p-books.com
Creative Chemistry - Descriptive of Recent Achievements in the Chemical Industries
by Edwin E. Slosson
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

But it must be confessed that man is dreadfully clumsy about it yet. He takes a thousand horsepower engine and an electric furnace at several thousand degrees to get carbon into combination with hydrogen while the little green leaf in the sunshine does it quietly without getting hot about it. Evidently man is working as wastefully as when he used a thousand slaves to drag a stone to the pyramid or burned down a house to roast a pig. Not until his laboratory is as cool and calm and comfortable as the forest and the field can the chemist call himself completely successful.

But in spite of his clumsiness the chemist is actually making things that he wants and cannot get elsewhere. The calcium carbide that he manufactures from inorganic material serves as the raw material for producing all sorts of organic compounds. The electric furnace was first employed on a large scale by the Cowles Electric Smelting and Aluminum Company at Cleveland in 1885. On the dump were found certain lumps of porous gray stone which, dropped into water, gave off a gas that exploded at touch of a match with a splendid bang and flare. This gas was acetylene, and we can represent the reaction thus:

CaC{2} + 2 H{2}O —> C{2}H{2} + CaO{2}H{2}

calcium carbide added to water gives acetylene and slaked lime

We are all familiar with this reaction now, for it is acetylene that gives the dazzling light of the automobiles and of the automatic signal buoys of the seacoast. When burned with pure oxygen instead of air it gives the hottest of chemical flames, hotter even than the oxy-hydrogen blowpipe. For although a given weight of hydrogen will give off more heat when it burns than carbon will, yet acetylene will give off more heat than either of its elements or both of them when they are separate. This is because acetylene has stored up heat in its formation instead of giving it off as in most reactions, or to put it in chemical language, acetylene is an endothermic compound. It has required energy to bring the H and the C together, therefore it does not require energy to separate them, but, on the contrary, energy is released when they are separated. That is to say, acetylene is explosive not only when mixed with air as coal gas is but by itself. Under a suitable impulse acetylene will break up into its original carbon and hydrogen with great violence. It explodes with twice as much force without air as ordinary coal gas with air. It forms an explosive compound with copper, so it has to be kept out of contact with brass tubes and stopcocks. But compressed in steel cylinders and dissolved in acetone, it is safe and commonly used for welding and melting. It is a marvelous though not an unusual sight on city streets to see a man with blue glasses on cutting down through a steel rail with an oxy-acetylene blowpipe as easily as a carpenter saws off a board. With such a flame he can carve out a pattern in a steel plate in a way that reminds me of the days when I used to make brackets with a scroll saw out of cigar boxes. The torch will travel through a steel plate an inch or two thick at a rate of six to ten inches a minute.



The temperatures attainable with various fuels in the compound blowpipe are said to be:

Acetylene with oxygen 7878 deg. F. Hydrogen with oxygen 6785 deg. F. Coal gas with oxygen 6575 deg. F. Gasoline with oxygen 5788 deg. F.

If we compare the formula of acetylene, C{2}H{2} with that of ethylene, C{2}H{4}, or with ethane, C{2}H{6}, we see that acetylene could take on two or four more atoms. It is evidently what the chemists call an "unsaturated" compound, one that has not reached its limit of hydrogenation. It is therefore a very active and energetic compound, ready to pick up on the slightest instigation hydrogen or oxygen or chlorine or any other elements that happen to be handy. This is why it is so useful as a starting point for synthetic chemistry.

To build up from this simple substance, acetylene, the higher compounds of carbon and oxygen it is necessary to call in the aid of that mysterious agency, the catalyst. Acetylene is not always acted upon by water, as we know, for we see it bubbling up through the water when prepared from the carbide. But if to the water be added a little acid and a mercury salt, the acetylene gas will unite with the water forming a new compound, acetaldehyde. We can show the change most simply in this fashion:

C_{2}H_{2} + H_{2}O —> C_{2}H_{4}O

acetylene added to water forms acetaldehyde

Acetaldehyde is not of much importance in itself, but is useful as a transition. If its vapor mixed with hydrogen is passed over finely divided nickel, serving as a catalyst, the two unite and we have alcohol, according to this reaction:

C_{2}H_{4}O + H_{2} —> C_{2}H_{6}O

acetaldehyde added to hydrogen forms alcohol

Alcohol we are all familiar with—some of us too familiar, but the prohibition laws will correct that. The point to be noted is that the alcohol we have made from such unpromising materials as limestone and coal is exactly the same alcohol as is obtained by the fermentation of fruits and grains by the yeast plant as in wine and beer. It is not a substitute or imitation. It is not the wood spirits (methyl alcohol, CH_{4}O), produced by the destructive distillation of wood, equally serviceable as a solvent or fuel, but undrinkable and poisonous.

Now, as we all know, cider and wine when exposed to the air gradually turn into vinegar, that is, by the growth of bacteria the alcohol is oxidized to acetic acid. We can, if we like, dispense with the bacteria and speed up the process by employing a catalyst. Acetaldehyde, which is halfway between alcohol and acid, may also be easily oxidized to acetic acid. The relationship is readily seen by this:

C{2}H{6}O —> CC{2}H{4}O —> C{2}H{4}O{3}

alcohol acetaldehyde acetic acid

Acetic acid, familiar to us in a diluted and flavored form as vinegar, is when concentrated of great value in industry, especially as a solvent. I have already referred to its use in combination with cellulose as a "dope" for varnishing airplane canvas or making non-inflammable film for motion pictures. Its combination with lime, calcium acetate, when heated gives acetone, which, as may be seen from its formula (C{3}H{6}O) is closely related to the other compounds we have been considering, but it is neither an alcohol nor an acid. It is extensively employed as a solvent.

Acetone is not only useful for dissolving solids but it will under pressure dissolve many times its volume of gaseous acetylene. This is a convenient way of transporting and handling acetylene for lighting or welding.

If instead of simply mixing the acetone and acetylene in a solution we combine them chemically we can get isoprene, which is the mother substance of ordinary India rubber. From acetone also is made the "war rubber" of the Germans (methyl rubber), which I have mentioned in a previous chapter. The Germans had been getting about half their supply of acetone from American acetate of lime and this was of course shut off. That which was produced in Germany by the distillation of beech wood was not even enough for the high explosives needed at the front. So the Germans resorted to rotting potatoes—or rather let us say, since it sounds better—to the cultivation of Bacillus macerans. This particular bacillus converts the starch of the potato into two-thirds alcohol and one-third acetone. But soon potatoes got too scarce to be used up in this fashion, so the Germans turned to calcium carbide as a source of acetone and before the war ended they had a factory capable of manufacturing 2000 tons of methyl rubber a year. This shows the advantage of having several strings to a bow.

The reason why acetylene is such an active and acquisitive thing the chemist explains, or rather expresses, by picturing its structure in this shape:

H-C[triple bond]C-H

Now the carbon atoms are holding each other's hands because they have nothing else to do. There are no other elements around to hitch on to. But the two carbons of acetylene readily loosen up and keeping the connection between them by a single bond reach out in this fashion with their two disengaged arms and grab whatever alien atoms happen to be in the vicinity:

H-C-C-H

Carbon atoms belong to the quadrumani like the monkeys, so they are peculiarly fitted to forming chains and rings. This accounts for the variety and complexity of the carbon compounds.

So when acetylene gas mixed with other gases is passed over a catalyst, such as a heated mass of iron ore or clay (hydrates or silicates of iron or aluminum), it forms all sorts of curious combinations. In the presence of steam we may get such simple compounds as acetic acid, acetone and the like. But when three acetylene molecules join to form a ring of six carbon atoms we get compounds of the benzene series such as were described in the chapter on the coal-tar colors. If ammonia is mixed with acetylene we may get rings with the nitrogen atom in place of one of the carbons, like the pyridins and quinolins, pungent bases such as are found in opium and tobacco. Or if hydrogen sulfide is mixed with the acetylene we may get thiophenes, which have sulfur in the ring. So, starting with the simple combination of two atoms of carbon with two of hydrogen, we can get directly by this single process some of the most complicated compounds of the organic world, as well as many others not found in nature.

In the development of the electric furnace America played a pioneer part. Provost Smith of the University of Pennsylvania, who is the best authority on the history of chemistry in America, claims for Robert Hare, a Philadelphia chemist born in 1781, the honor of constructing the first electrical furnace. With this crude apparatus and with no greater electromotive force than could be attained from a voltaic pile, he converted charcoal into graphite, volatilized phosphorus from its compounds, isolated metallic calcium and synthesized calcium carbide. It is to Hare also that we owe the invention in 1801 of the oxy-hydrogen blowpipe, which nowadays is used with acetylene as well as hydrogen. With this instrument he was able to fuse strontia and volatilize platinum.

But the electrical furnace could not be used on a commercial scale until the dynamo replaced the battery as a source of electricity. The industrial development of the electrical furnace centered about the search for a cheap method of preparing aluminum. This is the metallic base of clay and therefore is common enough. But clay, as we know from its use in making porcelain, is very infusible and difficult to decompose. Sixty years ago aluminum was priced at $140 a pound, but one would have had difficulty in buying such a large quantity as a pound at any price. At international expositions a small bar of it might be seen in a case labeled "silver from clay." Mechanics were anxious to get the new metal, for it was light and untarnishable, but the metallurgists could not furnish it to them at a low enough price. In order to extract it from clay a more active metal, sodium, was essential. But sodium also was rare and expensive. In those days a professor of chemistry used to keep a little stick of it in a bottle under kerosene and once a year he whittled off a piece the size of a pea and threw it into water to show the class how it sizzled and gave off hydrogen. The way to get cheaper aluminum was, it seemed, to get cheaper sodium and Hamilton Young Castner set himself at this problem. He was a Brooklyn boy, a student of Chandler's at Columbia. You can see the bronze tablet in his honor at the entrance of Havemeyer Hall. In 1886 he produced metallic sodium by mixing caustic soda with iron and charcoal in an iron pot and heating in a gas furnace. Before this experiment sodium sold at $2 a pound; after it sodium sold at twenty cents a pound.

But although Castner had succeeded in his experiment he was defeated in his object. For while he was perfecting the sodium process for making aluminum the electrolytic process for getting aluminum directly was discovered in Oberlin. So the $250,000 plant of the "Aluminium Company Ltd." that Castner had got erected at Birmingham, England, did not make aluminum at all, but produced sodium for other purposes instead. Castner then turned his attention to the electrolytic method of producing sodium by the use of the power of Niagara Falls, electric power. Here in 1894 he succeeded in separating common salt into its component elements, chlorine and sodium, by passing the electric current through brine and collecting the sodium in the mercury floor of the cell. The sodium by the action of water goes into caustic soda. Nowadays sodium and chlorine and their components are made in enormous quantities by the decomposition of salt. The United States Government in 1918 procured nearly 4,000,000 pounds of chlorine for gas warfare.

The discovery of the electrical process of making aluminum that displaced the sodium method was due to Charles M. Hall. He was the son of a Congregational minister and as a boy took a fancy to chemistry through happening upon an old text-book of that science in his father's library. He never knew who the author was, for the cover and title page had been torn off. The obstacle in the way of the electrolytic production of aluminum was, as I have said, because its compounds were so hard to melt that the current could not pass through. In 1886, when Hall was twenty-two, he solved the problem in the laboratory of Oberlin College with no other apparatus than a small crucible, a gasoline burner to heat it with and a galvanic battery to supply the electricity. He found that a Greenland mineral, known as cryolite (a double fluoride of sodium and aluminum), was readily fused and would dissolve alumina (aluminum oxide). When an electric current was passed through the melted mass the metal aluminum would collect at one of the poles.

In working out the process and defending his claims Hall used up all his own money, his brother's and his uncle's, but he won out in the end and Judge Taft held that his patent had priority over the French claim of Herault. On his death, a few years ago, Hall left his large fortune to his Alma Mater, Oberlin.

Two other young men from Ohio, Alfred and Eugene Cowles, with whom Hall was for a time associated, wore the first to develop the wide possibilities of the electric furnace on a commercial scale. In 1885 they started the Cowles Electric Smelting and Aluminum Company at Lockport, New York, using Niagara power. The various aluminum bronzes made by absorbing the electrolyzed aluminum in copper attracted immediate attention by their beauty and usefulness in electrical work and later the company turned out other products besides aluminum, such as calcium carbide, phosphorus, and carborundum. They got carborundum as early as 1885 but miscalled it "crystallized silicon," so its introduction was left to E.A. Acheson, who was a graduate of Edison's laboratory. In 1891 he packed clay and charcoal into an iron bowl, connected it to a dynamo and stuck into the mixture an electric light carbon connected to the other pole of the dynamo. When he pulled out the rod he found its end encrusted with glittering crystals of an unknown substance. They were blue and black and iridescent, exceedingly hard and very beautiful. He sold them at first by the carat at a rate that would amount to $560 a pound. They were as well worth buying as diamond dust, but those who purchased them must have regretted it, for much finer crystals were soon on sale at ten cents a pound. The mysterious substance turned out to be a compound of carbon and silicon, the simplest possible compound, one atom of each, CSi. Acheson set up a factory at Niagara, where he made it in ten-ton batches. The furnace consisted simply of a brick box fifteen feet long and seven feet wide and deep, with big carbon electrodes at the ends. Between them was packed a mixture of coke to supply the carbon, sand to supply the silicon, sawdust to make the mass porous and salt to make it fusible.



The substance thus produced at Niagara Falls is known as "carborundum" south of the American-Canadian boundary and as "crystolon" north of this line, as "carbolon" by another firm, and as "silicon carbide" by chemists the world over. Since it is next to the diamond in hardness it takes off metal faster than emery (aluminum oxide), using less power and wasting less heat in futile fireworks. It is used for grindstones of all sizes, including those the dentist uses on your teeth. It has revolutionized shop-practice, for articles can be ground into shape better and quicker than they can be cut. What is more, the artificial abrasives do not injure the lungs of the operatives like sandstone. The output of artificial abrasives in the United States and Canada for 1917 was:

Tons Value Silicon carbide 8,323 $1,074,152 Aluminum oxide 48,463 6,969,387

A new use for carborundum was found during the war when Uncle Sam assumed the role of Jove as "cloud-compeller." Acting on carborundum with chlorine—also, you remember, a product of electrical dissolution—the chlorine displaces the carbon, forming silicon tetra-chloride (SiCl_{4}), a colorless liquid resembling chloroform. When this comes in contact with moist air it gives off thick, white fumes, for water decomposes it, giving a white powder (silicon hydroxide) and hydrochloric acid. If ammonia is present the acid will unite with it, giving further white fumes of the salt, ammonium chloride. So a mixture of two parts of silicon chloride with one part of dry ammonia was used in the war to produce smoke-screens for the concealment of the movements of troops, batteries and vessels or put in shells so the outlook could see where they burst and so get the range. Titanium tetra-chloride, a similar substance, proved 50 per cent. better than silicon, but phosphorus—which also we get from the electric furnace—was the most effective mistifier of all.

Before the introduction of the artificial abrasives fine grinding was mostly done by emery, which is an impure form of aluminum oxide found in nature. A purer form is made from the mineral bauxite by driving off its combined water. Bauxite is the ore from which is made the pure aluminum oxide used in the electric furnace for the production of metallic aluminum. Formerly we imported a large part of our bauxite from France, but when the war shut off this source we developed our domestic fields in Arkansas, Alabama and Georgia, and these are now producing half a million tons a year. Bauxite simply fused in the electric furnace makes a better abrasive than the natural emery or corundum, and it is sold for this purpose under the name of "aloxite," "alundum," "exolon," "lionite" or "coralox." When the fused bauxite is worked up with a bonding material into crucibles or muffles and baked in a kiln it forms the alundum refractory ware. Since alundum is porous and not attacked by acids it is used for filtering hot and corrosive liquids that would eat up filter-paper. Carborundum or crystolon is also made up into refractory ware for high temperature work. When the fused mass of the carborundum furnace is broken up there is found surrounding the carborundum core a similar substance though not quite so hard and infusible, known as "carborundum sand" or "siloxicon." This is mixed with fireclay and used for furnace linings.

Many new forms of refractories have come into use to meet the demands of the new high temperature work. The essentials are that it should not melt or crumble at high heat and should not expand and contract greatly under changes of temperature (low coefficient of thermal expansion). Whether it is desirable that it should heat through readily or slowly (coefficient of thermal conductivity) depends on whether it is wanted as a crucible or as a furnace lining. Lime (calcium oxide) fuses only at the highest heat of the electric furnace, but it breaks down into dust. Magnesia (magnesium oxide) is better and is most extensively employed. For every ton of steel produced five pounds of magnesite is needed. Formerly we imported 90 per cent. of our supply from Austria, but now we get it from California and Washington. In 1913 the American production of magnesite was only 9600 tons. In 1918 it was 225,000. Zirconia (zirconium oxide) is still more refractory and in spite of its greater cost zirkite is coming into use as a lining for electric furnaces.

Silicon is next to oxygen the commonest element in the world. It forms a quarter of the earth's crust, yet it is unfamiliar to most of us. That is because it is always found combined with oxygen in the form of silica as quartz crystal or sand. This used to be considered too refractory to be blown but is found to be easily manipulable at the high temperatures now at the command of the glass-blower. So the chemist rejoices in flasks that he can heat red hot in the Bunsen burner and then plunge into ice water without breaking, and the cook can bake and serve in a dish of "pyrex," which is 80 per cent. silica.

At the beginning of the twentieth century minute specimens of silicon were sold as laboratory curiosities at the price of $100 an ounce. Two years later it was turned out by the barrelful at Niagara as an accidental by-product and could not find a market at ten cents a pound. Silicon from the electric furnace appears in the form of hard, glittering metallic crystals.

An alloy of iron and silicon, ferro-silicon, made by heating a mixture of iron ore, sand and coke in the electrical furnace, is used as a deoxidizing agent in the manufacture of steel.

Since silicon has been robbed with difficulty of its oxygen it takes it on again with great avidity. This has been made use of in the making of hydrogen. A mixture of silicon (or of the ferro-silicon alloy containing 90 per cent. of silicon) with soda and slaked lime is inert, compact and can be transported to any point where hydrogen is needed, say at a battle front. Then the "hydrogenite," as the mixture is named, is ignited by a hot iron ball and goes off like thermit with the production of great heat and the evolution of a vast volume of hydrogen gas. Or the ferro-silicon may be simply burned in an atmosphere of steam in a closed tank after ignition with a pinch of gunpowder. The iron and the silicon revert to their oxides while the hydrogen of the water is set free. The French "silikol" method consists in treating silicon with a 40 per cent. solution of soda.

Another source of hydrogen originating with the electric furnace is "hydrolith," which consists of calcium hydride. Metallic calcium is prepared from lime in the electric furnace. Then pieces of the calcium are spread out in an oven heated by electricity and a current of dry hydrogen passed through. The gas is absorbed by the metal, forming the hydride (CaH_{2}). This is packed up in cans and when hydrogen is desired it is simply dropped into water, when it gives off the gas just as calcium carbide gives off acetylene.

This last reaction was also used in Germany for filling Zeppelins. For calcium carbide is convenient and portable and acetylene, when it is once started, as by an electric shock, decomposes spontaneously by its own internal heat into hydrogen and carbon. The latter is left as a fine, pure lampblack, suitable for printer's ink.

Napoleon, who was always on the lookout for new inventions that could be utilized for military purposes, seized immediately upon the balloon as an observation station. Within a few years after the first ascent had been made in Paris Napoleon took balloons and apparatus for generating hydrogen with him on his "archeological expedition" to Egypt in which he hoped to conquer Asia. But the British fleet in the Mediterranean put a stop to this experiment by intercepting the ship, and military aviation waited until the Great War for its full development. This caused a sudden demand for immense quantities of hydrogen and all manner of means was taken to get it. Water is easily decomposed into hydrogen and oxygen by passing an electric current through it. In various electrolytical processes hydrogen has been a wasted by-product since the balloon demand was slight and it was more bother than it was worth to collect and purify the hydrogen. Another way of getting hydrogen in quantity is by passing steam over red-hot coke. This produces the blue water-gas, which contains about 50 per cent. hydrogen, 40 per cent. carbon monoxide and the rest nitrogen and carbon dioxide. The last is removed by running the mixed gases through lime. Then the nitrogen and carbon monoxide are frozen out in an air-liquefying apparatus and the hydrogen escapes to the storage tank. The liquefied carbon monoxide, allowed to regain its gaseous form, is used in an internal combustion engine to run the plant.

There are then many ways of producing hydrogen, but it is so light and bulky that it is difficult to get it where it is wanted. The American Government in the war made use of steel cylinders each holding 161 cubic feet of the gas under a pressure of 2000 pounds per square inch. Even the hydrogen used by the troops in France was shipped from America in this form. For field use the ferro-silicon and soda process was adopted. A portable generator of this type was capable of producing 10,000 cubic feet of the gas per hour.

The discovery by a Kansas chemist of natural sources of helium may make it possible to free ballooning of its great danger, for helium is non-inflammable and almost as light as hydrogen.

Other uses of hydrogen besides ballooning have already been referred to in other chapters. It is combined with nitrogen to form synthetic ammonia. It is combined with oxygen in the oxy-hydrogen blowpipe to produce heat. It is combined with vegetable and animal oils to convert them into solid fats. There is also the possibility of using it as a fuel in the internal combustion engine in place of gasoline, but for this purpose we must find some way of getting hydrogen portable or producible in a compact form.

Aluminum, like silicon, sodium and calcium, has been rescued by violence from its attachment to oxygen and like these metals it reverts with readiness to its former affinity. Dr. Goldschmidt made use of this reaction in his thermit process. Powdered aluminum is mixed with iron oxide (rust). If the mixture is heated at any point a furious struggle takes place throughout the whole mass between the iron and the aluminum as to which metal shall get the oxygen, and the aluminum always comes out ahead. The temperature runs up to some 6000 degrees Fahrenheit within thirty seconds and the freed iron, completely liquefied, runs down into the bottom of the crucible, where it may be drawn off by opening a trap door. The newly formed aluminum oxide (alumina) floats as slag on top. The applications of the thermit process are innumerable. If, for instance, it is desired to mend a broken rail or crank shaft without moving it from its place, the two ends are brought together or fixed at the proper distance apart. A crucible filled with the thermit mixture is set up above the joint and the thermit ignited with a priming of aluminum and barium peroxide to start it off. The barium peroxide having a superabundance of oxygen gives it up readily and the aluminum thus encouraged attacks the iron oxide and robs it of its oxygen. As soon as the iron is melted it is run off through the bottom of the crucible and fills the space between the rail ends, being kept from spreading by a mold of refractory material such as magnesite. The two ends of the rail are therefore joined by a section of the same size, shape, substance and strength as themselves. The same process can be used for mending a fracture or supplying a missing fragment of a steel casting of any size, such as a ship's propeller or a cogwheel.

[Illustration: TYPES OF GAS MASK USED BY AMERICA, THE ALLIES, AND GERMANY DURING THE WAR

In the top row are the American masks, chronologically, from left to right: U.S. Navy mask (obsolete), U.S. Navy mask (final type), U.S. Army box respirator (used throughout the war), U.S.R.F.K. respirator, U.S.A.T. respirator (an all-rubber mask), U.S.K.T. respirator (a sewed fabric mask), and U.S. "Model 1919," ready for production when the armistice was signed. In the middle row, left to right, are: British veil (the original emergency mask used in April, 1915), British P.H. helmet (the next emergency mask), British box respirator (standard British army type), French M2 mask (original type), French Tissot artillery mask, and French A.R.S. mask (latest type). In the front row: the latest German mask, the Russian mask, Italian mask, British motor corps mask, U.S. rear area emergency respirator, and U.S. Connell mask]



For smaller work thermit has two rivals, the oxy-acetylene torch and electric welding. The former has been described and the latter is rather out of the range of this volume, although I may mention that in the latter part of 1918 there was launched from a British shipyard the first rivotless steel vessel. In this the steel plates forming the shell, bulkheads and floors are welded instead of being fastened together by rivets. There are three methods of doing this depending upon the thickness of the plates and the sort of strain they are subject to. The plates may be overlapped and tacked together at intervals by pressing the two electrodes on opposite sides of the same point until the spot is sufficiently heated to fuse together the plates here. Or roller electrodes may be drawn slowly along the line of the desired weld, fusing the plates together continuously as they go. Or, thirdly, the plates may be butt-welded by being pushed together edge to edge without overlapping and the electric current being passed from one plate to the other heats up the joint where the conductivity is interrupted.

It will be observed that the thermit process is essentially like the ordinary blast furnace process of smelting iron and other metals except that aluminum is used instead of carbon to take the oxygen away from the metal in the ore. This has an advantage in case carbon-free metals are desired and the process is used for producing manganese, tungsten, titanium, molybdenum, vanadium and their allows with iron and copper.

During the war thermit found a new and terrible employment, as it was used by the airmen for setting buildings on fire and exploding ammunition dumps. The German incendiary bombs consisted of a perforated steel nose-piece, a tail to keep it falling straight and a cylindrical body which contained a tube of thermit packed around with mineral wax containing potassium perchlorate. The fuse was ignited as the missile was released and the thermit, as it heated up, melted the wax and allowed it to flow out together with the liquid iron through the holes in the nose-piece. The American incendiary bombs were of a still more malignant type. They weighed about forty pounds apiece and were charged with oil emulsion, thermit and metallic sodium. Sodium decomposes water so that if any attempt were made to put out with a hose a fire started by one of these bombs the stream of water would be instantaneously changed into a jet of blazing hydrogen.

Besides its use in combining and separating different elements the electric furnace is able to change a single element into its various forms. Carbon, for instance, is found in three very distinct forms: in hard, transparent and colorless crystals as the diamond, in black, opaque, metallic scales as graphite, and in shapeless masses and powder as charcoal, coke, lampblack, and the like. In the intense heat of the electric arc these forms are convertible one into the other according to the conditions. Since the third form is the cheapest the object is to change it into one of the other two. Graphite, plumbago or "blacklead," as it is still sometimes called, is not found in many places and more rarely found pure. The supply was not equal to the demand until Acheson worked out the process of making it by packing powdered anthracite between the electrodes of his furnace. In this way graphite can be cheaply produced in any desired quantity and quality.

Since graphite is infusible and incombustible except at exceedingly high temperatures, it is extensively used for crucibles and electrodes. These electrodes are made in all sizes for the various forms of electric lamps and furnaces from rods one-sixteenth of an inch in diameter to bars a foot thick and six feet long. It is graphite mixed with fine clay to give it the desired degree of hardness that forms the filling of our "lead" pencils. Finely ground and flocculent graphite treated with tannin may be held in suspension in liquids and even pass through filter-paper. The mixture with water is sold under the name of "aquadag," with oil as "oildag" and with grease as "gredag," for lubrication. The smooth, slippery scales of graphite in suspension slide over each other easily and keep the bearings from rubbing against each other.

The other and more difficult metamorphosis of carbon, the transformation of charcoal into diamond, was successfully accomplished by Moissan in 1894. Henri Moissan was a toxicologist, that is to say, a Professor of Poisoning, in the Paris School of Pharmacy, who took to experimenting with the electric furnace in his leisure hours and did more to demonstrate its possibilities than any other man. With it he isolated fluorine, most active of the elements, and he prepared for the first time in their purity many of the rare metals that have since found industrial employment. He also made the carbides of the various metals, including the now common calcium carbide. Among the problems that he undertook and solved was the manufacture of artificial diamonds. He first made pure charcoal by burning sugar. This was packed with iron in the hollow of a block of lime into which extended from opposite sides the carbon rods connected to the dynamo. When the iron had melted and dissolved all the carbon it could, Moissan dumped it into water or better into melted lead or into a hole in a copper block, for this cooled it most rapidly. After a crust was formed it was left to solidify slowly. The sudden cooling of the iron on the outside subjected the carbon, which was held in solution, to intense pressure and when the bit of iron was dissolved in acid some of the carbon was found to be crystallized as diamond, although most of it was graphite. To be sure, the diamonds were hardly big enough to be seen with the naked eye, but since Moissan's aim was to make diamonds, not big diamonds, he ceased his efforts at this point.

To produce large diamonds the carbon would have to be liquefied in considerable quantity and kept in that state while it slowly crystallized. But that could only be accomplished at a temperature and pressure and duration unattainable as yet. Under ordinary atmospheric pressure carbon passes over from the solid to the gaseous phase without passing through the liquid, just as snow on a cold, clear day will evaporate without melting.

Probably some one in the future will take up the problem where Moissan dropped it and find out how to make diamonds of any size. But it is not a question that greatly interests either the scientist or the industrialist because there is not much to be learned from it and not much to be made out of it. If the inventor of a process for making cheap diamonds could keep his electric furnace secretly in his cellar and market his diamonds cautiously he might get rich out of it, but he would not dare to turn out very large stones or too many of them, for if a suspicion got around that he was making them the price would fall to almost nothing even if he did sell another one. For the high price of the diamond is purely fictitious. It is in the first place kept up by limiting the output of the natural stone by the combination of dealers and, further, the diamond is valued not for its usefulness or beauty but by its real or supposed rarity. Chesterton says: "All is gold that glitters, for the glitter is the gold." This is not so true of gold, for if gold were as cheap as nickel it would be very valuable, since we should gold-plate our machinery, our ships, our bridges and our roofs. But if diamonds were cheap they would be good for nothing except grindstones and drills. An imitation diamond made of heavy glass (paste) cannot be distinguished from the genuine gem except by an expert. It sparkles about as brilliantly, for its refractive index is nearly as high. The reason why it is not priced so highly is because the natural stone has presumably been obtained through the toil and sweat of hundreds of negroes searching in the blue ground of the Transvaal for many months. It is valued exclusively by its cost. To wear a diamond necklace is the same as hanging a certified check for $100,000 by a string around the neck.

Real values are enhanced by reduction in the cost of the price of production. Fictitious values are destroyed by it. Aluminum at twenty-five cents a pound is immensely more valuable to the world than when it is a curiosity in the chemist's cabinet and priced at $160 a pound.

So the scope of the electric furnace reaches from the costly but comparatively valueless diamond to the cheap but indispensable steel. As F.J. Tone says, if the automobile manufacturers were deprived of Niagara products, the abrasives, aluminum, acetylene for welding and high-speed tool steel, a factory now turning out five hundred cars a day would be reduced to one hundred. I have here been chiefly concerned with electricity as effecting chemical changes in combining or separating elements, but I must not omit to mention its rapidly extending use as a source of heat, as in the production and casting of steel. In 1908 there were only fifty-five tons of steel produced by the electric furnace in the United States, but by 1918 this had risen to 511,364 tons. And besides ordinary steel the electric furnace has given us alloys of iron with the once "rare metals" that have created a new science of metallurgy.



CHAPTER XIV

METALS, OLD AND NEW

The primitive metallurgist could only make use of such metals as he found free in nature, that is, such as had not been attacked and corroded by the ubiquitous oxygen. These were primarily gold or copper, though possibly some original genius may have happened upon a bit of meteoric iron and pounded it out into a sword. But when man found that the red ocher he had hitherto used only as a cosmetic could be made to yield iron by melting it with charcoal he opened a new era in civilization, though doubtless the ocher artists of that day denounced him as a utilitarian and deplored the decadence of the times.

Iron is one of the most timid of metals. It has a great disinclination to be alone. It is also one of the most altruistic of the elements. It likes almost every other element better than itself. It has an especial affection for oxygen, and, since this is in both air and water, and these are everywhere, iron is not long without a mate. The result of this union goes by various names in the mineralogical and chemical worlds, but in common language, which is quite good enough for our purpose, it is called iron rust.



Not many of us have ever seen iron, the pure metal, soft, ductile and white like silver. As soon as it is exposed to the air it veils itself with a thin film of rust and becomes black and then red. For that reason there is practically no iron in the world except what man has made. It is rarer than gold, than diamonds; we find in the earth no nuggets or crystals of it the size of the fist as we find of these. But occasionally there fall down upon us out of the clear sky great chunks of it weighing tons. These meteorites are the mavericks of the universe. We do not know where they come from or what sun or planet they belonged to. They are our only visitors from space, and if all the other spheres are like these fragments we know we are alone in the universe. For they contain rustless iron, and where iron does not rust man cannot live, nor can any other animal or any plant.

Iron rusts for the same reason that a stone rolls down hill, because it gets rid of its energy that way. All things in the universe are constantly trying to get rid of energy except man, who is always trying to get more of it. Or, on second thought, we see that man is the greatest spendthrift of all, for he wants to expend so much more energy than he has that he borrows from the winds, the streams and the coal in the rocks. He robs minerals and plants of the energy which they have stored up to spend for their own purposes, just as he robs the bee of its honey and the silk worm of its cocoon.

Man's chief business is in reversing the processes of nature. That is the way he gets his living. And one of his greatest triumphs was when he discovered how to undo iron rust and get the metal out of it. In the four thousand years since he first did this he has accomplished more than in the millions of years before. Without knowing the value of iron rust man could attain only to the culture of the Aztecs and Incas, the ancient Egyptians and Assyrians.

The prosperity of modern states is dependent on the amount of iron rust which they possess and utilize. England, United States, Germany, all nations are competing to see which can dig the most iron rust out of the ground and make out of it railroads, bridges, buildings, machinery, battleships and such other tools and toys and then let them relapse into rust again. Civilization can be measured by the amount of iron rusted per capita, or better, by the amount rescued from rust.

But we are devoting so much space to the consideration of the material aspects of iron that we are like to neglect its esthetic and ethical uses. The beauty of nature is very largely dependent upon the fact that iron rust and, in fact, all the common compounds of iron are colored. Few elements can assume so many tints. Look at the paint pot canons of the Yellowstone. Cheap glass bottles turn out brown, green, blue, yellow or black, according to the amount and kind of iron they contain. We build a house of cream-colored brick, varied with speckled brick and adorned with terra cotta ornaments of red, yellow and green, all due to iron. Iron rusts, therefore it must be painted; but what is there better to paint it with than iron rust itself? It is cheap and durable, for it cannot rust any more than a dead man can die. And what is also of importance, it is a good, strong, clean looking, endurable color. Whenever we take a trip on the railroad and see the miles of cars, the acres of roofing and wall, the towns full of brick buildings, we rejoice that iron rust is red, not white or some leas satisfying color.

We do not know why it is so. Zinc and aluminum are metals very much like iron in chemical properties, but all their salts are colorless. Why is it that the most useful of the metals forms the most beautiful compounds? Some say, Providence; some say, chance; some say nothing. But if it had not been so we would have lost most of the beauty of rocks and trees and human beings. For the leaves and the flowers would all be white, and all the men and women would look like walking corpses. Without color in the flower what would the bees and painters do? If all the grass and trees were white, it would be like winter all the year round. If we had white blood in our veins like some of the insects it would be hard lines for our poets. And what would become of our morality if we could not blush?

"As for me, I thrill to see The bloom a velvet cheek discloses! Made of dust! I well believe it, So are lilies, so are roses."

An etiolated earth would be hardly worth living in.

The chlorophyll of the leaves and the hemoglobin of the blood are similar in constitution. Chlorophyll contains magnesium in place of iron but iron is necessary to its formation. We all know how pale a plant gets if its soil is short of iron. It is the iron in the leaves that enables the plants to store up the energy of the sunshine for their own use and ours. It is the iron in our blood that enables us to get the iron out of iron rust and make it into machines to supplement our feeble hands. Iron is for us internally the carrier of energy, just as in the form of a trolley wire or of a third rail it conveys power to the electric car. Withdraw the iron from the blood as indicated by the pallor of the cheeks, and we become weak, faint and finally die. If the amount of iron in the blood gets too small the disease germs that are always attacking us are no longer destroyed, but multiply without check and conquer us. When the iron ceases to work efficiently we are killed by the poison we ourselves generate.

Counting the number of iron-bearing corpuscles in the blood is now a common method of determining disease. It might also be useful in moral diagnosis. A microscopical and chemical laboratory attached to the courtroom would give information of more value than some of the evidence now obtained. For the anemic and the florid vices need very different treatment. An excess or a deficiency of iron in the body is liable to result in criminality. A chemical system of morals might be developed on this basis. Among the ferruginous sins would be placed murder, violence and licentiousness. Among the non-ferruginous, cowardice, sloth and lying. The former would be mostly sins of commission, the latter, sins of omission. The virtues could, of course, be similarly classified; the ferruginous virtues would include courage, self-reliance and hopefulness; the non-ferruginous, peaceableness, meekness and chastity. According to this ethical criterion the moral man would be defined as one whose conduct is better than we should expect from the per cent. of iron in his blood.

The reason why iron is able to serve this unique purpose of conveying life-giving air to all parts of the body is because it rusts so readily. Oxidation and de-oxidation proceed so quietly that the tenderest cells are fed without injury. The blood changes from red to blue and vice versa with greater ease and rapidity than in the corresponding alternations of social status in a democracy. It is because iron is so rustable that it is so useful. The factories with big scrap-heaps of rusting machinery are making the most money. The pyramids are the most enduring structures raised by the hand of man, but they have not sheltered so many people in their forty centuries as our skyscrapers that are already rusting.

We have to carry on this eternal conflict against rust because oxygen is the most ubiquitous of the elements and iron can only escape its ardent embraces by hiding away in the center of the earth. The united elements, known to the chemist as iron oxide and to the outside world as rust, are among the commonest of compounds and their colors, yellow and red like the Spanish flag, are displayed on every mountainside. From the time of Tubal Cain man has ceaselessly labored to divorce these elements and, having once separated them, to keep them apart so that the iron may be retained in his service. But here, as usual, man is fighting against nature and his gains, as always, are only temporary. Sooner or later his vigilance is circumvented and the metal that he has extricated by the fiery furnace returns to its natural affinity. The flint arrowheads, the bronze spearpoints, the gold ornaments, the wooden idols of prehistoric man are still to be seen in our museums, but his earliest steel swords have long since crumbled into dust.

Every year the blast furnaces of the world release 72,000,000 tons of iron from its oxides and every year a large part, said to be a quarter of that amount, reverts to its primeval forms. If so, then man after five thousand years of metallurgical industry has barely got three years ahead of nature, and should he cease his efforts for a generation there would be little left to show that man had ever learned to extract iron from its ores. The old question, "What becomes of all the pins?" may be as well asked of rails, pipes and threshing machines. The end of all iron is the same. However many may be its metamorphoses while in the service of man it relapses at last into its original state of oxidation. To save a pound of iron from corrosion is then as much a benefit to the world as to produce another pound from the ore. In fact it is of much greater benefit, for it takes four pounds of coal to produce one pound of steel, so whenever a piece of iron is allowed to oxidize it means that four times as much coal must be oxidized in order to replace it. And the beds of coal will be exhausted before the beds of iron ore.

If we are ever to get ahead, if we are to gain any respite from this enormous waste of labor and natural resources, we must find ways of preventing the iron which we have obtained and fashioned into useful tools from being lost through oxidation. Now there is only one way of keeping iron and oxygen from uniting and that is to keep them apart. A very thin dividing wall will serve for the purpose, for instance, a film of oil. But ordinary oil will rub off, so it is better to cover the surface with an oil-like linseed which oxidizes to a hard elastic and adhesive coating. If with linseed oil we mix iron oxide or some other pigment we have a paint that will protect iron perfectly so long as it is unbroken. But let the paint wear off or crack so that air can get at the iron, then rust will form and spread underneath the paint on all sides. The same is true of the porcelain-like enamel with which our kitchen iron ware is nowadays coated. So long as the enamel holds it is all right but once it is broken through at any point it begins to scale off and gets into our food.

Obviously it would be better for some purposes if we could coat our iron with another and less easily oxidized metal than with such dissimilar substances as paint or porcelain. Now the nearest relative to iron is nickel, and a layer of this of any desired thickness may be easily deposited by electricity upon any surface however irregular. Nickel takes a bright polish and keeps it well, so nickel plating has become the favorite method of protection for small objects where the expense is not prohibitive. Copper plating is used for fine wires. A sheet of iron dipped in melted tin comes out coated with a thin adhesive layer of the latter metal. Such tinned plate commonly known as "tin" has become the favorite material for pans and cans. But if the tin is scratched the iron beneath rusts more rapidly than if the tin were not there, for an electrolytic action is set up and the iron, being the negative element of the couple, suffers at the expense of the tin.

With zinc it is quite the opposite. Zinc is negative toward iron, so when the two are in contact and exposed to the weather the zinc is oxidized first. A zinc plating affords the protection of a Swiss Guard, it holds out as long as possible and when broken it perishes to the last atom before it lets the oxygen get at the iron. The zinc may be applied in four different ways. (1) It may be deposited by electrolysis as in nickel plating, but the zinc coating is more apt to be porous. (2) The sheets or articles may be dipped in a bath of melted zinc. This gives us the familiar "galvanized iron," the most useful and when well done the most effective of rust preventives. Besides these older methods of applying zinc there are now two new ones. (3) One is the Schoop process by which a wire of zinc or other metal is fed into an oxy-hydrogen air blast of such heat and power that it is projected as a spray of minute drops with the speed of bullets and any object subjected to the bombardment of this metallic mist receives a coating as thick as desired. The zinc spray is so fine and cool that it may be received on cloth, lace, or the bare hand. The Schoop metallizing process has recently been improved by the use of the electric current instead of the blowpipe for melting the metal. Two zinc wires connected with any electric system, preferably the direct, are fed into the "pistol." Where the wires meet an electric arc is set up and the melted zinc is sprayed out by a jet of compressed air. (4) In the Sherardizing process the articles are put into a tight drum with zinc dust and heated to 800 deg. F. The zinc at this temperature attacks the iron and forms a series of alloys ranging from pure zinc on the top to pure iron at the bottom of the coating. Even if this cracks in part the iron is more or less protected from corrosion so long as any zinc remains. Aluminum is used similarly in the calorizing process for coating iron, copper or brass. First a surface alloy is formed by heating the metal with aluminum powder. Then the temperature is raised to a high degree so as to cause the aluminum on the surface to diffuse into the metal and afterwards it is again baked in contact with aluminum dust which puts upon it a protective plating of the pure aluminum which does not oxidize.



Another way of protecting iron ware from rusting is to rust it. This is a sort of prophylactic method like that adopted by modern medicine where inoculation with a mild culture prevents a serious attack of the disease. The action of air and water on iron forms a series of compounds and mixtures of them. Those that contain least oxygen are hard, black and magnetic like iron itself. Those that have most oxygen are red and yellow powders. By putting on a tight coating of the black oxide we can prevent or hinder the oxidation from going on into the pulverulent stage. This is done in several ways. In the Bower-Barff process the articles to be treated are put into a closed retort and a current of superheated steam passed through for twenty minutes followed by a current of producer gas (carbon monoxide), to reduce any higher oxides that may have been formed. In the Gesner process a current of gasoline vapor is used as the reducing agent. The blueing of watch hands, buckles and the like may be done by dipping them into an oxidizing bath such as melted saltpeter. But in order to afford complete protection the layer of black oxide must be thickened by repeating the process which adds to the time and expense. This causes a slight enlargement and the high temperature often warps the ware so it is not suitable for nicely adjusted parts of machinery and of course tools would lose their temper by the heat.

A new method of rust proofing which is free from these disadvantages is the phosphate process invented by Thomas Watts Coslett, an English chemist, in 1907, and developed in America by the Parker Company of Detroit. This consists simply in dipping the sheet iron or articles into a tank filled with a dilute solution of iron phosphate heated nearly to the boiling point by steam pipes. Bubbles of hydrogen stream off rapidly at first, then slower, and at the end of half an hour or longer the action ceases, and the process is complete. What has happened is that the iron has been converted into a basic iron phosphate to a depth depending upon the density of articles processed. Any one who has studied elementary qualitative analysis will remember that when he added ammonia to his "unknown" solution, iron and phosphoric acid, if present, were precipitated together, or in other words, iron phosphate is insoluble except in acids. Therefore a superficial film of such phosphate will protect the iron underneath except from acids. This film is not a coating added on the outside like paint and enamel or tin and nickel plate. It is therefore not apt to scale off and it does not increase the size of the article. No high heat is required as in the Sherardizing and Bower-Barff processes, so steel tools can be treated without losing their temper or edge.

The deposit consisting of ferrous and ferric phosphates mixed with black iron oxide may be varied in composition, texture and color. It is ordinarily a dull gray and oiling gives a soft mat black more in accordance with modern taste than the shiny nickel plating that delighted our fathers. Even the military nowadays show more quiet taste than formerly and have abandoned their glittering accoutrements.

The phosphate bath is not expensive and can be used continuously for months by adding more of the concentrated solution to keep up the strength and removing the sludge that is precipitated. Besides the iron the solution contains the phosphates of other metals such as calcium or strontium, manganese, molybdenum, or tungsten, according to the particular purpose. Since the phosphating solution does not act on nickel it may be used on articles that have been partly nickel-plated so there may be produced, for instance, a bright raised design against a dull black background. Then, too, the surface left by the Parker process is finely etched so it affords a good attachment for paint or enamel if further protection is needed. Even if the enamel does crack, the iron beneath is not so apt to rust and scale off the coating.

These, then, are some of the methods which are now being used to combat our eternal enemy, the rust that doth corrupt. All of them are useful in their several ways. No one of them is best for all purposes. The claim of "rust-proof" is no more to be taken seriously than "fire-proof." We should rather, if we were finical, have to speak of "rust-resisting" coatings as we do of "slow-burning" buildings. Nature is insidious and unceasing in her efforts to bring to ruin the achievements of mankind and we need all the weapons we can find to frustrate her destructive determination.

But it is not enough for us to make iron superficially resistant to rust from the atmosphere. We should like also to make it so that it would withstand corrosion by acids, then it could be used in place of the large and expensive platinum or porcelain evaporating pans and similar utensils employed in chemical works. This requirement also has been met in the non-corrosive forms of iron, which have come into use within the last five years. One of these, "tantiron," invented by a British metallurgist, Robert N. Lennox, in 1912, contains 15 per cent. of silicon. Similar products are known as "duriron" and "Buflokast" in America, "metilure" in France, "ileanite" in Italy and "neutraleisen" in Germany. It is a silvery-white close-grained iron, very hard and rather brittle, somewhat like cast iron but with silicon as the main additional ingredient in place of carbon. It is difficult to cut or drill but may be ground into shape by the new abrasives. It is rustproof and is not attacked by sulfuric, nitric or acetic acid, hot or cold, diluted or concentrated. It does not resist so well hydrochloric acid or sulfur dioxide or alkalies.

The value of iron lies in its versatility. It is a dozen metals in one. It can be made hard or soft, brittle or malleable, tough or weak, resistant or flexible, elastic or pliant, magnetic or non-magnetic, more or less conductive to electricity, by slight changes of composition or mere differences of treatment. No wonder that the medieval mind ascribed these mysterious transformations to witchcraft. But the modern micrometallurgist, by etching the surface of steel and photographing it, shows it up as composite as a block of granite. He is then able to pick out its component minerals, ferrite, austenite, martensite, pearlite, graphite, cementite, and to show how their abundance, shape and arrangement contribute to the strength or weakness of the specimen. The last of these constituents, cementite, is a definite chemical compound, an iron carbide, Fe_{3}C, containing 6.6 per cent. of carbon, so hard as to scratch glass, very brittle, and imparting these properties to hardened steel and cast iron.

With this knowledge at his disposal the iron-maker can work with his eyes open and so regulate his melt as to cause these various constituents to crystallize out as he wants them to. Besides, he is no longer confined to the alloys of iron and carbon. He has ransacked the chemical dictionary to find new elements to add to his alloys, and some of these rarities have proved to possess great practical value. Vanadium, for instance, used to be put into a fine print paragraph in the back of the chemistry book, where the class did not get to it until the term closed. Yet if it had not been for vanadium steel we should have no Ford cars. Tungsten, too, was relegated to the rear, and if the student remembered it at all it was because it bothered him to understand why its symbol should be W instead of T. But the student of today studies his lesson in the light of a tungsten wire and relieves his mind by listening to a phonograph record played with a "tungs-tone" stylus. When I was assistant in chemistry an "analysis" of steel consisted merely in the determination of its percentage of carbon, and I used to take Saturday for it so I could have time enough to complete the combustion. Now the chemists of a steel works' laboratory may have to determine also the tungsten, chromium, vanadium, titanium, nickel, cobalt, phosphorus, molybdenum, manganese, silicon and sulfur, any or all of them, and be spry about it, because if they do not get the report out within fifteen minutes while the steel is melting in the electrical furnace the whole batch of 75 tons may go wrong. I'm glad I quit the laboratory before they got to speeding up chemists so.

The quality of the steel depends upon the presence and the relative proportions of these ingredients, and a variation of a tenth of 1 per cent. in certain of them will make a different metal out of it. For instance, the steel becomes stronger and tougher as the proportion of nicked is increased up to about 15 per cent. Raising the percentage to 25 we get an alloy that does not rust or corrode and is non-magnetic, although both its component metals, iron and nickel, are by themselves attracted by the magnet. With 36 per cent. nickel and 5 per cent. manganese we get the alloy known as "invar," because it expands and contracts very little with changes of temperature. A bar of the best form of invar will expand less than one-millionth part of its length for a rise of one degree Centigrade at ordinary atmospheric temperature. For this reason it is used in watches and measuring instruments. The alloy of iron with 46 per cent. nickel is called "platinite" because its rate of expansion and contraction is the same as platinum and glass, and so it can be used to replace the platinum wire passing through the glass of an electric light bulb.

A manganese steel of 11 to 14 per cent. is too hard to be machined. It has to be cast or ground into shape and is used for burglar-proof safes and armor plate. Chrome steel is also hard and tough and finds use in files, ball bearings and projectiles. Titanium, which the iron-maker used to regard as his implacable enemy, has been drafted into service as a deoxidizer, increasing the strength and elasticity of the steel. It is reported from France that the addition of three-tenths of 1 per cent. of zirconium to nickel steel has made it more resistant to the German perforating bullets than any steel hitherto known. The new "stainless" cutlery contains 12 to 14 per cent. of chromium.

With the introduction of harder steels came the need of tougher tools to work them. Now the virtue of a good tool steel is the same as of a good man. It must be able to get hot without losing its temper. Steel of the old-fashioned sort, as everybody knows, gets its temper by being heated to redness and suddenly cooled by quenching or plunging it into water or oil. But when the point gets heated up again, as it does by friction in a lathe, it softens and loses its cutting edge. So the necessity of keeping the tool cool limited the speed of the machine.

But about 1868 a Sheffield metallurgist, Robert F. Mushet, found that a piece of steel he was working with did not require quenching to harden it. He had it analyzed to discover the meaning of this peculiarity and learned that it contained tungsten, a rare metal unrecognized in the metallurgy of that day. Further investigation showed that steel to which tungsten and manganese or chromium had been added was tougher and retained its temper at high temperature better than ordinary carbon steel. Tools made from it could be worked up to a white heat without losing their cutting power. The new tools of this type invented by "Efficiency" Taylor at the Bethlehem Steel Works in the nineties have revolutionized shop practice the world over. A tool of the old sort could not cut at a rate faster than thirty feet a minute without overheating, but the new tungsten tools will plow through steel ten times as fast and can cut away a ton of the material in an hour. By means of these high-speed tools the United States was able to turn out five times the munitions that it could otherwise have done in the same time. On the other hand, if Germany alone had possessed the secret of the modern steels no power could have withstood her. A slight superiority in metallurgy has been the deciding factor in many a battle. Those of my readers who have had the advantages of Sunday school training will recall the case described in I Samuel 13:19-22.

By means of these new metals armor plate has been made invulnerable—except to projectiles pointed with similar material. Flying has been made possible through engines weighing no more than two pounds per horse power. The cylinders of combustion engines and the casing of cannon have been made to withstand the unprecedented pressure and corrosive action of the fiery gases evolved within. Castings are made so hard that they cannot be cut—save with tools of the same sort. In the high-speed tools now used 20 or 30 per cent, of the iron is displaced by other ingredients; for example, tungsten from 14 to 25 per cent., chromium from 2 to 7 per cent., vanadium from 1/2 to 1-1/2 per cent., carbon from 6 to 8 per cent., with perhaps cobalt up to 4 per cent. Molybdenum or uranium may replace part of the tungsten.

Some of the newer alloys for high-speed tools contain no iron at all. That which bears the poetic name of star-stone, stellite, is composed of chromium, cobalt and tungsten in varying proportions. Stellite keeps a hard cutting edge and gets tougher as it gets hotter. It is very hard and as good for jewelry as platinum except that it is not so expensive. Cooperite, its rival, is an alloy of nickel and zirconium, stronger, lighter and cheaper than stellite.

Before the war nearly half of the world's supply of tungsten ore (wolframite) came from Burma. But although Burma had belonged to the British for a hundred years they had not developed its mineral resources and the tungsten trade was monopolized by the Germans. All the ore was shipped to Germany and the British Admiralty was content to buy from the Germans what tungsten was needed for armor plate and heavy guns. When the war broke out the British had the ore supply, but were unable at first to work it because they were not familiar with the processes. Germany, being short of tungsten, had to sneak over a little from Baltimore in the submarine Deutschland. In the United States before the war tungsten ore was selling at $6.50 a unit, but by the beginning of 1916 it had jumped to $85 a unit. A unit is 1 per cent. of tungsten trioxide to the ton, that is, twenty pounds. Boulder County, Colorado, and San Bernardino, California, then had mining booms, reminding one of older times. Between May and December, 1918, there was manufactured in the United States more than 45,500,000 pounds of tungsten steel containing some 8,000,000 pounds of tungsten.

If tungsten ores were more abundant and the metal more easily manipulated, it would displace steel for many purposes. It is harder than steel or even quartz. It never rusts and is insoluble in acids. Its expansion by heat is one-third that of iron. It is more than twice as heavy as iron and its melting point is twice as high. Its electrical resistance is half that of iron and its tensile strength is a third greater than the strongest steel. It can be worked into wire .0002 of an inch in diameter, almost too thin to be seen, but as strong as copper wire ten times the size.

The tungsten wires in the electric lamps are about .03 of an inch in diameter, and they give three times the light for the same consumption of electricity as the old carbon filament. The American manufacturers of the tungsten bulb have very appropriately named their lamp "Mazda" after the light god of the Zoroastrians. To get the tungsten into wire form was a problem that long baffled the inventors of the world, for it was too refractory to be melted in mass and too brittle to be drawn. Dr. W.D. Coolidge succeeded in accomplishing the feat in 1912 by reducing the tungstic acid by hydrogen and molding the metallic powder into a bar by pressure. This is raised to a white heat in the electric furnace, taken out and rolled down, and the process repeated some fifty times, until the wire is small enough so it can be drawn at a red heat through diamond dies of successively smaller apertures.

The German method of making the lamp filaments is to squirt a mixture of tungsten powder and thorium oxide through a perforated diamond of the desired diameter. The filament so produced is drawn through a chamber heated to 2500 deg. C. at a velocity of eight feet an hour, which crystallizes the tungsten into a continuous thread.

The first metallic filament used in the electric light on a commercial scale was made of tantalum, the metal of Tantalus. In the period 1905-1911 over 100,000,000 tantalus lamps were sold, but tungsten displaced them as soon as that metal could be drawn into wire.

A recent rival of tungsten both as a filament for lamps and hardener for steel is molybdenum. One pound of this metal will impart more resiliency to steel than three or four pounds of tungsten. The molybdenum steel, because it does not easily crack, is said to be serviceable for armor-piercing shells, gun linings, air-plane struts, automobile axles and propeller shafts. In combination with its rival as a tungsten-molybdenum alloy it is capable of taking the place of the intolerably expensive platinum, for it resists corrosion when used for spark plugs and tooth plugs. European steel men have taken to molybdenum more than Americans. The salts of this metal can be used in dyeing and photography.

Calcium, magnesium and aluminum, common enough in their compounds, have only come into use as metals since the invention of the electric furnace. Now the photographer uses magnesium powder for his flashlight when he wants to take a picture of his friends inside the house, and the aviator uses it when he wants to take a picture of his enemies on the open field. The flares prepared by our Government for the war consist of a sheet iron cylinder, four feet long and six inches thick, containing a stick of magnesium attached to a tightly rolled silk parachute twenty feet in diameter when expanded. The whole weighed 32 pounds. On being dropped from the plane by pressing a button, the rush of air set spinning a pinwheel at the bottom which ignited the magnesium stick and detonated a charge of black powder sufficient to throw off the case and release the parachute. The burning flare gave off a light of 320,000 candle power lasting for ten minutes as the parachute slowly descended. This illuminated the ground on the darkest night sufficiently for the airman to aim his bombs or to take photographs.

The addition of 5 or 10 per cent. of magnesium to aluminum gives an alloy (magnalium) that is almost as light as aluminum and almost as strong as steel. An alloy of 90 per cent. aluminum and 10 per cent. calcium is lighter and harder than aluminum and more resistant to corrosion. The latest German airplane, the "Junker," was made entirely of duralumin. Even the wings were formed of corrugated sheets of this alloy instead of the usual doped cotton-cloth. Duralumin is composed of about 85 per cent. of aluminum, 5 per cent. of copper, 5 per cent. of zinc and 2 per cent. of tin.

When platinum was first discovered it was so cheap that ingots of it were gilded and sold as gold bricks to unwary purchasers. The Russian Government used it as we use nickel, for making small coins. But this is an exception to the rule that the demand creates the supply. Platinum is really a "rare metal," not merely an unfamiliar one. Nowhere except in the Urals is it found in quantity, and since it seems indispensable in chemical and electrical appliances, the price has continually gone up. Russia collapsed into chaos just when the war work made the heaviest demand for platinum, so the governments had to put a stop to its use for jewelry and photography. The "gold brick" scheme would now have to be reversed, for gold is used as a cheaper metal to "adulterate" platinum. All the members of the platinum family, formerly ignored, were pressed into service, palladium, rhodium, osmium, iridium, and these, alloyed with gold or silver, were employed more or less satisfactorily by the dentist, chemist and electrician as substitutes for the platinum of which they had been deprived. One of these alloys, composed of 20 per cent. palladium and 80 per cent. gold, and bearing the telescoped name of "palau" (palladium au-rum) makes very acceptable crucibles for the laboratory and only costs half as much as platinum. "Rhotanium" is a similar alloy recently introduced. The points of our gold pens are tipped with an osmium-iridium alloy. It is a pity that this family of noble metals is so restricted, for they are unsurpassed in tenacity and incorruptibility. They could be of great service to the world in war and peace. As the "Bad Child" says in his "Book of Beasts":

I shoot the hippopotamus with bullets made of platinum, Because if I use leaden ones, his hide is sure to flatten 'em.

Along in the latter half of the last century chemists had begun to perceive certain regularities and relationships among the various elements, so they conceived the idea that some sort of a pigeon-hole scheme might be devised in which the elements could be filed away in the order of their atomic weights so that one could see just how a certain element, known or unknown, would behave from merely observing its position in the series. Mendeleef, a Russian chemist, devised the most ingenious of such systems called the "periodic law" and gave proof that there was something in his theory by predicting the properties of three metallic elements, then unknown but for which his arrangement showed three empty pigeon-holes. Sixteen years later all three of these predicted elements had been discovered, one by a Frenchman, one by a German and one by a Scandinavian, and named from patriotic impulse, gallium, germanium and scandium. This was a triumph of scientific prescience as striking as the mathematical proof of the existence of the planet Neptune by Leverrier before it had been found by the telescope.

But although Mendeleef's law told "the truth," it gradually became evident that it did not tell "the whole truth and nothing but the truth," as the lawyers put it. As usually happens in the history of science the hypothesis was found not to explain things so simply and completely as was at first assumed. The anomalies in the arrangement did not disappear on closer study, but stuck out more conspicuously. Though Mendeleef had pointed out three missing links, he had failed to make provision for a whole group of elements since discovered, the inert gases of the helium-argon group. As we now know, the scheme was built upon the false assumptions that the elements are immutable and that their atomic weights are invariable.

The elements that the chemists had most difficulty in sorting out and identifying were the heavy metals found in the "rare earths." There were about twenty of them so mixed up together and so much alike as to baffle all ordinary means of separating them. For a hundred years chemists worked over them and quarreled over them before they discovered that they had a commercial value. It was a problem as remote from practicality as any that could be conceived. The man in the street did not see why chemists should care whether there were two didymiums any more than why theologians should care whether there were two Isaiahs. But all of a sudden, in 1885, the chemical puzzle became a business proposition. The rare earths became household utensils and it made a big difference with our monthly gas bills whether the ceria and the thoria in the burner mantles were absolutely pure or contained traces of some of the other elements that were so difficult to separate.

This sudden change of venue from pure to applied science came about through a Viennese chemist, Dr. Carl Auer, later and in consequence known as Baron Auer von Welsbach. He was trying to sort out the rare earths by means of the spectroscopic method, which consists ordinarily in dipping a platinum wire into a solution of the unknown substance and holding it in a colorless gas flame. As it burns off, each element gives a characteristic color to the flame, which is seen as a series of lines when looked at through the spectroscope. But the flash of the flame from the platinum wire was too brief to be studied, so Dr. Auer hit upon the plan of soaking a thread in the liquid and putting this in the gas jet. The cotton of course burned off at once, but the earths held together and when heated gave off a brilliant white light, very much like the calcium or limelight which is produced by heating a stick of quicklime in the oxy-hydrogen flame. But these rare earths do not require any such intense heat as that, for they will glow in an ordinary gas jet.

So the Welsbach mantle burner came into use everywhere and rescued the coal gas business from the destruction threatened by the electric light. It was no longer necessary to enrich the gas with oil to make its flame luminous, for a cheaper fuel gas such as is used for a gas stove will give, with a mantle, a fine white light of much higher candle power than the ordinary gas jet. The mantles are knit in narrow cylinders on machines, cut off at suitable lengths, soaked in a solution of the salts of the rare earths and dried. Artificial silk (viscose) has been found better than cotton thread for the mantles, for it is solid, not hollow, more uniform in quality and continuous instead of being broken up into one-inch fibers. There is a great deal of difference in the quality of these mantles, as every one who has used them knows. Some that give a bright glow at first with the gas-cock only half open will soon break up or grow dull and require more gas to get any kind of a light out of them. Others will last long and grow better to the last. Slight impurities in the earths or the gas will speedily spoil the light. The best results are obtained from a mixture of 99 parts thoria and 1 part ceria. It is the ceria that gives the light, yet a little more of it will lower the luminosity.

The non-chemical reader is apt to be confused by the strange names and their varied terminations, but he need not be when he learns that the new metals are given names ending in -um, such as sodium, cerium, thorium, and that their oxides (compounds with oxygen, the earths) are given the termination -a, like soda, ceria, thoria. So when he sees a name ending in -um let him picture to himself a metal, any metal since they mostly look alike, lead or silver, for example. And when he comes across a name ending in -a he may imagine a white powder like lime. Thorium, for instance, is, as its name implies, a metal named after the thunder god Thor, to whom we dedicate one day in each week, Thursday. Cerium gets its name from the Roman goddess of agriculture by way of the asteroid.

The chief sources of the material for the Welsbach burners is monazite, a glittering yellow sand composed of phosphate of cerium with some 5 per cent. of thorium. In 1916 the United States imported 2,500,000 pounds of monazite from Brazil and India, most of which used to go to Germany. In 1895 we got over a million and a half pounds from the Carolinas, but the foreign sand is richer and cheaper. The price of the salts of the rare metals fluctuates wildly. In 1895 thorium nitrate sold at $200 a pound; in 1913 it fell to $2.60, and in 1916 it rose to $8.

Since the monazite contains more cerium than thorium and the mantles made from it contain more thorium than cerium, there is a superfluity of cerium. The manufacturers give away a pound of cerium salts with every purchase of a hundred pounds of thorium salts. It annoyed Welsbach to see the cerium residues thrown away and accumulating around his mantle factory, so he set out to find some use for it. He reduced the mixed earths to a metallic form and found that it gave off a shower of sparks when scratched. An alloy of cerium with 30 or 35 per cent. of iron proved the best and was put on the market in the form of automatic lighters. A big business was soon built up in Austria on the basis of this obscure chemical element rescued from the dump-heap. The sale of the cerite lighters in France threatened to upset the finances of the republic, which derived large revenue from its monopoly of match-making, so the French Government imposed a tax upon every man who carried one. American tourists who bought these lighters in Germany used to be much annoyed at being held up on the French frontier and compelled to take out a license. During the war the cerium sparklers were much used in the trenches for lighting cigarettes, but—as those who have seen "The Better 'Ole" will know—they sometimes fail to strike fire. Auer-metal or cerium-iron alloy was used in munitions to ignite hand grenades and to blazon the flight of trailer shells. There are many other pyrophoric (light-producing) alloys, including steel, which our ancestors used with flint before matches and percussion caps were invented.

There are more than fifty metals known and not half of them have come into common use, so there is still plenty of room for the expansion of the science of metallurgy. If the reader has not forgotten his arithmetic of permutations he can calculate how many different alloys may be formed by varying the combinations and proportions of these fifty. We have seen how quickly elements formerly known only to chemists—and to some of them known only by name—have become indispensable in our daily life. Any one of those still unutilized may be found to have peculiar properties that fit it for filling a long unfelt want in modern civilization.

Who, for instance, will find a use for gallium, the metal of France? It was described in 1869 by Mendeleef in advance of its advent and has been known in person since 1875, but has not yet been set to work. It is such a remarkable metal that it must be good for something. If you saw it in a museum case on a cold day you might take it to be a piece of aluminum, but if the curator let you hold it in your hand—which he won't—it would melt and run over the floor like mercury. The melting point is 87 deg. Fahr. It might be used in thermometers for measuring temperatures above the boiling point of mercury were it not for the peculiar fact that gallium wets glass so it sticks to the side of the tube instead of forming a clear convex curve on top like mercury.

Then there is columbium, the American metal. It is strange that an element named after Columbia should prove so impractical. Columbium is a metal closely resembling tantalum and tantalum found a use as electric light filaments. A columbium lamp should appeal to our patriotism.

The so-called "rare elements" are really abundant enough considering the earth's crust as a whole, though they are so thinly scattered that they are usually overlooked and hard to extract. But whenever one of them is found valuable it is soon found available. A systematic search generally reveals it somewhere in sufficient quantity to be worked. Who, then, will be the first to discover a use for indium, germanium, terbium, thulium, lanthanum, neodymium, scandium, samarium and others as unknown to us as tungsten was to our fathers?

As evidence of the statement that it does not matter how rare an element may be it will come into common use if it is found to be commonly useful, we may refer to radium. A good rich specimen of radium ore, pitchblende, may contain as much, as one part in 4,000,000. Madame Curie, the brilliant Polish Parisian, had to work for years before she could prove to the world that such an element existed and for years afterwards before she could get the metal out. Yet now we can all afford a bit of radium to light up our watch dials in the dark. The amount needed for this is infinitesimal. If it were more it would scorch our skins, for radium is an element in eruption. The atom throws off corpuscles at intervals as a Roman candle throws off blazing balls. Some of these particles, the alpha rays, are atoms of another element, helium, charged with positive electricity and are ejected with a velocity of 18,000 miles a second. Some of them, the beta rays, are negative electrons, only about one seven-thousandth the size of the others, but are ejected with almost the speed of light, 186,000 miles a second. If one of the alpha projectiles strikes a slice of zinc sulfide it makes a splash of light big enough to be seen with a microscope, so we can now follow the flight of a single atom. The luminous watch dials consist of a coating of zinc sulfide under continual bombardment by the radium projectiles. Sir William Crookes invented this radium light apparatus and called it a "spinthariscope," which is Greek for "spark-seer."

Evidently if radium is so wasteful of its substance it cannot last forever nor could it have forever existed. The elements then ate not necessarily eternal and immutable, as used to be supposed. They have a natural length of life; they are born and die and propagate, at least some of them do. Radium, for instance, is the offspring of ionium, which is the great-great-grandson of uranium, the heaviest of known elements. Putting this chemical genealogy into biblical language we might say: Uranium lived 5,000,000,000 years and begot Uranium X1, which lived 24.6 days and begot Uranium X2, which lived 69 seconds and begot Uranium 2, which lived 2,000,000 years and begot Ionium, which lived 200,000 years and begot Radium, which lived 1850 years and begot Niton, which lived 3.85 days and begot Radium A, which lived 3 minutes and begot Radium B, which lived 26.8 minutes and begot Radium C, which lived 19.5 minutes and begot Radium D, which lived 12 years and begot Radium E, which lived 5 days and begot Polonium, which lived 136 days and begot Lead.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse