|
Some chronic diseases cause a slow pulse; this is especially true of chronic interstitial nephritis. In fact, it may be stated that any disease or condition which increases the blood pressure generally slows the pulse, unless the heart itself is affected. This is true of hypertension, of arteriosclerosis, of nicotin unless the heart has become injured, and often of caffein, unless it acts in the individual as a nervous stimulant. Chronic lead poisoning causes a slow pulse on account of the increased blood pressure.
A slow pulse may occur during convalescence from acute infections, such as typhoid fever and pneumonia, and sometimes after septic processes. While it may not be serious in these conditions, it should always be carefully watched, as it may show a serious myocarditis.
While weakness generally and myocarditis, at least oil exertion or nervous excitation or after eating, cause a heart to be rapid, still such a heart may act sluggishly when the patient is at rest, so that he feels faint and weak and disinclined to attempt even the slightest exertion. In such a condition calcium, iron and strychnin, not too frequently or in too large doses, and perhaps caffein, are indicated. Camphor is always a valuable stimulant, more or less frequently administered, during such a period of slow heart. This slow heart sometimes occurs after rheumatic fever; it is quite frequent after diphtheria, and may show a disturbance of the vagi.
Although the prognosis of such slow hearts after serious illness is generally good, a heart that is too rapid after illness is often more readily brought to normal by proper management than a heart which is too slow. Either condition needs proper treatment and proper management.
It is well recognized that serious, almost major hysteria may be present and the heart not only not be increased, but it may even be slowed. The heart in this condition of course requires no treatment. In cerebral disturbances, especially when there is cerebral pressure, and more particularly if there is pressure in the fourth ventricle, the pulse may be much slowed. It is often slowed in connection with Cheyne-Stokes respiration. It may be very slow after apoplexy, and when there are brain tumors. It is often much slowed in narcotic poisoning, especially in opium, chloral and bromid poisoning. Serious toxemia from alcohol may cause a heart to be very slow. It is more likely, however, to cause a heart to be rapid, unless there is actual coma.
A frequent condition causing a slowing of the heart is the presence of bile in the blood, typically true of catarrhal jaundice. Uremic poisoning and acidemia and coma of diabetes tray cause a pulse to be very slow.
Not infrequently after parturition the heart quiets down from its exertion to a rate below normal. If the urine is known to be free from albumin and casts, and there are no signs of impending eclampsia, the slow pulse is indicative of no serious trouble; but the urine should be carefully examined and a possible uremia or other cause of eclampsia carefully considered. Sometimes with serious edema and after serious hemorrhage the heart becomes very slow, unless some exertion is made, when it will beat more rapidly than normal. This probably represents a diminished cardiac nutrition.
The cardiac lesions which cause a pulse to be slow are sclerosis or thrombosis of the coronary arteries, fatty degeneration of the myocardium, and Stokes-Adams disease.
It is seen, therefore, that when a pulse is slower than normal, even below 65 beats per minute, the cause should be sought. If no functional or pathologic excuse is discovered, it must be considered normal, for the individual, and, as stated above, even 58 or 60 beats per minute are in many instances normal for men. This is especially true with beginning hypertension, and may be true in young men who are athletic or who are oversmoking but are not being poisoned by the nicotin, as shown by the fact that their hearts are not rapid, that they are not having cardiac pains, that they do not perspire profusely, and that they do not have muscle cramps. A pulse of from 50 to 55 is likely to be seriously considered by an insurance company in deciding the advisability of the risk, and below 50 must be considered as abnormal.
SYMPTOMS
If a person has been long accustomed to a slow-acting heart, there are no symptoms. If the heart has become slowed from disease or from any acute condition, the patient is likely to feel more or less faint, perhaps have some dizzines, and often headache, which is generally relieved by lying down. Sometimes convulsions may occur, epileptiform in character, due possibly to anemia or irritation of the brain. If the slow heart does not cause these more serious symptoms, the patient may feel week and unable to attend to his ordinary duties. As previously urged an abnormally slow heart after serious illness should be as carefully cared for as a too rapid heart under the same conditions. Probably often a myocarditis and perhaps some fatty degeneration are at the base of such a slowed heart after serious infections.
A heart which has not always been slow but has gradually become slow with the progress of hypertension and arteriosclerosis will often disclose on postmortem examination serious lesions of the coronary arteries.
Deficiency in the thyroid secretion will always cause a heart to be slower than normal. The more marked and serious the hypothyroidism, the slower the heart is apt to be. When such a condition is diagnosed, the treatment is thyroid extract; or if the insufficiency is not great, small doses of an iodid should be given. In either case it is sometimes astonishing how rapidly a slow, sluggishly acting heart, improves and how much improvement there is in the mental condition of the patient.
In acute slowing of the heart, as in syncope, the patient must immediately lie down with the head low, possibly with the feet and legs elevated, and all constricting clothing of the abdomen and chest should be removed. Whiffs of smelling-salts may be given; whisky, brandy or other quickly acting stimulant, not much diluted, play also be given. Camphor, a hypodermic dose of strychnin or atropin if deemed necessary, a hot-water bag over the heart, and massaging of the arms and legs to aid the return circulation, are all means which are generally successful in restoring the patient's circulation to normal. Caffein is another valuable stimulant, perhaps best administered as a cup of coffee. Digitalis is not indicated: neither is nitroglycerin, unless the slow heart is due to cardiac pain or to angina.
Some patients have syncopal attacks with the least injury or with any mental shock. Such patients as soon as restored are as well as ever. Other patients who faint or have attacks of syncope should remain at rest on a couch or bed for some hours.
A tangible cause, being discovered for an unusually slow heart is sufficiently indicative of the treatment not to require further comment. While generally toxins from intestinal indigestion make a heart irritable and more rapid, sometimes they slow a heart, and in such cases the heart will be improved when catharsis has been caused and a modification of the diet is ordered.
PAROXYSMAL TACHYCARDIA
This condition is generally termed by the patient a "palpitation," and palpitation of the heart is recognized by most physicians as meaning a too rapidly acting heart, the term "tachycardia" being reserved for an excessive rapidity of the heart. Many of the so- called tachycardias are really instances of auricular fibrillation or flutter. Some persons normally have a pulse and heart too rapid; children more or less constantly have a heart beat of from 90 to 100. Women have more rapid heart action than men, and it becomes more rapid with their varying functions, specifically increasing its rapidity before, and perhaps during, menstruation. Many patients have a rapid heart action with the slightest increase in temperature and in any fever process. Some have a rapid heart action after the least exertion without any cardiac lesion or assignable excuse for such rapidity. Others have a rapid heart with mental activity and excessive excitement. Therefore in deciding that a heart is abnormally rapid one must individualize the patient.
During or after illness many patients are said to have palpitation when the real cause is an unhealed myocarditis. Tuberculosis almost invariably causes increased heart action, even when there is no fever. All high fever increases the heart's action, but not so markedly in typhoid fever as in other fevers; in fact, the heart in typhoid fever, during the early stages, is apt to be slower than the temperature would seem to call for. In anemia when the patient is active the heart is generally rapid. The rapid heart from cardiac disease has already been considered. For the palpitation or rapid heart Just described there is little necessity for other treatment than what the acute or chronic condition would call for. With proper management the condition will improve unless the patient has an idiosyncrasy for intermittent attacks of slightly rapid heart, as from 100 to 120 beats per minute.
A permanently rapid heart, when the patient has no heart lesion and is at rest, is generally due to hypersecretion of the thyroid, which will be discussed later. Paroxysmal tachycardia is a name applied to very rapid heart attacks in persons who are more or less subject to their recurrence. They may occur without any tangible excuse, and are liable to occur during serious illness, after a large meal, after a cup of tea or coffee, or after taking alcohol. The heart may beat as rapidly as from 150 to 200 times a minute, or even more, with no other symptoms than a feeling of constriction or tightness in the chest, an inability to respire properly and a feeling of "air hunger." The patient almost invariably must sit up, or at least have his head raised. Attacks of cardiac delirium (often auricular fibrillation) may occur with serious lesions of the heart, as valvular disease or sclerosis, but paroxysmal tachvcardia occurs in certain persons without any tangible cardiac excuse. The auricles of the heart may act more energetically than normal, and precede as usual the ventricular contraction; or the auricles and ventricles may contract almost together—a so-called "nodal" type of contraction. Rarely does a patient die of paroxysmal tachycardia. The length of time the attack may last varies from a few minutes to an hour, or even for a day or more.
MANAGEMENT
There is no specific treatment for paroxysmal tachycardia. What is of value in one patient may be of no value in another; in fact, drugs are rarely successful in ameliorating or preventing the condition. Patients who are accustomed to these attacks often learn what particular position or management stops the attack.
Sometimes a patient rises and walks about. Sometimes an ice-bag over the heart will stop the attack.
If there is no serious illness present, and no serious cardiac disease causing the condition, and a patient is known to have an overloaded stomach or bowels, an emetic or a briskly acting cathartic is the best possible treatment. The attack often terminates as suddenly as it begins, without leaving any knowledge as to which particular treatment has been beneficial. A patient who is well and has an attack of tachycardia should be allowed to assume the position which he finds to give him the most comfort, and to use the means of stopping his attack which lie has found the most successful. In the absence of his success or of his knowledge of any successful treatment, a hypodermic injection of 1/6 or even 1/4 grain of morphin sulphate is often curative. Atropin should not be given, as it may increase the cardiac disturbance. If an attack lasts more than an hour or so, one of the best treatments is the bromids, which should be given either by potassium or sodium bromid in a dose of 2 or 3 gm. (30 or 45 grains) at once. Sometimes one good-sized dose of digitalis may be of benefit, but it is often disappointing, and unless there is a valvular lesion with signs of broken compensation, it is rarely indicated. It should also be remembered that, if the patient is receiving digitalis in good dosage for broken compensation, tachycardia may be caused by an overaction of the digitalis. Such overaction would be indicated by previous symptoms of nausea, vomiting, intestinal irritation, a diminished amount of urine, headache and a tight, bandlike feeling in the head, cold hands and feet, and a day or two of very slow pulse. If none of these symptoms is present, though a patient has received digitalis for broken compensation, a tachycardia occurring might not contraindicate digitalis, as much of the digitalis on the market is useless; and a patient may not actually have been obtaining digitalis action.
If the tachycardia occurs in a patient with arteriosclerosis, especially if there is much cardiac pain, nitroglycerin is of advantage; also warm foot-baths. If there is prostration and a flaccid, flabby abdomen, a tight abdominal bandage may be of benefit.
Gastric flatulence, while perhaps not a cause of the tachycardia, is liable to develop and be a troublesome symptom. Anything that causes eructations of gases is of benefit, as spirit of peppermint, aromatic spirit of ammonia or plain hot water. If there is hyperacidity of the stomach, sodium bicarbonate or milk of magnesia will be of benefit.
The ability of some patients to stand a rapid heart action without noting it or being incapacitated by it is astonishing. It may generally be stated that a rapid heart is noted, and a pulse above 120 generally prostrates, at least temporarily, a patient who is otherwise well, provided the cause is anything but hyperthyroidism. A patient who has hypersecretion of the thyroid will be perfectly calm, collected, often perhaps not seriously nervous, and, with a heart beating at the rate of 140, 150, 160 and even 200 per minute, will state that she has no palpitation now, although she sometimes has it. A heart thus fast, with a patient not noting it and not prostrated by it, is almost diagnostic of a thyroid cause.
Some patients, both men and women, cannot take even a small cup of tea or coffee without an attack of paroxysmal tachycardia. Such patients, of course, quickly learn their limitations.
HYPERTHYROIDISM
The presence of a well marked case of exophthalmic goiter is not necessary for the secretion of the thyroid to be increased sufficiently to cause tachycardia; in fact, an increased heart rapidity in women often has hyperthyroidism as its cause. The thyroid gland hypersecretes in women before every menstrual period and during each pregnancy, and with an active, emotional, nervous life, social excitement, theaters, too much coffee, and, unfortunately today among women, too much alcohol, it readily gives the condition of increased secretion; and the organ that notes this increased secretion the quickest is the heart.
The tachycardia of a developed exophthalmic goiter is difficult to inhibit. Digitalis is of no avail, and no other single medicinal treatment is of any great value. The tachycardia will improve as the disease improves. On the other hand, nothing is snore serious for this patient than her rapid heart, and if it cannot be soon slowed, operative interference is absolutely necessary. If the rapid heart continues until a myocarditis has developed and a weakening of the muscle fibers occurs, or dilatation is imminent or has actually occurred, operative interference is serious, and most patients under these conditions die after a complete operation, that is, the removal of from one half to two thirds of the thyroid. In such cases the only excusable operative interference is the graded one, namely, the tying of first one artery and then another of the thyroid to inhibit the blood supply to the gland in order that it may not furnish so much secretion. If the heart then improves, a more radical operation may be done without much serious danger. Therefore the working rule should be that, if a heart does not quickly improve under medical management, operative interference should not be delayed until the heart has become degenerated.
If tachycardia is the only serious symptom present in a patient who is considered to have hyperthyroidism, it may generally be successfully treated by insistence on quiet, cessation of all physical and exciting mental activities, more or less complete rest, the absolute interdiction of all tear coffee or other caffein- bearing preparations, total abstinence from alcohol, the restriction to a cereal and fruit diet (the withdrawal of all meat from the diet), the administration of calcium, as the calcium glycerophospate in dose of 0.3 gm. (5 grains) in powder three times a day, and for a time, perhaps, the administration of bromids. If the depressing action of bromids on the heart is counteracted by the coincident administration of digitalis, they will act only for good by quieting the nervous system and more or less inhibiting the secretion of the thyroid gland.
If a patient has exophthalmic goiter fully developed, absolute rest in bed, with the treatment outlined above, should soon cause improvement. If it does not, the operative treatment as advised above should be considered. If myocarditis has been diagnosed, the minor operations should be done if the patient does not soon improve. The prolongation of the treatment depends on the condition and the amount of improvement.
If the physician is in doubt as to whether or not this particular tachycardia is caused by hyperthyroidism, the administration of sodium iodid in doses of 0.25 gm. (4 grains) three times a day will make the diagnosis positive within a few days. If the trouble is due to hyperthyroidism, all of the symptoms will be aggravated; there will be more palpitation, more nervousness, more restlessness, more sweating and more sleeplessness. In such cases the iodid should be stopped immediately, of course, and the proper treatment begun.
TOXIC DISTURBANCES AND HEART RATE
Under this head it is not proposed to consider disturbances of the heart due to infections, to cardiac disease, or to localized or general acute or chronic disease, but to discuss disturbances due to the absorption of irritants froth the intestines, and to alcohol, tobacco and caffein.
It is hardly necessary to repeat that various toxins which may seriously irritate the heart may be absorbed from the intestines during fermentation or putrefactives processes in either the small or the large intestines. The heart may be slowed by some, made rapid by others, and it is often made irregular. The relation of the absorption of intestinal toxins to increased blood pressure has already been described, and the necessity of removing from the diet anything which perpetuates or increases intestinal indigestion in all cases of high blood pressure has already been referred to several times. The indications that such a condition of the intestines is present are irregular action of the bowels, a large amount of intestinal gas, sometimes watery stools, often a coated tongue, and the presence of indican in the urine.
INTESTINAL PUTREFACTION
The most successful procedure in the management of intestinal putrefaction is to remove meat from the diet absolutely. Laxatives in some form are generally indicated, and one of tile best is agar- agar. Of course aloin and cascara are always good laxatives, with an occasional dose of calomel or saline, if such seem indicated. Some of the solid hydrogen peroxid-carrying preparations (magnesium peroxid, calcium peroxide [Footnote: See N. N. R., 1916, p. 232]) have been advised as bowel antiseptics, but they are not more successful than many of the salicylic acid preparations,' and perhaps none is more efficient than salol (phenyl salicylate) in a dose of 0.3 gm. (5 grains), three or four times a day. Washing out the colon with high injections is often of great value, but should not be continued too long lest the rectum become habituated to distention, and bowel movements not take place without an enema.
Lactic acid bacilli, best the Bulgarian, arc often of value in intestinal fermentation. A tablet may be eaten with a little lactose or a small lump of sucrose after each meal. Or yeast may be taken in the forth of brewer's yeast, a tablespoonful in a glass of water, two or three times a day, or one sixth of an ordinary compressed yeast cake dissolved is a glass of 'eater and taken once or twice a day. Or various forms of lactic acid fermented milk may be successful.
Any particular food which causes fermentation in the intestine of the patient should be eliminated from his diet; the patient must be individualized as to fruits, cereals and vegetables, Nit, as stated above, meat should ordinarily be withheld for a time at least.
ALCOHOL
Enough has already been said of the value and limitations of alcohol as a therapeutic agent. As a beverage, when constantly used, it is liable to cause obesity, gastric indigestion, arteriosclerosis, myocardial degeneration, chronic nephritis and cirrhosis of the liver. Its first action is undoubtedly as a food, if not too large amounts are taken, and therefore it is a protector of other food, especially of fat and starch. A habitue, then, especially if he has reached the age at which he normally adds weight, increases his tendency to obesity, and the first mistake in his nutrition is made. If lie takes too much alcohol when he eats or afterward, his digestion will be interfered with. Sooner or later, then, gastritis and stomach indigestion develop, with consequent intestinal indigestion. If lie takes strong alcohol, like whisky, oil an empty stomach, he may sooner or later cause serious disease of the mucous membrane of the stomach, first chronic gastritis, and later atrophy of the glands of the stomach.
Alcohol with meals which contain meat tends to the production of an increased amount of uric acid. Alcohol taken before meals on an empty stomach causes sudden vasodilatation after absorption. It goes quickly to the liver, irritates it, and little by little causes congestions of the liver, so that sooner or later sclerosis of this organ develops.
Alcohol probably causes arteriosclerosis not by its action per se, but indirectly by causing gastro-intestinal indigestion and insufficiency of the liver, as a result of which more toxins circulate in the blood, tending to produce arteriosclerosis. Sooner or later these irritants cause kidney irritation, and chronic interstitial nephritis may develop. just which process becomes the farthest advanced and finally kills the patient is an individual proposition and cannot be foretold. The finale may be cirrhosis of the liver, uremia, arteriosclerosis, apoplexy or myocarditis with dilatation or coronary disease.
While small, more or less undiluted closes of alcohol, as whisky or brandy, may cause quick stimulation of the heart by reflex irritation of the esophagus and stomach, vasodilatation occurs as soon as the alcohol is absorbed, and if large closes are absorbed, vasomotor paresis may occur, temporarily at least.
During acute fever processes with an increased pulse rate, provided shock or collapse is not present, small or medium-sized doses of alcohol, by dilating the peripheral blood vessels and increasing the peripheral circulation, may relieve the tension of the heart and slow the pulse by the equalization of the circulation. Some of this action may be due to the narcotic effect of alcohol on the cerebrum. Alcohol may thus in many instances act for good. Overdoses, as shown by cerebral excitation, flushing of the face and increased pulse rate, will do harm; in fact, many a patient with a serious illness, as typhoid fever or pneumonia, is made delirious by alcohol. Large doses of alcohol in shock or collapse are contraindicated.
Chronic overuse of alcohol may cause chronic myocarditis and fatty degeneration of the heart, with later weakening of the heart muscle and dilatation.
In acute alcohol poisoning the pulse may become very rapid and weak, and the patient may die of heart failure. This is often seen in delirium tremens. The administration in this condition of enormous doses of digitalis by the stomach is inexcusable, and the reason that such patients survive such digitalis poisoning is that the stomach does not absorb during this cardiac prostration.
A treatment as successful as any in this heart weakness in delirium tremens is morphin sulphate, 1/2 grain, and atropin, 1/15 grain, given hypodermically, with the administration of digitalis hypodermically for its later action on the heart. If the heart is contracting very rapidly, an ice-bag over the precordia will often quiet it. If the pulse is very weak, the cerebral sedatives more frequently used in delirium tremens, such as chloral, bromids, paraldehyd, etc., are generally contraindicated. A hot foot-bath and an ice-cap on the head sometimes aid in establishing a more general equalization of the circulation. It may often be necessary to administer strychnin, although if the patient is greatly excited it should be withheld as long as possible. For the same reason camphor, coffee and other cardiac stimulants which cause cerebral excitation should be withheld.
If the patient is in alcoholic coma, the pulse is generally slow, although it may be of low pressure unless the patient is otherwise diseased. Caffein or coffee is here indicated, and the patient should be kept warm lest he lose necessary heat. The stomach should be emptied by an emetic, often best by apomorphin hypodermically, unless the pulse is excessively weak. Strychnin may also be given, and digitalis, hypodermically, if it seems indicated. Camphor is another cardiac and cerebral stimulant that is valuable in these cases.
The treatment of an actual degeneration of the heart from overuse of alcohol is similar to the sane condition from other causes.
CAFFEIN
Caffein can irritate the heart and cause irregularity and tachycardia, especially in certain persons. In fact, some can never take a single cup of coffee without having an attack of palpitation, and many times when coffee and tea have been unsuspected by the patient as the cause of cardiac irritability, their removal from the diet has stopped the symptoms, and the heart has at once acted normally.
Caffein is a stimulant and tonic to the heart, increasing its rapidity and the strength of the contractions. It is also a cerebral stimulant, one of the most active that we possess among the drugs. It increases the blood pressure, principally by stimulating the vasomotor center and by increasing the heart strength. It acts as a diuretic, not only by increasing the circulatory force and blood pressure, but also by acting directly on the kidney. This action on the kidney contraindicates the use of caffein in any form, except in rare instances, when there is acute or chronic nephritis. The increased blood pressure caused by caffein also contraindicates its use when there is hypertension. Caffein first accelerates the heart and later may slow it and strengthen it; but if the dose is large or too frequently repeated, the apex of the heart ceases to relax properly and there is an interference with the contraction of the ventricles, the heart muscle becomes irritable, and a tachycardia may develop.
Therefore when a heart has serious lesions, whether of the myocardium or of the valves, with compensation only sufficient, the action of caffein in any form is contraindicated. The fact that it raises the blood pressure, thus increasing the force against which the heart must act, and that it irritates the heart muscle to more sturdy or irregular contraction, indicates that a patient with a heart lesion or with a nervously irritable heart should never drink tea and coffee or take caffein in any beverage.
Many patients cannot sleep for many hours after they have taken coffee or tea, as the cerebral stimulation of caffein is projected for hours after its ingestion. Caffein does not absorb so quickly and therefore does not act so quickly when taken in the form of tea and coffee as it does when taken as the drug or as a beverage which contains the alkaloid. Persons who are nervously irritable, excited and overstimulated cerebrally, with or without high blood pressure, should not take this cerebral and nervous excitant. This is true in early childhood and in youth, and continues true as age advances, in most persons. It is a crime to present caffein as a soda fountain beverage to children and young persons when the excitement of the age is such as already to overstimulate all nervous systems and all hearts.
A considerable majority of persons over 40 learn that they cannot drink tea or coffee with their evening meal without finding it difficult to sleep. Such patients, of course, should omit this stimulant. Some patients have already recognized this fact and its cause; others must be told. The majority of adults are probably no worse and may be distinctly benefited by the morning cup of coffee and the noon coffee or tea, provided the amount taken is not large. It seems to be a fact that the drinking of coffee is on the increase, especially as to frequency. Certainly the five o'clock tea, with women, is on the increase, and we must deal with one more cerebral and nervous excitant in our consideration of what we shall do to slow this rapid age.
TOBACCO
In spite of the fact that a large number of men today do not smoke, more and more frequently every clinician has a patient who smokes too much. The accuracy with which he investigates these cases depends somewhat on his personal use of tobacco, and therefore his leniency toward a fellow user. Perhaps the percentage of young boys who smoke excessively is larger than the percentage of men. Whether or not the term "excessive" should be applied to any particular amount of tobacco consumed depends entirely on the person. What may be only a large amount for one person may be an excessive amount for another, and even one cigar a day may be too much for a person is as much for him as five or more cigars for another. If one is to judge by the internal revenue report it will appear that, in spite of the public school instruction as to the physiologic action of tobacco and its harm, and in spite of the antitobacco leagues, the consumption of tobacco is enormously on the increase.
Alexander Lambert [Footnote: Lambert, Alexander: Med. Rec., New York, Feb. 13, 1915] in studying periodic drinkers and alcoholics, finds that most patients are suffering from chronic tobacco poisoning, and if they stop their smoking, their drinking sometimes ceases automatically.
Howat [Footnote: Howat: Am. Jour. Physiol., February, 1916.] has shown that nicotin causes serious disturbances of the reflexes of the skin of frogs.
Edmunds and Smith [Footnote: Edmunds and Smith: Jour. Lab. and Clin. Med., February, 1916.] of Ann Arbor find that the livers of dogs have some power of destroying nicotin, but their studies did not show how tolerance to large doses of nicotin is acquired.
Neuhof [Footnote: Neuhof, Selian: Sino-Auricular Block Due to Tobacco Poisoning, Arch. Int. Med., May, 1916, p. 659.] describes a case of sino-auricular heart block due to tobacco poisoning. Intermittent claudication has been noted from the overuse of tobacco, as well as cramps in the muscles and of the legs.
A long series of investigations of the action of tobacco on high school boys and students of colleges seems to show that the age of graduation of smokers is older than that of nonsmokers, and that smokers require disciplinary measures more frequently than nonsmokers.
Some years ago investigation was made by Torrence, of the Illinois State Reformatory, in which there were 278 boys between the ages of 10 and 15 years. Ninety-two percent of these boys had the habit of smoking cigaretes, and 85 percent were classed as cigarete fiends.
The most important action of nicotin is on the circulation. Except during the stage when the person is becoming used to the tobacco habit, in which stage the heart is weakened and the vasomotor pressure lowered by his nausea and prostration, the blood pressure is almost always raised during the period of smoking.
The heart is frequently made more rapid and the blood pressure is certainly raised in an ordinary smoker, while even a novice may get at first an increase, but soon he may become depressed and have a lowering of the pressure. While a moderate smoker may have an increase of 10 mm. in blood pressure, an excessive smoker may show but little change. Perhaps this is because his heart muscle has become weakened. If the person's blood pressure is high, the heart may not increase in rapidity during smoking, and if he is nervous beforehand and is calmed by his tobacco, the pulse will be slowed. It has been shown that the blood pressure and pulse rate may be affected in persons sitting in a smoke-filled room, even though they themselves do not smoke. The length of time the increased pressure continues depends on the person, and it is this diminishing pressure that causes many to take another smoke. The heart is slowed by the action of nicotin on the vagi, as these nerves are stimulated both centrally and peripherally. An overdose of nicotin will paralyze the vagi. The heart action then becomes rapid and perhaps irregular. The heart muscle is first stimulated, and if too large a dose is taken, or too much in twenty-four hours, the muscle becomes depressed and perhaps debilitated. The consequence of such action on the heart muscle, sooner or later, is a dilation of the left ventricle if the overuse of the tobacco is continued.
There is, then, no possible opportunity for any discussion as to the action of tobacco on the circulation. Its action is positive, constantly occurs, and it is always to be considered. The only point at this issue is as to whether or not such an activity is of consequence to the individual. The active principle of tobacco is nicotin, besides which it contains an aromatic camphor-like substance, cellulose, resins, sugar, etc. Other products developed during combustion are carbon monoxid gas, a minute amount of prussic acid and in some varieties a considerable amount of furfurol, a poison. From any one cigar or cigaret but little nicotin is absorbed, else the user would be poisoned. It is generally considered that the best tobacco comes from Cuba, and in the United States from Virginia. While it has not been definitely shown that any stronger narcotic drug occurs in cigarets sold in this country, it still is of great interest to note that a user who becomes habituated to one particular brand will generally have no other, and the excessive cigaret-smoker will generally select the strongest brand of cigarets. The same is almost equally true of cigar smokers.
Besides the effect on the circulation, no one who uses tobacco can deny that it has a soothing, narcotic effect. If it did not have this quieting effect on the nervous system, the increased blood pressure would stimulate the cerebrum. Following a large meal, especially if alcohol has been taken, the blood vessels of the abdomen are more or less dilated by the digestion which is in process. During this period of lassitude it is possible that tobacco, through its contracting power, by raising the blood pressure in the cerebrum to the height at which the patient is accustomed, will stimulate him and cause him to be more able to do active mental work. On the other hand, if a person is nervously tired, irritable, or even muscularly weary, a cigar or several cigarets will increase his blood pressure, take away his circulatory tire, soothe his irritability, and stop temporarily his muscular pains or aches and muscle weariness. If the user of the tobacco has thorough control of his habit, is not working excessively, physically or mentally, has his normal sleep at night and therefore does not become weary from insomnia, he may use tobacco with sense and in the amount and frequency that is more or less harmless as far as he is concerned. If such a man, however, is sleepless, overworked or worried, if he has irregular meals or goes without his food, and has a series of "dinners," or drinks a good deal of alcohol, which gives him vasomotor relaxation, he finds a constantly growing need for a frequent smoke, and soon begins to use tobacco excessively. Or the young boy, stimulated by his associates, smokes cigarets more and more frequently until he uses them to excess.
Just what creates the intense desire for tobacco to the habitue has not been quite decided, but probably it is a combination of the irritation in the throat, especially in inhalers; of the desire for the rhythmic puffing which is a general cerebral and circulatory stimulant; for the increased vasomotor tension which many a patient feels the need of; for the narcotic, sedative, quieting effect on his brain or nerves; for the alluring comfort of watching the smoke curl into the air or for the quiet, contented sociability of smoking with associates. Probably all of these factors enter into the desire to continue the tobacco habit in those who smoke, so to speak, normally.
The abnormal smokers, or those who use tobacco excessively, have a more and more intense nervous desire or physical need of the narcotic or the circulatory stimulant effect of the tobacco, and, consequently, smoke more and more constantly. They are largely inhalers, and frequently cigaret fiends.
It is probable that tobacco smoked slowly and deliberately, when the patient is at rest, and when he is leading a lazy, inactive, nonhustling life, such as occurs in the warmer climates, is much less harmful than in our colder climates, where life is more active. Something at least seems to demonstrate that cigaret smoking is more harmful in our climate than in the tropics.
It has been shown by athletic records and by physicians' examinations of boys and young men in gymnasiums that perfect circulation, perfect respiration and perfect normal growth of the chest are not compatible with the use of tobacco during the growing period. It is also known that tobacco, except possibly in minute quantities, prevents the full athletic power, circulatorily and muscularly, of men who compete in any branch of athletics that requires prolonged effort.
The chronic inflammation of the pharynx and subacute or chronic irritation of the lingual tonsil, causing the tickling, irritating, dry cough of inhalers of tobacco, is too well known, to need description.
Many patients who oversmoke lose their appetites, have disturbances from inhibition of the gastric digestion, and may have an irregular action of the bowels from overstimulation of the intestines, since nicotin increases peristalsis. Such patients look sallow, grow thin and lose weight. These are the kind of patients who smoke while they are dressing in the morning, on the way to their meals, to and from their business, and not only before going to bed, but also after they are in bed. It might be a question as to whether such patients do not need conservators. The use of tobacco in that way is absolutely inexcusable, if the patient is not mentally warped. Cancer of the mouth caused by smoking, blindness from the overuse of tobacco, muscular trembling, tremors, muscle cramps and profuse perspiration of the hands and feet are all recognized as being caused by tobacco poisoning, but such symptoms need not be further described here.
The reason for which physicians most frequently must stop their patients from using tobacco, however, is that the heart itself has become affected by the nicotin action. The heart muscle is never strengthened by nicotin, but is always weakened by excessive indulgence in nicotin, the nerves of the heart being probably disturbed, if not actually injured. The positive symptoms of the overuse of tobacco on the heart are attacks of palpitation on exertion lasting perhaps but a short time, sharp, stinging pains in the region of the heart, less firmness of the apex beat, perhaps irregularity of the heart, and cold hands and feet. Clammy perspiration frequently occurs, more especially on the hands. Before the heart muscle actually weakens, the blood pressure has been increased more or less constantly, perhaps permanently, until such time as the left ventricle fails. The left ventricle from tobacco alone, without any other assignable cause, may become dilated and the mitral valve become insufficient. Before the heart has been injured to this extent the patient learns that he cannot lie on his left side at night without discomfort, that exertion causes palpitation, and that he frequently has an irregularly acting heart and an irregular pulse. He may have cramps in his legs, leg-aches and cold hands and feet from an imperfect systemic circulation. In this condition if tobacco is entirely stopped, and the patient put on digitalis and given the usual careful advice as to eating, drinking, exertion, exercise and rest, such a heart will generally improve, acquire its normal tone, and the mitral valve become again sufficient, and to all intents and purposes the patient becomes well.
On the other hand, a heart under the overuse of tobacco may show no signs of disability, but its reserve energy is impaired and when a serious illness occurs, when an operation with the necessary anesthesia must be endured or when any other sudden strain is put on this heart, it goes to pieces and fails more readily than a heart that has not been so damaged.
If a patient does not show such cardiac weakness but has high tension, the danger of hypertension is increased by his use of tobacco, and certainly in hypertension tobacco should be prohibited. The nicotin is doing two things for him that are serious: first, it is raising his blood pressure, and second, it will sooner or later weaken his heart, which may be weakened by the high blood pressure alone. Nevertheless a patient who is a habitual user of tobacco and has circulatory failure noted more especially about or during convalescence from a serious illness, particularly pneumonia, may best be improved by being allowed to smoke at regular intervals and in the amount that seems sufficient. Such patients sometimes rapidly improve when their previous circulatory weakness has been a subject of serious worry. Even such patients who were actually collapsed have been saved by the use of tobacco.
Whether the tobacco in a given patient shall be withdrawn absolutely, or only modified in amount, depends entirely on the individual case. As stated above, no rule can be laid down as to what is enough and what is too much. Theoretically, two or three cigars a day is moderate, and anything more than five cigars a day is excessive; even one cigar a day may be too much.
MISCELLANEOUS DISTURBANCES
SIMPLE HYPERTROPHY
Like any other muscular tissue, the heart hypertrophies when it has more work to do, provided this work is gradually increased and the heart is not strained by sudden exertion. To hypertrophy properly the heart must go into training. This training is necessary in valvular lesions after acute endocarditis or myocarditis, and is the reason that the return to work must be so carefully graduated. When the heart is hypertrophied sufficiently and compensation is perfect, a reserve power must be developed by such exercise as represented by the Nauheim, Oertel or Schott methods. Anything that increases the peripheral resistance causes the left ventricle to hypertrophy. Anything that increases the resistance in the lungs causes the right ventricle to hypertrophy. The right ventricle hypertrophy caused by mitral lesions has already been sufficiently discussed. The right ventricle also hypertrophies in emphysema, after repeated or prolonged asthma attacks, perhaps generally in neglected pleurisies with effusion, in certain kinds of tuberculosis, and whenever there is increased resistance in the lung tissue or in the chest cavity.
The term "simple hypertrophy" is generally restricted to hypertrophy of the left ventricle without any cardiac excuse—the hypertrophy by hypertension and hard physical labor. It is well recognized that it hypertrophies with hypertension and with chronic interstitial nephritis. It also becomes hypertrophied when the subject drinks largely of liquid—water or beer—and overloads his blood vessels and increases the work the heart must do. This kind of hypertrophy develops slowly because the resistance in the circulation is gradual or intermittent. In athletes and in soldiers who are required to march long distances, hypertrophy generally occurs. This hypertrophy, if slowly developed by gradual, careful training, is normal and compensatory. In effort too long sustained, especially in those untrained in that kind of effort, and even in the trained if the effort is too long continued, the left ventricle will become dilated and the usual symptoms of that condition occur. Such dilatation is always more or less serious. It may be completely recovered from, and it may not be. Therefore it proper understanding of the physics of the circulation by the medical trainer of young men to decide whether or not one should compete in a prolonged effort, as a rowing race, for instance, is essential. It is wrong for any young athlete to have an incurable condition occur from competition.
Sometimes simple hypertrophy of the left ventricle occurs from various kinds of conditions that increase the peripheral circulation. It may occur from oversmoking, from the mertisc of coffee aid tea, from certain kinds of physical labor, or from high tension mental work. It is a part of the story of hypertension. Many times such patients, as well as occasionally trained athletes, and sometimes patients with arteriosclerosis or chronic interstitial nephritis complain of unpleasant throbbing sensations of the heart added to these sensations are a feeling of fulness in the head, flushing of the face, and possibly dizziness—all symptoms not only of hypertension but of too great cardiac activity. Various drugs used to stimulate the heart may cause this condition; when digitalis is given and is not indicated or is given in overdosage, these symptoms occur.
The treatment is simply to lower the diet, cause catharsis, give hot baths, stop the tobacco, tea and coffee, stop the drinking of large amounts of liquid at any one time, and administer bromids and perhaps nitroglycerin, when all the symptoms of simple hypertrophy will, temporarily at least, disappear.
If the heart is enlarged from hypertrophy, if it is the right ventricle that is the most hypertrophied, the apex is not only pushed to the left, but the beat may be rather diffuse, as the enlarged right ventricle will prevent the apex from acting close to the surface of the chest. If the left ventricle is the most hypertrophied, the apex is also to the left, but the impact is very decided and the aortic closure is accentuated.
SIMPLE DILATATION
The term "simple dilatation" may be applied to the dilatation of one or both ventricles when there is no valvular lesion and when the condition may not be called broken compensation. The compensation has been sufficiently discussed. Dilatation of the heart occurs when there is increased resistance to the outflow of the blood front the ventricle, or when the ventricle is overfilled with blood and the muscular wall is unable to compete with the increased work thrown on it. In other words, it may be weakened by myocarditis or fatty degeneration; or it may be a normal heart that has sustained a strain; or it may be a hypertrophied heart that has become weakened. Heart strain is of frequent occurrence. It occurs in young men from severe athletic effort; it occurs in older persons from some severe muscle strain, and it may even occur from so simple an effort as rapid walking by one who is otherwise diseased and whose heart is unable to sustain even this extra work. All of the conditions which have been enumerated as causing simple hypertrophy may have dilatation as a sequence.
Degeneration and disturbance of the heart muscle and cardiac dilatation are found more and more frequently at an earlier age than such conditions should normally occur. Several factors are at work in causing this condition. In the first place, infants and children are now being saved though they may have inherited, or acquired, a diminished withstanding power against disease and against the strain and vicissitudes of adult life. Other very important factors in causing the varied fortes of cardiac disturbances are the rapidity and strenuousness of a business and social life, and competitive athletics in school and college, to say nothing of the oversmoking and excessive dancing of many.
The symptoms of heart strain, if the condition is acute, are those of complete prostration, lowered blood pressure, and a sluggishly, insufficiently acting heart. The heart is found enlarged, the apex beat diffuse and there may be a systolic blow at the mitral or tricuspid valve. Sometimes, although the patient recognizes that he has hurt himself and strained his heart, he is not prostrated, and the full symptoms do not occur for several hours or perhaps several days, although the patient realizes that he is progressively growing weaker and more breathless.
The treatment of this acute or gradual dilatation is absolute rest, with small doses of digitalis gradually but slowly increased, and when the proper dosage is decided on, administered at that dosage but once a day. Cardiac stimulants should not be given, except when faintness or syncope has occurred, and if strychnin is used, it should be in small closes. The heart nay completely recover its usual powers, but subsequently it is more readily strained again by any thoughtless laborious effort. The patient must be warned as carefully as though he had a valvular lesion and had recovered from a broken compensation, and his life should be regulated accordingly, at least for some months. If he is young, and the heart completely and absolutely recovers, the force of the circulation may remain as strong as ever.
Sometimes the heart strain is not so severe, and after a few hours of rest and quiet the patient regains complete cardiac power and is apparently as well as ever; but for some time subsequently his heart more easily suffers strain.
Chronic dilatation of the heart, However, perhaps not sufficient to cause edema, slowly and insidiously develops from persistent strenuosity, or from the insidious irritations caused by absorbed toxins due to intestinal indigestion. A fibrosis of the heart muscle and of the arterioles gradually develops, and the heart muscle sooner or later feels the strain.
It is now very frequent for the physician, in his office, to hear the patient say, "Doctor, I am not sick, but just tired," or, "I get tired on the least exertion." We do not carefully enough note the condition of the heart in our patients who are just "weary," or even when they show beginning cardiovascular-renal trouble.
The primary symptoms of this condition of myocardial weakening are slight dyspnea on least exertion; slight heart pain; slight edema above the ankles; often some increased heart rapidity, sometimes without exertion; after exertion the heart does not immediately return to its normal frequency; slight dyspnea on least exertion after eating; flushing of the face or paleness around the mouth, and more or less dilatation of the veins of the hands. All of these are danger signals which may not be especially noted at first by the individual; but, if he presents himself to his physician, such a story should cause the latter not only to make a thorough physical examination, but also to note particularly the size of the heart.
It a roentgenographic and fluoroscopic examination cannot be made, careful percussion, noting the region of the apex beat, noting the rapidity and action of the heart on sitting, standing and lying, and noting the length of time it takes while resting, after exertion, for the speed of the heart to slacken, will show the heart strength.
Slight dilatation being diagnosed, the treatment is as follows
1. Rest, absolute if needed, and the prohibition of all physical exercise and of all business cares.
2. Reduction in the amount of food, which should be of the simplest. Alcohol should be stopped, and the amount of tea, coffee and tobacco reduced.
3. If medication is needed, strychnin sulphate, 1/40, or 1/30 grain three times a day, acid the tincture of digitalis in from 5 to 10 drop doses twice a day will aid the heart to recover its tone.
Such treatment, when soon applied to a slowly dilating and weakening heart, will establish at least a temporary cure and will greatly- prolong life.
If these hearts are not diagnosed and properly treated, such patients are liable to die suddenly of "heart failure," of acute stomach dilatation, or of angina pectoris. Furthermore, unsuspected dilated hearts are often the cause of sudden deaths during the first forty-eight hours of pneumonia.
Small doses of digitalis are sufficient in these early cases. If more heart pain is caused, the dose of digitalis is too large, or it is contraindicated. Digitalis need not be long given in this condition, especially as Cohen, Fraser and Jamison [Footnote: Cohen, Fraser and Jamison: Jour. Exper. Med., June, 1915.] have shown by the electrocardiograph that its effect on the heart may last twenty- two days, and never lasts a shorter time than five days. They also found that when digitalis is given by the mouth, the electrocardiograph showed that its full activity was not reached until from thirty-six to forty-eight hours after it had been taken. From these scientific findings it will he seen that if it is necessary to give a second course of treatment with digitalis, within two weeks at least from the time the last close of digitalis was given, the dose of this drug should be much smaller than when it was first administered.
Owing to our strenuous life, if persons over 40 would present themselves for a heart and other physical examination once or twice a year there would not be so many sudden deaths of those thought to be in good health. It may be a fact as asserted by many of our best but depressing and pessimistic clinicians, that chronic myocarditis and fatty degeneration of the heart cannot be diagnosed by any special set of symptoms or signs. However, it is a fact that a tolerably accurate estimate of the heart strength can be made by a careful physician, and if danger signals are noted and signs of probable heart weakness are present, life may be long saved by good treatment or management rigorously carried out. The patient must cooperate, and to get him to do this he must be tactfully warned of his condition. Many, such patients, noting their impaired ability, do not seek medical advice, but think all they need is more exercise; hence they walk, golf, and dance to excess and to their cardiac undoing.
HEART IN ACUTE DISEASE
ACUTE DILATATION OF THE HEART IN ACUTE DISEASE
It has for a long time been recognized that in all acute prolonged illness the heart fails, sooner or later, often without its having been attacked by the disease. The prolonged high temperature causes the heart to beat more rapidly, while the toxins produced by the fever process cause muscle degeneration of the heart or a myocarditis, and at the same time the nutrition of the heart becomes impaired either by improper feeding or by the imperfect metabolism of the food given; hence the heart muscle becomes weakened, and cardiac failure or cardiac relaxation or dilatation occurs.
The specific germ of the disease, or the toxin elaborated by this germ, may be especially depressant to the heart, as in diphtheria, or the germ may be particularly prone to locate in the heart, as in rheumatism and pneumonia. But all feverish processes, sooner or later, if sufficiently prolonged, cause serious cardiac weakness and more or less dilatation.
Just exactly what changes take place in the muscle fibers of the heart in some of these fevers has not been decided. Whether an albuminous or parenchymatous degeneration of the muscle fibers or a fatty degeneration occurs, whether there is a real myocarditis that always precedes the dilatation, or whether the weakening and loss of muscle fibers or a diminished power of the muscle fibers occurs without inflammation, dilatation of the heart is always a factor to be considered, and frequently occurs in acute disease.
While it is denied that acute dilatation can occur in a sound heart, at the latter end of a serious illness the heart is never sound, and acute dilatation can most readily occur, though fortunately it is generally preventable. When the dilatation occurs suddenly, as indicated by a fluttering heart, a low tension, rapid pulse, dyspnea and perhaps cyanosis with venous stasis in the capillaries, death is imminent, although such patients may be saved by proper aid. Even when the dilatation is slower, as evidenced by a gradually increasing rapidity of the heart and a gradually lowering blood pressure, and with more evidences of exhaustion, death may occur from such heart failure in spite of all treatment.
Unless a patient dies from accident, as from a hemorrhage, from cerebral pressure or from some organic lesion in acute disease, the physician frequently feels that if he can hold the power and force of the circulation for several hours or days, the patient will recover from the disease, for in most acute diseases the patient has a good chance of recovery if his circulation will only hold out until the crisis has occurred or until the disease is ready to end by lysis. Therefore anything during the disease that tends to sustain, nourish, quiet and guard the heart means so much more chance of recovery, whatever else may or may not be done for the disease itself.
The best treatment of dilatation of the heart in acute disease is its prevention, and to prevent it means to recognize the condition which can cause it. These are
1. Prolonged high temperature. A short-lived temperature, even if high, is not serious. Prolonged temperature of even 103 F. or more is serious, and even that of 101 is serious if too long continued.
2. Exertion and excitement. Every possible means should be inaugurated to prevent muscular exertion and strain of the patient while in bed. Proper help in lifting and turning the patient should be employed, the bed-pan should be used, proper feeding methods should be adopted, and friends should be excluded so that the patient may not be excited by conversation.
3. Bad feeding. The diet should of course be sufficient, for the patient and proper for the disease, but any diet which causes a large amount of gas in the stomach, or tympanites, is harmful to the patient's circulation, to say nothing of any other harm, such as indigestion may do. All of the nutriments needed to keep the body in perfect condition should be given to a patient who is ill; in some manner he should receive the proper amounts of iron, salt, calcium, starch, protein, sugar and water.
4. Intestinal sluggishness. This means not only that tympanites should not be allowed, but also that necessary laxatives should be given. It would be wrong to prostrate a patient with frequent saline purgatives, but the bowels must move at least once every other day, generally better daily; and if the case is one of typhoid fever, they should be moved by some carefully selected laxative, and after the bowels have sufficiently moved, the diarrhea should be stopped by 1/10 grain of morphin, and the next day the bowels properly moved again.
5. Depressant drugs. In this age of cardiac failure, heart depressants of all types, and especially the synthetic products, should be given only with careful judgment, and, never frequently repeated or long continued.
6. Pain. This is one of the most serious depressants a heart has to combat; acute pain must not be allowed, and prolonged subacute pain must be stopped. Even peripheral troublesome irritations must be removed, as tending to wear out a heart which has all of the trouble it can endure.
7. Insomnia. Nothing rests a heart or recuperates a heart more than sleep. Insomnia and acute disease make a combination which will wear a heart out more quickly than any other combination. Sleep, then, must be produced in the best, easiest and safest manner possible.
8. A too speedy return to activity. The convalescence must be prolonged until the heart is able to sustain the work required of it.
The treatment of gradual dilatation in acute disease has been sufficiently discussed under the subject of acute myocarditis. The treatment of acute dilatation is practically the same as the treatment of shock plus whatever treatment must coincidently be given to a patient for the disease with which he is suffering. The treatment of shock will be discussed under a separate heading.
THE HEART IN PNEUMONIA
As pneumonia heads the list of the causes of death in this country, and as the heart fails so quickly, sometimes almost in the beginning in pneumonia, a special discussion of the management of the heart in this disease is justifiable.
Acute lobar pneumonia may kill a patient in twenty-four or forty- eight hours; lie may live for a week and die of heart failure or toxemia, or he may live for several weeks and die of cardiac weakness. If he has double pneumonia be may die almost of suffocation. It is today just as frequent to see a slowly developing and slowly resolving pneumonia as to see one of the sthenic type that attacks one lobe with a rush, has a crisis in a seven, eight or nine days, and then a rapid resolution. In fact the asthenic type, in which different parts of the lung are involved but not necessarily confined to or even equivalent to one lobe, is perhaps the most frequent form of pneumonia.
The serious acute congestion of the lung in sthenic pneumonia in a full-blooded, sturdy person with high tension pulse may be relieved by cardiac sedatives, vasodilators, brisk purging, or by the relaxing effect of antipyretics. Venesection is often the best treatment.
When the sputum almost from the first is tinged with venous blood, or even when the sputum is very bloody, of the prune-juice variety, the heart is in serious trouble, and the right ventricle has generally become weak and possibly dilated. The heart may have been diseased and therefore is unable to overcome the pressure in the lungs during the congestion and consolidation.
There is a great difference in the belief of clinicians as to the best treatment for this condition. It would seem to be a positive indication for digitalis, and good-sized doses of digitalis given correctly, provided always that the preparation of the drug used is active, are good and, many times, efficient treatment. Small doses of strychnin may be of advantage, and camphor may be of value. In the condition described, however, reliance should be placed on digitalis. Later in the disease when the heart begins to fail, perhaps the cause is a myocarditis. In this condition digitalis would not work so well and might do harm. It is quite possible that the difference between digitalis success and digitalis nonsuccess or harm may be as to whether or not a myocarditis is present.
If the expectoration is not of the prune-juice variety and is not more than normally bloody, or in other words, typically pneumonic, and the heart begins to fail, especially if there is no great amount of consolidation, the left ventricle is in trouble as much as the right, if not more. In this case all of the means described above for the prevention of any dilatation of the heart will be means of preventing dilatation from the pneumonia, if possible. The treatment advisable for this gradually failing heart is camphor; strychnin in not too large doses, at the most 1/10 grain hypodermically once in six hours; often ergot intramuscularly once in six hours for two or three doses and then once in twelve hours; plenty of fresh air, or perhaps the inhalation of oxygen. Oxygen does not cure pneumonia, but may relieve a dyspnea and aid a heart until other drugs have time to act.
If there is insomnia, morphin in small doses will not only cause sleep, but also not hurt the heart. In the morning hours of the day the value of caffein as a cardiac stimulant and vasocontractor, either in the form of caffein or as black coffee, should be remembered. Strophanthin may be given intravenously.
One of the greatest cares in the treatment of heart failure in pneumonia should be not to give too many drugs or to do too much.
SHOCK
The treatment of shock will probably always be unsatisfactory as the cause is so varied, and, although circulatory prostration and vasomotor paresis always constitute the acute condition, the physiologic health of the heart and blood vessels is so varied. The patient in shock has low temperature, low blood pressure, and a pulse either rapid or slow, but excessively feeble; the face is pale, the surface of the body cold, and there is more or less clammy perspiration; there may be dyspnea and cardiac anxiety, or the patient may hardly breathe.
An acute cause, as terrible pain or hemorrhage, must of course be stopped immediately. There is more or less anemia of the brain, and therefore the legs and perhaps the lower part of the body should be elevated. It may even be wise to drive the blood from the legs by Esmarch bandages into the rest of the circulation. As there is always more or less paresis and dilatation of the large veins of the splanchnic system, a tight bandage about the abdomen is of great advantage in raising the blood pressure to the safety mark.
Strophanthin, given intravenously, is valuable as a quick restorative of the heart. Digitalis is so slow that it is of little value in an emergency. Camphor hypodermically, and hot liquids (nothing is better than black coffee) given by the mouth, are valuable remedies. The camphor may be repeated frequently. Strychnin, the long-used stimulant, should generally be given, but in not too large doses and not too frequently repeated; 1/30 grain hypodermically is generally a large enough dose; this dose may be repeated in three or four hours, but should ordinarily not be given oftener than once in six hours. An aseptic preparation of ergot given intramuscularly is most efficient in raising the blood pressure and aiding the heart. One dose of brandy or whisky may do no harm. Alcohol, however, should not be pushed.
A most important procedure in all kinds of shock is to surround the patient with dry heat, hot-water bags, and hot flannels; gentle friction of the arms and legs, unless the patient is too exhausted, may be of benefit. A hot-water bag to the heart is always a stimulant. Sometimes friction over the base of the heart in the region of the auricles is of benefit.
If the collapse is not acute and there is gradual profound prostration, or if the patient is improved but still in a serious condition of shock, too energetic measures must not be used; neither should too many drugs be administered, or drugs in too large doses. Absolute quiet and the administration of liquid nourishment in but small amounts at a time are essential.
The hypodermic administration of epinephrin solutions, 1:10,000, or solutions of pituitary extract, 1:10,000, should be considered; they are often valuable.
If the shock occurs in ether or chloroform anesthesia, the vasopressor stimulating effect of inhalations of carbon dioxid gas may be considered, as advised by Henderson."
If the shock is due to hemorrhage and the hemorrhage has ceased, a transfusion of physiologic saline solution is generally indicated. Transfusion of blood under the same conditions is still better. Rarely is transfusion indicated in shock from other causes; it often adds to the difficulty rather than improves it. Occasionally if shock is decided to be due to a toxemia, the toxin may be diluted by the withdrawal of a small amount of blood and the transfusion of an equal amount of saline solution.
ACUTE DILATATION OF THE STOMACH
This condition is not well understood, nor is its frequence known, but not a few instances of shock are due to dilatation of this organ. The shock to the heart may be a reflex one through the pneumogastric nerves.
It perhaps not infrequently occurs after abdominal operations and is more or less serious, the symptoms being persistent vomiting, upper abdominal distention and collapse. The vomiting is of bloody or coffee-ground material.
Sometimes the ordinary treatment of the collapse and washing out the stomach save the patient; at other times the patient with this series of symptoms dies in spite of all treatment.
It has been shown that acute dilatation of the stomach may occur in pneumonia, and may be one of the causes of cardiac collapse in pneumonia.
When the condition is diagnosed, the treatment would be that of shock plus abdominal bandage and washing out the stomach with warm solutions, if the patient is not too collapsed, or at any rate the frequent administration of hot water in small quantities.
Sometimes when the stomach is dilated the pylorus becomes insufficient, and bile regurgitates into the stomach, and is a cause of the profound nausea and vomiting arid the subsequent collapse. In these cases
114. Henderson: Am. Jour. Physiol., February and April, 1909. not infrequently small doses of dilute hydrochloric acid seem to aid the pylorus to maintain its normal contraction, the regurgitation of bile does not take place, and the stomach may soon acquire a more normal muscle tone. Not infrequently when a stomach is in this kind of trouble and all the foods are rejected, and yet the patient seriously needs nourishment, a warm, thin cereal, as oatmeal or gruel or something similar, may be retained. Such patients, as has been repeatedly stated, need starch as soon as possible, lest an acidosis develop.
In these vomiting and collapse cases the hypodermic administration of morphin and atropin will not only stop the vomiting, at least temporarily, but will also give necessary rest. The dose of morphin need not be large, and the atropin may prevent nausea from the drug.
ANESTHESIA IN HEART DISEASE
While no physician likes to give an anesthetic to a patient who has valvular disease of the heart, and no surgeon cares to operate on such a patient unless operation is absolutely necessary, still in valvular disease with good compensation the prognosis of either ether or chloroform narcosis is good.
When there are evidences of chronic myocarditis or a history of broken compensation and the borderline of compensation and dilatation is very narrow, or when there is arteriosclerosis, the danger from an anesthetic and an operation is much greater; it may be serious, in fact, and the decision must be made whether or not the operation is absolutely necessary. Under any circumstances it is understood that the anesthetist must be an expert, as there can be no carelessness and nothing but the best of judgment in causing anesthesia when there is cardiac defect.
The anesthetic to select is a subject for careful decision, as one cannot assert which anesthetic is the best.
While chloroform seems occasionally to cause a fatty degeneration of the heart, or if given too rapidly at first may cause sudden death, especially in cardiac weakness, ether has its disadvantages, owing to the increased tension (especially if there is likely to be much valvular or cerebral excitement), and the greater amount of ether that must be given, with the attendant danger to the kidneys, which may have been disturbed from the cardiac conditions. Generally, however, the better method is perhaps to administer first chloroform to the point of producing sleep and then to change to ether, the first mild chloroform narcosis preventing the ether from causing acute stimulation, and ether being better for the operation, as it is more of a stimulant. Some anesthetists believe that it is better to administer morphin, with perhaps atropin hypodermically before the anesthesia, and then to use ether. Nitrous oxid gas would be contraindicated as tending to increase arterial pressure, and therefore endanger a damaged heart; it is a serious danger to damaged blood vessels.
THE END |
|