|
On examining the closely allied species, local forms, and varieties distributed over the Indian and Malayan regions, I find that larger or smaller districts, or even single islands, give a special character to the majority of their Papilionidae. For instance: 1. The species of the Indian region (Sumatra, Java, and Borneo) are almost invariably smaller than the allied species inhabiting Celebes and the Moluccas; 2. The species of New Guinea and Australia are also, though in a less degree, smaller than the nearest species or varieties of the Moluccas; 3. In the Moluccas themselves the species of Amboyna are the largest; 4. The species of Celebes equal or even surpass in size those of Amboyna; 5. The species and varieties of Celebes possess a striking character in the form of the anterior wings, different from that of the allied species and varieties of all the surrounding islands; 6. Tailed species in India or the Indian region become tailless as they spread eastward through the archipelago; 7. In Amboyna and Ceram the females of several species are dull-coloured, while in the adjacent islands they are more brilliant.
Local variation of Size.—Having preserved the finest and largest specimens of Butterflies in my own collection, and having always taken for comparison the largest specimens of the same sex, I believe that the tables I now give are sufficiently exact. The differences of expanse of wings are in most cases very great, and are much more conspicuous in the specimens themselves than on paper. It will be seen that no less than fourteen Papilionidae inhabiting Celebes and the Moluccas are from one-third to one-half greater in extent of wing than the allied species representing them in Java, Sumatra, and Borneo. Six species inhabiting Amboyna are larger than the closely allied forms of the northern Moluccas and New Guinea by about one-sixth. These include almost every case in which closely allied species can be compared.
Species of Papilionidae of the Closely allied species of Java and Moluccas and Celebes (large). the Indian region (small).
Expanse. Expanse. Inches. Inches. Ornithoptera (Helena { O. Pompeus 5.8 Amboyna) 7.6 { O. Amphrisius 6.0 Papilio Adamantius } (Celebes) 5.8 } P. Lorquinianus } P. Peranthus 3.8 (Moluccas) 4.8 } P. Blumei (Celebes) 5.4 P. Brama 4.0 P. Alphenor (Celebes) 4.8 P. Theseus 3.6 P. Gigon (Celebes) 5.4 P. Demolion 4.0 P. Deucalion (Celebes) 4.6 P. Macareus 3.7 P. Agamemnon, var. (Celebes) 4.4 P. Agamemnon, var. 3.8 P. Eurypilus (Moluccas) 4.0 } P. Jason 3.4 P. Telephus (Celebes) 4.3 } P. AEgisthus (Moluccas) 4.4 P. Rama 3.2 P. Milon (Celebes) 4.4 P. Sarpedon 3.8 P. Androcles (Celebes) 4.8 P. Antiphates 3.7 P. Polyphontes (Celebes) 4.6 P. Diphilus 3.9 Leptocircus Ennius (Celebes) 2.0 L. Meges 1.8
Species inhabiting Amboyna Allied species of New Guinea and (large). the North Moluccas (smaller).
Papilio Ulysses 6.1 { P. Autolycus 5.2 { P. Telegonus 4.0 P. Polydorus 4.9 P. Leodamas 4.0 P. Deiphobus 6.8 P. Deiphontes 5.8 P. Gambrisius 6.4 { P. Ormenus 5.6 { P. Tydeus 6.0 P. Codrus 5.1 P. Codrus, var. papuensis 4.3 Ornithoptera Priamus, Ornithoptera Poseidon, (male) 8.3 (male) 7.0
Local variation of Form.—The differences of form are equally clear. Papilio Pammon everywhere on the continent is tailed in both sexes. In Java, Sumatra, and Borneo, the closely allied P. Theseus has a very short tail, or tooth only, in the male, while in the females the tail is retained. Further east, in Celebes and the South Moluccas, the hardly separable P. Alphenor has quite lost the tail in the male, while the female retains it, but in a narrower and less spatulate form. A little further, in Gilolo, P. Nicanor has completely lost the tail in both sexes.
Papilio Agamemnon exhibits a somewhat similar series of changes. In India it is always tailed; in the greater part of the archipelago it has a very short tail; while far east, in New Guinea and the adjacent islands, the tail has almost entirely disappeared.
In the Polydorus-group two species, P. Antiphus and P. Diphilus, inhabiting India and the Indian region, are tailed, while the two which take their place in the Moluccas, New Guinea, and Australia, P. Polydorus and P. Leodamas, are destitute of tail, the species furthest east having lost this ornament the most completely.
Western species, Tailed. Allied Eastern species not Tailed.
Papilio Pammon (India) P. Thesus (Islands) minute tail. P. Agamemnon, var. (India) P. Agamemnon, var. (Islands). P. Antiphus (India, Java) P. Polydorus (Moluccas). P. Diphilus (India, Java) P. Leodamas (New Guinea).
The most conspicuous instance of local modification of form, however, is exhibited in the island of Celebes, which in this respect, as in some others, stands alone and isolated in the whole archipelago. Almost every species of Papilio inhabiting Celebes has the wings of a peculiar shape, which distinguishes them at a glance from the allied species of every other island. This peculiarity consists, first, in the upper wings being generally more elongate and falcate; and secondly, in the costa or anterior margin being much more curved, and in most instances exhibiting near the base an abrupt bend or elbow, which in some species is very conspicuous. This peculiarity is visible, not only when the Celebesian species are compared with their small-sized allies of Java and Borneo, but also, and in an almost equal degree, when the large forms of Amboyna and the Moluccas are the objects of comparison, showing that this is quite a distinct phenomenon from the difference of size which has just been pointed out.
In the following Table I have arranged the chief Papilios of Celebes in the order in which they exhibit this characteristic form most prominently.
Papilios of Celebes, having the Closely allied Papilios of the wings falcate or with abruptly surrounding islands, with less curved costa. wings and slightly falcate curved costa.
1. P. Gigon P. Demolion (Java). 2. P. Pamphylus P. Jason (Sumatra). 3. P. Milon P. Sarpedon (Moluccas, Java). 4. P. Agamemnon, var. P. Agamemnon, var. (Borneo). 5. P. Adamantius P. Peranthus (Java). 6. P. Ascalaphus P. Deiphontes (Gilolo). 7. P. Sataspes P. Helenus (Java). 8. P. Blumei P. Brama (Sumatra). 9. P. Androcles P. Antiphates (Borneo). 10. P. Rhesus P. Aristaeus (Moluccas). 11. P. Theseus, var. (male) P. Thesus (male) (Java). 12. P. Codrus, var. P. Codrus (Moluccas). 13. P. Encelades P. Leucothoe (Malacca).
It thus appears that every species of Papilio exhibits this peculiar form in a greater or less degree, except one, P. Polyphontes, allied to P. Diphilus of India and P. Polydorus of the Moluccas. This fact I shall recur to again, as I think it helps us to understand something of the causes that may have brought about the phenomenon we are considering. Neither do the genera Ornithoptera and Leptocircus exhibit any traces of this peculiar form. In several other families of Butterflies this characteristic form reappears in a few species. In the Pieridae the following species, all peculiar to Celebes, exhibit it distinctly:—
1. Pieris Eperia compared with P. Coronis (Java). 2. Thyca Zebuda " " Thyca Descombesi (India). 3. T. Rosenbergii " " T. Hyparete (Java). 4. Tachyris Hombronii " " T. Lyncida. 5. T. Lycaste " " T. Lyncida. 6. T. Zarinda " " T. Nero (Malacca). 7. T. Ithome " " T. Nephele. 8. Eronia tritaea " " Eronia Valeria (Java). 9. Iphias Glaucippe, var. " " Iphias Glaucippe (Java).
The species of Terias, one or two Pieris, and the genus Callidryas do not exhibit any perceptible change of form.
In the other families there are but few similar examples. The following are all that I can find in my collection:—
Cethosia AEole compared with Cethosia Biblis (Java). Eurhinia megalonice " " Eurhinia Polynice (Borneo). Limenitis Limire " " Limenitis Procris (Java). Cynthia Arsinoe, var. " " Cynthia Arsinoe (Java, Sumatra, Borneo)
All these belong to the family of the Nymphalidae. Many other genera of this family, as Diadema, Adolias, Charaxes, and Cyrestis, as well as the entire families of the Danaidae, Satyridae, Lycaenidae, and Hesperidae, present no examples of this peculiar form of the upper wing in the Celebesian species.
Local variations of Colour.—In Amboyna and Ceram the female of the large and handsome Ornithoptera Helena has the large patch on the hind wings constantly of a pale dull ochre or buff colour, while in the scarcely distinguishable varieties from the adjacent islands of Bouru and New Guinea, it is of a golden yellow, hardly inferior in brilliancy to its colour in the male sex. The female of Ornithoptera Priamus (inhabiting Amboyna and Ceram exclusively) is of a pale dusky brown tint, while in all the allied species the same sex is nearly black with contrasted white markings. As a third example, the female of Papilio Ulysses has the blue colour obscured by dull and dusky tints, while in the closely allied species from the surrounding islands, the females are of almost as brilliant an azure blue as the males. A parallel case to this is the occurrence, in the small islands of Goram, Matabello, Ke, and Aru, of several distinct species of Euploea and Diadema, having broad bands or patches of white, which do not exist in any of the allied species from the larger islands. These facts seem to indicate some local influence in modifying colour, as unintelligible and almost as remarkable as that which has resulted in the modifications of form previously described.
Remarks on the facts of Local variation.
The facts now brought forward seem to me of the highest interest. We see that almost all the species in two important families of the Lepidoptera (Papilionidae and Pieridae) acquire, in a single island, a characteristic modification of form distinguishing them from the allied species and varieties of all the surrounding islands. In other equally extensive families no such change occurs, except in one or two isolated species. However we may account for these phenomena, or whether we may be quite unable to account for them, they furnish, in my opinion, a strong corroborative testimony in favour of the doctrine of the origin of species by successive small variations; for we have here slight varieties, local races, and undoubted species, all modified in exactly the same manner, indicating plainly a common cause producing identical results. On the generally received theory of the original distinctness and permanence of species, we are met by this difficulty: one portion of these curiously modified forms are admitted to have been produced by variation and some natural action of local conditions; whilst the other portion, differing from the former only in degree, and connected with them by insensible gradations, are said to have possessed this peculiarity of form at their first creation, or to have derived it from unknown causes of a totally distinct nature. Is not the a priori evidence in favour of an identity of the causes that have produced such similar results? and have we not a right to call upon our opponents for some proofs of their own doctrine, and for an explanation of its difficulties, instead of their assuming that they are right, and laying upon us the burthen of disproof?
Let us now see if the facts in question do not themselves furnish some clue to their explanation. Mr. Bates has shown that certain groups of butterflies have a defence against insectivorous animals, independent of swiftness of motion. These are generally very abundant, slow, and weak fliers, and are more or less the objects of mimicry by other groups, which thus gain an advantage in a freedom from persecution similar to that enjoyed by those they resemble. Now the only Papilios which have not in Celebes acquired the peculiar form of wing, belong to a group which is imitated both by other species of Papilio and by Moths of the genus Epicopeia. This group is of weak and slow flight; and we may therefore fairly conclude that it possesses some means of defence (probably in a peculiar odour or taste) which saves it from attack. Now the arched costa and falcate form of wing is generally supposed to give increased powers of flight, or, as seems to me more probable, greater facility in making sudden turnings, and thus baffling a pursuer. But the members of the Polydorus-group (to which belongs the only unchanged Celebesian Papilio), being already guarded against attack, have no need of this increased power of wing; and "natural selection" would therefore have no tendency to produce it. The whole family of Danaidae are in the same position: they are slow and weak fliers; yet they abound in species and individuals, and are the objects of mimicry. The Satyridae have also probably a means of protection—perhaps their keeping always near the ground and their generally obscure colours; while the Lycaenidae and Hesperidae may find security in their small size and rapid motions. In the extensive family of the Nymphalidae, however, we find that several of the larger species, of comparatively feeble structure, have their wings modified (Cethosia, Limenitis, Junonia, Cynthia), while the large-bodied powerful species, which have all an excessively rapid flight, have exactly the same form of wing in Celebes as in the other islands. On the whole, therefore, we may say that all the butterflies of rather large size, conspicuous colours, and not very swift flight have been affected in the manner described, while the smaller sized and obscure groups, as well as those which are the objects of mimicry, and also those of exceedingly swift flight have remained unaffected.
It would thus appear as if there must be (or once have been) in the island of Celebes, some peculiar enemy to these larger-sized butterflies which does not exist, or is less abundant, in the surrounding islands. Increased powers of flight, or rapidity of turning, was advantageous in baffling this enemy; and the peculiar form of wing necessary to give this would be readily acquired by the action of "natural selection" on the slight variations of form that are continually occurring.
Such an enemy one would naturally suppose to be an insectivorous bird; but it is a remarkable fact that most of the genera of Fly-catchers of Borneo and Java on the one side (Muscipeta, Philentoma,) and of the Moluccas on the other (Monarcha, Rhipidura), are almost entirely absent from Celebes. Their place seems to be supplied by the Caterpillar-catchers (Graucalus, Campephaga, &c.), of which six or seven species are known from Celebes and are very numerous in individuals. We have no positive evidence that these birds pursue butterflies on the wing, but it is highly probable that they do so when other food is scarce. Mr. Bates has suggested to me that the larger Dragonflies (AEshna, &c.) prey upon butterflies; but I did not notice that they were more abundant in Celebes than elsewhere. However this may be, the fauna of Celebes is undoubtedly highly peculiar in every department of which we have any accurate knowledge; and though we may not be able satisfactorily to trace how it has been effected, there can, I think, be little doubt that the singular modification in the wings of so many of the butterflies of that island is an effect of that complicated action and reaction of all living things upon each other in the struggle for existence, which continually tends to readjust disturbed relations, and to bring every species into harmony with the varying conditions of the surrounding universe.
But even the conjectural explanation now given fails us in the other cases of local modification. Why the species of the Western islands should be smaller than those further east,—why those of Amboyna should exceed in size those of Gilolo and New Guinea—why the tailed species of India should begin to lose that appendage in the islands, and retain no trace of it on the borders of the Pacific,—and why, in three separate cases, the females of Amboyna species should be less gaily attired than the corresponding females of the surrounding islands,—are questions which we cannot at present attempt to answer. That they depend, however, on some general principle is certain, because analogous facts have been observed in other parts of the world. Mr. Bates informs me that, in three distinct groups, Papilios which on the Upper Amazon and in most other parts of South America have spotless upper wings obtain pale or white spots at Para and on the Lower Amazon; and also that the AEneas-group of Papilios never have tails in the equatorial regions and the Amazons valley, but gradually acquire tails in many cases as they range towards the northern or southern tropic. Even in Europe we have somewhat similar facts; for the species and varieties of butterflies peculiar to the island of Sardinia are generally smaller and more deeply coloured than those of the mainland, and the same has recently been shown to be the case with the common tortoiseshell butterfly in the Isle of Man; while Papilio Hospiton, peculiar to the former island, has lost the tail, which is a prominent feature of the closely allied P. Machaon.
Facts of a similar nature to those now brought forward would no doubt be found to occur in other groups of insects, were local faunas carefully studied in relation to those of the surrounding countries; and they seem to indicate that climate and other physical causes have, in some cases, a very powerful effect in modifying specific form and colour, and thus directly aid in producing the endless variety of nature.
Mimicry.
Having fully discussed this subject in the preceding essay, I have only to adduce such illustrations of it, as are furnished by the Eastern Papilionidae, and to show their bearing upon the phenomena of variation already mentioned. As in America, so in the Old World, species of Danaidae are the objects which the other families most often imitate. But besides these, some genera of Morphidae and one section of the genus Papilio are also less frequently copied. Many species of Papilio mimic other species of these three groups so closely that they are undistinguishable when on the wing; and in every case the pairs which resemble each other inhabit the same locality.
The following list exhibits the most important and best marked cases of mimicry which occur among the Papilionidae of the Malayan region and India:—
Mimickers. Species mimicked. Common habitat.
DANAIDAE.
1. Papilio paradoxa Euploea Midamus } Sumatra, &c. (male & female) (male & female) } 2. P. Caunus E. Rhadamanthus Borneo and Sumatra. 3. P. Thule Danais sobrina New Guinea. 4. P. Macareus D. Aglaia Malacca, Java 5. Papilio Agestor Danais Tytia Northern India. 6. P. Idaeoides Hestia Leuconoe Philippines. 7. P. Delessertii Ideopsis daos Penang.
MORPHIDAE.
8. P. Pandion Drusilla bioculata New Guinea (female)
PAPILIO (POLYDORUS- and COON-groups).
9. P. Pammon (Romulus, Papilio Hector India. female) 10. P. Theseus, var. P. Antiphus Sumatra, Borneo. (female) 11. P. Theseus, var. P. Diphilus Sumatra, Java. (female) 12. P. Memnon, var. P. Coon Sumatra. (Achates, female) 13. P. Androgeus, var. P. Doubledayi Northern India. (Achates, female) 14. P. Oenomaus P. Liris Timor. (female)
We have, therefore, fourteen species or marked varieties of Papilio, which so closely resemble species of other groups in their respective localities, that it is not possible to impute the resemblance to accident. The first two in the list (Papilio paradoxa and P. Caunus) are so exactly like Euploea Midamus and E. Rhadamanthus on the wing, that although they fly very slowly, I was quite unable to distinguish them. The first is a very interesting case, because the male and female differ considerably, and each mimics the corresponding sex of the Euploea. A new species of Papilio which I discovered in New Guinea resembles Danais sobrina, from the same country, just as Papilio Marcareus resembles Danais Aglaia in Malacca, and (according to Dr. Horsfield's figure) still more closely in Java. The Indian Papilio Agestor closely imitates Danais Tytia, which has quite a different style of colouring from the preceding; and the extraordinary Papilio Idaeoides from the Philippine Islands, must, when on the wing, perfectly resemble the Hestia Leuconoe of the same region, as also does the Papilio Delessertii imitate the Ideopsis daos from Penang. Now in every one of these cases the Papilios are very scarce, while the Danaidae which they resemble are exceedingly abundant—most of them swarming so as to be a positive nuisance to the collecting entomologist by continually hovering before him when he is in search of newer and more varied captures. Every garden, every roadside, the suburbs of every village are full of them, indicating very clearly that their life is an easy one, and that they are free from persecution by the foes which keep down the population of less favoured races. This superabundant population has been shown by Mr. Bates to be a general characteristic of all American groups and species which are objects of mimicry; and it is interesting to find his observations confirmed by examples on the other side of the globe.
The remarkable genus Drusilla, a group of pale-coloured butterflies, more or less adorned with ocellate spots, is also the object of mimicry by three distinct genera (Melanitis, Hyantis, and Papilio). These insects, like the Danaidae, are abundant in individuals, have a very weak and slow flight, and do not seek concealment, or appear to have any means of protection from insectivorous creatures. It is natural to conclude, therefore, that they have some hidden property which saves them from attack; and it is easy to see that when any other insects, by what we call accidental variation, come more or less remotely to resemble them, the latter will share to some extent in their immunity. An extraordinary dimorphic form of the female of Papilio Ormenus has come to resemble the Drusillas sufficiently to be taken for one of that group at a little distance; and it is curious that I captured one of these Papilios in the Aru Islands hovering along the ground, and settling on it occasionally, just as it is the habit of the Drusillas to do. The resemblance in this case is only general; but this form of Papilio varies much, and there is therefore material for natural selection to act upon, so as ultimately to produce a copy as exact as in the other cases.
The eastern Papilios allied to Polydorus, Coon, and Philoxenus, form a natural section of the genus resembling, in many respects, the AEneas-group of South America, which they may be said to represent in the East. Like them, they are forest insects, have a low and weak flight, and in their favourite localities are rather abundant in individuals; and like them, too, they are the objects of mimicry. We may conclude, therefore, that they possess some hidden means of protection, which makes it useful to other insects to be mistaken for them.
The Papilios which resemble them belong to a very distinct section of the genus, in which the sexes differ greatly; and it is those females only which differ most from the males, and which have already been alluded to as exhibiting instances of dimorphism, which resemble species of the other group.
The resemblance of P. Romulus to P. Hector is, in some specimens, very considerable, and has led to the two species being placed following each other in the British Museum Catalogues and by Mr. E. Doubleday. I have shown, however, that P. Romulus is probably a dimorphic form of the female P. Pammon, and belongs to a distinct section of the genus.
The next pair, Papilio Theseus, and P. Antiphus, have been united as one species both by De Haan and in the British Museum Catalogues. The ordinary variety of P. Theseus found in Java almost as nearly resembles P. Diphilus, inhabiting the same country. The most interesting case, however, is the extreme female form of P. Memnon (figured by Cramer under the name of P. Achates), which has acquired the general form and markings of P. Coon, an insect which differs from the ordinary male P. Memnon, as much as any two species which can be chosen in this extensive and highly varied genus; and, as if to show that this resemblance is not accidental, but is the result of law, when in India we find a species closely allied to P. Coon, but with red instead of yellow spots (P. Doubledayi), the corresponding variety of P. Androgeus (P. Achates, Cramer, 182, A, B,) has acquired exactly the same peculiarity of having red spots instead of yellow. Lastly, in the island of Timor, the female of P. Oenomaus (a species allied to P. Memnon) resembles so closely P. Liris (one of the Polydorus-group), that the two, which were often seen flying together, could only be distinguished by a minute comparison after being captured.
The last six cases of mimicry are especially instructive, because they seem to indicate one of the processes by which dimorphic forms have been produced. When, as in these cases, one sex differs much from the other, and varies greatly itself, it may happen that occasionally individual variations will occur having a distant resemblance to groups which are the objects of mimicry, and which it is therefore advantageous to resemble. Such a variety will have a better chance of preservation; the individuals possessing it will be multiplied; and their accidental likeness to the favoured group will be rendered permanent by hereditary transmission, and, each successive variation which increases the resemblance being preserved, and all variations departing from the favoured type having less chance of preservation, there will in time result those singular cases of two or more isolated and fixed forms, bound together by that intimate relationship which constitutes them the sexes of a single species. The reason why the females are more subject to this kind of modification than the males is, probably, that their slower flight, when laden with eggs, and their exposure to attack while in the act of depositing their eggs upon leaves, render it especially advantageous for them to have some additional protection. This they at once obtain by acquiring a resemblance to other species which, from whatever cause, enjoy a comparative immunity from persecution.
Concluding remarks on Variation in Lepidoptera.
This summary of the more interesting phenomena of variation presented by the eastern Papilionidae is, I think, sufficient to substantiate my position, that the Lepidoptera are a group that offer especial facilities for such inquiries; and it will also show that they have undergone an amount of special adaptive modification rarely equalled among the more highly organized animals. And, among the Lepidoptera, the great and pre-eminently tropical families of Papilionidae and Danaidae seem to be those in which complicated adaptations to the surrounding organic and inorganic universe have been most completely developed, offering in this respect a striking analogy to the equally extraordinary, though totally different, adaptations which present themselves in the Orchideae, the only family of plants in which mimicry of other organisms appears to play any important part, and the only one in which cases of conspicuous polymorphism occur; for as such we must class the male, female, and hermaphrodite forms of Catasetum tridentatum, which differ so greatly in form and structure that they were long considered to belong to three distinct genera.
Arrangement and Geographical Distribution of the Malayan Papilionidae.
Arrangement.—Although the species of Papilionidae inhabiting the Malayan region are very numerous, they all belong to three out of the nine genera into which the family is divided. One of the remaining genera (Eurycus) is restricted to Australia, and another (Teinopalpus) to the Himalayan Mountains, while no less than four (Parnassius, Doritis, Thais, and Sericinus) are confined to Southern Europe and to the mountain-ranges of the Palaearctic region.
The genera Ornithoptera and Leptocircus are highly characteristic of Malayan entomology, but are uniform in character and of small extent. The genus Papilio, on the other hand, presents a great variety of forms, and is so richly represented in the Malay Islands, that more than one-fourth of all the known species are found there. It becomes necessary, therefore, to divide this genus into natural groups before we can successfully study its geographical distribution.
Owing principally to Dr. Horsfield's observations in Java, we are acquainted with a considerable number of the larvae of Papilios; and these furnish good characters for the primary division of the genus into natural groups. The manner in which the hinder wings are plaited or folded back at the abdominal margin, the size of the anal valves, the structure of the antennae, and the form of the wings are also of much service, as well as the character of the flight and the style of colouration. Using these characters, I divide the Malayan Papilios into four sections, and seventeen groups, as follows:—
Genus ORNITHOPTERA.
a. Priamus-group. } Black and Green. c. Brookeanus-group.} b. Pompeus-group. Black and yellow.
Genus PAPILIO.
A. Larvae short, thick, with numerous fleshy tubercles; of a purplish colour.
a. Nox-group. Abdominal fold in male very large; anal valves small, but swollen; antennae moderate; wings entire, or tailed; includes the Indian Philoxenus-group. b. Coon-group. Abdominal fold in male small; anal valves small, but swollen; antennae moderate; wings tailed. c. Polydorus-group. Abdominal fold in male small, or none; anal valves small or obsolete, hairy; wings tailed or entire.
B. Larvae with third segment swollen, transversely or obliquely banded; pupa much bent. Imago with abdominal margin in male plaited, but not reflexed; body weak; antennae long; wings much dilated, often tailed.
d. Ulysses-group. {Protenor-group (Indian) is e. Peranthus-group. {somewhat intermediate between f. Memnon-group. {these, and is nearest {to the Nox-group. g. Helenus-group. h. Erectheus-group. i. Pammon-group. k. Demolion-group.
C. Larvae subcylindrical, variously coloured. Imago with abdominal margin in male plaited, but not reflexed; body weak; antennae short, with a thick curved club; wings entire.
l. Erithonius-group. Sexes alike, larva and pupa something like those of P. Demolion. m. Paradoxa-group. Sexes different. n. Dissimilis-group. Sexes alike; larva bright-coloured; pupa straight, cylindric.
D. Larvae elongate, attenuate behind, and often bifid, with lateral and oblique pale stripes, green. Imago with the abdominal margin in male reflexed, woolly or hairy within; anal valves small, hairy; antennae short, stout; body stout.
o. Macareus-group. Hind wings entire. p. Antiphates-group. Hind wings much tailed (swallow-tails). q. Eurypylus-group. Hind wings elongate or tailed.
Genus LEPTOCIRCUS.
Making, in all, twenty distinct groups of Malayan Papilionidae.
The first section of the genus Papilio (A) comprises insects which, though differing considerably in structure, having much general resemblance. They all have a weak, low flight, frequent the most luxuriant forest-districts, seem to love the shade, and are the objects of mimicry by other Papilios.
Section B consists of weak-bodied, large-winged insects, with an irregular wavering flight, and which, when resting on foliage, often expand the wings, which the species of the other sections rarely or never do. They are the most conspicuous and striking of eastern Butterflies.
Section C consists of much weaker and slower-flying insects, often resembling in their flight, as well as in their colours, species of Danaidae.
Section D contains the strongest-bodied and most swift-flying of the genus. They love sunlight, and frequent the borders of streams and the edges of puddles, where they gather together in swarms consisting of several species, greedily sucking up the moisture, and, when disturbed, circling round in the air, or flying high and with great strength and rapidity.
Geographical Distribution.—One hundred and thirty species of Malayan Papilionidae are now known within the district extending from the Malay peninsula, on the north-west, to Woodlark Island, near New Guinea, on the south-east.
The exceeding richness of the Malayan region in these fine insects is seen by comparing the number of species found in the different tropical regions of the earth. From all Africa only 33 species of Papilio are known; but as several are still undescribed in collections, we may raise their number to about 40. In all tropical Asia there are at present described only 65 species, and I have seen in collections but two or three which have not yet been named. In South America, south of Panama, there are 150 species, or about one-seventh more than are yet known from the Malayan region; but the area of the two countries is very different; for while South America (even excluding Patagonia) contains 5,000,000 square miles, a line encircling the whole of the Malayan islands would only include an area of 2,700,000 square miles, of which the land-area would be about 1,000,000 square miles. This superior richness is partly real and partly apparent. The breaking up of a district into small isolated portions, as in an archipelago, seems highly favourable to the segregation and perpetuation of local peculiarities in certain groups; so that a species which on a continent might have a wide range, and whose local forms, if any, would be so connected together that it would be impossible to separate them, may become by isolation reduced to a number of such clearly defined and constant forms that we are obliged to count them as species. From this point of view, therefore, the greater proportionate number of Malayan species may be considered as apparent only. Its true superiority is shown, on the other hand, by the possession of three genera and twenty groups of Papilionidae against a single genus and eight groups in South America, and also by the much greater average size of the Malayan species. In most other families, however, the reverse is the case, the South American Nymphalidae, Satyridae, and Erycinidae far surpassing those of the East in number, variety, and beauty.
The following list, exhibiting the range and distribution of each group, will enable us to study more easily their internal and external relations.
Range of the Groups of Malayan Papilionidae.
Ornithoptera.
1. Priamus-group. Moluccas to Woodlark Island 5 species. 2. Pompeus-group. Himalayas to New Guinea, (Celebes, maximum) 11" 3. Brookeana-group. Sumatra and Borneo 1"
Papilio.
4. Nox-group. North India, Java, and Philippines 5 species 5. Coon-group. North India to Java 2" 6. Polydorus-group. India to New Guinea and Pacific 7" 7. Ulysses-group. Celebes to New Caledonia 4" 8. Peranthus-group. India to Timor and Moluccas (India, maximum) 9" 9. Memnon-group. India to Timor and Moluccas (Java, maximum) 10" 10. Helenus-group. Africa and India to New Guinea 11" 11. Pammon-group. India to Pacific and Australia 9" 12. Erectheus-group. Celebes to Australia 2" 13. Demolion-group. India to Celebes 2" 14. Erithonius-group. Africa, India, Australia 1" 15. Paradoxa-group. India to Java (Borneo, maximum) 5" 16. Dissimilis-group. India to Timor (India, maximum) 2" 17. Macareus-group. India to New Guinea 10" 18. Antiphates-group. Widely distributed 8" 19. Eurypylus-group. India to Australia 15"
Leptocircus.
20. Leptocircus-group. India to Celebes 4"
This Table shows the great affinity of the Malayan with the Indian Papilionidae, only three out of the twenty groups ranging beyond, into Africa, Europe, or America. The limitation of groups to the Indo-Malayan or Austro-Malayan divisions of the archipelago, which is so well marked in the higher animals, is much less conspicuous in insects, but is shown in some degree by the Papilionidae. The following groups are either almost or entirely restricted to one portion of the archipelago:—
Indo-Malayan Region. Austro-Malayan Region.
Nox-group. Priamus-group. Coon-group. Ulysses-group. Macareus-group (nearly). Erechtheus-group. Paradoxa-group. Dissimilis-group (nearly). Brookeanus-group. LEPTOCIRCUS (genus).
The remaining groups, which range over the whole archipelago, are, in many cases, insects of very powerful flight, or they frequent open places and the sea-beach, and are thus more likely to get blown from island to island. The fact that three such characteristic groups as those of Priamus, Ulysses, and Erechtheus are strictly limited to the Australian region of the archipelago, while five other groups are with equal strictness confined to the Indian region, is a strong corroboration of that division which has been founded almost entirely on the distribution of Mammalia and Birds.
If the various Malayan islands have undergone recent changes of level, and if any of them have been more closely united within the period of existing species than they are now, we may expect to find indications of such changes in community of species between islands now widely separated; while those islands which have long remained isolated would have had time to acquire peculiar forms by a slow and natural process of modification.
An examination of the relations of the species of the adjacent islands, will thus enable us to correct opinions formed from a mere consideration of their relative positions. For example, looking at a map of the archipelago, it is almost impossible to avoid the idea that Java and Sumatra have been recently united; their present proximity is so great, and they have such an obvious resemblance in their volcanic structure. Yet there can be little doubt that this opinion is erroneous, and that Sumatra has had a more recent and more intimate connexion with Borneo than it has had with Java. This is strikingly shown by the mammals of these islands—very few of the species of Java and Sumatra being identical, while a considerable number are common to Sumatra and Borneo. The birds show a somewhat similar relationship; and we shall find that the distribution of the Papilionidae tells exactly the same tale. Thus:—
Sumatra has 21 species } Borneo " 30 " } 20 sp. common to both islands;
Sumatra " 21 " } Java " 28 " } 11 sp. common to both islands;
Borneo " 30 " } Java " 28 " } 20 sp. common to both islands;
showing that both Sumatra and Java have a much closer relationship to Borneo than they have to each other—a most singular and interesting result, when we consider the wide separation of Borneo from them both, and its very different structure. The evidence furnished by a single group of insects would have had but little weight on a point of such magnitude if standing alone; but coming as it does to confirm deductions drawn from whole classes of the higher animals, it must be admitted to have considerable value.
We may determine in a similar manner the relations of the different Papuan Islands to New Guinea. Of thirteen species of Papilionidae obtained in the Aru Islands, six were also found in New Guinea, and seven not. Of nine species obtained at Waigiou, six were New Guinea, and three not. The five species found at Mysol were all New Guinea species. Mysol, therefore, has closer relations to New Guinea than the other islands; and this is corroborated by the distribution of the birds, of which I will only now give one instance. The Paradise Bird found in Mysol is the common New Guinea species, while the Aru Islands and Waigiou have each a species peculiar to themselves.
The large island of Borneo, which contains more species of Papilionidae than any other in the archipelago, has nevertheless only three peculiar to itself; and it is quite possible, and even probable, that one of these may be found in Sumatra or Java. The last-named island has also three species peculiar to it; Sumatra has not one, and the peninsula of Malacca only two. The identity of species is even greater than in birds or in most other groups of insects, and points very strongly to a recent connexion of the whole with each other and the continent.
Remarkable Peculiarities of the Island of Celebes.
If we now pass to the next island (Celebes), separated from those last mentioned by a strait not wider than that which divides them from each other, we have a striking contrast; for with a total number of species less than either Borneo or Java, no fewer than eighteen are absolutely restricted to it. Further east, the large islands of Ceram and New Guinea have only three species peculiar to each, and Timor has five. We shall have to look, not to single islands, but to whole groups, in order to obtain an amount of individuality comparable with that of Celebes. For example, the extensive group comprising the large islands of Java, Borneo, and Sumatra, with the peninsula of Malacca, possessing altogether 48 species, has about 24, or just half, peculiar to it; the numerous group of the Philippines possess 22 species, of which 17 are peculiar; the seven chief islands of the Moluccas have 27, of which 12 are peculiar; and the whole of the Papuan Islands, with an equal number of species, have 17 peculiar. Comparable with the most isolated of these groups is Celebes, with its 24 species, of which the large proportion of 18 are peculiar. We see, therefore, that the opinion I have elsewhere expressed, of the high degree of isolation and the remarkable distinctive features of this interesting island, is fully borne out by the examination of this conspicuous family of insects. A single straggling island with a few small satellites, it is zoologically of equal importance with extensive groups of islands many times as large as itself; and standing in the very centre of the archipelago, surrounded on every side with islets connecting it with the larger groups, and which seem to afford the greatest facilities for the migration and intercommunication of their respective productions, it yet stands out conspicuous with a character of its own in every department of nature, and presents peculiarities which are, I believe, without a parallel in any similar locality on the globe.
Briefly to summarize these peculiarities, Celebes possesses three genera of mammals (out of the very small number which inhabit it) which are of singular and isolated forms, viz., Cynopithecus, a tailless Ape allied to the Baboons; Anoa, a straight-horned Antelope of obscure affinities, but quite unlike anything else in the whole archipelago or in India: and Babirusa, an altogether abnormal wild Pig. With a rather limited bird population, Celebes has an immense preponderance of species confined to it, and has also six remarkable genera (Meropogon, Ceycopsis, Streptocitta, Enodes, Scissirostrum, and Megacephalon) entirely restricted to its narrow limits, as well as two others (Prioniturus and Basilornis) which only range to a single island beyond it.
Mr. Smith's elaborate tables of the distribution of Malayan Hymenoptera (see "Proc. Linn. Soc." Zool. vol. vii.) show that out of the large number of 301 species collected in Celebes, 190 (or nearly two-thirds) are absolutely restricted to it, although Borneo on one side, and the various islands of the Moluccas on the other, were equally well explored by me; and no less than twelve of the genera are not found in any other island of the archipelago. I have shown in the present essay that, in the Papilionidae, it has far more species of its own than any other island, and a greater proportion of peculiar species than many of the large groups of islands in the archipelago—and that it gives to a large number of the species and varieties which inhabit it, 1st, an increase of size, and, 2nd, a peculiar modification in the form of the wings, which stamp upon the most dissimilar insects a mark distinctive of their common birth-place.
What, I would ask, are we to do with phenomena such as these? Are we to rest content with that very simple, but at the same time very unsatisfying explanation, that all these insects and other animals were created exactly as they are, and originally placed exactly where they are, by the inscrutable will of their Creator, and that we have nothing to do but to register the facts and wonder? Was this single island selected for a fantastic display of creative power, merely to excite a childlike and unreasoning admiration? Is all this appearance of gradual modification by the action of natural causes—a modification the successive steps of which we can almost trace—all delusive? Is this harmony between the most diverse groups, all presenting analogous phenomena, and indicating a dependence upon physical changes of which we have independent evidence, all false testimony? If I could think so, the study of nature would have lost for me its greatest charm. I should feel as would the geologist, if you could convince him that his interpretation of the earth's past history was all a delusion—that strata were never formed in the primeval ocean, and that the fossils he so carefully collects and studies are no true record of a former living world, but were all created just as they now are, and in the rocks where he now finds them.
I must here express my own belief that none of these phenomena, however apparently isolated or insignificant, can ever stand alone—that not the wing of a butterfly can change in form or vary in colour, except in harmony with, and as a part of the grand march of nature. I believe, therefore, that all the curious phenomena I have just recapitulated, are immediately dependent on the last series of changes, organic and inorganic, in these regions; and as the phenomena presented by the island of Celebes differ from those of all the surrounding islands, it can, I conceive, only be because the past history of Celebes has been, to some extent, unique and different from theirs. We must have much more evidence to determine exactly in what that difference has consisted. At present, I only see my way clear to one deduction, viz., that Celebes represents one of the oldest parts of the archipelago; that it has been formerly more completely isolated both from India and from Australia than it is now, and that amid all the mutations it has undergone, a relic or substratum of the fauna and flora of some more ancient land has been here preserved to us.
It is only since my return home, and since I have been able to compare the productions of Celebes side by side with those of the surrounding islands, that I have been fully impressed with their peculiarity, and the great interest that attaches to them. The plants and the reptiles are still almost unknown; and it is to be hoped that some enterprising naturalist may soon devote himself to their study. The geology of the country would also be well worth exploring, and its newer fossils would be of especial interest as elucidating the changes which have led to its present anomalous condition. This island stands, as it were, upon the boundary-line between two worlds. On one side is that ancient Australian fauna, which preserves to the present day the facies of an early geological epoch; on the other is the rich and varied fauna of Asia, which seems to contain, in every class and order, the most perfect and highly organised animals. Celebes has relations to both, yet strictly belongs to neither: it possesses characteristics which are altogether its own; and I am convinced that no single island upon the globe would so well repay a careful and detailed research into its past and present history.
Concluding Remarks.
In writing this essay it has been my object to show how much may, under favourable circumstances, be learnt by the study of what may be termed the external physiology of a small group of animals, inhabiting a limited district. This branch of natural history had received little attention till Mr. Darwin showed how important an adjunct it may become towards a true interpretation of the history of organized beings, and attracted towards it some small share of that research which had before been almost exclusively devoted to internal structure and physiology. The nature of species, the laws of variation, the mysterious influence of locality on both form and colour, the phenomena of dimorphism and of mimicry, the modifying influence of sex, the general laws of geographical distribution, and the interpretation of past changes of the earth's surface, have all been more or less fully illustrated by the very limited group of the Malayan Papilionidae; while, at the same time, the deductions drawn therefrom have been shown to be supported by analogous facts, occurring in other and often widely-separated groups of animals.
V.
ON INSTINCT IN MAN AND ANIMALS.
The most perfect and most striking examples of what is termed instinct, those in which reason or observation appear to have the least influence, and which seem to imply the possession of faculties farthest removed from our own, are to be found among insects. The marvellous constructive powers of bees and wasps, the social economy of ants, the careful provision for the safety of a progeny they are never to see manifested by many beetles and flies, and the curious preparations for the pupa state by the larvae of butterflies and moths, are typical examples of this faculty, and are supposed to be conclusive as to the existence of some power or intelligence, very different from that which we derive from our senses or from our reason.
How Instinct may be best Studied.
Whatever we may define instinct to be, it is evidently some form of mental manifestation, and as we can only judge of mind by the analogy of our own mental functions and by observation of the results of mental action in other men and in animals, it is incumbent on us, first, to study and endeavour to comprehend the minds of infants, of savage men, and of animals not very far removed from ourselves, before we pronounce positively as to the nature of the mental operations in creatures so radically different from us as insects. We have not yet even been able to ascertain what are the senses they possess, or what relation their powers of seeing, hearing, and feeling have to ours. Their sight may far exceed ours both in delicacy and in range, and may possibly give them knowledge of the internal constitution of bodies analogous to that which we obtain by the spectroscope; and that their visual organs do possess some powers which ours do not, is indicated by the extraordinary crystalline rods radiating from the optic ganglion to the facets of the compound eye, which rods vary in form and thickness in different parts of their length, and possess distinctive characters in each group of insects. This complex apparatus, so different from anything in the eyes of vertebrates, may subserve some function quite inconceivable by us, as well as that which we know as vision. There is reason to believe that insects appreciate sounds of extreme delicacy, and it is supposed that certain minute organs, plentifully supplied with nerves, and situated in the subcostal vein of the wing in most insects, are the organs of hearing. But besides these, the Orthoptera (such as grasshoppers, &c.) have what are supposed to be ears on their fore legs, and Mr. Lowne believes that the little stalked balls, which are the sole remnants of the hind wings in flies, are also organs of hearing or of some analogous sense. In flies, too, the third joint of the antennae contains thousands of nerve-fibres, which terminate in small open cells, and this Mr. Lowne believes to be the organ of smell, or of some other, perhaps new, sense. It is quite evident, therefore, that insects may possess senses which give them a knowledge of that which we can never perceive, and enable them to perform acts which to us are incomprehensible. In the midst of this complete ignorance of their faculties and inner nature, is it wise for us to judge so boldly of their powers by a comparison with our own? How can we pretend to fathom the profound mystery of their mental nature, and decide what, and how much, they can perceive or remember, reason or reflect! To leap at one bound from our own consciousness to that of an insect's, is as unreasonable and absurd as if, with a pretty good knowledge of the multiplication table, we were to go straight to the study of the calculus of functions, or as if our comparative anatomists should pass from the study of man's bony structure to that of the fish, and, without any knowledge of the numerous intermediate forms, were to attempt to determine the homologies between these distant types of vertebrata. In such a case would not error be inevitable, and would not continued study in the same direction only render the erroneous conclusions more ingrained and more irremovable.
Definition of Instinct.
Before going further into this subject, we must determine what we mean by the term instinct. It has been variously defined as—"disposition operating without the aid of instruction or experience," "a mental power totally independent of organization," or "a power enabling an animal to do that which, in those things man can do, results from a chain of reasoning, and in things which man cannot do, is not to be explained by any efforts of the intellectual faculties." We find, too, that the word instinct is very frequently applied to acts which are evidently the result either of organization or of habit. The colt or calf is said to walk instinctively, almost as soon as it is born; but this is solely due to its organization, which renders walking both possible and pleasurable to it. So we are said instinctively to hold out our hands to save ourselves from falling, but this is an acquired habit, which the infant does not possess. It appears to me that instinct should be defined as—"the performance by an animal of complex acts, absolutely without instruction or previously-acquired knowledge." Thus, acts are said to be performed by birds in building their nests, by bees in constructing their cells, and by many insects in providing for the future wants of themselves or their progeny, without ever having seen such acts performed by others, and without any knowledge of why they perform them themselves. This is expressed by the very common term "blind instinct." But we have here a number of assertions of matters of fact, which, strange to say, have never been proved to be facts at all. They are thought to be so self-evident that they may be taken for granted. No one has ever yet obtained the eggs of some bird which builds an elaborate nest, hatched these eggs by steam or under a quite distinct parent, placed them afterwards in an extensive aviary or covered garden, where the situation and the materials of a nest similar to that of the parent birds may be found, and then seen what kind of nest these birds would build. If under these rigorous conditions they choose the same materials, the same situation, and construct the nest in the same way and as perfectly as their parents did, instinct would be proved in their case; now it is only assumed, and assumed, as I shall show further on, without any sufficient reason. So, no one has ever carefully taken the pupae of a hive of bees out of the comb, removed them from the presence of other bees, and loosed them in a large conservatory with plenty of flowers and food, and observed what kind of cells they would construct. But till this is done, no one can say that bees build without instruction, no one can say that with every new swarm there are no bees older than those of the same year, who may be the teachers in forming the new comb. Now, in a scientific inquiry, a point which can be proved should not be assumed, and a totally unknown power should not be brought in to explain facts, when known powers may be sufficient. For both these reasons I decline to accept the theory of instinct in any case where all other possible modes of explanation have not been exhausted.
Does Man possess Instincts.
Many of the upholders of the instinctive theory maintain, that man has instincts exactly of the same nature as those of animals, but more or less liable to be obscured by his reasoning powers; and as this is a case more open to our observation than any other, I will devote a few pages to its consideration. Infants are said to suck by instinct, and afterwards to walk by the same power, while in adult man the most prominent case of instinct is supposed to be, the powers possessed by savage races to find their way across a trackless and previously unknown wilderness. Let us take first the case of the infant's sucking. It is sometimes absurdly stated that the new-born infant "seeks the breast," and this is held to be a wonderful proof of instinct. No doubt it would be if true, but unfortunately for the theory it is totally false, as every nurse and medical man can testify. Still, the child undoubtedly sucks without teaching, but this is one of those simple acts dependent upon organization, which cannot properly be termed instinct, any more than breathing or muscular motion. Any object of suitable size in the mouth of an infant excites the nerves and muscles so as to produce the act of suction, and when at a little later period, the will comes into play, the pleasurable sensations consequent on the act lead to its continuance. So, walking is evidently dependent on the arrangement of the bones and joints, and the pleasurable exertion of the muscles, which lead to the vertical posture becoming gradually the most agreeable one; and there can be little doubt that an infant would learn of itself to walk, even if suckled by a wild beast.
How Indians travel through unknown and trackless Forests.
Let us now consider the fact, of Indians finding their way through forests they have never traversed before. This is much misunderstood, for I believe it is only performed under such special conditions, as at once to show that instinct has nothing to do with it. A savage, it is true, can find his way through his native forests in a direction in which he has never traversed them before; but this is because from infancy he has been used to wander in them, and to find his way by indications which he has observed himself or learnt from others. Savages make long journeys in many directions, and, their whole faculties being directed to the subject, they gain a wide and accurate knowledge of the topography, not only of their own district, but of all the regions round about. Every one who has travelled in a new direction communicates his knowledge to those who have travelled less, and descriptions of routes and localities, and minute incidents of travel, form one of the main staples of conversation round the evening fire. Every wanderer or captive from another tribe adds to the store of information, and as the very existence of individuals and of whole families and tribes, depends upon the completeness of this knowledge, all the acute perceptive faculties of the adult savage are devoted to acquiring and perfecting it. The good hunter or warrior thus comes to know the bearing of every hill and mountain range, the directions and junctions of all the streams, the situation of each tract characterized by peculiar vegetation, not only within the area he has himself traversed, but for perhaps a hundred miles around it. His acute observation enables him to detect the slightest undulations of the surface, the various changes of subsoil and alterations in the character of the vegetation, that would be quite imperceptible to a stranger. His eye is always open to the direction in which he is going; the mossy side of trees, the presence of certain plants under the shade of rocks, the morning and evening flight of birds, are to him indications of direction, almost as sure as the sun in the heavens. Now, if such a savage is required to find his way across this country in a direction in which he has never been before, he is quite equal to the task. By however circuitous a route he has come to the point he is to start from, he has observed all the bearings and distances so well, that he knows pretty nearly where he is, the direction of his own home and that of the place he is required to go to. He starts towards it, and knows that by a certain time he must cross an upland or a river, that the streams should flow in a certain direction, and that he should cross some of them at a certain distance from their sources. The nature of the soil throughout the whole region is known to him, as well as all the great features of the vegetation. As he approaches any tract of country he has been in or near before, many minute indications guide him, but he observes them so cautiously that his white companions cannot perceive by what he has directed his course. Every now and then he slightly changes his direction, but he is never confused, never loses himself, for he always feels at home; till at last he arrives at a well-known country, and directs his course so as to reach the exact spot desired. To the Europeans whom he guides, he seems to have come without trouble, without any special observation, and in a nearly straight unchanging course. They are astonished, and ask if he has ever been the same route before, and when he answers "No," conclude that some unerring instinct could alone have guided him. But take this same man into another country very similar to his own, but with other streams and hills, another kind of soil, with a somewhat different vegetation and animal life; and after bringing him by a circuitous route to a given point, ask him to return to his starting place, by a straight line of fifty miles through the forest, and he will certainly decline to attempt it, or, attempting it, will more or less completely fail. His supposed instinct does not act out of his own country.
A savage, even in a new country, has, however, undoubted advantages, from his familiarity with forest life, his entire fearlessness of being lost, his accurate perception of direction and of distance, and he is thus able very soon to acquire a knowledge of the district that seems marvellous to a civilized man; but my own observation of savages in forest countries has convinced me, that they find their way by the use of no other faculties than those which we ourselves possess. It appears to me, therefore, that to call in the aid of a new and mysterious power to account for savages being able to do that which, under similar conditions, we could almost all of us perform, although perhaps less perfectly, is almost ludicrously unnecessary.
In the next essay I shall attempt to show, that much of what has been attributed to instinct in birds, can be also very well explained by crediting them with those faculties of observation, memory, and imitation, and with that limited amount of reason, which they undoubtedly exhibit.
VI.
THE PHILOSOPHY OF BIRDS' NESTS.
Instinct or Reason in the Construction of Birds' Nests.
Birds, we are told, build their nests by instinct, while man constructs his dwelling by the exercise of reason. Birds never change, but continue to build for ever on the self-same plan; man alters and improves his houses continually. Reason advances; instinct is stationary.
This doctrine is so very general that it may almost be said to be universally adopted. Men who agree on nothing else, accept this as a good explanation of the facts. Philosophers and poets, metaphysicians and divines, naturalists and the general public, not only agree in believing this to be probable, but even adopt it as a sort of axiom that is so self-evident as to need no proof, and use it as the very foundation of their speculations on instinct and reason. A belief so general, one would think, must rest on indisputable facts, and be a logical deduction from them. Yet I have come to the conclusion that not only is it very doubtful, but absolutely erroneous; that it not only deviates widely from the truth, but is in almost every particular exactly opposed to it. I believe, in short, that birds do not build their nests by instinct; that man does not construct his dwelling by reason; that birds do change and improve when affected by the same causes that make men do so; and that mankind neither alter nor improve when they exist under conditions similar to those which are almost universal among birds.
Do Men build by Reason or by Imitation?
Let us first consider the theory of reason, as alone determining the domestic architecture of the human race. Man, as a reasonable animal, it is said, continually alters and improves his dwelling. This I entirely deny. As a rule, he neither alters nor improves, any more than the birds do. What have the houses of most savage tribes improved from, each as invariable as the nest of a species of bird? The tents of the Arab are the same now as they were two or three thousand years ago, and the mud villages of Egypt can scarcely have improved since the time of the Pharaohs. The palm-leaf huts and hovels of the various tribes of South America and the Malay Archipelago, what have they improved from since those regions were first inhabited? The Patagonian's rude shelter of leaves, the hollowed bank of the South African Earthmen, we cannot even conceive to have been ever inferior to what they now are. Even nearer home, the Irish turf cabin and the Highland stone shelty can hardly have advanced much during the last two thousand years. Now, no one imputes this stationary condition of domestic architecture among these savage tribes to instinct, but to simple imitation from one generation to another, and the absence of any sufficiently powerful stimulus to change or improvement. No one imagines that if an infant Arab could be transferred to Patagonia, or to the Highlands, it would, when it grew up, astonish its foster-parents by constructing a tent of skins. On the other hand, it is quite clear that physical conditions, combined with the degree of civilization arrived at, almost necessitate certain types of structure. The turf, or stones, or snow—the palm-leaves, bamboo, or branches, which are the materials of houses in various countries, are used because nothing else is so readily to be obtained. The Egyptian peasant has none of these, not even wood. What, then, can he use but mud? In tropical forest-countries, the bamboo and the broad palm-leaves are the natural material for houses, and the form and mode of structure will be decided in part by the nature of the country, whether hot or cool, whether swampy or dry, whether rocky or plain, whether frequented by wild beasts, or whether subject to the attacks of enemies. When once a particular mode of building has been adopted, and has become confirmed by habit and by hereditary custom, it will be long retained, even when its utility has been lost through changed conditions, or through migration into a very different region. As a general rule, throughout the whole continent of America, native houses are built directly upon the ground—strength and security being given by thickening the low walls and the roof. In almost the whole of the Malay Islands, on the contrary, the houses are raised on posts, often to a great height, with an open bamboo floor; and the whole structure is exceedingly slight and thin. Now, what can be the reason of this remarkable difference between countries, many parts of which are strikingly similar in physical conditions, natural productions, and the state of civilization of their inhabitants? We appear to have some clue to it in the supposed origin and migrations of their respective populations. The indigenes of tropical America are believed to have immigrated from the north—from a country where the winters are severe, and raised houses with open floors would be hardly habitable. They moved southwards by land along the mountain ranges and uplands, and in an altered climate continued the mode of construction of their forefathers, modified only by the new materials they met with. By minute observations of the Indians of the Amazon Valley, Mr. Bates arrived at the conclusion that they were comparatively recent immigrants from a colder climate. He says:—"No one could live long among the Indians of the Upper Amazon without being struck with their constitutional dislike to the heat ... Their skin is hot to the touch, and they perspire little ... They are restless and discontented in hot, dry weather, but cheerful on cool days, when the rain is pouring down their naked backs." And, after giving many other details, he concludes, "How different all this is with the Negro, the true child of tropical climes! The impression gradually forced itself on my mind that the Red Indian lives as an immigrant or stranger in these hot regions, and that his constitution was not originally adapted, and has not since become perfectly adapted, to the climate."
The Malay races, on the other hand, are no doubt very ancient inhabitants of the hottest regions, and are particularly addicted to forming their first settlements at the mouths of rivers or creeks, or in land-locked bays and inlets. They are a pre-eminently maritime or semi-aquatic people, to whom a canoe is a necessary of life, and who will never travel by land if they can do so by water. In accordance with these tastes, they have built their houses on posts in the water, after the manner of the lake-dwellers of ancient Europe; and this mode of construction has become so confirmed, that even those tribes who have spread far into the interior, on dry plains and rocky mountains, continue to build in exactly the same manner, and find safety in the height to which they elevate their dwellings above the ground.
Why does each Bird build a peculiar kind of Nest?
These general characteristics of the abode of savage man will be found to be exactly paralleled by the nests of birds. Each species uses the materials it can most readily obtain, and builds in situations most congenial to its habits. The wren, for example, frequenting hedgerows and low thickets, builds its nest generally of moss, a material always found where it lives, and among which it probably obtains much of its insect food; but it varies sometimes, using hay or feathers when these are at hand. Rooks dig in pastures and ploughed fields for grubs, and in doing so must continually encounter roots and fibres. These are used to line its nest. What more natural! The crow feeding on carrion, dead rabbits, and lambs, and frequenting sheep-walks and warrens, chooses fur and wool to line its nest. The lark frequents cultivated fields, and makes its nest, on the ground, of grass lined with horsehair—materials the most easy to meet with, and the best adapted to its needs. The kingfisher makes its nest of the bones of the fish which it has eaten. Swallows use clay and mud from the margins of the ponds and rivers over which they find their insect food. The materials of birds' nests, like those used by savage man for his house, are, then, those which come first to hand; and it certainly requires no more special instinct to select them in one case than in the other.
But, it will be said, it is not so much the materials as the form and structure of nests, that vary so much, and are so wonderfully adapted to the wants and habits of each species; how are these to be accounted for except by instinct? I reply, they may be in a great measure explained by the general habits of the species, the nature of the tools they have to work with, and the materials they can most easily obtain, with the very simplest adaptations of means to an end, quite within the mental capacities of birds. The delicacy and perfection of the nest will bear a direct relation to the size of the bird, its structure and habits. That of the wren or the humming-bird is perhaps not finer or more beautiful in proportion than that of the blackbird, the magpie, or the crow. The wren, having a slender beak, long legs, and great activity, is able with great ease to form a well-woven nest of the finest materials, and places it in thickets and hedgerows which it frequents in its search for food. The titmouse, haunting fruit-trees and walls, and searching in cracks and crannies for insects, is naturally led to build in holes where it has shelter and security; while its great activity, and the perfection of its tools (bill and feet), enable it readily to form a beautiful receptacle for its eggs and young. Pigeons having heavy bodies and weak feet and bills (imperfect tools for forming a delicate structure) build rude, flat nests of sticks, laid across strong branches which will bear their weight and that of their bulky young. They can do no better. The Caprimulgidae have the most imperfect tools of all, feet that will not support them except on a flat surface (for they cannot truly perch) and a bill excessively broad, short, and weak, and almost hidden by feathers and bristles. They cannot build a nest of twigs or fibres, hair or moss, like other birds, and they therefore generally dispense with one altogether, laying their eggs on the bare ground, or on the stump or flat limb of a tree. The clumsy hooked bills, short necks and feet, and heavy bodies of Parrots, render them quite incapable of building a nest like most other birds. They cannot climb up a branch without using both bill and feet; they cannot even turn round on a perch without holding on with their bill. How, then, could they inlay, or weave, or twist the materials of a nest? Consequently, they all lay in holes of trees, the tops of rotten stumps, or in deserted ants' nests, the soft materials of which they can easily hollow out.
Many terns and sandpipers lay their eggs on the bare sand of the sea-shore, and no doubt the Duke of Argyll is correct when he says, that the cause of this habit is not that they are unable to form a nest, but that, in such situations, any nest would be conspicuous and lead to the discovery of the eggs. The choice of place is, however, evidently determined by the habits of the birds, who, in their daily search for food, are continually roaming over extensive tide-washed flats. Gulls vary considerably in their mode of nesting, but it is always in accordance with their structure and habits. The situation is either on a bare rock or on ledges of sea-cliffs, in marshes or on weedy shores. The materials are sea-weed, tufts of grass or rushes, or the debris of the shore, heaped together with as little order and constructive art as might be expected from the webbed feet and clumsy bill of these birds, the latter better adapted for seizing fish than for forming a delicate nest. The long-legged, broad-billed flamingo, who is continually stalking over muddy flats in search of food, heaps up the mud into a conical stool, on the top of which it lays its eggs. The bird can thus sit upon them conveniently, and they are kept dry, out of reach of the tides.
Now I believe that throughout the whole class of birds the same general principles will be found to hold good, sometimes distinctly, sometimes more obscurely apparent, according as the habits of the species are more marked, or their structure more peculiar. It is true that, among birds differing but little in structure or habits, we see considerable diversity in the mode of nesting, but we are now so well assured that important changes of climate and of surface have occurred within the period of existing species, that it is by no means difficult to see how such differences have arisen. Simple habits are known to be hereditary, and as the area now occupied by each species is different from that of every other, we may be sure that such changes would act differently upon each, and would often bring together species which had acquired their peculiar habits in distinct regions and under different conditions.
How do Young Birds learn to Build their First Nest?
But it is objected, birds do not learn to make their nest as man does to build, for all birds will make exactly the same nest as the rest of their species, even if they have never seen one, and it is instinct alone that can enable them to do this. No doubt this would be instinct if it were true, and I simply ask for proof of the fact. This point, although so important to the question at issue, is always assumed without proof, and even against proof, for what facts there are, are opposed to it. Birds brought up from the egg in cages do not make the characteristic nest of their species, even though the proper materials are supplied them, and often make no nest at all, but rudely heap together a quantity of materials; and the experiment has never been fairly tried, of turning out a pair of birds so brought up, into an enclosure covered with netting, and watching the result of their untaught attempts at nest-making. With regard to the songs of birds, however, which is thought to be equally instinctive, the experiment has been tried, and it is found that young birds never have the song peculiar to their species if they have not heard it, whereas they acquire very easily the song of almost any other bird with which they are associated.
Do Birds sing by Instinct or by Imitation?
The Hon. Daines Barrington was of opinion that "notes in birds are no more innate than language is in man, and depend entirely on the master under which they are bred, as far as their organs will enable them to imitate the sounds which they have frequent opportunities of hearing." He has given an account of his experiments in the "Philosophical Transactions" for 1773 (Vol. 63); he says: "I have educated nestling linnets under the three best singing larks—the skylark, woodlark, and titlark, every one of which, instead of the linnet's song, adhered entirely to that of their respective instructors. When the note of the titlark linnet was thoroughly fixed, I hung the bird in a room with two common linnets for a quarter of a year, which were full in song; the titlark linnet, however, did not borrow any passage from the linnet's song, but adhered stedfastly to that of the titlark." He then goes on to say that birds taken from the nest at two or three weeks old have already learnt the call-note of their species. To prevent this the birds must be taken from the nest when a day or two old, and he gives an account of a goldfinch which he saw at Knighton in Radnorshire, and which sang exactly like a wren, without any portion of the proper note of its species. This bird had been taken from the nest at two or three days old, and had been hung at a window opposite a small garden, where it had undoubtedly acquired the notes of the wren without having any opportunity of learning even the call of the goldfinch.
He also saw a linnet, which had been taken from the nest when only two or three days old, and which, not having any other sounds to imitate, had learnt almost to articulate, and could repeat the words "Pretty Boy," and some other short sentences.
Another linnet was educated by himself under a vengolina (a small African finch, which he says sings better than any foreign bird but the American mocking bird), and it imitated its African master so exactly that it was impossible to distinguish the one from the other.
Still more extraordinary was the case of a common house sparrow, which only chirps in a wild state, but which learnt the song of the linnet and goldfinch by being brought up near those birds.
The Rev. W. H. Herbert made similar observations, and states that the young whinchat and wheatear, which have naturally little variety of song, are ready in confinement to learn from other species, and become much better songsters. The bullfinch, whose natural notes are weak, harsh, and insignificant, has nevertheless a wonderful musical faculty, since it can be taught to whistle complete tunes. The nightingale, on the other hand, whose natural song is so beautiful, is exceedingly apt in confinement to learn that of other birds instead. Bechstein gives an account of a redstart which had built under the eaves of his house, which imitated the song of a caged chaffinch in a window underneath, while another in his neighbour's garden repeated some of the notes of a blackcap, which had a nest close by.
These facts, and many others which might be quoted, render it certain that the peculiar notes of birds are acquired by imitation, as surely as a child learns English or French, not by instinct, but by hearing the language spoken by its parents.
It is especially worthy of remark that, for young birds to acquire a new song correctly, they must be taken out of hearing of their parents very soon, for in the first three or four days they have already acquired some knowledge of the parent notes, which they will afterwards imitate. This shows that very young birds can both hear and remember, and it would be very extraordinary if, after they could see, they could neither observe nor recollect, and could live for days and weeks in a nest and know nothing of its materials and the manner of its construction. During the time they are learning to fly and return often to the nest, they must be able to examine it inside and out in every detail, and as we have seen that their daily search for food invariably leads them among the materials of which it is constructed, and among places similar to that in which it is placed, is it so very wonderful that when they want one themselves they should make one like it? How else, in fact, should they make it? Would it not be much more remarkable if they went out of their way to get materials quite different from those used in the parent nest, if they arranged them in a way they had seen no example of, and formed the whole structure differently from that in which they themselves were reared, and which we may fairly presume is that which their whole organization is best adapted to put together with celerity and ease? It has, however, been objected that observation, imitation, or memory, can have nothing to do with a bird's architectural powers, because the young birds, which in England are born in May or June, will proceed in the following April or May to build a nest as perfect and as beautiful as that in which it was hatched, although it could never have seen one built. But surely the young birds before they left the nest had ample opportunities of observing its form, its size, its position, the materials of which it was constructed, and the manner in which those materials were arranged. Memory would retain these observations till the following spring, when the materials would come in their way during their daily search for food, and it seems highly probable that the older birds would begin building first, and that those born the preceding summer would follow their example, learning from them how the foundations of the nest are laid and the materials put together.[H]
[H] It has been very pertinently remarked by a friend, that, if young birds did observe the nest they were reared in, they would consider it to be a natural production like the leaves and branches and matted twigs that surrounded it, and could not possibly conclude that their parents had constructed the one and not the other. This may be a valid objection, and, if so, we shall have to depend on the mode of instruction described in the succeeding paragraphs, but the question can only be finally decided by a careful set of experiments.
Again, we have no right to assume that young birds generally pair together. It seems probable that in each pair there is most frequently only one bird born the preceding summer, who would be guided, to some extent, by its partner.
My friend, Mr. Richard Spruce, the well-known traveller and botanist, thinks this is the case, and has kindly allowed me to publish the following observations, which he sent me after reading my book.
How young Birds may learn to build Nests.
"Among the Indians of Peru and Ecuador, many of whose customs are relics of the semi-civilisation that prevailed before the Spanish conquest, it is usual for the young men to marry old women, and the young women old men. A young man, they say, accustomed to be tended by his mother, would fare ill if he had only an ignorant young girl to take care of him; and the girl herself would be better off with a man of mature years, capable of supplying the place of a father to her.
"Something like this custom prevails among many animals. A stout old buck can generally fight his way to the doe of his choice, and indeed of as many does as he can manage; but a young buck 'of his first horns,' must either content himself with celibacy, or with some dame well-stricken in years.
"Compare the nearly parallel case of the domestic cock and of many other birds. Then consider the consequences amongst birds that pair, if an old cock sorts with a young hen and an old hen with a young cock, as I think is certainly the case with blackbirds and others that are known to fight for the youngest and handsomest females. One of each pair being already an 'old bird,' will be competent to instruct its younger partner (not only in the futility of 'chaff,' but) in the selection of a site for a nest and how to build it; then, how eggs are hatched and young birds reared.
"Such, in brief, is my idea of how a bird on its first espousals may be taught the Whole Duty of the married state."
On this difficult point I have sought for information from some of our best field ornithologists, but without success, as it is in most cases impossible to distinguish old from young birds after the first year. I am informed, however, that the males of blackbirds, sparrows, and many other kinds fight furiously, and the conqueror of course has the choice of a mate. Mr. Spruce's view is at least as probable as the contrary one (that young birds, as a rule, pair together), and it is to some extent supported by the celebrated American observer, Wilson, who strongly insists on the variety in the nests of birds of the same species, some being so much better finished than others; and he believes that the less perfect nests are built by the younger, the more perfect by the older, birds.
At all events, till the crucial experiment is made, and a pair of birds raised from the egg without ever seeing a nest are shown to be capable of making one exactly of the parental type, I do not think we are justified in calling in the aid of an unknown and mysterious faculty to do that which is so strictly analogous to the house-building of savage man.
Again, we always assume that because a nest appears to us delicately and artfully built, that it therefore requires much special knowledge and acquired skill (or their substitute, instinct) in the bird who builds it. We forget that it is formed twig by twig and fibre by fibre, rudely enough at first, but crevices and irregularities, which must seem huge gaps and chasms in the eyes of the little builders, are filled up by twigs and stalks pushed in by slender beak and active foot, and that the wool, feathers, or horsehair are laid thread by thread, so that the result seems a marvel of ingenuity to us, just as would the rudest Iinand hut to a native of Brobdignag. Levaillant has given an account of the process of nest-building by a little African warbler, which sufficiently shows that a very beautiful structure may be produced with very little art. The foundation was laid of moss and flax interwoven with grass and tufts of cotton, and presented a rude mass, five or six inches in diameter, and four inches thick. This was pressed and trampled down repeatedly, so as at last to make it into a kind of felt. The birds pressed it with their bodies, turning round upon them in every direction, so as to get it quite firm and smooth before raising the sides. These were added bit by bit, trimmed and beaten with the wings and feet, so as to felt the whole together, projecting fibres being now and then worked in with the bill. By these simple and apparently inefficient means, the inner surface of the nest was rendered almost as smooth and compact as a piece of cloth.
Man's Works mainly Imitative.
But look at civilised man! it is said; look at Grecian, and Egyptian, and Roman, and Gothic, and modern Architecture! What advance! what improvement! what refinements! This is what reason leads to, whereas birds remain for ever stationary. If, however, such advances as these are required, to prove the effects of reason as contrasted with instinct, then all savage and many half-civilized tribes have no reason, but build instinctively quite as much as birds do.
Man ranges over the whole earth, and exists under the most varied conditions, leading necessarily to equally varied habits. He migrates—he makes wars and conquests—one race mingles with another—different customs are brought into contact—the habits of a migrating or conquering race are modified by the different circumstances of a new country. The civilized race which conquered Egypt must have developed its mode of building in a forest country where timber was abundant, for it is not probable, that the idea of cylindrical columns originated in a country destitute of trees. The pyramids might have been built by an indigenous race, but not the temples of El Uksor and Karnak. In Grecian architecture, almost every characteristic feature can be traced to an origin in wooden buildings. The columns, the architrave, the frieze, the fillets, the cantelevers, the form of the roof, all point to an origin in some southern forest-clad country, and strikingly corroborate the view derived from philology, that Greece was colonised from north-western India. But to erect columns and span them with huge blocks of stone, or marble, is not an act of reason, but one of pure unreasoning imitation. The arch is the only true and reasonable mode of covering over wide spaces with stone, and therefore, Grecian architecture, however exquisitely beautiful, is false in principle, and is by no means a good example of the application of reason to the art of building. And what do most of us do at the present day but imitate the buildings of those that have gone before us? We have not even been able to discover or develope any definite style of building best suited for us. We have no characteristic national style of architecture, and to that extent are even below the birds, who have each their characteristic form of nest, exactly adapted to their wants and habits.
Birds do Alter and Improve their Nests when altered Conditions require it.
The great uniformity in the architecture of each species of bird which has been supposed to prove a nest-building instinct, we may, therefore, fairly impute to the uniformity of the conditions under which each species lives. Their range is often very limited, and they very seldom permanently change their country, so as to be placed in new conditions. When, however, new conditions do occur, they take advantage of them just as freely and wisely as man could do. The chimney and house-swallows are a standing proof of a change of habit since chimneys and houses were built, and in America this change has taken place within about three hundred years. Thread and worsted are now used in many nests instead of wool and horsehair, and the jackdaw shows an affection for the church steeple which can hardly be explained by instinct. In the more thickly populated parts of the United States, the Baltimore oriole uses all sorts of pieces of string, skeins of silk, or the gardener's bass, to weave into its fine pensile nest, instead of the single hairs and vegetable fibres it has painfully to seek in wilder regions; and Wilson, a most careful observer, believes that it improves in nest-building by practice—the older birds making the best nests. The purple martin takes possession of empty gourds or small boxes, stuck up for its reception in almost every village and farm in America; and several of the American wrens will also build in cigar boxes, with a small hole cut in them, if placed in a suitable situation. The orchard oriole of the United States offers us an excellent example of a bird which modifies its nest according to circumstances. When built among firm and stiff branches the nest is very shallow, but if, as is often the case, it is suspended from the slender twigs of the weeping willow, it is made much deeper, so that when swayed about violently by the wind the young may not tumble out. It has been observed also, that the nests built in the warm Southern States are much slighter and more porous in texture than those in the colder regions of the north. Our own house-sparrow equally well adapts himself to circumstances. When he builds in trees, as he, no doubt, always did originally, he constructs a well-made domed nest, perfectly fitted to protect his young ones; but when he can find a convenient hole in a building or among thatch, or in any well-sheltered place, he takes much less trouble, and forms a very loosely-built nest.
A curious example of a recent change of habits has occurred in Jamaica. Previous to 1854, the palm swift (Tachornis phaenicobea) inhabited exclusively the palm trees in a few districts in the island. A colony then established themselves in two cocoa-nut palms in Spanish Town, and remained there till 1857, when one tree was blown down, and the other stripped of its foliage. Instead of now seeking out other palm trees, the swifts drove out the swallows who built in the Piazza of the House of Assembly, and took possession of it, building their nests on the tops of the end walls and at the angles formed by the beams and joists, a place which they continue to occupy in considerable numbers. It is remarked that here they form their nest with much less elaboration than when built in the palms, probably from being less exposed.
A still more curious example of change and improvement in nest building was published by Mr. F. A. Pouchet, in the tenth number of the Comptes Rendus for 1870, just as the first edition of this work appeared. Forty years ago M. Pouchet had himself collected nests of the House-Martin or Window-Swallow (Hirundo urbica) from old buildings at Rouen, and deposited them in the museum of that city. On recently obtaining some more nests he was surprised, on comparing them with the old ones, to find that they exhibited a decided change of form and structure. This led him to investigate the matter more closely. The changed nests had been obtained from houses in a newly erected quarter of the city, and he found that all the nests in the newly-built streets were of the new form. But on visiting the churches and older buildings, and some rocks where these birds build, he found many nests of the old type along with some of the new pattern. He then examined all the figures and descriptions of the older naturalists, and found that they invariably represented the older form only.
The difference between the two forms he states to be as follows. In the old form the nest is a portion of a globe—when situated in the upper angle of a window one-fourth of a hemisphere—and the opening is very small and circular, being of a size just sufficient to allow the body of the bird to pass. In the new form the nest is much wider in proportion to its height, being a segment of a depressed spheroid, and the aperture is very wide and shallow, and close to the horizontal surface to which the nest is attached above.
M. Pouchet thinks that the new form is an undoubted improvement on the old. The nest has a wider bottom and must allow the young ones to have more freedom of motion than in the old narrower, and deeper nests, and its wide aperture allows the young birds to peep out and breathe the fresh air. This is so wide as to serve as a sort of balcony for them, and two young ones can often be seen on it without interfering with the passage in and out of the old birds. At the same time, by being so close to the roof, it is a better protection against rain, against cold, and against enemies, than the small round hole of the old nests. Here, then, we have an improvement in nest building, as well marked as any improvement that takes place in human dwellings in so short a time.
But perfection of structure and adaptation to purpose, are not universal characteristics of birds' nests, since there are decided imperfections in the nesting of many birds which are quite compatible with our present theory, but are hardly so with that of instinct, which is supposed to be infallible. The Passenger pigeon of America often crowds the branches with its nests till they break, and the ground is strewn with shattered nests, eggs, and young birds. Rooks' nests are often so imperfect that during high winds the eggs fall out; but the Window-Swallow is the most unfortunate in this respect, for White, of Selborne, informs us that he has seen them build, year after year, in places where their nests are liable to be washed away by a heavy rain and their young ones destroyed.
Conclusion.
A fair consideration of all these facts will, I think, fully support the statement with which I commenced, and show, that the mental faculties exhibited by birds in the construction of their nests, are the same in kind as those manifested by mankind in the formation of their dwellings. These are, essentially, imitation, and a slow and partial adaptation to new conditions. To compare the work of birds with the highest manifestations of human art and science, is totally beside the question. I do not maintain that birds are gifted with reasoning faculties at all approaching in variety and extent to those of man. I simply hold that the phenomena presented by their mode of building their nests, when fairly compared with those exhibited by the great mass of mankind in building their houses, indicate no essential difference in the kind or nature of the mental faculties employed. If instinct means anything, it means the capacity to perform some complex act without teaching or experience. It implies innate ideas of a very definite kind, and, if established, would overthrow Mr. Mill's sensationalism and all the modern philosophy of experience. That the existence of true instinct may be established in other cases is not impossible, but in the particular instance of birds' nests, which is usually considered one of its strongholds, I cannot find a particle of evidence to show the existence of anything beyond those lower reasoning and imitative powers, which animals are universally admitted to possess. |
|