|
For Darwin there were two modes of racial preparation, (1) natural selection, and (2) the establishment of individually acquired habit. He showed that instincts are subject to hereditary variation; he saw that instincts are also subject to modification through acquisition in the course of individual life. He believed that not only the variations but also, to some extent, the modifications are inherited. He therefore held that some instincts (the greater number) are due to natural selection but that others (less numerous) are due, or partly due, to the inheritance of acquired habits. The latter involve Lamarckian inheritance, which of late years has been the centre of so much controversy. It is noteworthy however that Darwin laid especial emphasis on the fact that many of the most typical and also the most complex instincts—those of neuter insects—do not admit of such an interpretation. "I am surprised," he says ("Origin of Species" (6th edition), page 233.), "that no one has hitherto advanced this demonstrative case of neuter insects, against the well-known doctrine of inherited habit, as advanced by Lamarck." None the less Darwin admitted this doctrine as supplementary to that which was more distinctively his own—for example in the case of the instincts of domesticated animals. Still, even in such cases, "it may be doubted," he says (Ibid. pages 210, 211.), "whether any one would have thought of training a dog to point, had not some one dog naturally shown a tendency in this line... so that habit and some degree of selection have probably concurred in civilising by inheritance our dogs." But in the interpretation of the instincts of domesticated animals, a more recently suggested hypothesis, that of organic selection (Independently suggested, on somewhat different lines, by Profs. J. Mark Baldwin, Henry F. Osborn and the writer.), may be helpful. According to this hypothesis any intelligent modification of behaviour which is subject to selection is probably coincident in direction with an inherited tendency to behave in this fashion. Hence in such behaviour there are two factors: (1) an incipient variation in the line of such behaviour, and (2) an acquired modification by which the behaviour is carried further along the same line. Under natural selection those organisms in which the two factors cooperate are likely to survive. Under artificial selection they are deliberately chosen out from among the rest.
Organic selection has been termed a compromise between the more strictly Darwinian and the Lamarckian principles of interpretation. But it is not in any sense a compromise. The principle of interpretation of that which is instinctive and hereditary is wholly Darwinian. It is true that some of the facts of observation relied upon by Lamarckians are introduced. For Lamarckians however the modifications which are admittedly factors in survival, are regarded as the parents of inherited variations; for believers in organic selection they are only the foster parents or nurses. It is because organic selection is the direct outcome of and a natural extension of Darwin's cardinal thesis that some reference to it here is justifiable. The matter may be put with the utmost brevity as follows. (1) Variations (V) occur, some of which are in the direction of increased adaptation (), others in the direction of decreased adaptation (-). (2) Acquired modifications (M) also occur. Some of these are in the direction of increased accommodation to circumstances (), while others are in the direction of diminished accommodation (-). Four major combinations are
(a) + V with + M, (b) + V with - M, (c) - V with + M, (d) - V with - M.
Of these (d) must inevitably be eliminated while (a) are selected. The predominant survival of (a) entails the survival of the adaptive variations which are inherited. The contributory acquisitions (+M) are not inherited; but they are none the less factors in determining the survival of the coincident variations. It is surely abundantly clear that this is Darwinism and has no tincture of Lamarck's essential principle, the inheritance of acquired characters.
Whether Darwin himself would have accepted this interpretation of some at least of the evidence put forward by Lamarckians is unfortunately a matter of conjecture. The fact remains that in his interpretation of instinct and in allied questions he accepted the inheritance of individually acquired modifications of behaviour and structure.
Darwin was chiefly concerned with instinct from the biological rather than from the psychological point of view. Indeed it must be confessed that, from the latter standpoint, his conception of instinct as a "mental faculty" which "impels" an animal to the performance of certain actions, scarcely affords a satisfactory basis for genetic treatment. To carry out the spirit of Darwin's teaching it is necessary to link more closely biological and psychological evolution. The first step towards this is to interpret the phenomena of instinctive behaviour in terms of stimulation and response. It may be well to take a particular case. Swimming on the part of a duckling is, from the biological point of view, a typical example of instinctive behaviour. Gently lower a recently hatched bird into water: coordinated movements of the limbs follow in rhythmical sequence. The behaviour is new to the individual though it is no doubt closely related to that of walking, which is no less instinctive. There is a group of stimuli afforded by the "presentation" which results from partial immersion: upon this there follows as a complex response an application of the functional activities in swimming; the sequence of adaptive application on the appropriate presentation is determined by racial preparation. We know, it is true, but little of the physiological details of what takes place in the central nervous system; but in broad outline the nature of the organic mechanism and the manner of its functioning may at least be provisionally conjectured in the present state of physiological knowledge. Similarly in the case of the pecking of newly-hatched chicks; there is a visual presentation, there is probably a cooperating group of stimuli from the alimentary tract in need of food, there is an adaptive application of the activities in a definite mode of behaviour. Like data are afforded in a great number of cases of instinctive procedure, sometimes occurring very early in life, not infrequently deferred until the organism is more fully developed, but all of them dependent upon racial preparation. No doubt there is some range of variation in the behaviour, just such variation as the theory of natural selection demands. But there can be no question that the higher animals inherit a bodily organisation and a nervous system, the functional working of which gives rise to those inherited modes of behaviour which are termed instinctive.
It is to be noted that the term "instinctive" is here employed in the adjectival form as a descriptive heading under which may be grouped many and various modes of behaviour due to racial preparation. We speak of these as inherited; but in strictness what is transmitted through heredity is the complex of anatomical and physiological conditions under which, in appropriate circumstances, the organism so behaves. So far the term "instinctive" has a restricted biological connotation in terms of behaviour. But the connecting link between biological evolution and psychological evolution is to be sought,—as Darwin fully realised,—in the phenomena of instinct, broadly considered. The term "instinctive" has also a psychological connotation. What is that connotation?
Let us take the case of the swimming duckling or the pecking chick, and fix our attention on the first instinctive performance. Grant that just as there is, strictly speaking, no inherited behaviour, but only the conditions which render such behaviour under appropriate circumstances possible; so too there is no inherited experience, but only the conditions which render such experience possible; then the cerebral conditions in both cases are the same. The biological behaviour-complex, including the total stimulation and the total response with the intervening or resultant processes in the sensorium, is accompanied by an experience-complex including the initial stimulation-consciousness and resulting response-consciousness. In the experience-complex are comprised data which in psychological analysis are grouped under the headings of cognition, affective tone and conation. But the complex is probably experienced as an unanalysed whole. If then we use the term "instinctive" so as to comprise all congenital modes of behaviour which contribute to experience, we are in a position to grasp the view that the net result in consciousness constitutes what we may term the primary tissue of experience. To the development of this experience each instinctive act contributes. The nature and manner of organisation of this primary tissue of experience are dependent on inherited biological aptitudes; but they are from the outset onwards subject to secondary development dependent on acquired aptitudes. Biological values are supplemented by psychological values in terms of satisfaction or the reverse.
In our study of instinct we have to select some particular phase of animal behaviour and isolate it so far as is possible from the life of which it is a part. But the animal is a going concern, restlessly active in many ways. Many instinctive performances, as Darwin pointed out ("Origin of Species" (6th edition), page 206.), are serial in their nature. But the whole of active life is a serial and coordinated business. The particular instinctive performance is only an episode in a life-history, and every mode of behaviour is more or less closely correlated with other modes. This coordination of behaviour is accompanied by a correlation of the modes of primary experience. We may classify the instinctive modes of behaviour and their accompanying modes of instinctive experience under as many heads as may be convenient for our purposes of interpretation, and label them instincts of self-preservation, of pugnacity, of acquisition, the reproductive instincts, the parental instincts, and so forth. An instinct, in this sense of the term (for example the parental instinct), may be described as a specialised part of the primary tissue of experience differentiated in relation to some definite biological end. Under such an instinct will fall a large number of particular and often well-defined modes of behaviour, each with its own peculiar mode of experience.
It is no doubt exceedingly difficult as a matter of observation and of inference securely based thereon to distinguish what is primary from what is in part due to secondary acquisition—a fact which Darwin fully appreciated. Animals are educable in different degrees; but where they are educable they begin to profit by experience from the first. Only, therefore, on the occasion of the first instinctive act of a given type can the experience gained be weighed as WHOLLY primary; all subsequent performance is liable to be in some degree, sometimes more, sometimes less, modified by the acquired disposition which the initial behaviour engenders. But the early stages of acquisition are always along the lines predetermined by instinctive differentiation. It is the task of comparative psychology to distinguish the primary tissue of experience from its secondary and acquired modifications. We cannot follow up the matter in further detail. It must here suffice to suggest that this conception of instinct as a primary form of experience lends itself better to natural history treatment than Darwin's conception of an impelling force, and that it is in line with the main trend of Darwin's thought.
In a characteristic work,—characteristic in wealth of detail, in closeness and fidelity of observation, in breadth of outlook, in candour and modesty,—Darwin dealt with "The Expression of the Emotions in Man and Animals". Sir Charles Bell in his "Anatomy of Expression" had contended that many of man's facial muscles had been specially created for the sole purpose of being instrumental in the expression of his emotions. Darwin claimed that a natural explanation, consistent with the doctrine of evolution, could in many cases be given and would in other cases be afforded by an extension of the principles he advocated. "No doubt," he said ("Expression of the Emotions", page 13. The passage is here somewhat condensed.), "as long as man and all other animals are viewed as independent creations, an effectual stop is put to our natural desire to investigate as far as possible the causes of Expression. By this doctrine, anything and everything can be equally well explained... With mankind, some expressions... can hardly be understood, except on the belief that man once existed in a much lower and animal-like condition. The community of certain expressions in distinct though allied species... is rendered somewhat more intelligible, if we believe in their descent from a common progenitor. He who admits on general grounds that the structure and habits of all animals have been gradually evolved, will look at the whole subject of Expression in a new and interesting light."
Darwin relied on three principles of explanation. "The first of these principles is, that movements which are serviceable in gratifying some desire, or in relieving some sensation, if often repeated, become so habitual that they are performed, whether or not of any service, whenever the same desire or sensation is felt, even in a very weak degree." (Ibid. page 368.) The modes of expression which fall under this head have become instinctive through the hereditary transmission of acquired habit. "As far as we can judge, only a few expressive movements are learnt by each individual; that is, were consciously and voluntarily performed during the early years of life for some definite object, or in imitation of others, and then became habitual. The far greater number of the movements of expression, and all the more important ones, are innate or inherited; and such cannot be said to depend on the will of the individual. Nevertheless, all those included under our first principle were at first voluntarily performed for a definite object,—namely, to escape some danger, to relieve some distress, or to gratify some desire." (Ibid. pages 373, 374.)
"Our second principle is that of antithesis. The habit of voluntarily performing opposite movements under opposite impulses has become firmly established in us by the practice of our whole lives. Hence, if certain actions have been regularly performed, in accordance with our first principle, under a certain frame of mind, there will be a strong and involuntary tendency to the performance of directly opposite actions, whether or not these are of any use, under the excitement of an opposite frame of mind." ("Expression of the Emotions", page 368.) This principle of antithesis has not been widely accepted. Nor is Darwin's own position easy to grasp.
"Our third principle," he says (Ibid. page 369.), "is the direct action of the excited nervous system on the body, independently of the will, and independently, in large part, of habit. Experience shows that nerve-force is generated and set free whenever the cerebro-spinal system is excited. The direction which this nerve-force follows is necessarily determined by the lines of connection between the nerve-cells, with each other and with various parts of the body."
Lack of space prevents our following up the details of Darwin's treatment of expression. Whether we accept or do not accept his three principles of explanation we must regard his work as a masterpiece of descriptive analysis, packed full of observations possessing lasting value. For a further development of the subject it is essential that the instinctive factors in expression should be more fully distinguished from those which are individually acquired—a difficult task—and that the instinctive factors should be rediscussed in the light of modern doctrines of heredity, with a view to determining whether Lamarckian inheritance, on which Darwin so largely relied, is necessary for an interpretation of the facts.
The whole subject as Darwin realised is very complex. Even the term "expression" has a certain amount of ambiguity. When the emotion is in full flood the animal fights, flees, or faints. Is this full-tide effect to be regarded as expression; or are we to restrict the term to the premonitory or residual effects—the bared canine when the fighting mood is being roused, the ruffled fur when reminiscent representations of the object inducing anger cross the mind? Broadly considered both should be included. The activity of premonitory expression as a means of communication was recognised by Darwin; he might, perhaps, have emphasised it more strongly in dealing with the lower animals. Man so largely relies on a special means of communication, that of language, that he sometimes fails to realise that for animals with their keen powers of perception, and dependent as they are on such means of communication, the more strictly biological means of expression are full of subtle suggestiveness. Many modes of expression, otherwise useless, are signs of behaviour that may be anticipated,—signs which stimulate the appropriate attitude of response. This would not, however, serve to account for the utility of the organic accompaniments—heart-affection, respiratory changes, vaso-motor effects and so forth, together with heightened muscular tone,—on all of which Darwin lays stress ("Expression of the Emotions", pages 65 ff.) under his third principle. The biological value of all this is, however, of great importance, though Darwin was hardly in a position to take it fully into account.
Having regard to the instinctive and hereditary factors of emotional expression we may ask whether Darwin's third principle does not alone suffice as an explanation. Whether we admit or reject Lamarckian inheritance it would appear that all hereditary expression must be due to pre-established connections within the central nervous system and to a transmitted provision for coordinated response under the appropriate stimulation. If this be so, Darwin's first and second principles are subordinate and ancillary to the third, an expression, so far as it is instinctive or hereditary, being "the direct result of the constitution of the nervous system."
Darwin accepted the emotions themselves as hereditary or acquired states of mind and devoted his attention to their expression. But these emotions themselves are genetic products and as such dependent on organic conditions. It remained, therefore, for psychologists who accepted evolution and sought to build on biological foundations to trace the genesis of these modes of animal and human experience. The subject has been independently developed by Professors Lange and James (Cf. William James, "Principles of Psychology", Vol. II. Chap. XXV, London, 1890.); and some modification of their view is regarded by many evolutionists as affording the best explanation of the facts. We must fix our attention on the lower emotions, such as anger or fear, and on their first occurrence in the life of the individual organism. It is a matter of observation that if a group of young birds which have been hatched in an incubator are frightened by an appropriate presentation, auditory or visual, they instinctively respond in special ways. If we speak of this response as the expression, we find that there are many factors. There are certain visible modes of behaviour, crouching at once, scattering and then crouching, remaining motionless, the braced muscles sustaining an attitude of arrest, and so forth. There are also certain visceral or organic effects, such as affections of the heart and respiration. These can be readily observed by taking the young bird in the hand. Other effects cannot be readily observed; vaso-motor changes, affections of the alimentary canal, the skin and so forth. Now the essence of the James-Lange view, as applied to these congenital effects, is that though we are justified in speaking of them as effects of the stimulation, we are not justified, without further evidence, in speaking of them as effects of the emotional state. May it not rather be that the emotion as a primary mode of experience is the concomitant of the net result of the organic situation—the initial presentation, the instinctive mode of behaviour, the visceral disturbances? According to this interpretation the primary tissue of experience of the emotional order, felt as an unanalysed complex, is generated by the stimulation of the sensorium by afferent or incoming physiological impulses from the special senses, from the organs concerned in the responsive behaviour, from the viscera and vaso-motor system.
Some psychologists, however, contend that the emotional experience is generated in the sensorium prior to, and not subsequent to, the behaviour-response and the visceral disturbances. It is a direct and not an indirect outcome of the presentation to the special senses. Be this as it may, there is a growing tendency to bring into the closest possible relation, or even to identify, instinct and emotion in their primary genesis. The central core of all such interpretations is that instinctive behaviour and experience, its emotional accompaniments, and its expression, are but different aspects of the outcome of the same organic occurrences. Such emotions are, therefore, only a distinguishable aspect of the primary tissue of experience and exhibit a like differentiation. Here again a biological foundation is laid for a psychological doctrine of the mental development of the individual.
The intimate relation between emotion as a psychological mode of experience and expression as a group of organic conditions has an important bearing on biological interpretation. The emotion, as the psychological accompaniment of orderly disturbances in the central nervous system profoundly influences behaviour and often renders it more vigorous and more effective. The utility of the emotions in the struggle for existence can, therefore, scarcely be over-estimated. Just as keenness of perception has survival-value; just as it is obviously subject to variation; just as it must be enhanced under natural selection, whether individually acquired increments are inherited or not; and just as its value lies not only in this or that special perceptive act but in its importance for life as a whole; so the vigorous effectiveness of activity has survival-value; it is subject to variation; it must be enhanced under natural selection; and its importance lies not only in particular modes of behaviour but in its value for life as a whole. If emotion and its expression as a congenital endowment are but different aspects of the same biological occurrence; and if this is a powerful supplement to vigour effectiveness and persistency of behaviour, it must on Darwin's principles be subject to natural selection.
If we include under the expression of the emotions not only the premonitory symptoms of the initial phases of the organic and mental state, not only the signs or conditions of half-tide emotion, but the full-tide manifestation of an emotion which dominates the situation, we are naturally led on to the consideration of many of the phenomena which are discussed under the head of sexual selection. The subject is difficult and complex, and it was treated by Darwin with all the strength he could summon to the task. It can only be dealt with here from a special point of view—that which may serve to illustrate the influence of certain mental factors on the course of evolution. From this point of view too much stress can scarcely be laid on the dominance of emotion during the period of courtship and pairing in the more highly organised animals. It is a period of maximum vigour, maximum activity, and, correlated with special modes of behaviour and special organic and visceral accompaniments, a period also of maximum emotional excitement. The combats of males, their dances and aerial evolutions, their elaborate behaviour and display, or the flood of song in birds, are emotional expressions which are at any rate coincident in time with sexual periodicity. From the combat of the males there follows on Darwin's principles the elimination of those which are deficient in bodily vigour, deficient in special structures, offensive or protective, which contribute to success, deficient in the emotional supplement of which persistent and whole-hearted fighting is the expression, and deficient in alertness and skill which are the outcome of the psychological development of the powers of perception. Few biologists question that we have here a mode of selection of much importance, though its influence on psychological evolution often fails to receive its due emphasis. Mr Wallace ("Darwinism", pages 282, 283, London, 1889.) regards it as "a form of natural selection"; "to it," he says, "we must impute the development of the exceptional strength, size, and activity of the male, together with the possession of special offensive and defensive weapons, and of all other characters which arise from the development of these or are correlated with them." So far there is little disagreement among the followers of Darwin—for Mr Wallace, with fine magnanimity, has always preferred to be ranked as such, notwithstanding his right, on which a smaller man would have constantly insisted, to the claim of independent originator of the doctrine of natural selection. So far with regard to sexual selection Darwin and Mr Wallace are agreed; so far and no farther. For Darwin, says Mr Wallace (Ibid. page 283.), "has extended the principle into a totally different field of action, which has none of that character of constancy and of inevitable result that attaches to natural selection, including male rivalry; for by far the larger portion of the phenomena, which he endeavours to explain by the direct action of sexual selection, can only be so explained on the hypothesis that the immediate agency is female choice or preference. It is to this that he imputes the origin of all secondary sexual characters other than weapons of offence and defence... In this extension of sexual selection to include the action of female choice or preference, and in the attempt to give to that choice such wide-reaching effects, I am unable to follow him more than a very little way."
Into the details of Mr Wallace's criticisms it is impossible to enter here. We cannot discuss either the mode of origin of the variations in structure which have rendered secondary sexual characters possible or the modes of selection other than sexual which have rendered them, within narrow limits, specifically constant. Mendelism and mutation theories may have something to say on the subject when these theories have been more fully correlated with the basal principles of selection. It is noteworthy that Mr Wallace says ("Darwinism", pages 283, 284.): "Besides the acquisition of weapons by the male for the purpose of fighting with other males, there are some other sexual characters which may have been produced by natural selection. Such are the various sounds and odours which are peculiar to the male, and which serve as a call to the female or as an indication of his presence. These are evidently a valuable addition to the means of recognition of the two sexes, and are a further indication that the pairing season has arrived; and the production, intensification, and differentiation of these sounds and odours are clearly within the power of natural selection. The same remark will apply to the peculiar calls of birds, and even to the singing of the males." Why the same remark should not apply to their colours and adornments is not obvious. What is obvious is that "means of recognition" and "indication that the pairing season has arrived" are dependent on the perceptive powers of the female who recognises and for whom the indication has meaning. The hypothesis of female preference, stripped of the aesthetic surplusage which is psychologically both unnecessary and unproven, is really only different in degree from that which Mr Wallace admits in principle when he says that it is probable that the female is pleased or excited by the display.
Let us for our present purpose leave on one side and regard as sub judice the question whether the specific details of secondary sexual characters are the outcome of female choice. For us the question is whether certain psychological accompaniments of the pairing situation have influenced the course of evolution and whether these psychological accompaniments are themselves the outcome of evolution. As a matter of observation, specially differentiated modes of behaviour, often very elaborate, frequently requiring highly developed skill, and apparently highly charged with emotional tone, are the precursors of pairing. They are generally confined to the males, whose fierce combats during the period of sexual activity are part of the emotional manifestation. It is inconceivable that they have no biological meaning; and it is difficult to conceive that they have any other biological end than to evoke in the generally more passive female the pairing impulse. They are based on instinctive foundations ingrained in the nervous constitution through natural (or may we not say sexual?) selection in virtue of their profound utility. They are called into play by a specialised presentation such as the sight or the scent of the female at, or a little in advance of, a critical period of the physiological rhythm. There is no necessity that the male should have any knowledge of the end to which his strenuous activity leads up. In presence of the female there is an elaborate application of all the energies of behaviour, just because ages of racial preparation have made him biologically and emotionally what he is—a functionally sexual male that must dance or sing or go through hereditary movements of display, when the appropriate stimulation comes. Of course after the first successful courtship his future behaviour will be in some degree modified by his previous experience. No doubt during his first courtship he is gaining the primary data of a peculiarly rich experience, instinctive and emotional. But the biological foundations of the behaviour of courtship are laid in the hereditary coordinations. It would seem that in some cases, not indeed in all, but perhaps especially in those cases in which secondary sexual behaviour is most highly evolved,—correlative with the ardour of the male is a certain amount of reluctance in the female. The pairing act on her part only takes place after prolonged stimulation, for affording which the behaviour of male courtship is the requisite presentation. The most vigorous, defiant and mettlesome male is preferred just because he alone affords a contributory stimulation adequate to evoke the pairing impulse with its attendant emotional tone.
It is true that this places female preference or choice on a much lower psychological plane than Darwin in some passages seems to contemplate where, for example, he says that the female appreciates the display of the male and places to her credit a taste for the beautiful. But Darwin himself distinctly states ("Descent of Man" (2nd edition), Vol. II. pages 136, 137; (Popular edition), pages 642, 643.) that "it is not probable that she consciously deliberates; but she is most excited or attracted by the most beautiful, or melodious, or gallant males." The view here put forward, which has been developed by Prof. Groos ("The Play of Animals", page 244, London, 1898.), therefore seems to have Darwin's own sanction. The phenomena are not only biological; there are psychological elements as well. One can hardly suppose that the female is unconscious of the male's presence; the final yielding must surely be accompanied by heightened emotional tone. Whether we call it choice or not is merely a matter of definition of terms. The behaviour is in part determined by supplementary psychological values. Prof. Groos regards the coyness of females as "a most efficient means of preventing the too early and too frequent yielding to the sexual impulse." (Ibid. page 283.) Be that as it may, it is, in any case, if we grant the facts, a means through which male sexual behaviour with all its biological and psychological implications, is raised to a level otherwise perhaps unattainable by natural means, while in the female it affords opportunities for the development in the individual and evolution in the race of what we may follow Darwin in calling appreciation, if we empty this word of the aesthetic implications which have gathered round it in the mental life of man.
Regarded from this standpoint sexual selection, broadly considered, has probably been of great importance. The psychological accompaniments of the pairing situation have profoundly influenced the course of biological evolution and are themselves the outcome of that evolution.
Darwin makes only passing reference to those modes of behaviour in animals which go by the name of play. "Nothing," he says ("Descent of Man", Vol. II. page 60; (Popular edition), page 566.), "is more common than for animals to take pleasure in practising whatever instinct they follow at other times for some real good." This is one of the very numerous cases in which a hint of the master has served to stimulate research in his disciples. It was left to Prof. Groos to develop this subject on evolutionary lines and to elaborate in a masterly manner Darwin's suggestion. "The utility of play," he says ("The Play of Animals", page 76.), "is incalculable. This utility consists in the practice and exercise it affords for some of the more important duties of life,"—that is to say, for the performance of activities which will in adult life be essential to survival. He urges (Ibid. page 75.) that "the play of young animals has its origin in the fact that certain very important instincts appear at a time when the animal does not seriously need them." It is, however, questionable whether any instincts appear at a time when they are not needed. And it is questionable whether the instinctive and emotional attitude of the play-fight, to take one example, can be identified with those which accompany fighting in earnest, though no doubt they are closely related and have some common factors. It is probable that play, as preparatory behaviour, differs in biological detail (as it almost certainly does in emotional attributes) from the earnest of after-life and that it has been evolved through differentiation and integration of the primary tissue of experience, as a preparation through which certain essential modes of skill may be acquired—those animals in which the preparatory play-propensity was not inherited in due force and requisite amount being subsequently eliminated in the struggle for existence. In any case there is little question that Prof. Groos is right in basing the play-propensity on instinctive foundations. ("The Play of Animals" page 24.) None the less, as he contends, the essential biological value of play is that it is a means of training the educable nerve-tissue, of developing that part of the brain which is modified by experience and which thus acquires new characters, of elaborating the secondary tissue of experience on the predetermined lines of instinctive differentiation and thus furthering the psychological activities which are included under the comprehensive term "intelligent."
In "The Descent of Man" Darwin dealt at some length with intelligence and the higher mental faculties. ("Descent of Man" (1st edition), Chapters II, III, V; (2nd edition), Chapters III, IV, V.) His object, he says, is to show that there is no fundamental difference between man and the higher mammals in their mental faculties; that these faculties are variable and the variations tend to be inherited; and that under natural selection beneficial variations of all kinds will have been preserved and injurious ones eliminated.
Darwin was too good an observer and too honest a man to minimise the "enormous difference" between the level of mental attainment of civilised man and that reached by any animal. His contention was that the difference, great as it is, is one of degree and not of kind. He realised that, in the development of the mental faculties of man, new factors in evolution have supervened—factors which play but a subordinate and subsidiary part in animal intelligence. Intercommunication by means of language, approbation and blame, and all that arises out of reflective thought, are but foreshadowed in the mental life of animals. Still he contends that these may be explained on the doctrine of evolution. He urges (Ibid. Vol. I. pages 70, 71; (Popular edition), pages 70, 71.)" that man is variable in body and mind; and that the variations are induced, either directly or indirectly, by the same general causes, and obey the same general laws, as with the lower animals." He correlates mental development with the evolution of the brain. (Ibid. page 81.) "As the various mental faculties gradually developed themselves, the brain would almost certainly become larger. No one, I presume, doubts that the large proportion which the size of man's brain bears to his body, compared to the same proportion in the gorilla or orang, is closely connected with his higher mental powers." "With respect to the lower animals," he says ("Descent of Man" (Popular edition), page 82.), "M.E. Lartet ("Comptes Rendus des Sciences", June 1, 1868.), by comparing the crania of tertiary and recent mammals belonging to the same groups, has come to the remarkable conclusion that the brain is generally larger and the convolutions are more complex in the more recent form."
Sir E. Ray Lankester has sought to express in the simplest terms the implications of the increase in size of the cerebrum. "In what," he asks, "does the advantage of a larger cerebral mass consist?" "Man," he replies "is born with fewer ready-made tricks of the nerve-centres—these performances of an inherited nervous mechanism so often called by the ill-defined term 'instincts'—than are the monkeys or any other animal. Correlated with the absence of inherited ready-made mechanism, man has a greater capacity of developing in the course of his individual growth similar nervous mechanisms (similar to but not identical with those of 'instinct') than any other animal... The power of being educated—'educability' as we may term it—is what man possesses in excess as compared with the apes. I think we are justified in forming the hypothesis that it is this 'educability' which is the correlative of the increased size of the cerebrum." There has been natural selection of the more educable animals, for "the character which we describe as 'educability' can be transmitted, it is a congenital character. But the RESULTS of education can NOT be transmitted. In each generation they have to be acquired afresh, and with increased 'educability' they are more readily acquired and a larger variety of them... The fact is that there is no community between the mechanisms of instinct and the mechanisms of intelligence, and that the latter are later in the history of the evolution of the brain than the former and can only develop in proportion as the former become feeble and defective." ("Nature", Vol. LXI. pages 624, 625 (1900).)
In this statement we have a good example of the further development of views which Darwin foreshadowed but did not thoroughly work out. It states the biological case clearly and tersely. Plasticity of behaviour in special accommodation to special circumstances is of survival value; it depends upon acquired characters; it is correlated with increase in size and complexity of the cerebrum; under natural selection therefore the larger and more complex cerebrum as the organ of plastic behaviour has been the outcome of natural selection. We have thus the biological foundations for a further development of genetic psychology.
There are diversities of opinion, as Darwin showed, with regard to the range of instinct in man and the higher animals as contrasted with lower types. Darwin himself said ("Descent of Man", Vol. I. page 100.) that "Man, perhaps, has somewhat fewer instincts than those possessed by the animals which come next to him in the series." On the other hand, Prof. Wm. James says ("Principles of Psychology," Vol. II. page 289.) that man is probably the animal with most instincts. The true position is that man and the higher animals have fewer complete and self-sufficing instincts than those which stand lower in the scale of mental evolution, but that they have an equally large or perhaps larger mass of instinctive raw material which may furnish the stuff to be elaborated by intelligent processes. There is, perhaps, a greater abundance of the primary tissue of experience to be refashioned and integrated by secondary modification; there is probably the same differentiation in relation to the determining biological ends, but there is at the outset less differentiation of the particular and specific modes of behaviour. The specialised instinctive performances and their concomitant experience-complexes are at the outset more indefinite. Only through acquired connections, correlated with experience, do they become definitely organised.
The full working-out of the delicate and subtle relationship of instinct and educability—that is, of the hereditary and the acquired factors in the mental life—is the task which lies before genetic and comparative psychology. They interact throughout the whole of life, and their interactions are very complex. No one can read the chapters of "The Descent of Man" which Darwin devotes to a consideration of the mental characters of man and animals without noticing, on the one hand, how sedulous he is in his search for hereditary foundations, and, on the other hand, how fully he realises the importance of acquired habits of mind. The fact that educability itself has innate tendencies—is in fact a partially differentiated educability—renders the unravelling of the factors of mental progress all the more difficult.
In his comparison of the mental powers of men and animals it was essential that Darwin should lay stress on points of similarity rather than on points of difference. Seeking to establish a doctrine of evolution, with its basal concept of continuity of process and community of character, he was bound to render clear and to emphasise the contention that the difference in mind between man and the higher animals, great as it is, is one of degree and not of kind. To this end Darwin not only recorded a large number of valuable observations of his own, and collected a considerable body of information from reliable sources, he presented the whole subject in a new light and showed that a natural history of mind might be written and that this method of study offered a wide and rich field for investigation. Of course those who regarded the study of mind only as a branch of metaphysics smiled at the philosophical ineptitude of the mere man of science. But the investigation, on natural history lines, has been prosecuted with a large measure of success. Much indeed still remains to be done; for special training is required, and the workers are still few. Promise for the future is however afforded by the fact that investigation is prosecuted on experimental lines and that something like organised methods of research are taking form. There is now but little reliance on casual observations recorded by those who have not undergone the necessary discipline in these methods. There is also some change of emphasis in formulating conclusions. Now that the general evolutionary thesis is fully and freely accepted by those who carry on such researches, more stress is laid on the differentiation of the stages of evolutionary advance than on the fact of their underlying community of nature. The conceptual intelligence which is especially characteristic of the higher mental procedure of man is more firmly distinguished from the perceptual intelligence which he shares with the lower animals—distinguished now as a higher product of evolution, no longer as differing in origin or different in kind. Some progress has been made, on the one hand in rendering an account of intelligent profiting by experience under the guidance of pleasure and pain in the perceptual field, on lines predetermined by instinctive differentiation for biological ends, and on the other hand in elucidating the method of conceptual thought employed, for example, by the investigator himself in interpreting the perceptual experience of the lower animals.
Thus there is a growing tendency to realise more fully that there are two orders of educability—first an educability of the perceptual intelligence based on the biological foundation of instinct, and secondly an educability of the conceptual intelligence which refashions and rearranges the data afforded by previous inheritance and acquisition. It is in relation to this second and higher order of educability that the cerebrum of man shows so large an increase of mass and a yet larger increase of effective surface through its rich convolutions. It is through educability of this order that the human child is brought intellectually and affectively into touch with the ideal constructions by means of which man has endeavoured, with more or less success, to reach an interpretation of nature, and to guide the course of the further evolution of his race—ideal constructions which form part of man's environment.
It formed no part of Darwin's purpose to consider, save in broad outline, the methods, or to discuss in any fulness of detail the results of the process by which a differentiation of the mental faculties of man from those of the lower animals has been brought about—a differentiation the existence of which he again and again acknowledges. His purpose was rather to show that, notwithstanding this differentiation, there is basal community in kind. This must be remembered in considering his treatment of the biological foundations on which man's systems of ethics are built. He definitely stated that he approached the subject "exclusively from the side of natural history." ("Descent of Man", Vol. I. page 149.) His general conclusion is that the moral sense is fundamentally identical with the social instincts, which have been developed for the good of the community; and he suggests that the concept which thus enables us to interpret the biological ground-plan of morals also enables us to frame a rational ideal of the moral end. "As the social instincts," he says (Ibid. page 185.), "both of man and the lower animals have no doubt been developed by nearly the same steps, it would be advisable, if found practicable, to use the same definition in both cases, and to take as the standard of morality, the general good or welfare of the community, rather than the general happiness." But the kind of community for the good of which the social instincts of animals and primitive men were biologically developed may be different from that which is the product of civilisation, as Darwin no doubt realised. Darwin's contention was that conscience is a social instinct and has been evolved because it is useful to the tribe in the struggle for existence against other tribes. On the other hand, J.S. Mill urged that the moral feelings are not innate but acquired, and Bain held the same view, believing that the moral sense is acquired by each individual during his life-time. Darwin, who notes (Ibid. page 150 (footnote).) their opinion with his usual candour, adds that "on the general theory of evolution this is at least extremely improbable. It is impossible to enter into the question here: much turns on the exact connotation of the terms "conscience" and "moral sense," and on the meaning we attach to the statement that the moral sense is fundamentally identical with the social instincts."
Presumably the majority of those who approach the subjects discussed in the third, fourth and fifth chapters of "The Descent of Man" in the full conviction that mental phenomena, not less than organic phenomena, have a natural genesis, would, without hesitation, admit that the intellectual and moral systems of civilised man are ideal constructions, the products of conceptual thought, and that as such they are, in their developed form, acquired. The moral sentiments are the emotional analogues of highly developed concepts. This does not however imply that they are outside the range of natural history treatment. Even though it may be desirable to differentiate the moral conduct of men from the social behaviour of animals (to which some such term as "pre-moral" or "quasi-moral" may be applied), still the fact remains that, as Darwin showed, there is abundant evidence of the occurrence of such social behaviour—social behaviour which, even granted that it is in large part intelligently acquired, and is itself so far a product of educability, is of survival value. It makes for that integration without which no social group could hold together and escape elimination. Furthermore, even if we grant that such behaviour is intelligently acquired, that is to say arises through the modification of hereditary instincts and emotions, the fact remains that only through these instinctive and emotional data is afforded the primary tissue of the experience which is susceptible of such modification.
Darwin sought to show, and succeeded in showing, that for the intellectual and moral life there are instinctive foundations which a biological treatment alone can disclose. It is true that he did not in all cases analytically distinguish the foundations from the superstructure. Even to-day we are scarcely in a position to do so adequately. But his treatment was of great value in giving an impetus to further research. This value indeed can scarcely be overestimated. And when the natural history of the mental operations shall have been written, the cardinal fact will stand forth, that the instinctive and emotional foundations are the outcome of biological evolution and have been ingrained in the race through natural selection. We shall more clearly realise that educability itself is a product of natural selection, though the specific results acquired through cerebral modifications are not transmitted through heredity. It will, perhaps, also be realised that the instinctive foundations of social behaviour are, for us, somewhat out of date and have undergone but little change throughout the progress of civilisation, because natural selection has long since ceased to be the dominant factor in human progress. The history of human progress has been mainly the history of man's higher educability, the products of which he has projected on to his environment. This educability remains on the average what it was a dozen generations ago; but the thought-woven tapestry of his surroundings is refashioned and improved by each succeeding generation. Few men have in greater measure enriched the thought-environment with which it is the aim of education to bring educable human beings into vital contact, than has Charles Darwin. His special field of work was the wide province of biology; but he did much to help us realise that mental factors have contributed to organic evolution and that in man, the highest product of Evolution, they have reached a position of unquestioned supremacy.
XXII. THE INFLUENCE OF THE CONCEPTION OF EVOLUTION ON MODERN PHILOSOPHY. By H. Hoffding.
Professor of Philosophy in the University of Copenhagen.
I.
It is difficult to draw a sharp line between philosophy and natural science. The naturalist who introduces a new principle, or demonstrates a fact which throws a new light on existence, not only renders an important service to philosophy but is himself a philosopher in the broader sense of the word. The aim of philosophy in the stricter sense is to attain points of view from which the fundamental phenomena and the principles of the special sciences can be seen in their relative importance and connection. But philosophy in this stricter sense has always been influenced by philosophy in the broader sense. Greek philosophy came under the influence of logic and mathematics, modern philosophy under the influence of natural science. The name of Charles Darwin stands with those of Galileo, Newton, and Robert Mayer—names which denote new problems and great alterations in our conception of the universe.
First of all we must lay stress on Darwin's own personality. His deep love of truth, his indefatigable inquiry, his wide horizon, and his steady self-criticism make him a scientific model, even if his results and theories should eventually come to possess mainly an historical interest. In the intellectual domain the primary object is to reach high summits from which wide surveys are possible, to reach them toiling honestly upwards by way of experience, and then not to turn dizzy when a summit is gained. Darwinians have sometimes turned dizzy, but Darwin never. He saw from the first the great importance of his hypothesis, not only because of its solution of the old problem as to the value of the concept of species, not only because of the grand picture of natural evolution which it unrolls, but also because of the life and inspiration its method would impart to the study of comparative anatomy, of instinct and of heredity, and finally because of the influence it would exert on the whole conception of existence. He wrote in his note-book in the year 1837: "My theory would give zest to recent and fossil comparative anatomy; it would lead to the study of instinct, heredity, and mind-heredity, whole (of) metaphysics." ("Life and Letters of Charles Darwin", Vol. I. page 8.)
We can distinguish four main points in which Darwin's investigations possess philosophical importance.
The evolution hypothesis is much older than Darwin; it is, indeed, one of the oldest guessings of human thought. In the eighteenth century it was put forward by Diderot and Lamettrie and suggested by Kant (1786). As we shall see later, it was held also by several philosophers in the first half of the nineteenth century. In his preface to "The Origin of Species", Darwin mentions the naturalists who were his forerunners. But he has set forth the hypothesis of evolution in so energetic and thorough a manner that it perforce attracts the attention of all thoughtful men in a much higher degree than it did before the publication of the "Origin".
And further, the importance of his teaching rests on the fact that he, much more than his predecessors, even than Lamarck, sought a foundation for his hypothesis in definite facts. Modern science began by demanding—with Kepler and Newton—evidence of verae causae; this demand Darwin industriously set himself to satisfy—hence the wealth of material which he collected by his observations and his experiments. He not only revived an old hypothesis, but he saw the necessity of verifying it by facts. Whether the special cause on which he founded the explanation of the origin of species—Natural Selection—is sufficient, is now a subject of discussion. He himself had some doubt in regard to this question, and the criticisms which are directed against his hypothesis hit Darwinism rather than Darwin. In his indefatigable search for empirical evidence he is a model even for his antagonists: he has compelled them to approach the problems of life along other lines than those which were formerly followed.
Whether the special cause to which Darwin appealed is sufficient or not, at least to it is probably due the greater part of the influence which he has exerted on the general trend of thought. "Struggle for existence" and "natural selection" are principles which have been applied, more or less, in every department of thought. Recent research, it is true, has discovered greater empirical discontinuity—leaps, "mutations"—whereas Darwin believed in the importance of small variations slowly accumulated. It has also been shown by the experimental method, which in recent biological work has succeeded Darwin's more historical method, that types once constituted possess great permanence, the fluctuations being restricted within clearly defined boundaries. The problem has become more precise, both as to variation and as to heredity. The inner conditions of life have in both respects shown a greater independence than Darwin had supposed in his theory, though he always admitted that the cause of variation was to him a great enigma, "a most perplexing problem," and that the struggle for life could only occur where variation existed. But, at any rate, it was of the greatest importance that Darwin gave a living impression of the struggle for life which is everywhere going on, and to which even the highest forms of existence must be amenable. The philosophical importance of these ideas does not stand or fall with the answer to the question, whether natural selection is a sufficient explanation of the origin of species or not: it has an independent, positive value for everyone who will observe life and reality with an unbiassed mind.
In accentuating the struggle for life Darwin stands as a characteristically English thinker: he continues a train of ideas which Hobbes and Malthus had already begun. Moreover in his critical views as to the conception of species he had English forerunners; in the middle ages Occam and Duns Scotus, in the eighteenth century Berkeley and Hume. In his moral philosophy, as we shall see later, he is an adherent of the school which is represented by Hutcheson, Hume and Adam Smith. Because he is no philosopher in the stricter sense of the term, it is of great interest to see that his attitude of mind is that of the great thinkers of his nation.
In considering Darwin's influence on philosophy we will begin with an examination of the attitude of philosophy to the conception of evolution at the time when "The Origin of Species" appeared. We will then examine the effects which the theory of evolution, and especially the idea of the struggle for life, has had, and naturally must have, on the discussion of philosophical problems.
II.
When "The Origin of Species" appeared fifty years ago Romantic speculation, Schelling's and Hegel's philosophy, still reigned on the continent, while in England Positivism, the philosophy of Comte and Stuart Mill, represented the most important trend of thought. German speculation had much to say on evolution, it even pretended to be a philosophy of evolution. But then the word "evolution" was to be taken in an ideal, not in a real, sense. To speculative thought the forms and types of nature formed a system of ideas, within which any form could lead us by continuous transitions to any other. It was a classificatory system which was regarded as a divine world of thought or images, within which metamorphoses could go on—a condition comparable with that in the mind of the poet when one image follows another with imperceptible changes. Goethe's ideas of evolution, as expressed in his "Metamorphosen der Pflanzen und der Thiere", belong to this category; it is, therefore, incorrect to call him a forerunner of Darwin. Schelling and Hegel held the same idea; Hegel expressly rejected the conception of a real evolution in time as coarse and materialistic. "Nature," he says, "is to be considered as a SYSTEM OF STAGES, the one necessarily arising from the other, and being the nearest truth of that from which it proceeds; but not in such a way that the one is NATURALLY generated by the other; on the contrary (their connection lies) in the inner idea which is the ground of nature. The METAMORPHOSIS can be ascribed only to the notion as such, because it alone is evolution... It has been a clumsy idea in the older as well as in the newer philosophy of nature, to regard the transformation and the transition from one natural form and sphere to a higher as an outward and actual production." ("Encyclopaedie der philosophischen Wissenschaften" (4th edition), Berlin, 1845, paragraph 249.)
The only one of the philosophers of Romanticism who believed in a real, historical evolution, a real production of new species, was Oken. ("Lehrbuch der Naturphilosophie", Jena, 1809.) Danish philosophers, such as Treschow (1812) and Sibbern (1846), have also broached the idea of an historical evolution of all living beings from the lowest to the highest. Schopenhauer's philosophy has a more realistic character than that of Schelling's and Hegel's, his diametrical opposites, though he also belongs to the romantic school of thought. His philosophical and psychological views were greatly influenced by French naturalists and philosophers, especially by Cabanis and Lamarck. He praises the "ever memorable Lamarck," because he laid so much stress on the "will to live." But he repudiates as a "wonderful error" the idea that the organs of animals should have reached their present perfection through a development in time, during the course of innumerable generations. It was, he said, a consequence of the low standard of contemporary French philosophy, that Lamarck came to the idea of the construction of living beings in time through succession! ("Ueber den Willen in der Natur" (2nd edition), Frankfurt a. M., 1854, pages 41-43.)
The positivistic stream of thought was not more in favour of a real evolution than was the Romantic school. Its aim was to adhere to positive facts: it looked with suspicion on far-reaching speculation. Comte laid great stress on the discontinuity found between the different kingdoms of nature, as well as within each single kingdom. As he regarded as unscientific every attempt to reduce the number of physical forces, so he rejected entirely the hypothesis of Lamarck concerning the evolution of species; the idea of species would in his eyes absolutely lose its importance if a transition from species to species under the influence of conditions of life were admitted. His disciples (Littre, Robin) continued to direct against Darwin the polemics which their master had employed against Lamarck. Stuart Mill, who, in the theory of knowledge, represented the empirical or positivistic movement in philosophy—like his English forerunners from Locke to Hume—founded his theory of knowledge and morals on the experience of the single individual. He sympathised with the theory of the original likeness of all individuals and derived their differences, on which he practically and theoretically laid much stress, from the influence both of experience and education, and, generally, of physical and social causes. He admitted an individual evolution, and, in the human species, an evolution based on social progress; but no physiological evolution of species. He was afraid that the hypothesis of heredity would carry us back to the old theory of "innate" ideas.
Darwin was more empirical than Comte and Mill; experience disclosed to him a deeper continuity than they could find; closer than before the nature and fate of the single individual were shown to be interwoven in the great web binding the life of the species with nature as a whole. And the continuity which so many idealistic philosophers could find only in the world of thought, he showed to be present in the world of reality.
III.
Darwin's energetic renewal of the old idea of evolution had its chief importance in strengthening the conviction of this real continuity in the world, of continuity in the series of form and events. It was a great support for all those who were prepared to base their conception of life on scientific grounds. Together with the recently discovered law of the conservation of energy, it helped to produce the great realistic movement which characterises the last third of the nineteenth century. After the decline of the Romantic movement people wished to have firmer ground under their feet and reality now asserted itself in a more emphatic manner than in the period of Romanticism. It was easy for Hegel to proclaim that "the real" was "the rational," and that "the rational" was "the real": reality itself existed for him only in the interpretation of ideal reason, and if there was anything which could not be merged in the higher unity of thought, then it was only an example of the "impotence of nature to hold to the idea." But now concepts are to be founded on nature and not on any system of categories too confidently deduced a priori. The new devotion to nature had its recompense in itself, because the new points of view made us see that nature could indeed "hold to ideas," though perhaps not to those which we had cogitated beforehand.
A most important question for philosophers to answer was whether the new views were compatible with an idealistic conception of life and existence. Some proclaimed that we have now no need of any philosophy beyond the principles of the conservation of matter and energy and the principle of natural evolution: existence should and could be definitely and completely explained by the laws of material nature. But abler thinkers saw that the thing was not so simple. They were prepared to give the new views their just place and to examine what alterations the old views must undergo in order to be brought into harmony with the new data.
The realistic character of Darwin's theory was shown not only in the idea of natural continuity, but also, and not least, in the idea of the cause whereby organic life advances step by step. This idea—the idea of the struggle for life—implied that nothing could persist, if it had no power to maintain itself under the given conditions. Inner value alone does not decide. Idealism was here put to its hardest trial. In continuous evolution it could perhaps still find an analogy to the inner evolution of ideas in the mind; but in the demand for power in order to struggle with outward conditions Realism seemed to announce itself in its most brutal form. Every form of Idealism had to ask itself seriously how it was going to "struggle for life" with this new Realism.
We will now give a short account of the position which leading thinkers in different countries have taken up in regard to this question.
I. Herbert Spencer was the philosopher whose mind was best prepared by his own previous thinking to admit the theory of Darwin to a place in his conception of the world. His criticism of the arguments which had been put forward against the hypothesis of Lamarck, showed that Spencer, as a young man, was an adherent to the evolution idea. In his "Social Statics" (1850) he applied this idea to human life and moral civilisation. In 1852 he wrote an essay on "The Development Hypothesis", in which he definitely stated his belief that the differentiation of species, like the differentiation within a single organism, was the result of development. In the first edition of his "Psychology" (1855) he took a step which put him in opposition to the older English school (from Locke to Mill): he acknowledged "innate ideas" so far as to admit the tendency of acquired habits to be inherited in the course of generations, so that the nature and functions of the individual are only to be understood through its connection with the life of the species. In 1857, in his essay on "Progress", he propounded the law of differentiation as a general law of evolution, verified by examples from all regions of experience, the evolution of species being only one of these examples. On the effect which the appearance of "The Origin of Species" had on his mind he writes in his "Autobiography": "Up to that time... I held that the sole cause of organic evolution is the inheritance of functionally-produced modifications. The "Origin of Species" made it clear to me that I was wrong, and that the larger part of the facts cannot be due to any such cause... To have the theory of organic evolution justified was of course to get further support for that theory of evolution at large with which... all my conceptions were bound up." (Spencer, "Autobiography", Vol. II. page 50, London, 1904.) Instead of the metaphorical expression "natural selection," Spencer introduced the term "survival of the fittest," which found favour with Darwin as well as with Wallace.
In working out his ideas of evolution, Spencer found that differentiation was not the only form of evolution. In its simplest form evolution is mainly a concentration, previously scattered elements being integrated and losing independent movement. Differentiation is only forthcoming when minor wholes arise within a greater whole. And the highest form of evolution is reached when there is a harmony between concentration and differentiation, a harmony which Spencer calls equilibration and which he defines as a moving equilibrium. At the same time this definition enables him to illustrate the expression "survival of the fittest." "Every living organism exhibits such a moving equilibrium—a balanced set of functions constituting its life; and the overthrow of this balanced set of functions or moving equilibrium is what we call death. Some individuals in a species are so constituted that their moving equilibria are less easily overthrown than those of other individuals; and these are the fittest which survive, or, in Mr Darwin's language, they are the select which nature preserves." (Ibid. page 100.) Not only in the domain of organic life, but in all domains, the summit of evolution is, according to Spencer, characterised by such a harmony—by a moving equilibrium.
Spencer's analysis of the concept of evolution, based on a great variety of examples, has made this concept clearer and more definite than before. It contains the three elements; integration, differentiation and equilibration. It is true that a concept which is to be valid for all domains of experience must have an abstract character, and between the several domains there is, strictly speaking, only a relation of analogy. So there is only analogy between psychical and physical evolution. But this is no serious objection, because general concepts do not express more than analogies between the phenomena which they represent. Spencer takes his leading terms from the material world in defining evolution (in the simplest form) as integration of matter and dissipation of movement; but as he—not always quite consistently (Cf. my letter to him, 1876, now printed in Duncan's "Life and Letters of Herbert Spencer", page 178, London, 1908.)—assumed a correspondence of mind and matter, he could very well give these terms an indirect importance for psychical evolution. Spencer has always, in my opinion with full right, repudiated the ascription of materialism. He is no more a materialist than Spinoza. In his "Principles of Psychology" (paragraph 63) he expressed himself very clearly: "Though it seems easier to translate so-called matter into so-called spirit, than to translate so-called spirit into so-called matter—which latter is indeed wholly impossible—yet no translation can carry us beyond our symbols." These words lead us naturally to a group of thinkers whose starting-point was psychical evolution. But we have still one aspect of Spencer's philosophy to mention.
Spencer founded his "laws of evolution" on an inductive basis, but he was convinced that they could be deduced from the law of the conservation of energy. Such a deduction is, perhaps, possible for the more elementary forms of evolution, integration and differentiation; but it is not possible for the highest form, the equilibration, which is a harmony of integration and differentiation. Spencer can no more deduce the necessity for the eventual appearance of "moving equilibria" of harmonious totalities than Hegel could guarantee the "higher unities" in which all contradictions should be reconciled. In Spencer's hands the theory of evolution acquired a more decidedly optimistic character than in Darwin's; but I shall deal later with the relation of Darwin's hypothesis to the opposition of optimism and pessimism.
II. While the starting-point of Spencer was biological or cosmological, psychical evolution being conceived as in analogy with physical, a group of eminent thinkers—in Germany Wundt, in France Fouillee, in Italy Ardigo—took, each in his own manner, their starting-point in psychical evolution as an original fact and as a type of all evolution, the hypothesis of Darwin coming in as a corroboration and as a special example. They maintain the continuity of evolution; they find this character most prominent in psychical evolution, and this is for them a motive to demand a corresponding continuity in the material, especially in the organic domain.
To Wundt and Fouillee the concept of will is prominent. They see the type of all evolution in the transformation of the life of will from blind impulse to conscious choice; the theories of Lamarck and Darwin are used to support the view that there is in nature a tendency to evolution in steady reciprocity with external conditions. The struggle for life is here only a secondary fact. Its apparent prominence is explained by the circumstance that the influence of external conditions is easily made out, while inner conditions can be verified only through their effects. For Ardigo the evolution of thought was the starting-point and the type: in the evolution of a scientific hypothesis we see a progress from the indefinite (indistinto) to the definite (distinto), and this is a characteristic of all evolution, as Ardigo has pointed out in a series of works. The opposition between indistinto and distinto corresponds to Spencer's opposition between homogeneity and heterogeneity. The hypothesis of the origin of differences of species from more simple forms is a special example of the general law of evolution.
In the views of Wundt and Fouillee we find the fundamental idea of idealism: psychical phenomena as expressions of the innermost nature of existence. They differ from the older Idealism in the great stress which they lay on evolution as a real, historical process which is going on through steady conflict with external conditions. The Romantic dread of reality is broken. It is beyond doubt that Darwin's emphasis on the struggle for life as a necessary condition of evolution has been a very important factor in carrying philosophy back to reality from the heaven of pure ideas. The philosophy of Ardigo, on the other side, appears more as a continuation and deepening of positivism, though the Italian thinker arrived at his point of view independently of French-English positivism. The idea of continuous evolution is here maintained in opposition to Comte's and Mill's philosophy of discontinuity. From Wundt and Fouillee Ardigo differs in conceiving psychical evolution not as an immediate revelation of the innermost nature of existence, but only as a single, though the most accessible example, of evolution.
III. To the French philosophers Boutroux and Bergson, evolution proper is continuous and qualitative, while outer experience and physical science give us fragments only, sporadic processes and mechanical combinations. To Bergson, in his recent work "L'Evolution Creatrice", evolution consists in an elan de vie which to our fragmentary observation and analytic reflexion appears as broken into a manifold of elements and processes. The concept of matter in its scientific form is the result of this breaking asunder, essential for all scientific reflexion. In these conceptions the strongest opposition between inner and outer conditions of evolution is expressed: in the domain of internal conditions spontaneous development of qualitative forms—in the domain of external conditions discontinuity and mechanical combination.
We see, then, that the theory of evolution has influenced philosophy in a variety of forms. It has made idealistic thinkers revise their relation to the real world; it has led positivistic thinkers to find a closer connection between the facts on which they based their views; it has made us all open our eyes for new possibilities to arise through the prima facie inexplicable "spontaneous" variations which are the condition of all evolution. This last point is one of peculiar interest. Deeper than speculative philosophy and mechanical science saw in the days of their triumph, we catch sight of new streams, whose sources and laws we have still to discover. Most sharply does this appear in the theory of mutation, which is only a stronger accentuation of a main point in Darwinism. It is interesting to see that an analogous problem comes into the foreground in physics through the discovery of radioactive phenomena, and in psychology through the assumption of psychical new formations (as held by Boutroux, William James and Bergson). From this side, Darwin's ideas, as well as the analogous ideas in other domains, incite us to renewed examination of our first principles, their rationality and their value. On the other hand, his theory of the struggle for existence challenges us to examine the conditions and discuss the outlook as to the persistence of human life and society and of the values that belong to them. It is not enough to hope (or fear?) the rising of new forms; we have also to investigate the possibility of upholding the forms and ideals which have hitherto been the bases of human life. Darwin has here given his age the most earnest and most impressive lesson. This side of Darwin's theory is of peculiar interest to some special philosophical problems to which I now pass.
IV.
Among philosophical problems the problem of knowledge has in the last century occupied a foremost place. It is natural, then, to ask how Darwin and the hypothesis whose most eminent representative he is, stand to this problem.
Darwin started an hypothesis. But every hypothesis is won by inference from certain presuppositions, and every inference is based on the general principles of human thought. The evolution hypothesis presupposes, then, human thought and its principles. And not only the abstract logical principles are thus presupposed. The evolution hypothesis purports to be not only a formal arrangement of phenomena, but to express also the law of a real process. It supposes, then, that the real data—all that in our knowledge which we do not produce ourselves, but which we in the main simply receive—are subjected to laws which are at least analogous to the logical relations of our thoughts; in other words, it assumes the validity of the principle of causality. If organic species could arise without cause there would be no use in framing hypotheses. Only if we assume the principle of causality, is there a problem to solve.
Though Darwinism has had a great influence on philosophy considered as a striving after a scientific view of the world, yet here is a point of view—the epistemological—where philosophy is not only independent but reaches beyond any result of natural science. Perhaps it will be said: the powers and functions of organic beings only persist (perhaps also only arise) when they correspond sufficiently to the conditions under which the struggle of life is to go on. Human thought itself is, then, a variation (or a mutation) which has been able to persist and to survive. Is not, then, the problem of knowledge solved by the evolution hypothesis? Spencer had given an affirmative answer to this question before the appearance of "The Origin of Species". For the individual, he said, there is an a priori, original, basis (or Anlage) for all mental life; but in the species all powers have developed in reciprocity with external conditions. Knowledge is here considered from the practical point of view, as a weapon in the struggle for life, as an "organon" which has been continuously in use for generations. In recent years the economic or pragmatic epistemology, as developed by Avenarius and Mach in Germany, and by James in America, points in the same direction. Science, it is said, only maintains those principles and presuppositions which are necessary to the simplest and clearest orientation in the world of experience. All assumptions which cannot be applied to experience and to practical work, will successively be eliminated.
In these views a striking and important application is made of the idea of struggle for life to the development of human thought. Thought must, as all other things in the world, struggle for life. But this whole consideration belongs to psychology, not to the theory of knowledge (epistemology), which is concerned only with the validity of knowledge, not with its historical origin. Every hypothesis to explain the origin of knowledge must submit to cross-examination by the theory of knowledge, because it works with the fundamental forms and principles of human thought. We cannot go further back than these forms and principles, which it is the aim of epistemology to ascertain and for which no further reason can be given. (The present writer, many years ago, in his "Psychology" (Copenhagen, 1882; English translation London, 1891), criticised the evolutionistic treatment of the problem of knowledge from the Kantian point of view.)
But there is another side of the problem which is, perhaps, of more importance and which epistemology generally overlooks. If new variations can arise, not only in organic but perhaps also in inorganic nature, new tasks are placed before the human mind. The question is, then, if it has forms in which there is room for the new matter? We are here touching a possibility which the great master of epistemology did not bring to light. Kant supposed confidently that no other matter of knowledge could stream forth from the dark source which he called "the thing-in-itself," than such as could be synthesised in our existing forms of knowledge. He mentions the possibility of other forms than the human, and warns us against the dogmatic assumption that the human conception of existence should be absolutely adequate. But he seems to be quite sure that the thing-in-itself works constantly, and consequently always gives us only what our powers can master. This assumption was a consequence of Kant's rationalistic tendency, but one for which no warrant can be given. Evolutionism and systematism are opposing tendencies which can never be absolutely harmonised one with the other. Evolution may at any time break some form which the system-monger regards as finally established. Darwin himself felt a great difference in looking at variation as an evolutionist and as a systematist. When he was working at his evolution theory, he was very glad to find variations; but they were a hindrance to him when he worked as a systematist, in preparing his work on Cirripedia. He says in a letter: "I had thought the same parts of the same species more resemble (than they do anyhow in Cirripedia) objects cast in the same mould. Systematic work would be easy were it not for this confounded variation, which, however, is pleasant to me as a speculatist, though odious to me as a systematist." ("Life and Letters", Vol. II. page 37.) He could indeed be angry with variations even as an evolutionist; but then only because he could not explain them, not because he could not classify them. "If, as I must think, external conditions produce little DIRECT effect, what the devil determines each particular variation?" (Ibid. page 232.) What Darwin experienced in his particular domain holds good of all knowledge. All knowledge is systematic, in so far as it strives to put phenomena in quite definite relations, one to another. But the systematisation can never be complete. And here Darwin has contributed much to widen the world for us. He has shown us forces and tendencies in nature which make absolute systems impossible, at the same time that they give us new objects and problems. There is still a place for what Lessing called "the unceasing striving after truth," while "absolute truth" (in the sense of a closed system) is unattainable so long as life and experience are going on.
There is here a special remark to be made. As we have seen above, recent research has shown that natural selection or struggle for life is no explanation of variations. Hugo de Vries distinguishes between partial and embryonal variations, or between variations and mutations, only the last-named being heritable, and therefore of importance for the origin of new species. But the existence of variations is not only of interest for the problem of the origin of species; it has also a more general interest. An individual does not lose its importance for knowledge, because its qualities are not heritable. On the contrary, in higher beings at least, individual peculiarities will become more and more independent objects of interest. Knowledge takes account of the biographies not only of species, but also of individuals: it seeks to find the law of development of the single individual. (The new science of Ecology occupies an intermediate position between the biography of species and the biography of individuals. Compare "Congress of Arts and Science", St Louis, Vol. V. 1906 (the Reports of Drude and Robinson) and the work of my colleague E. Warming.) As Leibniz said long ago, individuality consists in the law of the changes of a being. "La loi du changement fait l'individualite de chaque substance." Here is a world which is almost new for science, which till now has mainly occupied itself with general laws and forms. But these are ultimately only means to understand the individual phenomena, in whose nature and history a manifold of laws and forms always cooperate. The importance of this remark will appear in the sequel.
V.
To many people the Darwinian theory of natural selection or struggle for existence seemed to change the whole conception of life, and particularly all the conditions on which the validity of ethical ideas depends. If only that has persistence which can be adapted to a given condition, what will then be the fate of our ideals, of our standards of good and evil? Blind force seems to reign, and the only thing that counts seems to be the most heedless use of power. Darwinism, it was said, has proclaimed brutality. No other difference seems permanent save that between the sound, powerful and happy on the one side, the sick, feeble and unhappy on the other; and every attempt to alleviate this difference seems to lead to general enervation. Some of those who interpreted Darwinism in this manner felt an aesthetic delight in contemplating the heedlessness and energy of the great struggle for existence and anticipated the realisation of a higher human type as the outcome of it: so Nietzsche and his followers. Others recognising the same consequences in Darwinism regarded these as one of the strongest objections against it; so Duhring and Kropotkin (in his earlier works).
This interpretation of Darwinism was frequent in the interval between the two main works of Darwin—"The Origin of Species" and "The Descent of Man". But even during this interval it was evident to an attentive reader that Darwin himself did not found his standard of good and evil on the features of the life of nature he had emphasised so strongly. He did not justify the ways along which nature reached its ends; he only pointed them out. The "real" was not to him, as to Hegel, one with the "rational." Darwin has, indeed, by his whole conception of nature, rendered a great service to ethics in making the difference between the life of nature and the ethical life appear in so strong a light. The ethical problem could now be stated in a sharper form than before. But this was not the first time that the idea of the struggle for life was put in relation to the ethical problem. In the seventeenth century Thomas Hobbes gave the first impulse to the whole modern discussion of ethical principles in his theory of bellum omnium contra omnes. Men, he taught, are in the state of nature enemies one of another, and they live either in fright or in the glory of power. But it was not the opinion of Hobbes that this made ethics impossible. On the contrary, he found a standard for virtue and vice in the fact that some qualities and actions have a tendency to bring us out of the state of war and to secure peace, while other qualities have a contrary tendency. In the eighteenth century even Immanuel Kant's ideal ethics had—so far as can be seen—a similar origin. Shortly before the foundation of his definitive ethics, Kant wrote his "Idee zu einer allgemeinen Weltgeschichte" (1784), where—in a way which reminds us of Hobbes, and is prophetic of Darwin—he describes the forward-driving power of struggle in the human world. It is here as with the struggle of the trees for light and air, through which they compete with one another in height. Anxiety about war can only be allayed by an ordinance which gives everyone his full liberty under acknowledgment of the equal liberty of others. And such ordinance and acknowledgment are also attributes of the content of the moral law, as Kant proclaimed it in the year after the publication of his essay (1785) (Cf. my "History of Modern Philosophy" (English translation London, 1900), I. pages 76-79.) Kant really came to his ethics by the way of evolution, though he afterwards disavowed it. Similarly the same line of thought may be traced in Hegel though it has been disguised in the form of speculative dialectics. ("Herrschaft und Knechtschaft", "Phanomenologie des Geistes", IV. A., Leiden, 1907.) And in Schopenhauer's theory of the blind will to live and its abrogation by the ethical feeling, which is founded on universal sympathy, we have a more individualistic form of the same idea.
It was, then, not entirely a foreign point of view which Darwin introduced into ethical thought, even if we take no account of the poetical character of the word "struggle" and of the more direct adaptation, through the use and non-use of power, which Darwin also emphasised. In "The Descent of Man" he has devoted a special chapter ("The Descent of Man", Vol. I. Ch. iii.) to a discussion of the origin of the ethical consciousness. The characteristic expression of this consciousness he found, just as Kant did, in the idea of "ought"; it was the origin of this new idea which should be explained. His hypothesis was that the ethical "ought" has its origin in the social and parental instincts, which, as well as other instincts (e.g. the instinct of self-preservation), lie deeper than pleasure and pain. In many species, not least in the human species, these instincts are fostered by natural selection; and when the powers of memory and comparison are developed, so that single acts can be valued according to the claims of the deep social instinct, then consciousness of duty and remorse are possible. Blind instinct has developed to conscious ethical will.
As already stated, Darwin, as a moral philosopher belongs to the school that was founded by Shaftesbury, and was afterwards represented by Hutcheson, Hume, Adam Smith, Comte and Spencer. His merit is, first, that he has given this tendency of thought a biological foundation, and that he has stamped on it a doughty character in showing that ethical ideas and sentiments, rightly conceived, are forces which are at work in the struggle for life.
There are still many questions to solve. Not only does the ethical development within the human species contain features still unexplained (The works of Westermarck and Hobhouse throw new light on many of these features.); but we are confronted by the great problem whether after all a genetic historical theory can be of decisive importance here. To every consequent ethical consciousness there is a standard of value, a primordial value which determines the single ethical judgments as their last presupposition, and the "rightness" of this basis, the "value" of this value can as little be discussed as the "rationality" of our logical principles. There is here revealed a possibility of ethical scepticism which evolutionistic ethics (as well as intuitive or rationalistic ethics) has overlooked. No demonstration can show that the results of the ethical development are definitive and universal. We meet here again with the important opposition of systematisation and evolution. There will, I think, always be an open question here, though comparative ethics, of which we have so far only the first attempts, can do much to throw light on it.
It would carry us too far to discuss all the philosophical works on ethics, which have been influenced directly or indirectly by evolutionism. I may, however, here refer to the book of C.M. Williams, "A Review of the Systems of Ethics founded on the Theory of Evolution" (New York and London, 1893.), in which, besides Darwin, the following authors are reviewed: Wallace, Haeckel, Spencer, Fiske, Rolph, Barratt, Stephen, Carneri, Hoffding, Gizycki, Alexander, Ree. As works which criticise evolutionistic ethics from an intuitive point of view and in an instructive way, may be cited: Guyau "La morale anglaise contemporaine" (Paris, 1879.), and Sorley, "Ethics of Naturalism". I will only mention some interesting contributions to ethical discussion which can be found in Darwinism besides the idea of struggle for life.
The attention which Darwin has directed to variations has opened our eyes to the differences in human nature as well as in nature generally. There is here a fact of great importance for ethical thought, no matter from what ultimate premiss it starts. Only from a very abstract point of view can different individuals be treated in the same manner. The most eminent ethical thinkers, men such as Jeremy Bentham and Immanuel Kant, who discussed ethical questions from very opposite standpoints, agreed in regarding all men as equal in respect of ethical endowment. In regard to Bentham, Leslie Stephen remarks: "He is determined to be thoroughly empirical, to take men as he found them. But his utilitarianism supposed that men's views of happiness and utility were uniform and clear, and that all that was wanted was to show them the means by which their ends could be reached." ("English literature and society in the eighteenth century", London, 1904, page 187.) And Kant supposed that every man would find the "categorical imperative" in his consciousness, when he came to sober reflexion, and that all would have the same qualifications to follow it. But if continual variations, great or small, are going on in human nature, it is the duty of ethics to make allowance for them, both in making claims, and in valuing what is done. A new set of ethical problems have their origin here. (Cf. my paper, "The law of relativity in Ethics," "International Journal of Ethics", Vol. I. 1891, pages 37-62.) It is an interesting fact that Stuart Mill's book "On Liberty" appeared in the same year as "The Origin of Species". Though Mill agreed with Bentham about the original equality of all men's endowments, he regarded individual differences as a necessary result of physical and social influences, and he claimed that free play shall be allowed to differences of character so far as is possible without injury to other men. It is a condition of individual and social progress that a man's mode of action should be determined by his own character and not by tradition and custom, nor by abstract rules. This view was to be corroborated by the theory of Darwin.
But here we have reached a point of view from which the criticism, which in recent years has often been directed against Darwin—that small variations are of no importance in the struggle for life—is of no weight. From an ethical standpoint, and particularly from the ethical standpoint of Darwin himself, it is a duty to foster individual differences that can be valuable, even though they can neither be of service for physical preservation nor be physically inherited. The distinction between variation and mutation is here without importance. It is quite natural that biologists should be particularly interested in such variations as can be inherited and produce new species. But in the human world there is not only a physical, but also a mental and social heredity. When an ideal human character has taken form, then there is shaped a type, which through imitation and influence can become an important factor in subsequent development, even if it cannot form a species in the biological sense of the word. Spiritually strong men often succumb in the physical struggle for life; but they can nevertheless be victorious through the typical influence they exert, perhaps on very distant generations, if the remembrance of them is kept alive, be it in legendary or in historical form. Their very failure can show that a type has taken form which is maintained at all risks, a standard of life which is adhered to in spite of the strongest opposition. The question "to be or not to be" can be put from very different levels of being: it has too often been considered a consequence of Darwinism that this question is only to be put from the lowest level. When a stage is reached, where ideal (ethical, intellectual, aesthetic) interests are concerned, the struggle for life is a struggle for the preservation of this stage. The giving up of a higher standard of life is a sort of death; for there is not only a physical, there is also a spiritual, death. |
|