p-books.com
Darwiniana
by Thomas Henry Huxley
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

"Ce qu'il y a d'etonnant, est que pour arriver a ces connaissances il semble avoir perverti l'ordre naturel, puisqu'au lieu de s'attacher d'abord a rechercher l'origine de notre globe il a commence par travailler a s'instruire de la nature. Mais a l'entendre, ce renversement de l'ordre a ete pour lui l'effet d'un genie favorable qui l'a conduit pas a pas et comme par la main aux decouvertes les plus sublimes. C'est en decomposant la substance de ce globe par tine anatomie exacte de toutes ses parties qu'il a premierement appris de quelles matieres il etait compose et quels arrangemens ces memes matieres observaient entre elles. Ces lumieres jointes a l'esprit de comparaison toujours necessaire a quiconque entreprend de percer les voiles dont la nature aime a se cacher, ont servi de guide a notre philosophe pour parvenir a des connoissances plus interessantes. Par la matiere et l'arrangement de ces compositions il pretend avoir reconnu quelle est la veritable origine de ce globe que nous habitons, comment et par qui il a ete forme."-Pp. xix. xx.

But De Maillet was before his age, and as could hardly fail to happen to one who speculated on a zoological and botanical question before Linnaeus, and on a physiological problem before Haller, he fell into great errors here and there; and hence, perhaps, the general neglect of his work. Robinet's speculations are rather behind, than in advance of, those of De Maillet; and though Linnaeus may have played with the hypothesis of transmutation, it obtained no serious support until Lamarck adopted it, and advocated it with great ability in his "Philosophie Zoologique."

Impelled towards the hypothesis of the transmutation of species, partly by his general cosmological and geological views; partly by the conception of a graduated, though irregularly branching, scale of being, which had arisen out of his profound study of plants and of the lower forms of animal life, Lamarck, whose general line of thought often closely resembles that of De Maillet, made a great advance upon the crude and merely speculative manner in which that writer deals with the question of the origin of living beings, by endeavouring to find physical causes competent to effect that change of one species into another, which De Maillet had only supposed to occur. And Lamarck conceived that he had found in Nature such causes, amply sufficient for the purpose in view. It is a physiological fact, he says, that organs are increased in size by action, atrophied by inaction; it is another physiological fact that modifications produced are transmissible to offspring. Change the actions of an animal, therefore, and you will change its structure, by increasing the development of the parts newly brought into use and by the diminution of those less used; but by altering the circumstances which surround it you will alter its actions, and hence, in the long run, change of circumstance must produce change of organisation. All the species of animals, therefore, are, in Lamarck's view, the result of the indirect action of changes of circumstance, upon those primitive germs which he considered to have originally arisen, by spontaneous generation, within the waters of the globe. It is curious, however, that Lamarck should insist so strongly [Footnote: See Phil. Zoologique, vol. i. p. 222. et seq.] as he has done, that circumstances never in any degree directly modify the form or the organisation of animals, but only operate by changing their wants and consequently their actions; for he thereby brings upon himself the obvious question, How, then, do plants, which cannot be said to have wants or actions, become modified? To this he replies, that they are modified by the changes in their nutritive processes, which are effected by changing circumstances; and it does not seem to have occurred to him that such changes might be as well supposed to take place among animals.

When we have said that Lamarck felt that mere speculation was not the way to arrive at the origin of species, but that it was necessary, in order to the establishment of any sound theory on the subject, to discover by observation or otherwise, some vera causa, competent to give rise to them; that he affirmed the true order of classification to coincide with the order of their development one from another; that he insisted on the necessity of allowing sufficient time, very strongly; and that all the varieties of instinct and reason were traced back by him to the same cause as that which has given rise to species, we have enumerated his chief contributions to the advance of the question. On the other hand, from his ignorance of any power in Nature competent to modify the structure of animals, except the development of parts, or atrophy of them, in consequence of a change of needs, Lamarck was led to attach infinitely greater weight than it deserves to this agency, and the absurdities into which he was led have met with deserved condemnation. Of the struggle for existence, on which, as we shall see, Mr. Darwin lays such great stress, he had no conception; indeed, he doubts whether there really are such things as extinct species, unless they be such large animals as may have met their death at the hands of man; and so little does he dream of there being any other destructive causes at work, that, in discussing the possible existence of fossil shells, he asks, "Pourquoi d'ailleurs seroient-ils perdues des que l'homme n'a pu operer leur destruction?" ("Phil. Zool.," vol. i. p. 77.) Of the influence of selection Lamarck has as little notion, and he makes no use of the wonderful phenomena which are exhibited by domesticated animals, and illustrate its powers. The vast influence of Cuvier was employed against the Lamarckian views, and, as the untenability of some of his conclusions was easily shown, his doctrines sank under the opprobrium of scientific, as well as of theological, heterodoxy. Nor have the efforts made of late years to revive them tended to re-establish their credit in the minds of sound thinkers acquainted with the facts of the case; indeed it may be doubted whether Lamarck has not suffered more from his friends than from his foes.

Two years ago, in fact, though we venture to question if even the strongest supporters of the special creation hypothesis had not, now and then, an uneasy consciousness that all was not right, their position seemed more impregnable than ever, if not by its own inherent strength, at any rate by the obvious failure of all the attempts which had been made to carry it. On the other hand, however much the few, who thought deeply on the question of species, might be repelled by the generally received dogmas, they saw no way of escaping from them save by the adoption of suppositions so little justified by experiment or by observation as to be at least equally distasteful.

The choice lay between two absurdities and a middle condition of uneasy scepticism; which last, however unpleasant and unsatisfactory, was obviously the only justifiable state of mind under the circumstances.

Such being the general ferment in the minds of naturalists, it is no wonder that they mustered strong in the rooms of the Linnaean Society, on the 1st of July of the year 1858, to hear two papers by authors living on opposite sides of the globe, working out their results independently, and yet professing to have discovered one and the same solution of all the problems connected with species. The one of these authors was an able naturalist, Mr. Wallace, who had been employed for some years in studying the productions of the islands of the Indian Archipelago, and who had forwarded a memoir embodying his views to Mr. Darwin, for communication to the Linnaean Society. On perusing the essay, Mr. Darwin was not a little surprised to find that it embodied some of the leading ideas of a great work which he had been preparing for twenty years, and parts of which, containing a development of the very same views, had been perused by his private friends fifteen or sixteen years before. Perplexed in what manner to do full justice both to his friend and to himself, Mr. Darwin placed the matter in the hands of Dr. Hooker and Sir Charles Lyell, by whose advice he communicated a brief abstract of his own views to the Linnaean Society, at the same time that Mr. Wallace's paper was read. Of that abstract, the work on the "Origin of Species" is an enlargement; but a complete statement of Mr. Darwin's doctrine is looked for in the large and well-illustrated work which he is said to be preparing for publication.

The Darwinian hypothesis has the merit of being eminently simple and comprehensible in principle, and its essential positions may be stated in a very few words: all species have been produced by the development of varieties from common stocks; by the conversion of these, first into permanent races and then into new species, by the process of natural selection, which process is essentially identical with that artificial selection by which man has originated the races of domestic animals—the struggle for existence taking the place of man, and exerting, in the case of natural selection, that selective action which he performs in artificial selection.

The evidence brought forward by Mr. Darwin in support of his hypothesis is of three kinds. First, he endeavours to prove that species may be originated by selection; secondly, he attempts to show that natural causes are competent to exert selection; and thirdly, he tries to prove that the most remarkable and apparently anomalous phaenomena exhibited by the distribution, development, and mutual relations of species, can be shown to be deducible from the general doctrine of their origin, which he propounds, combined with the known facts of geological change; and that, even if all these phaenomena are not at present explicable by it, none are necessarily inconsistent with it.

There cannot be a doubt that the method of inquiry which Mr. Darwin has adopted is not only rigorously in accordance with the canons of scientific logic, but that it is the only adequate method. Critics exclusively trained in classics or in mathematics, who have never determined a scientific fact in their lives by induction from experiment or observation, prate learnedly about Mr. Darwin's method, which is not inductive enough, not Baconian enough, forsooth, for them. But even if practical acquaintance with the process of scientific investigation is denied them, they may learn, by the perusal of Mr. Mill's admirable chapter "On the Deductive Method," that there are multitudes of scientific inquiries in which the method of pure induction helps the investigator but a very little way.

"The mode of investigation," says Mr. Mill, "which, from the proved inapplicability of direct methods of observation and experiment, remains to us as the main source of the knowledge we possess, or can acquire, respecting the conditions and laws of recurrence of the more complex phaenomena, is called, in its most general expression, the deductive method, and consists of three operations: the first, one of direct induction; the second, of ratiocination; and the third, of verification."

Now, the conditions which have determined the existence of species are not only exceedingly complex, but, so far as the great majority of them are concerned, are necessarily beyond our cognisance. But what Mr. Darwin has attempted to do is in exact accordance with the rule laid down by Mr. Mill; he has endeavoured to determine certain great facts inductively, by observation and experiment; he has then reasoned from the data thus furnished; and lastly, he has tested the validity of his ratiocination by comparing his deductions with the observed facts of Nature. Inductively, Mr. Darwin endeavours to prove that species arise in a given way. Deductively, he desires to show that, if they arise in that way, the facts of distribution, development, classification, &c., may be accounted for, i.e. may be deduced from their mode of origin, combined with admitted changes in physical geography and climate, during an indefinite period. And this explanation, or coincidence of observed with deduced facts, is, so far as it extends, a verification of the Darwinian view.

There is no fault to be found with Mr. Darwin's method, then; but it is another question whether he has fulfilled all the conditions imposed by that method. Is it satisfactorily proved, in fact, that species may be originated by selection? that there is such a thing as natural selection? that none of the phaenomena exhibited by species are inconsistent with the origin of species in this way? If these questions can be answered in the affirmative, Mr. Darwin's view steps out of the rank of hypotheses into those of proved theories; but, so long as the evidence at present adduced falls short of enforcing that affirmation, so long, to our minds, must the new doctrine be content to remain among the former—an extremely valuable, and in the highest degree probable, doctrine, indeed the only extant hypothesis which is worth anything in a scientific point of view; but still a hypothesis, and not yet the theory of species.

After much consideration, and with assuredly no bias against Mr. Darwin's views, it is our clear conviction that, as the evidence stands, it is not absolutely proven that a group of animals, having all the characters exhibited by species in Nature, has ever been originated by selection, whether artificial or natural. Groups having the morphological character of species—distinct and permanent races in fact—have been so produced over and over again; but there is no positive evidence, at present, that any group of animals has, by variation and selective breeding, given rise to another group which was, even in the least degree, infertile with the first. Mr. Darwin is perfectly aware of this weak point, and brings forward a multitude of ingenious and important arguments to diminish the force of the objection. We admit the value of these arguments to their fullest extent; nay, we will go so far as to express our belief that experiments, conducted by a skilful physiologist, would very probably obtain the desired production of mutually more or less infertile breeds from a common stock, in a comparatively few years; but still, as the case stands at present, this "little rift within the lute" is not to be disguised nor overlooked.

In the remainder of Mr. Darwin's argument our own private ingenuity has not hitherto enabled us to pick holes of any great importance; and judging by what we hear and read, other adventurers in the same field do not seem to have been much more fortunate. It has been urged, for instance, that in his chapters on the struggle for existence and on natural selection, Mr. Darwin does not so much prove that natural selection does occur, as that it must occur; but, in fact, no other sort of demonstration is attainable. A race does not attract our attention in Nature until it has, in all probability, existed for a considerable time, and then it is too late to inquire into the conditions of its origin. Again, it is said that there is no real analogy between the selection which takes place under domestication, by human influence, and any operation which can be effected by Nature, for man interferes intelligently. Reduced to its elements, this argument implies that an effect produced with trouble by an intelligent agent must, a fortiori, be more troublesome, if not impossible, to an unintelligent agent. Even putting aside the question whether Nature, acting as she does according to definite and invariable laws, can be rightly called an unintelligent agent, such a position as this is wholly untenable. Mix salt and sand, and it shall puzzle the wisest of men, with his mere natural appliances, to separate all the grains of sand from all the grains of salt; but a shower of rain will effect the same object in ten minutes. And so, while man may find it tax all his intelligence to separate any variety which arises, and to breed selectively from it, the destructive agencies incessantly at work in Nature, if they find one variety to be more soluble in circumstances than the other, will inevitably, in the long run, eliminate it.

A frequent and a just objection to the Lamarckian hypothesis of the transmutation of species is based upon the absence of transitional forms between many species. But against the Darwinian hypothesis this argument has no force. Indeed, one of the most valuable and suggestive parts of Mr. Darwin's work is that in which he proves, that the frequent absence of transitions is a necessary consequence of his doctrine, and that the stock whence two or more species have sprung, need in no respect be intermediate between these species. If any two species have arisen from a common stock in the same way as the carrier and the pouter, say, have arisen from the rock-pigeon, then the common stock of these two species need be no more intermediate between the two than the rock-pigeon is between the carrier and pouter. Clearly appreciate the force of this analogy, and all the arguments against the origin of species by selection, based on the absence of transitional forms, fall to the ground. And Mr. Darwin's position might, we think, have been even stronger than it is if he had not embarrassed himself with the aphorism, "Natura non facit saltum," which turns up so often in his pages. We believe, as we have said above, that Nature does make jumps now and then, and a recognition of the fact is of no small importance in disposing of many minor objections to the doctrine of transmutation.

But we must pause. The discussion of Mr. Darwin's arguments in detail would lead us far beyond the limits within which we proposed, at starting, to confine this article. Our object has been attained if we have given an intelligible, however brief, account of the established facts connected with species, and of the relation of the explanation of those facts offered by Mr. Darwin to the theoretical views held by his predecessors and his contemporaries, and, above all, to the requirements of scientific logic. We have ventured to point out that it does not, as yet, satisfy all those requirements; but we do not hesitate to assert that it is as superior to any preceding or contemporary hypothesis, in the extent of observational and experimental basis on which it rests, in its rigorously scientific method, and in its power of explaining biological phenomena, as was the hypothesis of Copernicus to the speculations of Ptolemy. But the planetary orbits turned out to be not quite circular after all, and, grand as was the service Copernicus rendered to science, Kepler and Newton had to come after him. What if the orbit of Darwinism should be a little too circular? What if species should offer residual phaenomena, here and there, not explicable by natural selection? Twenty years hence naturalists may be in a position to say whether this is, or is not, the case; but in either event they will owe the author of "The Origin of Species" an immense debt of gratitude. We should leave a very wrong impression on the reader's mind if we permitted him to suppose that the value of that work depends wholly on the ultimate justification of the theoretical views which it contains. On the contrary, if they were disproved to-morrow, the book would still be the best of its kind—the most compendious statement of well-sifted facts bearing on the doctrine of species that has ever appeared. The chapters on Variation, on the Struggle for Existence, on Instinct, on Hybridism, on the Imperfection of the Geological Record, on Geographical Distribution, have not only no equals, but, so far as our knowledge goes, no competitors, within the range of biological literature. And viewed as a whole, we do not believe that, since the publication of Von Baer's "Researches on Development," thirty years ago, any work has appeared calculated to exert so large an influence, not only on the future of Biology, but in extending the domination of Science over regions of thought into which she has, as yet, hardly penetrated.



III

CRITICISMS ON "THE ORIGIN OF SPECIES"

[1864]

1. UEBER DIE DARWIN'SCHE SCHOePFUNGSTHEORIE; EIN VORTRAG, Von A. KOeLLIKER. Leipzig, 1864.

2. EXAMINATION DU LIVRE DE M. DARWIN SUR L'ORIGINE DES ESPECES. Par P. FLOURENS. Paris, 1864.

In the course of the present year several foreign commentaries upon Mr. Darwin's great work have made their appearance. Those who have perused that remarkable chapter of the "Antiquity of Man," in which Sir Charles Lyell draws a parallel between the development of species and that of languages, will be glad to hear that one of the most eminent philologers of Germany, Professor Schleicher, has, independently, published a most instructive and philosophical pamphlet (an excellent notice of which is to be found in the Reader, for February 27th of this year) supporting similar views with all the weight of his special knowledge and established authority as a linguist. Professor Haeckel, to whom Schleicher addresses himself, previously took occasion, in his splendid monograph on the Radiolaria,[Footnote: Die Radiolarien: eine Monographie, p. 231.] to express his high appreciation of, and general concordance with, Mr. Darwin's views.

But the most elaborate criticisms of the "Origin of Species" which have appeared are two works of very widely different merit, the one by Professor Koelliker, the well-known anatomist and histologist of Wuerzburg; the other by M. Flourens, Perpetual Secretary of the French Academy of Sciences.

Professor Koelliker's critical essay "Upon the Darwinian Theory" is, like all that proceeds from the pen of that thoughtful and accomplished writer, worthy of the most careful consideration. It comprises a brief but clear sketch of Darwin's views, followed by an enumeration of the leading difficulties in the way of their acceptance; difficulties which would appear to be insurmountable to Professor Koelliker, inasmuch as he proposes to replace Mr. Darwin's Theory by one which he terms the "Theory of Heterogeneous Generation." We shall proceed to consider first the destructive, and secondly, the constructive portion of the essay.

We regret to find ourselves compelled to dissent very widely from many of Professor Koelliker's remarks; and from none more thoroughly than from those in which he seeks to define what we may term the philosophical position of Darwinism.

"Darwin," says Professor Koelliker, "is, in the fullest sense of the word, a Teleologist. He says quite distinctly (First Edition, pp. 199, 200) that every particular in the structure of an animal has been created for its benefit, and he regards the whole series of animal forms only from this point of view."

And again:

"7. The teleological general conception adopted by Darwin is a mistaken one.

"Varieties arise irrespectively of the notion of purpose, or of utility, according to general laws of Nature, and may be either useful, or hurtful, or indifferent.

"The assumption that an organism exists only on account of some definite end in view, and represents something more than the incorporation of a general idea, or law, implies a one-sided conception of the universe. Assuredly, every organ has, and every organism fulfils, its end, but its purpose is not the condition of its existence. Every organism is also sufficiently perfect for the purpose it serves, and in that, at least, it is useless to seek for a cause of its improvement."

It is singular how differently one and the same book will impress different minds. That which struck the present writer most forcibly on his first perusal of the "Origin of Species" was the conviction that Teleology, as commonly understood, had received its deathblow at Mr. Darwin's hands. For the teleological argument runs thus: an organ or organism (A) is precisely fitted to perform a function or purpose (B); therefore it was specially constructed to perform that function. In Paley's famous illustration, the adaptation of all the parts of the watch to the function, or purpose, of showing the time, is held to be evidence that the watch was specially contrived to that end; on the ground, that the only cause we know of, competent to produce such an effect as a watch which shall keep time, is a contriving intelligence adapting the means directly to that end.

Suppose, however, that any one had been able to show that the watch had not been made directly by any person, but that it was the result of the modification of another watch which kept time but poorly; and that this again had proceeded from a structure which could hardly be called a watch at all—seeing that it had no figures on the dial and the hands were rudimentary; and that going back and back in time we came at last to a revolving barrel as the earliest traceable rudiment of the whole fabric. And imagine that it had been possible to show that all these changes had resulted, first, from a tendency of the structure to vary indefinitely; and secondly, from something in the surrounding world which helped all variations in the direction of an accurate time-keeper, and checked all those in other directions; then it is obvious that the force of Paley's argument would be gone. For it would be demonstrated that an apparatus thoroughly well adapted to a particular purpose might be the result of a method of trial and error worked by unintelligent agents, as well as of the direct application of the means appropriate to that end, by an intelligent agent.

Now it appears to us that what we have here, for illustration's sake, supposed to be done with the watch, is exactly what the establishment of Darwin's Theory will do for the organic world. For the notion that every organism has been created as it is and launched straight at a purpose, Mr. Darwin substitutes the conception of something which may fairly be termed a method of trial and error. Organisms vary incessantly; of these variations the few meet with surrounding conditions which suit them and thrive; the many are unsuited and become extinguished.

According to Teleology, each organism is like a rifle bullet fired straight at a mark; according to Darwin, organisms are like grapeshot of which one hits something and the rest fall wide.

For the teleologist an organism exists because it was made for the conditions in which it is found; for the Darwinian an organism exists because, out of many of its kind, it is the only one which has been able to persist in the conditions in which it is found.

Teleology implies that the organs of every organism are perfect and cannot be improved; the Darwinian theory simply affirms that they work well enough to enable the organism to hold its own against such competitors as it has met with, but admits the possibility of indefinite improvement. But an example may bring into clearer light the profound opposition between the ordinary teleological, and the Darwinian, conception.

Cats catch mice, small birds and the like, very well. Teleology tells us that they do so because they were expressly constructed for so doing—that they are perfect mousing apparatuses, so perfect and so delicately adjusted that no one of their organs could be altered, without the change involving the alteration of all the rest. Darwinism affirms on the contrary, that there was no express construction concerned in the matter; but that among the multitudinous variations of the Feline stock, many of which died out from want of power to resist opposing influences, some, the cats, were better fitted to catch mice than others, whence they throve and persisted, in proportion to the advantage over their fellows thus offered to them.

Far from imagining that cats exist in order to catch mice well, Darwinism supposes that cats exist because they catch mice well—mousing being not the end, but the condition, of their existence. And if the cat type has long persisted as we know it, the interpretation of the fact upon Darwinian principles would be, not that the cats have remained invariable, but that such varieties as have incessantly occurred have been, on the whole, less fitted to get on in the world than the existing stock.

If we apprehend the spirit of the "Origin of Species" rightly, then, nothing can be more entirely and absolutely opposed to Teleology, as it is commonly understood, than the Darwinian Theory. So far from being a "Teleologist in the fullest sense of the word," we should deny that he is a Teleologist in the ordinary sense at all; and we should say that, apart from his merits as a naturalist, he has rendered a most remarkable service to philosophical thought by enabling the student of Nature to recognise, to their fullest extent, those adaptations to purpose which are so striking in the organic world, and which Teleology has done good service in keeping before our minds, without being false to the fundamental principles of a scientific conception of the universe. The apparently diverging teachings of the Teleologist and of the Morphologist are reconciled by the Darwinian hypothesis.

But leaving our own impressions of the "Origin of Species," and turning to those passages especially cited by Professor Koelliker, we cannot admit that they bear the interpretation he puts upon them. Darwin, if we read him rightly, does not affirm that every detail in the structure of an animal has been created for its benefit. His words are (p. 199):—

"The foregoing remarks lead me to say a few words on the protest lately made by some naturalists against the utilitarian doctrine that every detail of structure has been produced for the good of its possessor. They believe that very many structures have been created for beauty in the eyes of man, or for mere variety. This doctrine, if true, would be absolutely fatal to my theory—yet I fully admit that many structures are of no direct use to their possessor."

And after sundry illustrations and qualifications, he concludes (p. 200):—

"Hence every detail of structure in every living creature (making some little allowance for the direct action of physical conditions) may be viewed either as having been of special use to some ancestral form, or as being now of special use to the descendants of this form—either directly, or indirectly, through the complex laws of growth."

But it is one thing to say, Darwinically, that every detail observed in an animal's structure is of use to it, or has been of use to its ancestors; and quite another to affirm, teleologically, that every detail of an animal's structure has been created for its benefit. On the former hypothesis, for example, the teeth of the foetal Baltaena have a meaning; on the latter, none. So far as we are aware, there is not a phrase in the "Origin of Species" inconsistent with Professor Koelliker's position, that "varieties arise irrespectively of the notion of purpose, or of utility, according to general laws of Nature, and may be either useful, or hurtful, or indifferent."

On the contrary, Mr. Darwin writes (Summary of Chap. V.):—

"Our ignorance of the laws of variation is profound. Not in one case out of a hundred can we pretend to assign any reason why this or that part varies more or less from the same part in the parents... The external conditions of life, as climate and food, &c., seem to have induced some slight modifications. Habit, in producing constitutional differences, and use, in strengthening, and disuse, in weakening and diminishing organs, seem to have been more potent in their effects."

And finally, as if to prevent all possible misconception, Mr. Darwin concludes his Chapter on Variation with these pregnant words:—

"Whatever the cause may be of each slight difference in the offspring from their parents—and a cause for each must exist—it is the steady accumulation, through natural selection of such differences, when beneficial to the individual, that gives rise to all the more important modifications of structure, by which the innumerable beings on the face of the earth are enabled to struggle with each other, and the best adapted to survive."

We have dwelt at length upon, this subject, because of its great general importance, and because we believe that Professor Koelliker's criticisms on this head are based upon a misapprehension of Mr. Darwin's views—substantially they appear to us to coincide with his own. The other objections which Professor Koelliker enumerates and discusses are the following: [Footnote: Space will not allow us to give Professor Koelliker's arguments in detail; our readers will find a full and accurate version of them in the Reader for August 13th and 20th, 1864.]—

"1. No transitional forms between existing species are known; and known varieties, whether selected or spontaneous, never go so far as to establish new species."

To this Professor Koelliker appears to attach some weight. He makes the suggestion that the short-faced tumbler pigeon may be a pathological product.

"2. No transitional forms of animals are met with among the organic remains of earlier epochs."

Upon this, Professor Koelliker remarks that the absence of transitional forms in the fossil world, though not necessarily fatal to Darwin's views, weakens his case.

"3. The struggle for existence does not take place."

To this objection, urged by Pelzeln, Koelliker, very justly, attaches no weight.

"4. A tendency of organisms to give rise to useful varieties, and a natural selection, do not exist.

"The varieties which are found arise in consequence of manifold external influences, and it is not obvious why they all, or partially, should be particularly useful. Each animal suffices for its own ends, is perfect of its kind, and needs no further development. Should, however, a variety be useful and even maintain itself, there is no obvious reason why it should change any further. The whole conception of the imperfection of organisms and the necessity of their becoming perfected is plainly the weakest side of Darwin's Theory, and a pis aller (Nothbehelf) because Darwin could think of no other principle by which to explain the metamorphoses which, as I also believe, have occurred."

Here again we must venture to dissent completely from Professor Koelliker's conception of Mr. Darwin's hypothesis. It appears to us to be one of the many peculiar merits of that hypothesis that it involves no belief in a necessary and continual progress of organisms.

Again, Mr. Darwin, if we read him aright, assumes no special tendency of organisms to give rise to useful varieties, and knows nothing of needs of development, or necessity of perfection. What he says is, in substance: All organisms vary. It is in the highest degree improbable that any given variety should have exactly the same relations to surrounding conditions as the parent stock. In that case it is either better fitted (when the variation may be called useful), or worse fitted, to cope with them. If better, it will tend to supplant the parent stock; if worse, it will tend to be extinguished by the parent stock.

If (as is hardly conceivable) the new variety is so perfectly adapted to the conditions that no improvement upon it is possible,—it will persist, because, though it does not cease to vary, the varieties will be inferior to itself.

If, as is more probable, the new variety is by no means perfectly adapted to its conditions, but only fairly well adapted to them, it will persist, so long as none of the varieties which it throws off are better adapted than itself.

On the other hand, as soon as it varies in a useful way, i.e. when the variation is such as to adapt it more perfectly to its conditions, the fresh variety will tend to supplant the former.

So far from a gradual progress towards perfection forming any necessary part of the Darwinian creed, it appears to us that it is perfectly consistent with indefinite persistence in one state, or with a gradual retrogression. Suppose, for example, a return of the glacial epoch and a spread of polar climatal conditions over the whole globe. The operation of natural selection under these circumstances would tend, on the whole, to the weeding out of the higher organisms and the cherishing of the lower forms of life. Cryptogamic vegetation would have the advantage over Phanerogamic; Hydrozoa over Corals; Crustacea over Insecta, and Amphipoda and Isopoda over the higher Crustacea; Cetaceans and Seals over the Primates; the civilisation of the Esquimaux over that of the European.

"5. Pelzeln has also objected that if the later organisms have proceeded from the earlier, the whole developmental series, from the simplest to the highest, could not now exist; in such a case the simpler organisms must have disappeared."

To this Professor Koelliker replies, with perfect justice, that the conclusion drawn by Pelzeln does not really follow from Darwin's premises, and that, if we take the facts of Paleontology as they stand, they rather support than oppose Darwin's theory.

"6. Great weight must be attached to the objection brought forward by Huxley, otherwise a warm supporter of Darwin's hypothesis, that we know of no varieties which are sterile with one another, as is the rule among sharply distinguished animal forms.

"If Darwin is right, it must be demonstrated that forms may be produced by selection, which, like the present sharply distinguished animal forms, are infertile, when coupled with one another, and this has not been done."

The weight of this objection is obvious; but our ignorance of the conditions of fertility and sterility, the want of carefully conducted experiments extending over long series of years, and the strange anomalies presented by the results of the cross-fertilisation of many plants, should all, as Mr. Darwin has urged, be taken into account in considering it.

The seventh objection is that we have already discussed (supra p. 82).

The eighth and last stands as follows:—

"8. The developmental theory of Darwin is not needed to enable us to understand the regular harmonious progress of the complete series of organic forms from the simpler to the more perfect.

"The existence of general laws of Nature explains this harmony, even if we assume that all beings have arisen separately and independent of one another. Darwin forgets that inorganic nature, in which there can be no thought of genetic connexion of forms, exhibits the same regular plan, the same harmony, as the organic world; and that, to cite only one example, there is as much a natural system of minerals as of plants and animals."

We do not feel quite sure that we seize Professor Koelliker's meaning here, but he appears to suggest that the observation of the general order and harmony which pervade inorganic nature, would lead us to anticipate a similar order and harmony in the organic world. And this is no doubt true, but it by no means follows that the particular order and harmony observed among them should be that which we see. Surely the stripes of dun horses, and the teeth of the foetal Balaena, are not explained by the "existence of General laws of Nature." Mr. Darwin endeavours to explain the exact order of organic nature which exists; not the mere fact that there is some order.

And with regard to the existence of a natural system of minerals; the obvious reply is that there may be a natural classification of any objects—of stones on a sea-beach, or of works of art; a natural classification being simply an assemblage of objects in groups, so as to express their most important and fundamental resemblances and differences. No doubt Mr. Darwin believes that those resemblances and differences upon which our natural systems or classifications of animals and plants are based, are resemblances and differences which have been produced genetically, but we can discover no reason for supposing that he denies the existence of natural classifications of other kinds.

And, after all, is it quite so certain that a genetic relation may not underlie the classification of minerals? The inorganic world has not always been what we see it. It has certainly had its metamorphoses, and, very probably, a long "Entwickelungsgeschichte" out of a nebular blastema. Who knows how far that amount of likeness among sets of minerals, in virtue of which they are now grouped into families and orders, may not be the expression of the common conditions to which that particular patch of nebulous fog, which may have been constituted by their atoms, and of which they may be, in the strictest sense, the descendants, was subjected?

It will be obvious from what has preceded, that we do not agree with Professor Koelliker in thinking the objections which he brings forward so weighty as to be fatal to Darwin's view. But even if the case were otherwise, we should be unable to accept the "Theory of Heterogeneous Generation" which is offered as a substitute. That theory is thus stated:—

"The fundamental conception of this hypothesis is, that, under the influence of a general law of development, the germs of organisms produce others different from themselves. This might happen (1) by the fecundated ova passing, in the course of their development, under particular circumstances, into higher forms; (2) by the primitive and later organisms producing other organisms without fecundation, out of germs or eggs (Parthenogenesis)."

In favour of this hypothesis, Professor Koelliker adduces the well-known facts of Agamogenesis, or "alternate generation"; the extreme dissimilarity of the males and females of many animals; and of the males, females, and neuters of those insects which live in colonies: and he defines its relations to the Darwinian theory as follows:—

"It is obvious that my hypothesis is apparently very similar to Darwin's, inasmuch as I also consider that the various forms of animals have proceeded directly from one another. My hypothesis of the creation of organisms by heterogeneous generation, however, is distinguished very essentially from Darwin's by the entire absence of the principle of useful variations and their natural selection: and my fundamental conception is this, that a great plan of development lies at the foundation of the origin of the whole organic world, impelling the simpler forms to more and more complex developments. How this law operates, what influences determine the development of the eggs and germs, and impel them to assume constantly new forms, I naturally cannot pretend to say; but I can at least adduce the great analogy of the alternation of generations. If a Bipinnaria, a Brachiolaria, a Pluteus, is competent to produce the Echinoderm, which is so widely different from it; if a hydroid polype can produce the higher Medusa; if the vermiform Trematode 'nurse' can develop within itself the very unlike Cercaria, it will not appear impossible that the egg, or ciliated embryo, of a sponge, for once, under special conditions, might become a hydroid polype, or the embryo of a Medusa, an Echinoderm."

It is obvious, from, these extracts, that Professor Koelliker's hypothesis is based upon the supposed existence of a close analogy between the phaenomena of Agamogenesis and the production of new species from pre-existing ones. But is the analogy a real one? We think that it is not, and, by the hypothesis cannot be.

For what are the phaenomena of Agamogenesis, stated generally? An impregnated egg develops into a sexless form, A; this gives rise, non-sexually, to a second form or forms, B, more or less different from A. B may multiply non-sexually again; in the simpler cases, however, it does not, but, acquiring sexual characters, produces impregnated eggs from whence A, once more, arises.

No case of Agamogenesis is known in which when A differs widely from B, it is itself capable of sexual propagation. No case whatever is known in which the progeny of B, by sexual generation, is other than a reproduction of A.

But if this be a true statement of the nature of the process of Agamogenesis, how can it enable us to comprehend the production of new species from already existing ones? Let us suppose Hyaenas to have preceded Dogs, and to have produced the latter in this way. Then the Hyaena will represent A, and the Dog, B. The first difficulty that presents itself is that the Hyaena must be non-sexual, or the process will be wholly without analogy in the world of Agamogenesis. But passing over this difficulty, and supposing a male and female Dog to be produced at the same time from the Hyaena stock, the progeny of the pair, if the analogy of the simpler kinds of Agamogenesis [Footnote: If, on the contrary, we follow the analogy of the more complex forms of Agamogenesis, such as that exhibited by some Trematoda and by the Aphides, the Hyaena must produce, non-sexually, a brood of sexless Dogs, from which other sexless Dogs must proceed. At the end of a certain number of terms of the series, the Dogs would acquire sexes and generate young; but these young would be, not Dogs, but Hyaenas. In fact, we have demonstrated, in Agamogenetic phaenomena, that inevitable recurrence to the original type, which is asserted to be true of variations in general, by Mr. Darwin's opponents; and which, if the assertion could be changed into a demonstration, would, in fact, be fatal to his hypothesis.] is to be followed, should be a litter, not of puppies, but of young Hyaenas. For the Agamogenetic series is always, as we have seen, A:B:A:B, &c.; whereas, for the production of a new species, the series must be A:B:B:B, &c. The production of new species, or genera, is the extreme permanent divergence from the primitive stock. All known Agamogenetic processes, on the other hand, end in a complete return to the primitive stock. How then is the production of new species to be rendered intelligible by the analogy of Agamogenesis?

The other alternative put by Professor Koelliker—the passage of fecundated ova in the course of their development into higher forms—would, if it occurred, be merely an extreme case of variation in the Darwinian sense, greater in degree than, but perfectly similar in kind to, that which occurred when the well-known Ancon Ram was developed from an ordinary Ewe's ovum. Indeed we have always thought that Mr. Darwin has unnecessarily hampered himself by adhering so strictly to his favourite "Natura non facit saltum." We greatly suspect that she does make considerable jumps in the way of variation now and then, and that these saltations give rise to some of the gaps which appear to exist in the series of known forms.

Strongly and freely as we have ventured to disagree with Professor Koelliker, we have always done so with regret, and we trust without violating that respect which is due, not only to his scientific eminence and to the careful study which he has devoted to the subject, but to the perfect fairness of his argumentation, and the generous appreciation of the worth of Mr. Darwin's labours which he always displays. It would be satisfactory to be able to say as much for M. Flourens.

But the Perpetual Secretary of the French Academy of Sciences deals with Mr. Darwin as the first Napoleon would have treated an "ideologue;" and while displaying a painful weakness of logic and shallowness of information, assumes a tone of authority, which always touches upon the ludicrous, and sometimes passes the limits of good breeding.

For example (p. 56):—

"M. Darwin continue: 'Aucune distinction absolue n'a ete et ne peut etre etablie entre les especes et les varietes.' Je vous ai deja dit que vous vous trompiez; une distinction absolue separe les varietes d'avec les especes."

"Je vous ai deja dit; moi, M. le Secretaire perpetuel de l'Academie des Sciences: et vous

"'Qui n'etes rien, Pas meme Academicien;'

what do you mean by asserting the contrary?" Being devoid of the blessings of an Academy in England, we are unaccustomed to see our ablest men treated in this fashion, even by a "Perpetual Secretary."

Or again, considering that if there is any one quality of Mr. Darwin's work to which friends and foes have alike borne witness, it is his candour and fairness in admitting and discussing objections, what is to be thought of M. Flourens' assertion, that

"M. Darwin ne cite que les auteurs qui partagent ses opinions." (P. 40.)

Once more (p. 65):—

"Enfin l'ouvrage de M. Darwin a paru. On ne peut qu'etre frappe du talent de l'auteur. Mais quo d'idees obscures, que d'idees fausses! Quel jargon metaphysique jete mal a propos dans l'histoire naturelle, qui tombe dans le galimatias des qu'elle sort des idees claires, des idees justes! Quel langage pretentieux et vide! Quelles personnifications pueriles et surannees! O lucidite! 0 solidite de l'esprit Francais, que devenez-vous?"

"Obscure ideas," "metaphysical jargon," "pretentious and empty language," "puerile and superannuated personifications." Mr. Darwin has many and hot opponents on this side of the Channel and in Germany, but we do not recollect to have found precisely these sins in the long catalogue of those hitherto laid to his charge. It is worth while, therefore, to examine into these discoveries effected solely by the aid of the "lucidity and solidity" of the mind of M. Flourens.

According to M. Flourens, Mr. Darwin's great error is that he has personified Nature (p. 10), and further that he has

"imagined a natural selection: he imagines afterwards that this power of selecting (pouvoir d'elire) which he gives to Nature is similar to the power of man. These two suppositions admitted, nothing stops him: he plays with Nature as he likes, and makes her do all he pleases." (P. 6.)

And this is the way M. Flourens extinguishes natural selection:

"Voyons donc encore une fois, ce qu'il peut y avoir de fonde dans ce qu'on nomme election naturelle.

"L'election naturelle n'est sous un autre nom que la nature. Pour un etre organise, la nature n'est que l'organisation, ni plus ni moins.

"Il faudra donc aussi personnifier l'organisation, et dire que l'organisation choisit l'organisation. L'election naturelle est cette forme substantielle dont on jouait autrefois avec tant de facilite. Aristote disait que 'Si l'art de batir etait dans le bois, cet art agirait comme la nature.' A la place de l'art de batir M. Darwin met l'election naturelle, et c'est tout un: l'un n'est pas plus chimerique que l'autre." (P. 31.)

And this is really all that M. Flourens can make of Natural Selection. We have given the original, in fear lest a translation should be regarded as a travesty; but with the original before the reader, we may try to analyse the passage. "For an organised being, Nature is only organisation, neither more nor less."

Organised beings then have absolutely no relation to inorganic nature: a plant does not depend on soil or sunshine, climate, depth in the ocean, height above it; the quantity of saline matters in water have no influence upon animal life; the substitution of carbonic acid for oxygen in our atmosphere would hurt nobody! That these are absurdities no one should know better than M. Flourens; but they are logical deductions from the assertion just quoted, and from the further statement that natural selection means only that "organisation chooses and selects organisation."

For if it be once admitted (what no sane man denies) that the chances of life of any given organism are increased by certain conditions (A) and diminished by their opposites (B), then it is mathematically certain that any change of conditions in the direction of (A) will exercise a selective influence in favour of that organism, tending to its increase and multiplication, while any change in the direction of (B) will exercise a selective influence against that organism, tending to its decrease and extinction.

Or, on the other hand, conditions remaining the same, let a given organism vary (and no one doubts that they do vary) in two directions: into one form (a) better fitted to cope with these conditions than the original stock, and a second (b) less well adapted to them. Then it is no less certain that the conditions in question must exercise a selective influence in favour of (a) and against (b), so that (a) will tend to predominance, and (b) to extirpation.

That M. Flourens should be unable to perceive the logical necessity of these simple arguments, which lie at the foundation of all Mr. Darwin's reasoning; that he should confound an irrefragable deduction from the observed relations of organisms to the conditions which lie around them, with a metaphysical "forme substantielle," or a chimerical personification of the powers of Nature, would be incredible, were it not that other passages of his work leave no room for doubt upon the subject.

"On imagine une election naturelle que, pour plus de menagement, on me dit etre inconsciente, sans s'apercevoir que le contresens litteral est precisement la: election inconsciente." (P. 52.)

"J'ai deja dit ce qu'il faut penser de l'election naturelle. Ou l'election naturelle n'est rien, ou c'est la nature: mais la nature douee d'election, mais la nature personnifiee: derniere erreur du dernier siecle: Le XIXe ne fait plus de personnifications." (P. 53.)

M. Flourens cannot imagine an unconscious selection—it is for him a contradiction in terms. Did M. Flourens ever visit one of the prettiest watering-places of "la belle France," the Baie d'Arcachon? If so, he will probably have passed through the district of the Landes, and will have had an opportunity of observing the formation of "dunes" on a grand scale. What are these "dunes"? The winds and waves of the Bay of Biscay have not much consciousness, and yet they have with great care "selected," from among an infinity of masses of silex of all shapes and sizes, which have been submitted to their action, all the grains of sand below a certain size, and have heaped them by themselves over a great area. This sand has been "unconsciously selected" from amidst the gravel in which it first lay with as much precision as if man had "consciously selected" it by the aid of a sieve. Physical Geology is full of such selections—of the picking out of the soft from the hard, of the soluble from the insoluble, of the fusible from the infusible, by natural agencies to which we are certainly not in the habit of ascribing consciousness.

But that which wind and sea are to a sandy beach, the sum of influences, which we term the "conditions of existence," is to living organisms. The weak are sifted out from the strong. A frosty night "selects" the hardy plants in a plantation from among the tender ones as effectually as if it were the wind, and they, the sand and pebbles, of our illustration; or, on the other hand, as if the intelligence of a gardener had been operative in cutting the weaker organisms down. The thistle, which has spread over the Pampas, to the destruction of native plants, has been more effectually "selected" by the unconscious operation of natural conditions than if a thousand agriculturists had spent their time in sowing it.

It is one of Mr. Darwin's many great services to Biological science that he has demonstrated the significance of these facts. He has shown that given variation and given change of conditions the inevitable result is the exercise of such an influence upon organisms that one is helped and another is impeded; one tends to predominate, another to disappear; and thus the living world bears within itself, and is surrounded by, impulses towards incessant change.

But the truths just stated are as certain as any other physical laws, quite independently of the truth, or falsehood, of the hypothesis which Mr. Darwin has based upon them; and that Mr. Flourens, missing the substance and grasping at a shadow, should be blind to the admirable exposition of them, which Mr. Darwin has given, and see nothing there but a "derniere erreur du dernier siecle"—a personification of Nature—leads us indeed to cry with him: "O lucidite! O solidite de l'esprit Francais, que devenez-vous?"

M. Flourens has, in fact, utterly failed to comprehend the first principles of the doctrine which he assails so rudely. His objections to details are of the old sort, so battered and hackneyed on this side of the Channel, that not even a Quarterly Reviewer could be induced to pick them up for the purpose of pelting Mr. Darwin over again. We have Cuvier and the mummies; M. Roulin and the domesticated animals of America; the difficulties presented by hybridism and by Palaeontology; Darwinism a rifacciamento of De Maillet and Lamarck; Darwinism a system without a commencement, and its author bound to believe in M. Pouchet, &c. &c. How one knows it all by heart, and with what relief one reads at p. 65—

"Je laisse M. Darwin!"

But we cannot leave M. Flourens without calling our readers' attention to his wonderful tenth chapter, "De la Preexistence des Germes et de l'Epigenese," which opens thus:—

"Spontaneous generation is only a chimaera. This point established, two hypotheses remain: that of pre-existence and that of epigenesis. The one of these hypotheses has as little foundation as the other." (p. 163.)

"The doctrine of epigenesis is derived from Harvey: following by ocular inspection the development of the new being in the Windsor does, he saw each part appear successively, and taking the moment of appearance for the moment of formation he imagined epigenesis." (p. 165.)

On the contrary, says M. Flourens (p. 167),

"The new being is formed at a stroke (tout d'un coup), as a whole, instantaneously; it is not formed part by part, and at different times. It is formed at once at the single individual moment at which the conjunction of the male and female elements takes place."

It will be observed that M. Flourens uses language which cannot be mistaken. For him, the labours of Von Baer, of Rathke, of Coste, and their contemporaries and successors in Germany, France, and England, are non-existent: and, as Darwin "imagina" natural selection, so Harvey "imagina" that doctrine which gives him an even greater claim to the veneration of posterity than his better known discovery of the circulation of the blood.

Language such as that we have quoted is, in fact, so preposterous, so utterly incompatible with anything but absolute ignorance of some of the best established facts, that we should have passed it over in silence had it not appeared to afford some clue to M. Flourens' unhesitating, a priori, repudiation of all forms of the doctrine of progressive modification of living beings. He whose mind remains uninfluenced by an acquaintance with the phaenomena of development, must indeed lack one of the chief motives towards the endeavour to trace a genetic relation between the different existing forms of life. Those who are ignorant of Geology, find no difficulty in believing that the world was made as it is; and the shepherd, untutored in history, sees no reason to regard the green mounds which indicate the site of a Roman camp as aught but part and parcel of the primaeval hillside. So M. Flourens, who believes that embryos are formed "tout d'un coup," naturally finds no difficulty in conceiving that species came into existence in the same way.



IV

THE GENEALOGY OF ANIMALS [Footnote: The Natural History of Creation. By Dr. Ernst Haeckel. [Natuerliche Schoepfungs-Geschichte.—Von Dr. Ernst Haeckel, Professor an der Universitaet Jena.] Berlin, 1868.]

[1869]

Considering that Germany now takes the lead of the world in scientific investigation, and particularly in biology, Mr. Darwin must be well pleased at the rapid spread of his views among some of the ablest and most laborious of German naturalists.

Among these, Professor Haeckel, of Jena, is the Coryphaeus. I know of no more solid and important contributions to biology in the past seven years than Haeckel's work on the "Radiolaria," and the researches of his distinguished colleague Gegenbaur, in vertebrate anatomy; while in Haeckel's "Generelle Morphologie" there is all the force, suggestiveness, and, what I may term the systematising power, of Oken, without his extravagance. The "Generelle Morphologie" is, in fact, an attempt to put the Doctrine of Evolution, so far as it applies to the living world, into a logical form; and to work out its practical applications to their final results. The work before, us, again, may be said to be an exposition of the "Generelle Morphologie" for an educated public, consisting, as it does, of the substance of a series of lectures delivered before a mixed audience at Jena, in the session 1867-8.

"The Natural History of Creation,"—or, as Professor Haeckel admits it would have been better to call his work, "The History of the Development or Evolution of Nature,"—deals, in the first six lectures, with the general and historical aspects of the question and contains a very interesting and lucid account of the views of Linnaeus, Cuvier, Agassiz, Goethe, Oken, Kant, Lamarck, Lyell, and Darwin, and of the historical filiation of these philosophers.

The next six lectures are occupied by a well-digested statement of Mr. Darwin's views. The thirteenth lecture discusses two topics which are not touched by Mr. Darwin, namely, the origin of the present form of the solar system, and that of living matter. Full justice is done to Kant, as the originator of that "cosmic gas theory," as the Germans somewhat quaintly call it, which is commonly ascribed to Laplace. With respect to spontaneous generation, while admitting that there is no experimental evidence in its favour, Professor Haeckel denies the possibility of disproving it, and points out that the assumption that it has occurred is a necessary part of the doctrine of Evolution. The fourteenth lecture, on "Schoepfungs-Perioden und Schoepfungs-Urkunden," answers pretty much to the famous disquisition on the "Imperfection of the Geological Record" in the "Origin of Species."

The following five lectures contain the most original matter of any, being devoted to "Phylogeny," or the working out of the details of the process of Evolution in the animal and vegetable kingdoms, so as to prove the line of descent of each group of living beings, and to furnish it with its proper genealogical tree, or "phylum."

The last lecture considers objections and sums up the evidence in favour of biological Evolution.

I shall best testify to my sense of the value of the work thus briefly analysed if I now proceed to note down some of the more important criticisms which have been suggested to me by its perusal.

I. In more than one place, Professor Haeckel enlarges upon the service which the "Origin of Species" has done, in favouring what he terms the "causal or mechanical" view of living nature as opposed to the "teleological or vitalistic" view. And no doubt it is quite true that the doctrine of Evolution is the most formidable opponent of all the commoner and coarser forms of Teleology. But perhaps the most remarkable service to the philosophy of Biology rendered by Mr. Darwin is the reconciliation of Teleology and Morphology, and the explanation of the facts of both which his views offer.

The Teleology which supposes that the eye, such as we see it in man or one of the higher Vertebrata, was made with the precise structure which it exhibits, for the purpose of enabling the animal which possesses it to see, has undoubtedly received its death-blow. Nevertheless it is necessary to remember that there is a wider Teleology, which is not touched by the doctrine of Evolution, but is actually based upon the fundamental proposition of Evolution. That proposition is, that the whole world, living and not living, in the result of the mutual interaction, according to definite laws, of the forces possessed by the molecules of which the primitive nebulosity of the universe was composed. If this be true, it is no less certain that the existing world lay, potentially, in the cosmic vapour; and that a sufficient intelligence could, from a knowledge of the properties of the molecules of that vapour, have predicted, say the state of the Fauna of Britain in 1869, with as much certainty as one can say what will happen to the vapour of the breath in a cold winter's day.

Consider a kitchen clock, which ticks loudly, shows the hours, minutes, and seconds, strikes, cries "cuckoo!" and perhaps shows the phases of the moon. When the clock is wound up, all the phenomena which it exhibits are potentially contained in its mechanism, and a clever clockmaker could predict all it will do after an examination of its structure.

If the evolution theory is correct, the molecular structure of the cosmic gas stands in the same relation to the phenomena of the world as the structure of the clock to its phenomena.

Now let us suppose a death-watch, living in the clock-case, to be a learned and intelligent student of its works. He might say, "I find here nothing but matter and force and pure mechanism from beginning to end," and he would be quite right. But if he drew the conclusion that the clock was not contrived for a purpose, he would be quite wrong. On the other hand, imagine another death-watch of a different turn of mind. He, listening to the monotonous "tick! tick!" so exactly like his own, might arrive at the conclusion that the clock was itself a monstrous sort of death-watch, and that its final cause and purpose was to tick. How easy to point to the clear relation of the whole mechanism to the pendulum, to the fact that the one thing the clock did always and without intermission was to tick, and that all the rest of its phenomena were intermittent and subordinate to ticking! For all this, it is certain that kitchen clocks are not contrived for the purpose of making a ticking noise.

Thus the teleological theorist would be as wrong as the mechanical theorist, among our death-watches; and, probably, the only death-watch who would be right would be the one who should maintain that the sole thing death-watches could be sure about was the nature of the clock-works and the way they move; and that the purpose of the clock lay wholly beyond the purview of beetle faculties.

Substitute "cosmic vapour" for "clock," and "molecules" for "works," and the application of the argument is obvious. The teleological and the mechanical views of nature are not, necessarily, mutually exclusive. On the contrary, the more purely a mechanist the speculator is, the more firmly does he assume a primordial molecular arrangement, of which all the phenomena of the universe are the consequences; and the more completely is he thereby at the mercy of the teleologist, who can always defy him to disprove that this primordial molecular arrangement was not intended to evolve the phenomena of the universe. On the other hand, if the teleologist assert that this, that, or the other result of the working of any part of the mechanism of the universe is its purpose and final cause, the mechanist can always inquire how he knows that it is more than an unessential incident—the mere ticking of the clock, which he mistakes for its function. And there seems to be no reply to this inquiry, any more than to the further, not irrational, question, why trouble one's self about matters which are out of reach, when the working of the mechanism itself, which is of infinite practical importance, affords scope for all our energies?

Professor Haeckel has invented a new and convenient name "Dysteleology," for the study of the "purposelessnesses" which are observable in living organisms—such as the multitudinous cases of rudimentary and apparently useless structures. I confess, however, that it has often appeared to me that the facts of Dysteleology cut two ways. If we are to assume, as evolutionists in general do, that useless organs atrophy, such cases as the existence of lateral rudiments of toes, in the foot of a horse, place us in a dilemma. For, either these rudiments are of no use to the animal, in which case, considering that the horse has existed in its present form since the Pliocene epoch, they surely ought to have disappeared; or they are of some use to the animal, in which case they are of no use as arguments against Teleology. A similar, but still stronger, argument may be based upon the existence of teats, and even functional mammary glands, in male mammals. Numerous cases of "Gynaecomasty," or functionally active breasts in men, are on record, though there is no mammalian species whatever in which the male normally suckles the young. Thus, there can be little doubt that the mammary gland was as apparently useless in the remotest male mammalian ancestor of man as in living men, and yet it has not disappeared. Is it then still profitable to the male organism to retain it? Possibly; but in that case its dysteleological value is gone. [Footnote: The recent discovery of the important part played by the Thyroid gland should be a warning to all speculators about useless organs. 1893.]

II. Professor Haeckel looks upon the causes which have led to the present diversity of living nature as twofold. Living matter, he tells us, is urged by two impulses: a centripetal, which tends to preserve and transmit the specific form, and which he identifies with heredity; and a centrifugal, which results from the tendency of external conditions to modify the organism and effect its adaptation to themselves. The internal impulse is conservative, and tends to the preservation of specific, or individual, form; the external impulse is metamorphic, and tends to the modification of specific, or individual, form.

In developing his views upon this subject, Professor Haeckel introduces qualifications which disarm some of the criticisms I should have been disposed to offer; but I think that his method of stating the case has the inconvenience of tending to leave out of sight the important fact—which is a cardinal point in the Darwinian hypothesis—that the tendency to vary, in a given organism, may have nothing to do with the external conditions to which that individual organism is exposed, but may depend wholly upon internal conditions. No one, I imagine, would dream of seeking for the cause of the development of the sixth finger and toe in the famous Maltese, in the direct influence of the external conditions of his life.

I conceive that both hereditary transmission and adaptation need to be analysed into their constituent conditions by the further application of the doctrine of the Struggle for Existence. It is a probable hypothesis, that what the world is to organisms in general, each organism is to the molecules of which it is composed. Multitudes of these, having diverse tendencies, are competing with one another for opportunity to exist and multiply; and the organism, as a whole, is as much the product of the molecules which are victorious as the Fauna, or Flora, of a country is the product of the victorious organic beings in it.

On this hypothesis, hereditary transmission is the result of the victory of particular molecules contained in the impregnated germ. Adaptation to conditions is the result of the favouring of the multiplication of those molecules whose organising tendencies are most in harmony with such conditions. In this view of the matter, conditions are not actively productive, but are passively permissive; they do not cause variation in any given direction, but they permit and favour a tendency in that direction which already exists.

It is true that, in the long run, the origin of the organic molecules themselves, and of their tendencies, is to be sought in the external world; but if we carry our inquiries as far back as this, the distinction between internal and external impulses vanishes. On the other hand, if we confine ourselves to the consideration of a single organism, I think it must be admitted that the existence of an internal metamorphic tendency must be as distinctly recognised as that of an internal conservative tendency; and that the influence of conditions is mainly, if not wholly, the result of the extent to which they favour the one, or the other, of these tendencies.

III. There is only one point upon which I fundamentally and entirely disagree with Professor Haeckel, but that is the very important one of his conception of geological time, and of the meaning of the stratified rocks as records and indications of that time. Conceiving that the stratified rocks of an epoch indicate a period of depression, and that the intervals between the epochs correspond with periods of elevation of which we have no record, he intercalates between the different epochs, or periods, intervals which he terms "Ante-periods." Thus, instead of considering the Triassic, Jurassic, Cretaceous, and Eocene periods, as continuously successive, he interposes a period before each, as an "Antetrias-zeit," "Antejura-zeit," "Antecreta-zeit," "Anteo-cenzeit," &c. And he conceives that the abrupt changes between the Faunae of the different formations are due to the lapse of time, of which we have no organic record, during their "Ante-periods."

The frequent occurrence of strata containing assemblages of organic forms which are intermediate between those of adjacent formations, is, to my mind, fatal to this view. In the well-known St. Cassian beds, for example, Palaeozoic and Mesozoic forms are commingled, and, between the Cretaceous and the Eocene formations, there are similar transitional beds. On the other hand, in the middle of the Silurian series, extensive unconformity of the strata indicates the lapse of vast intervals of time between the deposit of successive beds, without any corresponding change in the Fauna.

Professor Haeckel will, I fear, think me unreasonable, if I say that he seems to be still overshadowed by geological superstitions; and that he will have to believe in the completeness of the geological record far less than he does at present. He assumes, for example, that there was no dry land, nor any terrestrial life, before the end of the Silurian epoch, simply because, up to the present time, no indications of fresh water, or terrestrial organisms, have been found in rocks of older date. And, in speculating upon the origin of a given group, he rarely goes further back than the "Ante-period," which precedes that in which the remains of animals belonging to that group are found. Thus, as fossil remains of the majority of the groups of Reptilia are first found in the Trias, they are assumed to have originated in the "Antetriassic" period, or between the Permian and Triassic epochs.

I confess this is wholly incredible to me. The Permian and the Triassic deposits pass completely into one another; there is no sort of discontinuity answering to an unrecorded "Antetrias"; and, what is more, we have evidence of immensely extensive dry land during the formation of these deposits. We know that the dry land of the Trias absolutely teemed with reptiles of all groups except Pterodactyles, Snakes, and perhaps Tortoises; there is every probability that true Birds existed, and Mammalia certainly did. Of the inhabitants of the Permian dry land, on the contrary, all that have left a record are a few lizards. Is it conceivable that these last should really represent the whole terrestrial population of that time, and that the development of Mammals, of Birds, and of the highest forms of Reptiles, should have been crowded into the time during which the Permian conditions quietly passed away, and the Triassic conditions began? Does not any such supposition become in the highest degree improbable, when, in the terrestrial or fresh-water Labyrinthodonts, which lived on the land of the Carboniferous epoch, as well as on that of the Trias, we have evidence that one form of terrestrial life persisted, throughout all these ages, with no important modification? For my part, having regard to the small amount of modification (except in the way of extinction) which the Crocodilian, Lacertilian, and Chelonian Reptilia have undergone, from the older Mesozoic times to the present day, I cannot but put the existence of the common stock from which they sprang far back in the Palaeozoic epoch; and I should apply a similar argumentation to all other groups of animals.

[The remainder of this essay contains a discussion of questions of taxonomy and phylogeny, which is now antiquated. I have reprinted the considerations about the reconciliation of Teleology with Morphology, about "Dysteleology," and about the struggle for existence within the organism, because it has happened to me to be charged with overlooking them.

In discussing Teleology, I ought to have pointed out, as I have done elsewhere (Life and Letters of Charles Darwin, vol. ii. p. 202), that Paley "proleptically accepted the modern doctrine of Evolution," (Natural Theology, chap. xxiii.). 1893.]



V

MR. DARWIN'S CRITICS [Footnote: Contributions to the Theory of Natural Selection. By A. R. Wallace. 1870.—2. The Genesis of Species. By St. George Mivart, F.R.S. Second Edition. 1871.—3. Darwin's Descent of Man. Quarterly Review, July 1871.]

[1871]

The gradual lapse of time has now separated us by more than a decade from the date of the publication of the "Origin of Species"—and whatever may be thought or said about Mr. Darwin's doctrines, or the manner in which he has propounded them, this much is certain, that, in a dozen years, the "Origin of Species" has worked as complete a revolution in biological science as the "Principia" did in astronomy—and it has done so, because, in the words of Helmholtz, it contains "an essentially new creative thought." [Footnote: Helmholtz: Ueber das Ziel und die Fortschritte der Naturwissenschaft. Eroeffnungsrede fuer die Naturforscherversammlung zu Innsbruck. 1869.] And as time has slipped by, a happy change has come over Mr. Darwin's critics. The mixture of ignorance and insolence which, at first, characterised a large proportion of the attacks with which he was assailed, is no longer the sad distinction of anti-Darwinian criticism. Instead of abusive nonsense, which merely discredited its writers, we read essays, which are, at worst, more or less intelligent and appreciative; while, sometimes, like that which appeared in the "North British Review" for 1867, they have a real and permanent value.

The several publications of Mr. Wallace and Mr. Mivart contain discussions of some of Mr. Darwin's views, which are worthy of particular attention, not only on account of the acknowledged scientific competence of these writers, but because they exhibit an attention to those philosophical questions which underlie all physical science, which is as rare as it is needful. And the same may be said of an article in the "Quarterly Review" for July 1871, the comparison of which with an article in the same Review for July 1860, is perhaps the best evidence which can be brought forward of the change which has taken place in public opinion on "Darwinism."

The Quarterly Reviewer admits "the certainty of the action of natural selection" (p. 49); and further allows that there is an a priori probability in favour of the evolution of man from some lower animal form, if these lower animal forms themselves have arisen by evolution.

Mr. Wallace and Mr. Mivart go much further than this. They are as stout believers in evolution as Mr. Darwin himself; but Mr. Wallace denies that man can have been evolved from a lower animal by that process of natural selection which he, with Mr. Darwin, holds to have been sufficient for the evolution of all animals below man; while Mr. Mivart, admitting that natural selection has been one of the conditions of the evolution of the animals below man, maintains that natural selection must, even in their case, have been supplemented by "some other cause"—of the nature of which, unfortunately, he does not give us any idea. Thus Mr. Mivart is less of a Darwinian than Mr. Wallace, for he has less faith in the power of natural selection. But he is more of an evolutionist than Mr. Wallace, because Mr. Wallace thinks it necessary to call in an intelligent agent—a sort of supernatural Sir John Sebright—to produce even the animal frame of man; while Mr. Mivart requires no Divine assistance till he comes to man's soul.

Thus there is a considerable divergence between Mr. Wallace and Mr. Mivart. On the other hand, there are some curious similarities between Mr. Mivart and the Quarterly Reviewer, and these are sometimes so close, that, if Mr. Mivart thought it worth while, I think he might make out a good case of plagiarism against the Reviewer, who studiously abstains from quoting him.

Both the Reviewer and Mr. Mivart reproach Mr. Darwin with being, "like so many other physicists," entangled in a radically false metaphysical system, and with setting at nought the first principles of both philosophy and religion. Both enlarge upon the necessity of a sound philosophical basis, and both, I venture to add, make a conspicuous exhibition of its absence. The Quarterly Reviewer believes that man "differs more from an elephant or a gorilla than do these from the dust of the earth on which they tread," and Mr. Mivart has expressed the opinion that there is more difference between man and an ape than there is between an ape and a piece of granite. [Footnote: See the Tablet for March 11, 1871.]

And even when Mr. Mivart (p. 86) trips in a matter of anatomy, and creates a difficulty for Mr. Darwin out of a supposed close similarity between the eyes of fishes and cephalopods, which (as Gegenbaur and others have clearly shown) does not exist, the Quarterly Reviewer adopts the argument without hesitation (p. 66).

There is another important point, however, in which it is hard to say whether Mr. Mivart diverges from the Quarterly Reviewer or not.

The Reviewer declares that Mr. Darwin has, "with needless opposition, set at nought the first principles of both philosophy and religion" (p. 90).

It looks, at first, as if this meant, that Mr. Darwin's views being false, the opposition to "religion" which flows from them must be needless. But I suspect this is not the right view of the meaning of the passage, as Mr. Mivart, from whom the Quarterly Reviewer plainly draws so much inspiration, tells us that "the consequences which have been drawn from evolution, whether exclusively Darwinian or not, to the prejudice of religion, by no means follow from it, and are in fact illegitimate" (p. 5).

I may assume, then, that the Quarterly Reviewer and Mr. Mivart admit that there is no necessary opposition between "evolution whether exclusively Darwinian or not," and religion. But then, what do they mean by this last much-abused term? On this point the Quarterly Reviewer is silent. Mr. Mivart, on the contrary, is perfectly explicit, and the whole tenor of his remarks leaves no doubt that by "religion" he means theology; and by theology, that particular variety of the great Proteus, which is expounded by the doctors of the Roman Catholic Church, and held by the members of that religious community to be the sole form of absolute truth and of saving faith.

According to Mr. Mivart, the greatest and most orthodox authorities upon matters of Catholic doctrine agree in distinctly asserting "derivative creation" or evolution; "and thus their teachings harmonise with all that modern science can possibly require" (p. 305).

I confess that this bold assertion interested me more than anything else in Mr. Mivart's book. What little knowledge I possessed of Catholic doctrine, and of the influence exerted by Catholic authority in former times, had not led me to expect that modern science was likely to find a warm welcome within the pale of the greatest and most consistent of theological organisations.

And my astonishment reached its climax when I found Mr. Mivart citing Father Suarez as his chief witness in favour of the scientific freedom enjoyed by Catholics—the popular repute of that learned theologian and subtle casuist not being such as to make his works a likely place of refuge for liberality of thought. But in these days, when Judas Iscariot and Robespierre, Henry VIII. and Catiline, have all been shown to be men of admirable virtue, far in advance of their age, and consequently the victims of vulgar prejudice, it was obviously possible that Jesuit Suarez might be in like case. And, spurred by Mr. Mivart's unhesitating declaration, I hastened to acquaint myself with such of the works of the great Catholic divine as bore upon the question, hoping, not merely to acquaint myself with the true teachings of the infallible Church, and free myself of an unjust prejudice; but, haply, to enable myself, at a pinch, to put some Protestant bibliolater to shame, by the bright example of Catholic freedom from the trammels of verbal inspiration.

I regret to say that my anticipations have been cruelly disappointed. But the extent to which my hopes have been crushed can only be fully appreciated by citing, in the first place, those passages of Mr. Mivart's work by which they were excited. In his introductory chapter I find the following passages:—

"The prevalence of this theory [of evolution] need alarm no one, for it is, without any doubt, perfectly consistent with the strictest and most orthodox Christian [Footnote: It should be observed that Mr. Mivart employs the term 'Christian' as if it were the equivalent of 'Catholic.'] theology" (p. 5).

"Mr. Darwin and others may perhaps be excused if they have not devoted much time to the study of Christian philosophy; but they have no right to assume or accept without careful examination, as an unquestioned fact, that in that philosophy there is a necessary antagonism between the two ideas 'creation' and 'evolution,' as applied to organic forms.

"It is notorious and patent to all who choose to seek, that many distinguished Christian thinkers have accepted, and do accept, both ideas, i.e. both 'creation' and 'evolution.'

"As much as ten years ago an eminently Christian writer observed: 'The creationist theory does not necessitate the perpetual search after manifestations of miraculous power and perpetual "catastrophes." Creation is not a miraculous interference with the laws of Nature, but the very institution of those laws. Law and regularity, not arbitrary intervention, was the patristic ideal of creation. With this notion they admitted, without difficulty, the most surprising origin of living creatures, provided it took place by law. They held that when God said, "Let the waters produce," "Let the earth produce," He conferred forces on the elements of earth and water which enabled them naturally to produce the various species of organic beings. This power, they thought, remains attached to the elements throughout all time.' The same writer quotes St. Augustin and St. Thomas Aquinas, to the effect that, 'in the institution of Nature, we do not look for miracles, but for the laws of Nature.' And, again, St. Basil speaks of the continued operation of natural laws in the production of all organisms.

"So much for the writers of early and mediaeval times. As to the present day, the author can confidently affirm that there are many as well versed in theology as Mr. Darwin is in his own department of natural knowledge, who would not be disturbed by the thorough demonstration of his theory. Nay, they would not even be in the least painfully affected at witnessing the generation of animals of complex organisation by the skilful artificial arrangement of natural forces, and the production, in the future, of a fish by means analogous to those by which we now produce urea.

"And this because they know that the possibility of such phenomena, though by no means actually foreseen, has yet been fully provided for in the old philosophy centuries before Darwin, or even centuries before Bacon, and that their place in the system can be at once assigned them without even disturbing its order or marring its harmony.

"Moreover, the old tradition in this respect has never been abandoned, however much it may have been ignored or neglected by some modern writers. In proof of this, it may be observed that perhaps no post-mediaeval theologian has a wider reception amongst Christians throughout the world than Suarez, who has a separate section [Footnote: Suarez, Metaphysica. Edition Vives. Paris, 1868, vol. i Disput. xv. 2.] in opposition to those who maintain the distinct creation of the various kinds—or substantial forms—of organic life" (pp. 19-21).

Still more distinctly does Mr. Mivart express himself in the same sense, in his last chapter, entitled "Theology and Evolution" (pp. 302-5).

"It appears, then, that Christian thinkers are perfectly free to accept the general evolution theory. But are there any theological authorities to justify this view of the matter?

"Now, considering how extremely recent are these biological speculations, it might hardly be expected a priori that writers of earlier ages should have given expression to doctrines harmonising in any degree with such very modern views; nevertheless, this is certainly the case, and it would be easy to give numerous examples. It will be better, however, to cite one or two authorities of weight. Perhaps no writer of the earlier Christian ages could be quoted whose authority is more generally recognised than that of St. Augustin. The same may be said of the mediaeval period for St. Thomas Aquinas: and since the movement of Luther, Suarez may be taken as an authority, widely venerated, and one whose orthodoxy has never been questioned.

"It must be borne in mind that for a considerable time even after the last of these writers no one had disputed the generally received belief as to the small age of the world, or at least of the kinds of animals and plants inhabiting it. It becomes, therefore, much more striking if views formed under such a condition of opinion are found to harmonise with modern ideas concerning 'Creation' and organic Life.

"Now St. Augustin insists in a very remarkable manner on the merely derivative sense in which God's creation of organic forms is to be understood; that is, that God created them by conferring on the material world the power to evolve them under suitable conditions."

Mr. Mivart then cites certain passages from St. Augustin, St. Thomas Aquinas, and Cornelius a Lapide, and finally adds:—

"As to Suarez, it will be enough to refer to Disp. xv. sec. 2, No. 9, p. 508, t. i. edition Vives, Paris; also Nos. 13-15. Many other references to the same effect could easily be given, but these may suffice.

"It is then evident that ancient and most venerable theological authorities distinctly assert derivative creation, and thus their teachings harmonise with all that modern science can possibly require."

It will be observed that Mr. Mivart refers solely to Suarez's fifteenth Disputation, though he adds, "Many other references to the same effect could easily be given." I shall look anxiously for these references in the third edition of the "Genesis of Species." For the present, all I can say is, that I have sought in vain, either in the fifteenth Disputation, or elsewhere, for any passage in Suarez's writings which, in the slightest degree, bears out Mr. Mivart's views as to his opinions. [Footnote: The edition of Suarez's Disputationes from which the following citations are given, is Birckmann's, in two volumes folio, and is dated 1680.]

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse