this is a fair estimate. That is the sum total of the orders of all the animals which we know now, and which have been known in past times, and left remains behind.
Now, how many of those are absolutely extinct? That is to say, how many of these orders of animals have lived at a former period of the world's history but have at present no representatives? That is the sense in which I meant to use the word "extinct." I mean that those animals did live on this earth at one time, but have left no one of their kind with us at the present moment. So that estimating the number of extinct animals is a sort of way of comparing the past creation as a whole with the present as a whole. Among the mammalia and birds there are none extinct; but when we come to the reptiles there is a most wonderful thing: out of the eight orders, or thereabouts, which you can make among reptiles, one-half are extinct. These diagrams of the plesiosaurus, the ichthyosaurus, the pterodactyle, give you a notion of some of these extinct reptiles. And here is a cast of the pterodactyle and bones of the ichthyosaurus and the plesiosaurus, just as fresh-looking as if it had been recently dug up in a churchyard. Thus, in the reptile class, there are no less than half of the orders which are absolutely extinct. If we turn to the Amphibia, there was one extinct order, the Labyrinthodonts, typified by the large salamander-like beast shown in this diagram.
No order of fishes is known to be extinct. Every fish that we find in the strata—to which I have been referring—can be identified and placed in one of the orders which exist at the present day. There is not known to be a single ordinal form of insect extinct. There are only two orders extinct among the Crustacea. There is not known to be an extinct order of these creatures, the parasitic and other worms; but there are two, not to say three, absolutely extinct orders of this class, the Echinodermata; out of all the orders of the Coelenterata and Protozoa only one, the Rugose Corals.
So that, you see, out of somewhere about 120 orders of animals, taking them altogether, you will not, at the outside estimate, find above ten or a dozen extinct. Summing up all the order of animals which have left remains behind them, you will not find above ten or a dozen which cannot be arranged with those of the present day; that is to say, that the difference does not amount to much more than ten per cent.: and the proportion of extinct orders of plants is still smaller. I think that that is a very astounding a most astonishing fact: seeing the enormous epochs of time which have elapsed during the constitution of the surface of the earth as it at present exists, it is, indeed, a most astounding thing that the proportion of extinct ordinal types should be so exceedingly small.
But now, there is another point of view in which we must look at this past creation. Suppose that we were to sink a vertical pit through the floor beneath us, and that I could succeed in making a section right through in the direction of New Zealand, I should find in each of the different beds through which I passed the remains of animals which I should find in that stratum and not in the others. First, I should come upon beds of gravel or drift containing the bones of large animals, such as the elephant, rhinoceros, and cave tiger. Rather curious things to fall across in Piccadilly! If I should dig lower still, I should come upon a bed of what we call the London clay, and in this, as you will see in our galleries up stairs, are found remains of strange cattle, remains of turtles, palms, and large tropical fruits; with shell-fish such as you see the like of now only in tropical regions. If I went below that, I should come upon the chalk, and there I should find something altogether different, the remains of ichthyosauria and pterodactyles, and ammonites, and so forth.
I do not know what Mr. Godwin Austin would say comes next, but probably rocks containing more ammonites, and more ichthyosauria and plesiosauria, with a vast number of other things; and under that I should meet with yet older rocks containing numbers of strange shells and fishes; and in thus passing from the surface to the lowest depths of the earth's crust, the forms of animal life and vegetable life which I should meet with in the successive beds would, looking at them broadly, be the more different the further that I went down. Or, in other words, inasmuch as we started with the clear principle, that in a series of naturally-disposed mud beds the lowest are the oldest, we should come to this result, that the further we go back in time the more difference exists between the animal and vegetable life of an epoch and that which now exists. That was the conclusion to which I wished to bring you at the end of this lecture.
III. THE METHOD BY WHICH THE CAUSES OF THE PRESENT AND PAST CONDITIONS OF ORGANIC NATURE ARE TO BE DISCOVERED;—THE ORIGINATION OF LIVING BEINGS
In the two preceding lectures I have endeavoured to indicate to you the extent of the subject-matter of the inquiry upon which we are engaged; and having thus acquired some conception of the past and present phenomena of organic nature, I must now turn to that which constitutes the great problem which we have set before ourselves;—I mean, the question of what knowledge we have of the causes of these phenomena of organic nature, and how such knowledge is obtainable.
Here, on the threshold of the inquiry, an objection meets us. There are in the world a number of extremely worthy, well-meaning persons, whose judgments and opinions are entitled to the utmost respect on account of their sincerity, who are of opinion that vital phenomena, and especially all questions relating to the origin of vital phenomena, are questions quite apart from the ordinary run of inquiry, and are, by their very nature, placed out of our reach. They say that all these phenomena originated miraculously, or in some way totally different from the ordinary course of nature, and that therefore they conceive it to be futile, not to say presumptuous, to attempt to inquire into them.
To such sincere and earnest persons, I would only say, that a question of this kind is not to be shelved upon theoretical or speculative grounds. You may remember the story of the Sophist who demonstrated to Diogenes in the most complete and satisfactory manner that he could not walk; that, in fact, all motion was an impossibility; and that Diogenes refuted him by simply getting up and walking round his tub. So, in the same way, the man of science replies to objections of this kind, by simply getting up and walking onward, and showing what science has done and is doing—-by pointing to that immense mass of facts which have been ascertained as systematised under the forms of the great doctrines of morphology, of development, of distribution, and the like. He sees an enormous mass of facts and laws relating to organic beings, which stand on the same good sound foundation as every other natural law. With this mass of facts and laws before us, therefore, seeing that, as far as organic matters have hitherto been accessible and studied, they have shown themselves capable of yielding to scientific investigation, we may accept this as proof that order and law reign there as well as in the rest of Nature. The man of science says nothing to objectors of this sort, but supposes that we can and shall walk to a knowledge of the origin of organic nature, in the same way that we have walked to a knowledge of the laws and principles of the inorganic world.
But there are objectors who say the same from ignorance and ill-will. To such I would reply that the objection comes ill from them, and that the real presumption, I may almost say the real blasphemy, in this matter, is in the attempt to limit that inquiry into the causes of phenomena, which is the source of all human blessings, and from which has sprung all human prosperity and progress; for, after all, we can accomplish comparatively little; the limited range of our own faculties bounds us on every side,—the field of our powers of observation is small enough, and he who endeavours to narrow the sphere of our inquiries is only pursuing a course that is likely to produce the greatest harm to his fellow-men.
But now, assuming, as we all do, I hope, that these phenomena are properly accessible to inquiry, and setting out upon our search into the causes of the phenomena of organic nature, or at any rate, setting out to discover how much we at present know upon these abstruse matters, the question arises as to what is to be our course of proceeding, and what method we must lay down for our guidance. I reply to that question, that our method must be exactly the same as that which is pursued in any other scientific inquiry, the method of scientific investigation being the same for all orders of facts and phenomena whatsoever.
I must dwell a little on this point, for I wish you to leave this room with a very clear conviction that scientific investigation is not, as many people seem to suppose, some kind of modern black art. I say that you might easily gather this impression from the manner in which many persons speak of scientific inquiry, or talk about inductive and deductive philosophy, or the principles of the "Baconian philosophy." I do protest that, of the vast number of cants in this world, there are none, to my mind, so contemptible as the pseudo-scientific cant which is talked about the "Baconian philosophy."
To hear people talk about the great Chancellor—and a very great man he certainly was,—you would think that it was he who had invented science, and that there was no such thing as sound reasoning before the time of Queen Elizabeth! Of course you say, that cannot possibly be true; you perceive, on a moment's reflection, that such an idea is absurdly wrong, and yet, so firmly rooted is this sort of impression,—I cannot call it an idea, or conception,—the thing is too absurd to be entertained,—but so completely does it exist at the bottom of most men's minds, that this has been a matter of observation with me for many years past. There are many men who, though knowing absolutely nothing of the subject with which they may be dealing, wish, nevertheless, to damage the author of some view with which they think fit to disagree. What they do, then, is not to go and learn something about the subject, which one would naturally think the best way of fairly dealing with it; but they abuse the originator of the view they question, in a general manner, and wind up by saying that, "After all, you know, the principles and method of this author are totally opposed to the canons of the Baconian philosophy." Then everybody applauds, as a matter of course, and agrees that it must be so. But if you were to stop them all in the middle of their applause, you would probably find that neither the speaker nor his applauders could tell you how or in what way it was so; neither the one nor the other having the slightest idea of what they mean when they speak of the "Baconian philosophy."
You will understand, I hope, that I have not the slightest desire to join in the outcry against either the morals, the intellect, or the great genius of Lord Chancellor Bacon. He was undoubtedly a very great man, let people say what they will of him; but notwithstanding all that he did for philosophy, it would be entirely wrong to suppose that the methods of modern scientific inquiry originated with him, or with his age; they originated with the first man, whoever he was; and indeed existed long before him, for many of the essential processes of reasoning are exerted by the higher order of brutes as completely and effectively as by ourselves. We see in many of the brute creation the exercise of one, at least, of the same powers of reasoning as that which we ourselves employ.
The method of scientific investigation is nothing but the expression of the necessary mode of working of the human mind. It is simply the mode at which all phenomena are reasoned about, rendered precise and exact. There is no more difference, but there is just the same kind of difference, between the mental operations of a man of science and those of an ordinary person, as there is between the operations and methods of a baker or of a butcher weighing out his goods in common scales, and the operations of a chemist in performing a difficult and complex analysis by means of his balance and finely-graduated weights. It is not that the action of the scales in the one case, and the balance in the other, differ in the principles of their construction or manner of working; but the beam of one is set on an infinitely finer axis than the other, and of course turns by the addition of a much smaller weight.
You will understand this better, perhaps, if I give you some familiar example. You have all heard it repeated, I dare say, that men of science work by means of induction and deduction, and that by the help of these operations, they, in a sort of sense, wring from Nature certain other things, which are called natural laws, and causes, and that out of these, by some cunning skill of their own, they build up hypotheses and theories. And it is imagined by many, that the operations of the common mind can be by no means compared with these processes, and that they have to be acquired by a sort of special apprenticeship to the craft. To hear all these large words, you would think that the mind of a man of science must be constituted differently from that of his fellow men; but if you will not be frightened by terms, you will discover that you are quite wrong, and that all these terrible apparatus are being used by yourselves every day and every hour of your lives.
There is a well-known incident in one of Moliere's plays, where the author makes the hero express unbounded delight on being told that he had been talking prose during the whole of his life. In the same way, I trust, that you will take comfort, and be delighted with yourselves, on the discovery that you have been acting on the principles of inductive and deductive philosophy during the same period. Probably there is not one here who has not in the course of the day had occasion to set in motion a complex train of reasoning, of the very same kind, though differing of course in degree, as that which a scientific man goes through in tracing the causes of natural phenomena.
A very trivial circumstance will serve to exemplify this. Suppose you go into a fruiterer's shop, wanting an apple,—you take up one, and, on biting it, you find it is sour; you look at it, and see that it is hard and green. You take up another one, and that too is hard, green, and sour. The shopman offers you a third; but, before biting it, you examine it, and find that it is hard and green, and you immediately say that you will not have it, as it must be sour, like those that you have already tried.
Nothing can be more simple than that, you think; but if you will take the trouble to analyse and trace out into its logical elements what has been done by the mind, you will be greatly surprised. In the first place, you have performed the operation of induction. You found that, in two experiences, hardness and greenness in apples went together with sourness. It was so in the first case, and it was confirmed by the second. True, it is a very small basis, but still it is enough to make an induction from; you generalise the facts, and you expect to find sourness in apples where you get hardness and greenness. You found upon that a general law, that all hard and green apples are sour; and that, so far as it goes, is a perfect induction. Well, having got your natural law in this way, when you are offered another apple which you find is hard and green, you say, "All hard and green apples are sour; this apple is hard and green, therefore this apple is sour." That train of reasoning is what logicians call a syllogism, and has all its various parts and terms,—its major premiss, its minor premiss, and its conclusion. And, by the help of further reasoning, which, if drawn out, would have to be exhibited in two or three other syllogisms, you arrive at your final determination, "I will not have that apple." So that, you see, you have, in the first place, established a law by induction, and upon that you have founded a deduction, and reasoned out the special conclusion of the particular case. Well now, suppose, having got your law, that at some time afterwards, you are discussing the qualities of apples with a friend: you will say to him, "It is a very curious thing,—but I find that all hard and green apples are sour!" Your friend says to you, "But how do you know that?" You at once reply, "Oh, because I have tried them over and over again, and have always found them to be so." Well, if we were talking science instead of common sense, we should call that an experimental verification. And, if still opposed, you go further, and say, "I have heard from the people in Somersetshire and Devonshire, where a large number of apples are grown, that they have observed the same thing. It is also found to be the case in Normandy, and in North America. In short, I find it to be the universal experience of mankind wherever attention has been directed to the subject." Whereupon, your friend, unless he is a very unreasonable man, agrees with you, and is convinced that you are quite right in the conclusion you have drawn. He believes, although perhaps he does not know he believes it, that the more extensive verifications are,—that the more frequently experiments have been made, and results of the same kind arrived at,—that the more varied the conditions under which the same results are attained, the more certain is the ultimate conclusion, and he disputes the question no further. He sees that the experiment has been tried under all sorts of conditions, as to time, place, and people, with the same result; and he says with you, therefore, that the law you have laid down must be a good one, and he must believe it.
In science we do the same thing;—the philosopher exercises precisely the same faculties, though in a much more delicate manner. In scientific inquiry it becomes a matter of duty to expose a supposed law to every possible kind of verification, and to take care, moreover, that this is done intentionally, and not left to a mere accident, as in the case of the apples. And in science, as in common life, our confidence in a law is in exact proportion to the absence, of variation in the result of our experimental verifications. For instance, if you let go your grasp of an article you may have in your hand, it will immediately fall to the ground. That is a very common verification of one of the best established laws of nature—that of gravitation. The method by which men of science establish the existence of that law is exactly the same as that by which we have established the trivial proposition about the sourness of hard and green apples. But we believe it in such an extensive, thorough, and unhesitating manner because the universal experience of mankind verifies it, and we can verify it ourselves at any time; and that is the strongest possible foundation on which any natural law can rest.
So much, then, by way of proof that the method of establishing laws in science is exactly the same as that pursued in common life. Let us now turn to another matter (though really it is but another phase of the same question), and that is, the method by which, from the relations of certain phenomena, we prove that some stand in the position of causes towards the others.
I want to put the case clearly before you, and I will therefore show you what I mean by another familiar example. I will suppose that one of you, on coming down in the morning to the parlour of your house, finds that a tea-pot and some spoons which had been left in the room on the previous evening are gone,—the window is open, and you observe the mark of a dirty hand on the window-frame, and perhaps, in addition to that, you notice the impress of a hob-nailed shoe on the gravel outside. All these phenomena have struck your attention instantly, and before two seconds have passed you say, "Oh, somebody has broken open the window, entered the room, and run off with the spoons and the tea-pot!" That speech is out of your mouth in a moment. And you will probably add, "I know there has; I am quite sure of it!" You mean to say exactly what you know; but in reality you are giving expression to what is, in all essential particulars, an hypothesis. You do not know it at all; it is nothing but an hypothesis rapidly framed in your own mind. And it is an hypothesis founded on a long train of inductions and deductions.
What are those inductions and deductions, and how have you got at this hypothesis? You have observed, in the first place, that the window is open; but by a train of reasoning involving many inductions and deductions, you have probably arrived long before at the general law—and a very good one it is—that windows do not open of themselves; and you therefore conclude that something has opened the window. A second general law that you have arrived at in the same way is, that tea-pots and spoons do not go out of a window spontaneously, and you are satisfied that, as they are not now where you left them, they have been removed. In the third place, you look at the marks on the window-sill, and the shoe-marks outside, and you say that in all previous experience the former kind of mark has never been produced by anything else but the hand of a human being; and the same experience shows that no other animal but man at present wears shoes with hob-nails in them such as would produce the marks in the gravel. I do not know, even if we could discover any of those "missing links" that are talked about, that they would help us to any other conclusion! At any rate the law which states our present experience is strong enough for my present purpose. You next reach the conclusion, that as these kinds of marks have not been left by any other animals than men, or are liable to be formed in any other way than by a man's hand and shoe, the marks in question have been formed by a man in that way. You have, further, a general law, founded on observation and experience, and that, too, is, I am sorry to say, a very universal and unimpeachable one,—that some men are thieves; and you assume at once from all these premisses—and that is what constitutes your hypothesis—that the man who made the marks outside and on the window-sill, opened the window, got into the room, and stole your tea-pot and spoons. You have now arrived at a vera causa;—you have assumed a cause which, it is plain, is competent to produce all the phenomena you have observed. You can explain all these phenomena only by the hypothesis of a thief. But that is a hypothetical conclusion, of the justice of which you have no absolute proof at all; it is only rendered highly probable by a series of inductive and deductive reasonings.
I suppose your first action, assuming that you are a man of ordinary common sense, and that you have established this hypothesis to your own satisfaction, will very likely be to go off for the police, and set them on the track of the burglar, with the view to the recovery of your property. But just as you are starting with this object, some person comes in, and on learning what you are about, says, "My good friend, you are going on a great deal too fast. How do you know that the man who really made the marks took the spoons? It might have been a monkey that took them, and the man may have merely looked in afterwards." You would probably reply, "Well, that is all very well, but you see it is contrary to all experience of the way tea-pots and spoons are abstracted; so that, at any rate, your hypothesis is less probable than mine." While you are talking the thing over in this way, another friend arrives, one of that good kind of people that I was talking of a little while ago. And he might say, "Oh, my dear sir, you are certainly going on a great deal too fast. You are most presumptuous. You admit that all these occurrences took place when you were fast asleep, at a time when you could not possibly have known anything about what was taking place. How do you know that the laws of Nature are not suspended during the night? It may be that there has been some kind of supernatural interference in this case." In point of fact, he declares that your hypothesis is one of which you cannot at all demonstrate the truth, and that you are by no means sure that the laws of Nature are the same when you are asleep as when you are awake.
Well, now, you cannot at the moment answer that kind of reasoning. You feel that your worthy friend has you somewhat at a disadvantage. You will feel perfectly convinced in your own mind, however, that you are quite right, and you say to him, "My good friend, I can only be guided by the natural probabilities of the case, and if you will be kind enough to stand aside and permit me to pass, I will go and fetch the police." Well, we will suppose that your journey is successful, and that by good luck you meet with a policeman; that eventually the burglar is found with your property on his person, and the marks correspond to his hand and to his boots. Probably any jury would consider those facts a very good experimental verification of your hypothesis, touching the cause of the abnormal phenomena observed in your parlour, and would act accordingly.
Now, in this suppositious case, I have taken phenomena of a very common kind, in order that you might see what are the different steps in an ordinary process of reasoning, if you will only take the trouble to analyse it carefully. All the operations I have described, you will see, are involved in the mind of any man of sense in leading him to a conclusion as to the course he should take in order to make good a robbery and punish the offender. I say that you are led, in that case, to your conclusion by exactly the same train of reasoning as that which a man of science pursues when he is endeavouring to discover the origin and laws of the most occult phenomena. The process is, and always must be, the same; and precisely the same mode of reasoning was employed by Newton and Laplace in their endeavours to discover and define the causes of the movements of the heavenly bodies, as you, with your own common sense, would employ to detect a burglar. The only difference is, that the nature of the inquiry being more abstruse, every step has to be most carefully watched, so that there may not be a single crack or flaw in your hypothesis. A flaw or crack in many of the hypotheses of daily life may be of little or no moment as affecting the general correctness of the conclusions at which we may arrive; but, in a scientific inquiry, a fallacy, great or small, is always of importance, and is sure to be in the long run constantly productive of mischievous, if not fatal results.
Do not allow yourselves to be misled by the common notion that an hypothesis is untrustworthy simply because it is an hypothesis. It is often urged, in respect to some scientific conclusion, that, after all, it is only an hypothesis. But what more have we to guide us in nine-tenths of the most important affairs of daily life than hypotheses, and often very ill-based ones? So that in science, where the evidence of an hypothesis is subjected to the most rigid examination, we may rightly pursue the same course. You may have hypotheses and hypotheses. A man may say, if he likes, that the moon is made of green cheese: that is an hypothesis. But another man, who has devoted a great deal of time and attention to the subject, and availed himself of the most powerful telescopes and the results of the observations of others, declares that in his opinion it is probably composed of materials very similar to those of which our own earth is made up: and that is also only an hypothesis. But I need not tell you that there is an enormous difference in the value of the two hypotheses. That one which is based on sound scientific knowledge is sure to have a corresponding value; and that which is a mere hasty random guess is likely to have but little value. Every great step in our progress in discovering causes has been made in exactly the same way as that which I have detailed to you. A person observing the occurrence of certain facts and phenomena asks, naturally enough, what process, what kind of operation known to occur in Nature applied to the particular case, will unravel and explain the mystery? Hence you have the scientific hypothesis; and its value will be proportionate to the care and completeness with which its basis had been tested and verified. It is in these matters as in the commonest affairs of practical life: the guess of the fool will be folly, while the guess of the wise man will contain wisdom. In all cases, you see that the value of the result depends on the patience and faithfulness with which the investigator applies to his hypothesis every possible kind of verification.
I dare say I may have to return to this point by and by; but having dealt thus far with our logical methods, I must now turn to something which, perhaps, you may consider more interesting, or, at any rate, more tangible. But in reality there are but few things that can be more important for you to understand than the mental processes and the means by which we obtain scientific conclusions and theories. [Footnote: Those who wish to study fully the doctrines of which I have endeavoured to give some rough-and-ready illustrations, must read Mr. John Stuart Mill's System of Logic.] Having granted that the inquiry is a proper one, and having determined on the nature of the methods we are to pursue and which only can lead to success, I must now turn to the consideration of our knowledge of the nature of the processes which have resulted in the present condition of organic nature.
Here, let me say at once, lest some of you misunderstand me, that I have extremely little to report. The question of how the present condition of organic nature came about, resolves itself into two questions. The first is: How has organic or living matter commenced its existence? And the second is: How has it been perpetuated? On the second question I shall have more to say hereafter. But on the first one, what I now have to say will be for the most part of a negative character.
If you consider what kind of evidence we can have upon this matter, it will resolve itself into two kinds. We may have historical evidence and we may have experimental evidence. It is, for example, conceivable, that inasmuch as the hardened mud which forms a considerable portion of the thickness of the earth's crust contains faithful records of the past forms of life, and inasmuch as these differ more and more as we go further down,—it is possible and conceivable that we might come to some particular bed or stratum which should contain the remains of those creatures with which organic life began upon the earth. And if we did so, and if such forms of organic life were preservable, we should have what I would call historical evidence of the mode in which organic life began upon this planet. Many persons will tell you, and indeed you will find it stated in many works on geology, that this has been done, and that we really possess such a record; there are some who imagine that the earliest forms of life of which we have as yet discovered any record, are in truth the forms in which animal life began upon the globe. The grounds on which they base that supposition are these:—That if you go through the enormous thickness of the earth's crust and get down to the older rocks, the higher vertebrate animals—the quadrupeds, birds, and fishes—cease to be found; beneath them you find only the invertebrate animals; and in the deepest and lowest rocks those remains become scantier and scantier, not in any very gradual progression, however, until, at length, in what are supposed to be the oldest rocks, the animal remains which are found are almost always confined to four forms—Oldhamia, whose precise nature is not known, whether plant or animal; Lingula, a kind of mollusc; Trilobites, a crustacean animal, having the same essential plan of construction, though differing in many details from a lobster or crab; and Hymenocaris, which is also a crustacean. So that you have all the Fauna reduced, at this period, to four forms: one a kind of animal or plant that we know nothing about, and three undoubted animals—two crustaceans and one mollusc.
I think, considering the organisation of these mollusca and crustacea, and looking at their very complex nature, that it does indeed require a very strong imagination to conceive that these were the first created of all living things. And you must take into consideration the fact that we have not the slightest proof that these which we call the oldest beds are really so: I repeat, we have not the slightest proof of it. When you find in some places that in an enormous thickness of rocks there are but very scanty traces of life, or absolutely none at all; and that in other parts of the world rocks of the very same formation are crowded with the records of living forms, I think it is impossible to place any reliance on the supposition, or to feel one's self justified in supposing that these are the forms in which life first commenced. I have not time here to enter upon the technical grounds upon which I am led to this conclusion,—that could hardly be done properly in half a dozen lectures on that part alone:—I must content myself with saying that I do not at all believe that these are the oldest forms of life.
I turn to the experimental side to see what evidence we have there. To enable us to say that we know anything about the experimental origination of organisation and life, the investigator ought to be able to take inorganic matters, such as carbonic acid, ammonia, water, and salines, in any sort of inorganic combination, and be able to build them up into protein matter, and then that protein matter ought to begin to live in an organic form. That, nobody has done as yet, and I suspect it will be a long while before anybody does do it. But the thing is by no means so impossible as it looks; for the researches of modern chemistry have shown us—I won't say the road towards it, but, if I may so say, they have shown the finger-post pointing to the road that may lead to it.
It is not many years ago—and you must recollect that Organic Chemistry is a young science, not above a couple of generations old, you must not expect too much of it,—it is not many years ago since it was said to be perfectly impossible to fabricate any organic compound; that is to say, any non-mineral compound which is to be found in an organised being. It remained so for a very long period; but it is now a considerable number of years since a distinguished foreign chemist contrived to fabricate urea, a substance of a very complex character, which forms one of the waste products of animal structures. And of late years a number of other compounds, such as butyric acid, and others, have been added to the list. I need not tell you that chemistry is an enormous distance from the goal I indicate; all I wish to point out to you is, that it is by no means safe to say that that goal may not be reached one day. It may be that it is impossible for us to produce the conditions requisite to the origination of life; but we must speak modestly about the matter, and recollect that Science has put her foot upon the bottom round of the ladder. Truly he would be a bold man who would venture to predict where she will be fifty years hence.
There is another inquiry which bears indirectly upon this question, and upon which I must say a few words. You are all of you aware of the phenomena of what is called spontaneous generation. Our forefathers, down to the seventeenth century, or thereabouts, all imagined, in perfectly good faith, that certain vegetable and animal forms gave birth, in the process of their decomposition, to insect life. Thus, if you put a piece of meat in the sun, and allowed it to putrefy, they conceived that the grubs which soon began to appear were the result of the action of a power of spontaneous generation which the meat contained. And they could give you receipts for making various animal and vegetable preparations which would produce particular kinds of animals. A very distinguished Italian naturalist, named Redi, took up the question, at a time when everybody believed in it; among others our own great Harvey, the discoverer of the circulation of the blood. You will constantly find his name quoted, however, as an opponent of the doctrine of spontaneous generation; but the fact is, and you will see it if you will take the trouble to look into his works, Harvey believed it as profoundly as any man of his time; but he happened to enunciate a very curious proposition—that every living thing came from an egg; he did not mean to use the word in the sense in which we now employ it, he only meant to say that every living thing originated in a little rounded particle of organised substance; and it is from this circumstance, probably, that the notion of Harvey having opposed the doctrine originated. Then came Redi, and he proceeded to upset the doctrine in a very simple manner. He merely covered the piece of meat with some very fine gauze, and then he exposed it to the same conditions. The result of this was that no grubs or insects were produced; he proved that the grubs originated from the insects who came and deposited their eggs in the meat, and that they were hatched by the heat of the sun. By this kind of inquiry he thoroughly upset the doctrine of spontaneous generation, for his time at least.
Then came the discovery and application of the microscope to scientific inquiries, which showed to naturalists that besides the organisms which they already knew as living beings and plants, there were an immense number of minute things which could be obtained apparently almost at will from decaying vegetable and animal forms. Thus, if you took some ordinary black pepper or some hay, and steeped it in water, you would find in the course of a few days that the water had become impregnated with an immense number of animalcules swimming about in all directions. From facts of this kind naturalists were led to revive the theory of spontaneous generation. They were headed here by an English naturalist,—Needham,—and afterwards in France by the learned Buffon. They said that these things were absolutely begotten in the water of the decaying substances out of which the infusion was made. It did not matter whether you took animal or vegetable matter, you had only to steep it in water and expose it, and you would soon have plenty of animalcules. They made an hypothesis about this which was a very fair one. They said, this matter of the animal world, or of the higher plants, appears to be dead, but in reality it has a sort of dim life about it, which, if it is placed under fair conditions, will cause it to break up into the forms of these little animalcules, and they will go through their lives in the same way as the animal or plant of which they once formed a part.
The question now became very hotly debated. Spallanzani, an Italian naturalist, took up opposite views to those of Needham and Buffon, and by means of certain experiments he showed that it was quite possible to stop the process by boiling the water, and closing the vessel in which it was contained. "Oh!" said his opponents; "but what do you know you may be doing when you heat the air over the water in this way? You may be destroying some property of the air requisite for the spontaneous generation of the animalcules."
However, Spallanzani's views were supposed to be upon the right side, and those of the others fell into discredit; although the fact was that Spallanzani had not made good his views. Well, then, the subject continued to be revived from time to time, and experiments were made by several persons; but these experiments were not altogether satisfactory. It was found that if you put an infusion in which animalcules would appear if it were exposed to the air into a vessel and boiled it, and then sealed up the mouth of the vessel, so that no air, save such as had been heated to 212 deg., could reach its contents, that then no animalcules would be found; but if you took the same vessel and exposed the infusion to the air, then you would get animalcules. Furthermore, it was found that if you connected the mouth of the vessel with a red-hot tube in such a way that the air would have to pass through the tube before reaching the infusion, that then you would get no animalcules. Yet another thing was noticed: if you took two flasks containing the same kind of infusion, and left one entirely exposed to the air, and in the mouth of the other placed a ball of cotton wool, so that the air would have to filter itself through it before reaching the infusion, that then, although you might have plenty of animalcules in the first flask, you would certainly obtain none from the second.
These experiments, you see, all tended towards one conclusion—that the infusoria were developed from little minute spores or eggs which were constantly floating in the atmosphere, and which lose their power of germination if subjected to heat. But one observer now made another experiment, which seemed to go entirely the other way, and puzzled him altogether. He took some of this boiled infusion that I have been speaking of, and by the use of a mercurial bath—a kind of trough used in laboratories—he deftly inverted a vessel containing the infusion into the mercury, so that the latter reached a little beyond the level of the mouth of the inverted vessel. You see that he thus had a quantity of the infusion shut off from any possible communication with the outer air by being inverted upon a bed of mercury.
He then prepared some pure oxygen and nitrogen gases, and passed them by means of a tube going from the outside of the vessel, up through the mercury into the infusion; so that he thus had it exposed to a perfectly pure atmosphere of the same constituents as the external air. Of course, he expected he would get no infusorial animalcules at all in that infusion; but, to his great dismay and discomfiture, he found he almost always did get them.
Furthermore, it has been found that experiments made in the manner described above answer well with most infusions; but that if you fill the vessel with boiled milk, and then stop the neck with cotton-wool, you will have infusoria. So that you see there were two experiments that brought you to one kind of conclusion, and three to another; which was a most unsatisfactory state of things to arrive at in a scientific inquiry.
Some few years after this, the question began to be very hotly discussed in France. There was M. Pouchet, a professor at Rouen, a very learned man, but certainly not a very rigid experimentalist. He published a number of experiments of his own, some of which were very ingenious, to show that if you went to work in a proper way, there was a truth in the doctrine of spontaneous generation. Well, it was one of the most fortunate things in the world that M. Pouchet took up this question, because it induced a distinguished French chemist, M. Pasteur, to take up the question on the other side; and he has certainly worked it out in the most perfect manner. I am glad to say, too, that he has published his researches in time to enable me to give you an account of them. He verified all the experiments which I have just mentioned to you—and then finding those extraordinary anomalies, as in the case of the mercury bath and the milk, he set himself to work to discover their nature. In the case of milk he found it to be a question of temperature. Milk in a fresh state is slightly alkaline; and it is a very curious circumstance, but this very slight degree of alkalinity seems to have the effect of preserving the organisms which fall into it from the air from being destroyed at a temperature of 212 deg., which is the boiling point. But if you raise the temperature 10 deg. when you boil it, the milk behaves like everything else; and if the air with which it comes in contact, after being boiled at this temperature, is passed through a red-hot tube, you will not get a trace of organisms.
He then turned his attention to the mercury bath, and found on examination that the surface of the mercury was almost always covered with a very fine dust. He found that even the mercury itself was positively full of organic matters; that from being constantly exposed to the air, it had collected an immense number of these infusorial organisms from the air. Well, under these circumstances he felt that the case was quite clear, and that the mercury was not what it had appeared to M. Schwann to be,—a bar to the admission of these organisms; but that, in reality, it acted as a reservoir from which the infusion was immediately supplied with the large quantity that had so puzzled him.
But not content with explaining the experiments of others, M. Pasteur went to work to satisfy himself completely. He said to himself: "If my view is right, and if, in point of fact, all these appearances of spontaneous generation are altogether due to the falling of minute germs suspended in the atmosphere,—why, I ought not only to be able to show the germs, but I ought to be able to catch and sow them, and produce the resulting organisms." He, accordingly, constructed a very ingenious apparatus to enable him to accomplish the trapping of the "germ dust" in the air. He fixed in the window of his room a glass tube, in the centre of which he had placed a ball of gun-cotton, which, as you all know, is ordinary cotton-wool, which, from having been steeped in strong acid, is converted into a substance of great explosive power. It is also soluble in alcohol and ether. One end of the glass tube was, of course, open to the external air; and at the other end of it he placed an aspirator, a contrivance for causing a current of the external air to pass through the tube. He kept this apparatus going for four-and-twenty hours, and then removed the dusted gun-cotton, and dissolved it in alcohol and ether. He then allowed this to stand for a few hours, and the result was, that a very fine dust was gradually deposited at the bottom of it. That dust, on being transferred to the stage of a microscope, was found to contain an enormous number of starch grains. You know that the materials of our food and the greater portion of plants are composed of starch, and we are constantly making use of it in a variety of ways, so that there is always a quantity of it suspended in the air. It is these starch grains which form many of those bright specks that we see dancing in a ray of light sometimes. But besides these, M. Pasteur found also an immense number of other organic substances such as spores of fungi, which had been floating about in the air and had got caged in this way.
He went farther, and said to himself, "If these really are the things that give rise to the appearance of spontaneous generation, I ought to be able to take a ball of this dusted gun-cotton and put it into one of my vessels, containing that boiled infusion which has been kept away from the air, and in which no infusoria are at present developed, and then, if I am right, the introduction of this gun-cotton will give rise to organisms."
Accordingly, he took one of these vessels of infusion, which had been kept eighteen months, without the least appearance of life in it, and by a most ingenious contrivance, he managed to break it open and introduce such a ball of gun-cotton, without allowing the infusion or the cotton ball to come into contact with any air but that which had been subjected to a red heat, and in twenty-four hours he had the satisfaction of finding all the indications of what had been hitherto called spontaneous generation. He had succeeded in catching the germs and developing organisms in the way ho had anticipated.
It now struck him that the truth of his conclusions might be demonstrated without all the apparatus he had employed. To do this, he took some decaying animal or vegetable substance, such as urine, which is an extremely decomposable substance, or the juice of yeast, or perhaps some other artificial preparation, and filled a vessel having a long tubular neck with it. He then boiled the liquid and bent that long neck into an S shape or zig-zag, leaving it open at the end. The infusion then gave no trace of any appearance of spontaneous generation, however long it might be left, as all the germs in the air were deposited in the beginning of the bent neck. He then cut the tube close to the vessel, and allowed the ordinary air to have free and direct access; and the result of that was the appearance of organisms in it, as soon as the infusion had been allowed to stand long enough to allow of the growth of those it received from the air, which was about forty-eight hours. The result of M. Pasteur's experiments proved, therefore, in the most conclusive manner, that all the appearances of spontaneous generation arose from nothing more than the deposition of the germs of organisms which were constantly floating in the air.
To this conclusion, however, the objection was made, that if that were the cause, then the air would contain such an enormous number of these germs, that it would be a continual fog. But M. Pasteur replied that they are not there in anything like the number we might suppose, and that an exaggerated view has been held on that subject; he showed that the chances of animal or vegetable life appearing in infusions, depend entirely on the conditions under which they are exposed. If they are exposed to the ordinary atmosphere around us, why, of course, you may have organisms appearing early. But, on the other hand, if they are exposed to air at a great height, or in some very quiet cellar, you will often not find a single trace of life.
So that M. Pasteur arrived at last at the clear and definite result, that all these appearances are like the case of the worms in the piece of meat, which was refuted by Redi, simply germs carried by the air and deposited in the liquids in which they afterwards appear. For my own part, I conceive that, with the particulars of M. Pasteur's experiments before us, we cannot fail to arrive at his conclusions; and that the doctrine of spontaneous generation has received a final coup de grace.
You, of course, understand that all this in no way interferes with the possibility of the fabrication of organic matters by the direct method to which I have referred, remote as that possibility may be.
IV. THE PERPETUATION OF LIVING BEINGS, HEREDITARY TRANSMISSION AND VARIATION
The inquiry which we undertook, at our last meeting, into the state of our knowledge of the causes of the phenomena of organic nature,—of the past and of the present,—resolved itself into two subsidiary inquiries: the first was, whether we know anything, either historically or experimentally, of the mode of origin of living beings; the second subsidiary inquiry was, whether, granting the origin, we know anything about the perpetuation and modifications of the forms of organic beings. The reply which I had to give to the first question was altogether negative, and the chief result of my last lecture was, that, neither historically nor experimentally, do we at present know anything whatsoever about the origin of living forms. We saw that, historically, we are not likely to know anything about it, although we may perhaps learn something experimentally; but that at present we are an enormous distance from the goal I indicated.
I now, then, take up the next question, What do we know of the reproduction, the perpetuation, and the modifications of the forms of living beings, supposing that we have put the question as to their origination on one side, and have assumed that at present the causes of their origination are beyond us, and that we know nothing about them? Upon this question the state of our knowledge is extremely different; it is exceedingly large: and, if not complete, our experience is certainly most extensive. It would be impossible to lay it all before you, and the most I can do, or need do to-night, is to take up the principal points and put them before you with such prominence as may subserve the purposes of our present argument.
The method of the perpetuation of organic beings is of two kinds,—the non-sexual and the sexual. In the first the perpetuation takes place from and by a particular act of an individual organism, which sometimes may not be classed as belonging to any sex at all. In the second case, it is in consequence of the mutual action and interaction of certain portions of the organisms of usually two distinct individuals,—the male and the female. The cases of non-sexual perpetuation are by no means so common as the cases of sexual perpetuation; and they are by no means so common in the animal as in the vegetable world. You are all probably familiar with the fact, as a matter of experience, that you can propagate plants by means of what are called "cuttings"; for example, that by taking a cutting from a geranium plant, and rearing it properly, by supplying it with light and warmth and nourishment from the earth, it grows up and takes the form of its parent, having all the properties and peculiarities of the original plant.
Sometimes this process, which the gardener performs artificially, takes place naturally; that is to say, a little bulb, or portion of the plant, detaches itself, drops off, and becomes capable of growing as a separate thing. That is the case with many bulbous plants, which throw off in this way secondary bulbs, which are lodged in the ground and become developed into plants. This is a non-sexual process, and from it results the repetition or reproduction of the form of the original being from which the bulb proceeds.
Among animals the same thing takes place. Among the lower forms of animal life, the infusorial animalculae we have already spoken of throw off certain portions, or break themselves up in various directions, sometimes transversely or sometimes longitudinally; or they may give off buds, which detach themselves and develop into their proper forms. There is the common fresh-water polype, for instance, which multiplies itself in this way. Just in the same way as the gardener is able to multiply and reproduce the peculiarities and characters of particular plants by means of cuttings, so can the physiological experimentalist—as was shown by the Abbe Trembley many years ago—so can he do the same thing with many of the lower forms of animal life. M. de Trembley showed that you could take a polype and cut it into two, or four, or many pieces, mutilating it in all directions, and the pieces would still grow up and reproduce completely the original form of the animal. These are all cases of non-sexual multiplication, and there are other instances, and still more extraordinary ones, in which this process takes place naturally, in a more hidden, a more recondite kind of way. You are all of you familiar with that little green insect, the Aphis or blight, as it is called. These little animals, during a very considerable part of their existence, multiply themselves by means of a kind of internal budding, the buds being developed into essentially non-sexual animals, which are neither male nor female; they become converted into young Aphides, which repeat the process, and their offspring after them, and so on again; you may go on for nine or ten, or even twenty or more successions; and there is no very good reason to say how soon it might terminate, or how long it might not go on if the proper conditions of warmth and nourishment were kept up. |
|