p-books.com
Checking the Waste - A Study in Conservation
by Mary Huston Gregory
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

This brings us to the last one of our preventive measures for the decline of our forests, the one which needs the most careful attention of all—the replanting of the lands that are not fitted for agriculture, and planting trees about houses and unoccupied spaces.

Many farmers have planted orchards on a part of their farm-lands and many trees have been planted in town and country, but until a few years ago there was no organized effort to plant trees.

Now many states have set apart a day which is called Arbor Day, for this purpose, but in no state does it hold so important a place as it should. It is observed by the schools but not by the general public.

In Germany there are regular tree-planting days in which all the people take part. Every one who is not too poor—and he must be poor indeed—plants a tree in his own garden, or in front of his home, in the forest or in the highway; for himself or for the general good.

Each child plants a tree on his or her birthday every year, and watches and cares for it as it grows. The roadsides are lined with fruit or nut or flowering trees which have been planted in neat, orderly rows. These things are in striking contrast to the observance of Arbor Day in this country, where one tree suffices for an entire school, or at best each class has a tree of its own. It is all a matter of enthusiasm and education.

In considering the best trees for planting we come to the last great use of trees of which we have not spoken. Fruit and nut trees supply us with large quantities of the most wholesome and delicious food. The apple, pear, peach, plum, and cherry grow in the central part of the United States, and oranges, lemons, figs, olives and apricots in the warmer parts.

By planting these trees in suitable places one may have a rich harvest for many years to come. If a small fraction of the seeds of fruit trees which are wasted each year were planted, the general food supply would be greatly increased, and many benefits would be derived from the trees themselves.

Have you ever heard the story of "Apple-seed John," the man who, according to tradition, went through what is now western Pennsylvania, Ohio and Indiana while the country was still a wilderness and planted orchards for the settlers who, he was sure, would come later?

So many stories have been told of him that it is hard to discover how much of the tale is really true. At least one poem has been written about him, and the Reverend Newell Dwight Hillis has woven the facts and fancies of his career into a charming book, The Quest of John Chapman.

The story is that he spent his winters in the settlements near the Atlantic coast teaching the children or working at small tasks about the farms, and taking his pay always in the seeds of apples, peaches, pears, plums, and grapes. The farmers and their families saved all their seeds for him and when spring came he filled his boat with seeds and started down the Ohio River. When he reached a suitable landing-place he took his bags of seeds on his back and trudged through the forest.

Whenever he came to an open space he planted an orchard, built a fence of boughs about it, and started on again. And so he traveled on and on, through all the spring and summer months, year after year, planting his seeds for those who would come after him, until he grew too old to work.

The first settlers in those states found the orchards and vineyards awaiting them, and a few trees are still standing that are said to have been planted by Apple-Seed John. The story of this man who in his humble way devoted his life to others is one that may well be told and imitated, for while none of us can do the work he did, it may inspire us with a wish to make some spot on earth better by planting our few seeds or plants.

In carrying on this work in the schools as well as by the general public, a regular plan should be followed. Much can be accomplished with no expense at all, even in cities. In all cases the expense will be very small compared to the good accomplished.

Seeds may be planted and later transplanted. This will require no expense and little labor. Every child, large and small, in city and country, can learn to do this work and can thus perform a real service. Small saplings which are growing close together, where they can never develop, may each be planted in a place where it will have a chance to grow into a thrifty tree. Most farmers would be entirely willing to allow the pupils to take such saplings from their wood-lots if the work were properly done. This is an excellent work for country schools to undertake, both for the good it will accomplish and for the training of the pupils themselves in practical work.

Fruit trees of suitable size for planting may be had for about twenty cents each. Most American children could easily save that amount from money spent on candy, sweetmeats or toys so as to have a tree ready for planting on Arbor Day which would yield them fruit as they grow older, and be a source of pride and pleasure. Such trees will of course usually be planted at the children's own homes, but it would be an excellent idea to follow the German plan of planting public orchards just outside the town. When the trees are old enough to bear, the children are allowed on certain days to go and gather and eat the fruit and carry it home in baskets.

The older boys in every school, whether city or country, should be taught to plant and transplant trees in the best way. The following directions for the work are sent out by the Department of Agriculture at Washington:

"The proper season for planting is not everywhere the same. When the planting is done in the spring, the right time is when the frost is out of the ground and before budding begins.

"The day to plant is almost as important as the season. Sunny, windy weather is to be avoided. Cool, damp days are the best. Trees can not be thrust carelessly into a rough soil and then be expected to flourish. They should be planted in properly worked soil, well enriched. If they can not be planted immediately after they are taken up the first step is to prevent their roots drying out in the air. This may be done by piling fresh dirt deep about the roots or setting the roots in mud.

"In planting they should be placed from two to three inches deeper than they stood originally. Fine soil should always be pressed firmly—not made hard—about the roots, and two inches of dry soil at the top should be left very loose to retain the moisture."

The reading of such poems as Lucy Larcom's "He who plants a tree plants a hope," or William Cullen Bryant's, "Come, let us plant the apple tree," and suitable talks or papers on trees, dealing with their kinds and uses, on the benefits of forests, and on practical forestry, should be a part of the Arbor Day exercises.

In many communities a tract of land which is not well suited for general agriculture may be obtained for the benefit of the school, and some simple work in forestry may be undertaken by the pupils. Sometimes a farmer may be induced to give a small bit of waste land where the experiment may be tried. Sometimes such land can be bought by the school in one of the following ways:

A series of entertainments may be given by the pupils, the proceeds to be applied to the buying of the land, and the pupils may also obtain money in other outside ways to bring to the general fund. If only one acre can be bought and cleared by the pupils, and properly planted, a little at a time, a tree for each child's birthday, or by obtaining small seedlings and saplings from the forest, it will be a source of keen interest, and will give an added pleasure to the school work. Watching the growth of the trees and caring for them will keep this interest alive year after year, and in time it will become a valuable property belonging to the school. Sometimes the school officials will set aside a sum from the public money to purchase the land. In one High School, one acre is thus bought each year, and every pupil in the senior year gives and plants a tree. Sometimes the farmers or the merchants of a community may unite in buying the land, which will, of course, become public property, and set it aside for improvement after the manner of a city park.

Sometimes women's clubs become interested in such a movement and will raise the funds necessary for beginning it. It then becomes the duty of the school, year after year, to plant and care for the land. After a time the school will have a valuable property to sell, or can have a yearly income from the sale of timber.

Such plans may be carried out in many schools. Every school can and should do something to forward this great work. All school yards should be well planted and care taken that the boy with a new knife does not try it on the bark or that the bark is not rubbed from the trees in careless play. Many trees planted in school yards have been destroyed in this way.

But we shall not be safe if only the schools plant trees. Farmers and lot owners should take up the work in earnest, adding as many trees as possible each year. In this way they could insure an abundant supply of fruit, nuts and timber for the future, could increase the value of their property, and provide a steady income besides.

Farmers' institutes would find this a most important work to undertake, arranging for a common plan to be carried out in an entire neighborhood, and setting aside days in which all the members may work together to set out trees by the roadsides. This brings us to the question of what kinds of trees are best to plant.

For town or city lots, fruit trees should always be chosen, because they bear in a short time and will add to the family food supply, and so lessen the cost of living and increase the variety of food. Every farm should have a good assortment of fruit. Any nurseryman's catalogue will furnish lists of kinds so that a wise choice may be made. In selecting fruit trees, great care should be taken to choose the best varieties.

For streets and roadsides, nut or wild fruit trees are best, for the trees are generally graceful in appearance and will yield some return, as the more popular maples and poplars will not. The chestnut is one of the best trees for such planting, though it is of a rather slow growth. English or American walnuts, pecans, mulberry and persimmon trees can be grown in most parts of the United States.

One town in Kansas is planting fruit trees on all its streets, so that in a few years there will be an abundance of fruit free to every passer-by. This is a most excellent plan, but individuals would be likely to find the fruit molested if only a few trees are planted in a community.

Barn-lots and lanes should be planted with wild cherry, haws, elder, dogwood, mountain-ash, and other wild fruits to serve as food for birds, poultry, and hogs.

Where the banks of streams need to be protected from erosion, probably the best tree for planting is the basket willow, which thrives well near the water, has a heavy network of roots, and is valuable for weaving into baskets and furniture.

For all hillsides and rocky places, as well as wood-lots, the hardwoods which sell best for timber should be planted in the North and West, and the evergreens near the sea-coasts and in the South. Forests of oak, hickory, walnut, maple (especially the sugar maple, which yields a steady return during the lifetime of the tree), elm, chestnut, and locust will sell for a good price, and are always salable. It requires many years to grow large timber, but by proper management several years can be gained in its growth, and it is always a valuable investment for a farmer to make for his children.

Not individuals only, but states and the national government as well, should provide forests for the future, and this is the greatest duty of all, for much of the most important work can only be done by a power that can control the entire watershed at the head-waters of a river-system.

For example, the Appalachian Mountains are the source of hundreds of streams which flow east, west and south, and pass through many states. These mountains were originally covered with a heavy forest growth, but they belong largely to private companies who are cutting the forests at a rapid rate.

The effect of this is seen in bare hillsides, washed by mountain torrents which are causing disastrous floods on the lowlands, filling up the streams, and carrying away much of the most fertile soil of some of the southeastern states, and in the drying up of the small tributaries.

This can not be remedied by single companies nor by the states that suffer most. The only remedy is for the government to buy the land at the head-waters of the rivers and reforest it. The same conditions on a smaller scale are to be found in every mountainous region where the forests are cut away.

The United States owns a large amount of forest but not nearly enough to insure a supply of wood for the future. The public forest lands are nearly all in the West. They consist of national forests, national parks, Indian and military reservations and land open to entry as timber claims. In all they contain nearly 100,000,000 acres, or about half as much as is contained in farmers' wood-lots and about one-fourth as much as the amount owned by large lumber companies.

The United States, on its public domain, is setting about a careful system of cutting and replanting. This system is known as forestry. It has been worked out by some of the more advanced nations of Europe who saw that destruction was coming on them through the cutting away of their forests. Now forestry is practised by every nation except Turkey and China. The principles have been well proved and the results of scientific care of the forests are known to be even more sure than in farming or live-stock raising.

The Department of Agriculture will send complete directions for planting trees in rows at proper distances, will tell what kinds are best suited to each region and condition, how to make them grow rapidly, and when to cut. All these things should be thoroughly understood by every land owner, large or small, but at present forestry is practised on only one per cent. of all land in this country, owned by private persons or companies, though it is practised on seventy per cent. of all public lands.

The countries that show the best results in forestry are some of the German states, particularly Prussia and Saxony, and France. In Prussia the rate of production is three times as great as it was seventy-five years ago. There is three times as much saw timber in a tree as there was at that time, and the money returns from an average acre of forest are now nearly ten times what they were sixty years ago. In Saxony the state forests are receiving two dollars and thirty cents per acre a year above all expenses from forests on land not fitted for agriculture, and the profit is increasing every year.

France and Germany together spend $11,000,000 a year on their public forests and receive from them an income of $30,000,000, or nearly three times as much, while the United States spends for its public forests more than ten times as much as it receives.

Many of our states are taking an active interest in forestry and are buying tracts of land of low value for state forests. New York is taking the lead in the work of planting forests, but even here the amount done is much less than it should be. The state forester says that one million trees are planted each year while twenty millions should be planted.

The National Conservation Commission reported that the entire United States should plant an area larger than the states of Pennsylvania, Ohio, and West Virginia, in order to supply our future needs, but that we have actually planted an area less than the state of Rhode Island.

This, then, is the lesson we should learn in regard to our forests: To guard against waste in cutting and use, fire, and insects, and to plant trees until our future supply of timber is assured, till the head-waters of our streams are protected and our waste lands made into valuable forest tracts; till every farm has its wood-lot, and every community its fruit and shade. It is a work in which every one of us may take some part and from which good results are certain to come.

ORCHARDS

Another phase of tree-culture that does not, strictly speaking, come under the head of forestry, but which should be considered here, is the cultivation of orchards, either for home use or for commercial purposes.

In a few sections, fruit is the most valuable of all crops. Oranges in Florida and California, peaches in some of the southern states, and apples in the northwest, are more profitable than any field crops, and their cultivation is made the subject of careful scientific study. But there are many other states where the raising of fruit in commercial quantities is almost altogether neglected, and to which almost all fruit is shipped from other sections. This is particularly true in the rich corn and wheat producing states of the Mississippi Valley.

The early settlers each planted an orchard for home use, and these produced the finest quality of fruit in abundance; but usually, after being planted, the trees were left to take care of themselves, while the farmer's time and attention were given to his fields of grain.

As time passed, plant diseases and insect pests increased, winds broke down many of the unpruned trees, frosts often blighted the entire crop of fruit, and the uncultivated, sod-choked trees produced fruit that was less in quantity and poorer in quality each year.

In recent years the highest grade of apples have all been shipped from the West. These are grown on irrigated land; a high price being paid both for the land itself and for the water-privilege, and the orchards are seldom more than ten acres in extent. Wind and frost may cause as much damage here as in the eastern states and plant diseases and insect enemies are equally liable to injure the crop.

But here orcharding is carried on in a scientific manner. The small size of the orchard makes it possible for the owner properly to care for every tree, and each one must be made a source of profit. Every condition that tends to affect the crop is carefully studied, and the remedy found and applied.

There is no reason why the same care and labor should not produce equally good results with far less expense in the well-watered regions of the eastern and central part of the United States. The neglected orchard will prove a failure anywhere, as surely as will a neglected garden, and success will come only by giving to fruit the same intelligent care that would be bestowed upon any other crop.

The cultivation of apples should receive particular attention in the north central states, because they have great food value, are not perishable, can be shipped long distances, and the demand, both at home and abroad, is always greater than the supply. The home orchard, however, should contain many kinds of fruit, and the same general rules in regard to the care of the orchard apply to all of them.

First, the orchard should not be located on land that is fitted to produce the best farm crops, but it must not be too steep and hilly to be cultivated. A sunny sloping hillside is best suited to orchard crops.

In most cases little fertilization is needed except the planting of clover or some other leguminous crop. If corn be planted in young orchards, as is often the case, potash should be used as a fertilizer after the crop is gathered, since both corn and fruit trees draw very heavily on the potash in the soil.

Old orchards sometimes need a single application of a general fertilizer containing all the principal soil elements. All fertilizers should be applied not merely around the base of the trunk, but as far from it as the tree spreads its branches in all directions.

The trees should be carefully pruned and special attention paid to trimming the tops low to prevent damage from winds, and also to make spraying easy.

The soil should be deeply cultivated the first few years in order to make the roots strike deep into the ground, and afterward the soil should receive some surface cultivation every year.

When there is danger of frost after the trees have bloomed, brushwood fires are lighted and a dense smoke is raised over the orchard by burning pots of crude oil. This smoke is helpful in preventing the formation of frost, and will often be the means of saving the crop.

The other great causes of failure to grow large quantities of perfect fruit, if the varieties are well chosen, are plant diseases and damage by insects. The methods of their control are given in the chapter on Insects, and include principally the disposal of all decayed fruit, the raking up and burning of all leaves in infected orchards, arsenical and lime sprays, and, above all, such attention to pruning and cultivation as will keep the trees in good condition.

Lastly, the keeping of bees in the orchard will pay well, not only for the honey they produce, but because they assist greatly in carrying the pollen from flower to flower, and so increasing the crop of fruit.

REFERENCES

Forests. Report National Conservation Commission.

Forest Conservation, Papers and Discussions, Report Governor's Conference.

Arbor Day, Forest Service Department of Agriculture Circular, 96.

Tree Planting on Rural School Grounds. Forest Service Department of Agriculture Circular, 134.

Practical Assistance to Tree Planters. Forest Service Department of Agriculture Circular, 22.

How to Transplant Forest Trees. Forest Service Department of Agriculture Circular, 61.

Forest Planting on Coal Lands. Forest Service Department of Agriculture Circular, 41.

Forestry in the Public Schools. Forest Service Department of Agriculture Circular, 130.

Primer of Forestry. (Pinchot). Forest Service Department of Agriculture Circular, 173.

The Use of the National Forests. (Pinchot.)

What Forestry Has Done. Forest Service Department of Agriculture Circular, 140.

Forest Preservation and National Prosperity. Forest Service Department of Agriculture Circular, 35.

Forest Planting and Farm Management. Forest Service Department of Agriculture Circular, 228.

Facts and Figures Regarding our Forest Resources. Forest Service Department of Agriculture Circular, 11.

Drain Upon the Forests. Forest Service Department of Agriculture Circular, 129.

The Waning Hardwood Supply. Forest Service Department of Agriculture Circular, 129.

Timber Supply of the United States. Forest Service Department of Agriculture Circular, 116.

Forestry and the Lumber Supply. Forest Service Department of Agriculture Circular, 97.

How to Cultivate and Care for Forests in Semi-arid Regions.

Forest Service Department of Agriculture Circular, 54.

Paper-making Materials and their Conservation. Bureau of Chemistry, 41.



CHAPTER IV

WATER

Water is an absolute necessity to man, as much as the air he breathes or the food he eats. Water comes to us in the form of rain or snow. We usually think of it as unlimited, but we must come to think of it as a resource that can be abused and wasted or made useful and profitable as is the soil itself.

The amount of water is fixed and passes in an endless round from cloud to river or land and back to the clouds again. The average yearly rainfall of the United States is estimated at thirty inches, about forty inches in the eastern half, an average of eighteen inches in the western part, and in many places not more than ten or twelve inches. One inch of rain would amount to nearly one hundred and one tons per acre, or on a roof twenty feet long by twenty feet wide, one inch of rain would be two hundred and fifty gallons. With a rainfall of forty inches, this would amount to 10,000 gallons in a year, or an average, over every bit of land twenty feet square, of twenty-seven gallons for every day in the year. This is about the quantity that falls in the eastern part of the United States.

It varies slightly from year to year, but there is no more—there is no possible way of adding to it, though we may lessen it by allowing it to rush out to sea, giving no service to the land. As the land waters diminish the rainfall also grows less.

This two hundred trillions cubic feet of water which falls on our land every year constitutes our entire water resource, is the source of all our rivers and streams, of the moisture in the air, of our rains and snows, and our water for plant and animal growth.

To understand how much this is, we may say that it is about equal to ten times the amount of water that flows through the Mississippi River system. The water of the Mississippi and its branches is nearly half of all the water in the United States that flows through waterways to the sea. This water that flows through our streams is sometimes called the run-off. The run-off is increasing every year as we cut our forests and cultivate our land. It is used for navigation, irrigation and power, but the increase is not an advantage for these purposes as might be supposed, because it comes in disastrous floods, tearing away dams, ruining power sites, and not only preventing navigation during the flood season, but by filling up the rivers and changing the channels, making navigation difficult and dangerous throughout the year. The run-off is controlled to some extent and may be brought under almost as complete control as may be desired.

As much as the water of five or six Mississippis, or a little more than half of our supply, is evaporated to moisten and temper the air, to fall as rain or snow, or to form dews. This is sometimes called the fly-off, and except for some changes caused by management of the land, is entirely beyond control.

A part of the remainder sinks into the soil below the surface. A large portion of this helps to cause the slow rock-decay that forms the soil, and which is known as ground water. It is estimated that within the first hundred feet below the surface of the earth there is a quantity of water that has seeped down; and that would form, if it were collected, a vast reservoir sixteen or seventeen feet in depth spreading over all the 3,000,000 square miles of the area of our country. This is equal to about seven years' rainfall and is a very important part of our water resources. In many places it forms into underground streams or lakes. It feeds all the springs and many of the lakes. Our wells are dug or drilled into this underground water system. It carries away the excess of salts and mineral matter from the soil, the trees strike their roots deep into the earth and draw from it, and last and most important of all, that which sinks immediately below the surface supplies all our plant growth. So that it is this last portion, that which sinks below the ground, and which is sometimes termed the cut-off, amounting to about one-tenth of all our water resource, or about the quantity that flows through the Mississippi River system, that forms the really important part.

On this depends all that makes a land habitable, the water for drinking purposes and for plant and animal growth. On it depends the rate of production of every acre of farm and forest land and the life of every animal. Every full-grown man of one hundred and fifty pounds takes into his system not less than a ton of water each year, and every bushel of corn requires for its making fifteen or twenty tons of water.

Of the importance of this Professor Chamberlain says: "The key to the problem of soil conservation lies in due control of the water that falls on every acre. This water is an asset of great value. It should be counted by every land owner as a possible value, saved if turned where it will do good, lost if permitted to run away, doubly lost if it also carries away the soil and does destructive work below."

The uses of rainfall are given thus:

A due portion should go through the soil to its bottom to promote rock decay. Some of it should go into the underdrainage to carry away harmful matter, another portion goes up to the surface carrying solutions needed by the plants. A portion goes into the plants to nourish them, and still another part runs off the surface, carrying away the worn-out parts of the soil.

Crops can use to advantage all the rain that falls during the growing season; and in most cases crops are all the better for all the water that can be carried over from the winter. There are many local exceptions, but in general crops are best when the soil can be made to absorb as much of the rainfall and snowfall as possible. This also causes the least possible amount of wash from the land.

Doctor N. J. McGee says: "Scarcely anywhere in the United States is the rainfall excessive, that is, greater than is needed by growing plants, living animals and men. Nearly everywhere it falls below this standard. In the western part the average rainfall is only about eighteen inches; in the extreme eastern part the fall averages forty-eight inches. In the western part much of the land is unable to produce crops at all except when artificially watered. The eastern part might produce more abundant crops, develop greater industries and support a larger population with a rainfall of sixty inches than it is able to do with a rainfall of forty-eight inches." As may readily be seen, the fly-off can be controlled only in a very small degree, by conserving the moisture that is in the soil, and so preventing it from evaporating too rapidly.

The cut-off can be controlled to a considerable extent through forestry and scientific farming and it is very important that the supply should be as carefully conserved as possible.

But it is in the run-off that the great waste of water occurs, and also that great saving is possible. It has been found by careful estimate that from eighty-five per cent. to ninety-five per cent. of the water that flows to the sea is wasted in freshets or destructive floods.

We are not accustomed to think of the water as wasted, since it seems beyond our control, but as we are taking a careful account of stock, and seeing how our forests, our fuels and our minerals are disappearing, and our soil being carried out to sea by the rushing waters, it is well to consider, also, whether this great resource may not be so used as to benefit mankind in many ways and at the same time lessen the drain on other resources.

The water of streams may be divided as to use into four great classes. The most important is that used by cities for general supply, for household and drinking purposes; next, that which is used for navigation and the running of boats to carry commerce; third, that which is used for artificial watering or irrigation, and lastly, that which is used for power in manufacturing.

In the past, when water has been used it has seldom been employed for more than one of these purposes, but as we come to understand more the nature, value and possibilities of this great resource, we shall learn to make the money spent for one of these lines of activity supply several other needs.

As we study each of these separately we shall see this interrelation among them.

The cities of the United States have expended $250,000,000 in waterworks and nearly as much more in land for reservoirs, and for canals for conveying the water from these reservoirs to the cities. The better managed systems protect the drained lands from erosion by planting forests or grass and the water is completely controlled, so that all the water, even the storm overflow, is saved. There is very little waste in these city water systems until it comes to the consumer, where, except when it is sold through meters, the waste is often great.

The failure to provide the greatest good lies in the fact that the water systems have been used for water supply only and have not been made profitable in other ways. The drainage basins should be heavily planted with trees, which will in time yield a large return, or with hay, which can be marketed each year. Whenever possible, the canals carrying the water supply should also be used to furnish power.

The city of Los Angeles, when it had a population of only 150,000, undertook to provide pure water from a point two hundred and fifty miles distant. To do so it must take on itself a debt of $23,000,000, a large sum for a city ten times its size. Yet the people were ready to assume this great burden to insure an unending supply of pure water, for they realized that without it their city could not continue to grow. It was not until the plans for piping water to the city were almost completed that the value of the water-power along the route was realized. It has been disposed of at a rate that pays ten per cent. interest on the debt each year, and has made what seemed a dangerous risk, a profitable business arrangement. All these other uses of water which are profitable, help to lower the price of water to the users.

The matter of supreme importance in the water supply, however, is not whether the water is cheap, but whether it is pure. If refuse from factories is allowed to drain into a stream, the water becomes loaded with poisonous chemicals, acids, or minerals. If city sewage or barn-yards are allowed to drain into it, the germs of typhoid and other fevers enter the water supply. To insure the purity of water supply from a stream, no factory waste, city sewage or country refuse should be allowed to enter any part of the stream. In addition to this it should be carefully filtered.

The disposal of waste is a serious problem, and the easiest way is to divert it into the nearest water course and trust to the old maxim, "Running water purifies itself."

This, while true as a general fact, has so many exceptions that it is not safe to trust to it. The Sanitary District Canal of Chicago has proved positively that even the most heavily germ-laden water becomes pure by running many miles at a regulated speed through the open country, but the conditions are altogether different from those of an ordinary river. First, in a river, sewage may enter at any point down-stream to add to the germs already present in the water, while nothing is allowed to enter the Drainage Canal after it leaves the city. Second, some germs live for several days and may be carried many miles. Only a microscopic test can prove whether water contains such germs. Usually such tests are not made and water is used without people knowing whether it is pure or not, but the water of the Sanitary Canal is tested at many points to determine its purity. Each hour and each mile of its journey it grows purer. This proves that although running water does purify itself, a stream that is drained into all along its course is not a fit source of water supply.

Factory refuse, instead of being allowed to pollute the waters, should be turned to good use by extracting the chemicals, which form valuable by-products. All farm waste should be taken to a remote part of the farm, placed in an open shed or vat with cement floor and screened from flies to form a compost heap for fertilizers for the farm. This will amply repay the extra trouble and expense by increasing the farm crops. The sooner such refuse, especially manure, is returned to the land, the more valuable it is as a fertilizer.

In cities the sewage should be disposed of in such a way as to yield a profit to the city, and also promote the health of the people. The sewage of a city of 100,000 people is supposed to be worth, in Germany, about $900,000 a year for fertilizer on account of the phosphorus it contains. The city of Berlin operates large sewage farms, using as laborers men condemned to the workhouse. The expense for land and sewer system was $13,000,000, but it pays for the money invested, with $60,000 yearly profit over all expenses.

On the other hand the cost of impure water to the city of Pittsburg was reckoned at $3,850,000, and in the city of Albany, New York, the annual loss was estimated at $475,000.

In the early settlement of our country all towns were built on streams, and the ones which grew and flourished were all on rivers large enough to carry commerce by boat. After the invention of steamboats, daily packet lines were run on all the principal rivers.

Albert Gallatin planned a complete system of improved waterways, including many canals, that was intended to establish a great commercial route. Many canals were built and put into actual operation and dozens of others had been planned, when the building of railways began. This new system of transportation at once became popular. Not only were no more canals dug and no more steamboat lines built, but many of those actually in operation were abandoned.

In order to encourage railroad building and develop new regions, the government has given land and money to the extent of hundreds of millions of dollars, until now the railroads form one-seventh of all our national wealth, having 228,000 miles of tracks and earning $2,500,000,000 each year, while the waterways owned by the government have fallen into disuse.

Within the last four or five years another change has come about in the general attitude toward the waterways. At the time that the crops are moved in the fall, and when coal is needed for the winter supply, there are not nearly enough cars in the country to handle the volume of business, neither are there enough locomotives to move the necessary cars, nor tracks, nor stations. In short, the railways are entirely unable to handle the vast products of the country during the busiest seasons. Many persons in the West have suffered for fuel, and commerce has been greatly checked by the shortage; and the situation is growing worse each year as production increases.

James J. Hill estimates that the cost of equipping the railroads to carry the commerce of the country would be from five to eight billion dollars. This means a heavy tax on iron and coal and timber as well as on the labor resources of the country, and it would then be only a question of time until still further extensions were needed.

With these facts in view, interest in the waterways of the country has been revived.

It is estimated that it will require five hundred million dollars, or fifty million dollars a year for ten years completely to improve the waterways of the country. This is not more than one-tenth of what would be needed to equip the railroads. The cost of carrying freight by rail is from four to five times that of carrying it by water.

Much of the heavy freight of the country,—coal, iron, grain and lumber,—should be carried in this way, in order to reduce freight rates and so, indirectly, the cost to the people, and further to relieve the burden on the railways.

The railways, it might be added, would still have a large and increasing package-freight business, besides the handling of heavy freight in parts of the country where there are no navigable rivers.

For these reasons it would seem clearly the only wise policy to adopt a general plan for waterway improvement and carry it into effect at once. But there are many things to be considered.

Millions of dollars (in all about five hundred and fifty-two millions) have been spent for the improvement of waterways. Some of it has resulted in great gain, but a large part of it has been wasted through lack of an organized plan. Work has been begun and not enough money appropriated to finish it. In the course of a few years much of the value of the work is destroyed by the action of the current or by shifting sands, or if a stretch of river is finished in the most approved manner, often it is not used much, in some cases actually less after than before the work was begun, and these things have created a prejudice against waterway improvements.

The other reason is that in spite of the overcrowding of the railroads, the traffic on many of our large rivers is steadily growing less. The Inland Waterways Commission finds as a reason for the decrease, the relations existing between the railways and the waterways. A railway, they consider, has two classes of advantages. First, those that come from natural conditions. A railroad line can be built in any direction to any part of the country except the extremely mountainous parts, while a river runs only in a single direction.

If a new region distant from a large water course is opened up, as is being done rapidly in the West through irrigation and dry farming, the people are entirely dependent on the railways to develop it, to bring them all the conveniences of the outside world, and to carry the products of their land to the market.

Branch lines and switches can be built to factories and warehouses, while boats can reach only those situated along the water-front.

Another advantage of the railroads is that they bill freight all the way through, and that freight is much more easily transferred from one road to another. It is much more difficult and expensive to load and reload freight from boats and barges on account of the high and low water stages of the river. This difference amounts to as much as sixty feet in the Ohio River at Cincinnati. Railways make faster time, and the distance between two points is usually shorter, though sometimes during the busy season of the railways the river freight reaches its destination much sooner.

The other class of reasons relates to the railways themselves, which have always been in open competition with the waterways, and to gain traffic for themselves, usually charge lower rates to those points to which boats also carry freight. In many cases they have bought the steamboat lines so that rates might be kept up, and then, unable to operate the two lines as cheaply as one, have abandoned the steamboat lines.

Another method by which the railroads have driven out the water traffic, is by charging extremely heavy rates for freight hauled a short distance to or from boats, making it quite as cheap as well as more convenient to send freight all the way by rail.

Lastly, railroad warehouses, terminals and machinery for handling freight are all much better than those of inland steamboat lines, except at some points on the Great Lakes where the traffic is very heavy.

Some of these disadvantages might be overcome by law. In France, where the waterways are managed better than in any other country, the law requires that railroad rates be twenty per cent. higher on all heavy freight than the rates on the same freight if carried by water, and in several countries railroad companies are not permitted to own or manage a steamboat line.

These measures are suggestive of what may be done by law to correct abuses, but laws alone can not accomplish everything. The rivers belong to all the people, and every one who wishes may operate steamboat or barge lines, but before these can become profitable, and before first class warehouses and machinery are installed, there must appear on the part of the people a desire to patronize them. The best results are found in those cases where there is harmony between the railways and the steamboat lines; those in which the steamboat lines relieve the railways of much of the heavy freight which they are not able to handle without greatly increasing their present equipment.

There should be cooeperation on the part of the people. The towns and cities along the banks of many European rivers provide suitable terminals, warehouses and wharves with free use of the service. In other cases this is done by private capital with a charge for use to shippers. Sometimes it is done by the steamboat companies themselves, but unless one or the other method is assured all along the river it is not wise for the government to undertake the improvement of a stream.

Intelligent improvement of the waterways of the United States demands first that a careful survey of the needs of the whole country be made, then that a systematic plan be carried out providing for the improvement of important streams first.

The state and nation should work together, and any work that is begun should be completed as promptly as possible so that its full benefit may be realized.

Certain work, such as the improvement of the channel, should be done by the national government, since the waters belong to the nation; but the expense of constructing levees or dykes should be borne by the land owners along the banks, because the land thus protected is greatly increased in value; or by the state, which gets the return in increased taxes.

In many instances, the improvement of a stream would be a great benefit to one state or part of a state, but it would be impossible in many years to improve all the desirable streams, so that the larger ones of most general importance must be considered first.

In such cases the improvement is often undertaken by the state. Some navigable rivers have been thus improved and many canals are the property of states or of private companies.

Only a few rivers have a steady flow throughout the year at a depth sufficient to carry large boats. On most streams destructive floods at certain seasons and low waters at others interfere with navigation during a considerable part of the year. Most rivers have sand-bars, sunken rocks or logs in the channel, making the passage of boats difficult and dangerous. Others are well suited for navigation, except at points where rapids and falls make it impossible for boats to pass. The Ohio, the Tennessee, the Missouri and the upper Mississippi abound in such dangerous places and these should be canalized. It is the improving of rivers in these ways, dredging harbors to make them safer, and digging canals to provide a short passage between two bodies of water, that constitute what is known as the Improvement of Inland Waters.

If you look at a map showing the navigable streams of the United States you will see that nearly all of them lie in the eastern part.

The Mississippi is like a great artery with branches extending in all directions, east and west. The Great Lakes, with their outlet, the St. Lawrence River, and the many important rivers emptying into the Atlantic Ocean and the Gulf of Mexico, such as the Merrimac, Hudson, Delaware, Susquehanna, Potomac and Rio Grande, form great highways for all the commerce of the eastern part of the country, while the Columbia, Sacramento and Colorado Rivers, with their branches, are the only navigable streams of any importance west of the Mississippi River system.

In some places a small portion of land divides two important water areas, and canals dug through this neck of land change the commercial routes of the whole world. Such are the Isthmus of Suez, eighty-seven miles wide, through which a canal was cut that saves a sailing distance of 3,700 miles from England to India. Only the Isthmus of Panama, forty-nine miles in width, divides the Atlantic from the Pacific Ocean. When the canal across this narrow strip is completed, the sailing distance from New York to San Francisco will be shortened 8,000 miles, the entire distance around South America.

The Sault Ste. Marie Canal, connecting Lakes Superior and Huron, is only a little more than a mile and a half long, but it opens up the entire iron, copper, lumber and wheat resources of the Northwest to cheap water passage through the other lakes to the manufacturing region of the East.

The Erie Canal, by connecting Lake Erie with the Hudson River from Buffalo to Albany, New York, makes the only water passage from the Great Lakes to the ocean that lies within the borders of the United States.

If you will turn to the map again, you will see still other places where a short canal may open up an entirely new and important water route. From Chicago to Lockport, Illinois, is only thirty-seven miles, but Chicago is on Lake Michigan, while Lockport is on the Illinois River, a branch of the Mississippi. This canal, a large part of which is now in operation, is a part of the Lakes to Gulf waterway. One plan is to broaden and deepen the channel so that large vessels may pass, without unloading, from the Lakes to the Gulf of Mexico.

Another proposed canal which would be undertaken largely by individual states and a part of which is already completed, would afford a safe inside passage connecting the many bays, channels and navigable rivers of the Atlantic coast.

Still another proposed measure is the cutting of a canal from the southern end of Lake Michigan to the western end of Lake Erie at Toledo, Ohio, to avoid the long haul up Lake Michigan and down Lake Huron again.

The United States now has 25,000 miles of navigable rivers and a nearly equal mileage of rivers not now navigable but which might be made commercially important; five great lakes that have a combined length of 1,410 miles, 2,120 miles of operated canals, and 2,500 miles of sounds, bays and bayous, that might be joined by tidewater canals easily constructed, less than 1,000 miles long altogether, and making a continuous passage from New England to the Gulf of Mexico.

In all, our waterways at the present time are 55,000 to 60,000 miles long, the greatest system in the world, but almost unused.

The most important waterway improvement so far completed, is the Sault Ste. Marie, or the "Soo" canal which cost $96,000,000. A depth of eight feet was increased to twenty-one feet. The traffic has risen in sixteen years from a million and a quarter tons to forty-one and a quarter million tons.

A large proportion of the United States is not naturally fitted to be the home of man; at least, it is not fitted to produce his food, and except on the lofty mountains the reason for this will almost always be found to be either a lack or an excess of water.

In some parts of the country, there is, as we have seen, little rainfall. These arid or semi-arid lands must be provided with water for drinking purposes and for agriculture. The diverting of water courses into canals and ditches so that water can be carried to these waste lands is called irrigation.

In other parts of the country where rains are abundant, serious floods occur every year, often many times in a year. Thousands of acres of land thus subject to overflow are lost to use. The holding back of these flood waters in the upper part of the rivers, and so preventing these overflows, is termed storage of waters.

In still other regions the rainfall is abundant, and the land low-lying. Large areas are always covered with water. Such lands are called swamps or bogs, and when drained, they become the richest of agricultural lands. Irrigation, storage and drainage are the three methods employed to make waste lands valuable and useful. The land is saved or reclaimed, so all these methods of balancing and distributing the water supply are called reclamation.

In general it may be said that irrigation is more generally needed in the West, storage of flood waters in the central and eastern states, and drainage in the South.

By thus distributing the rainfall, hundreds of millions of acres have been or may be reclaimed, and large regions, formerly unfit to inhabit, have been turned into profitable farms. Three-fourths of one per cent. of our total rainfall, or two per cent. of all that falls in the West, is used for irrigating 13,000,000 acres.

There are several methods of irrigation which are adapted to different regions and different crops. The rice fields of South Carolina, Georgia, Louisiana and Texas are irrigated by allowing the land to remain continually flooded to a depth of several inches. When the irrigation season is over the levees are opened, and the water runs off rapidly, and the crop is soon ready to be harvested. Tidal rivers are used to supply water in most cases, but in Texas many flowing wells are employed for irrigation.

In Florida, where irrigation is used largely for intensive farming, various means are employed, some of which are also used in the western and southwestern states. Mechanical pumps, operated by turbine wheels, pump the water from the rivers if a lift be required. Sometimes the water is pumped direct to the fields in iron pipes and applied by means of hydrants and hose, as in a city water system.

Overhead pipe lines are now recognized as the most perfect and satisfactory form of artificial watering. Two-inch pipes are run over frames several feet in height. These are arranged in parallel lines all over the fields about forty feet apart. At intervals of forty feet, a small iron pipe, ending with a fine spraying attachment, extends upward. The water is turned on in the evening and comes out of the sprayer in a fine mist and falls upon the plants like a gentle rain.

By another form of irrigation, the fields are divided at regular intervals by wide wooden troughs from which water is directed between the rows of plants. Main canals leading from the streams and intersected by short canals extend in all directions through the fields and orchards, and are distributed in various ways. This system is in general use throughout the arid portions of the West. The methods are said to be the most scientific and varied in southern California.

When water for irrigation is supplied from wells some underground system is generally used. One common method is to lay continuous pipes from the wells all over the fields and distribute from hydrants, plugs and standpipes.

By still another system, the water is carried below the surface through pipes which are broken every few inches and laid in beds of charcoal.

In the eastern states irrigation is only employed in dry weather to increase the yield of vegetable crops. In the arid western region it transforms what would otherwise be a dreary desert into fertile valleys.

William J. Bryan, speaking at the first Conservation Congress, said, "Last September, I visited the southern part of Idaho and saw there a tract that has been recently reclaimed. I had been there before. I had looked upon these lands as so barren that it seemed as if it were impossible that they could ever be made useful.

"When I went back this time and found that in three years 1,700,000 acres of land had been reclaimed, that where three years ago nothing but sage-brush grew, they are now raising seven tons of alfalfa to the acre, and more than a hundred bushels of oats; when I found that ten thousand people are living on that tract, that in one town that has grown up in that time there are more than 1,900 inhabitants, and in three banks they had deposits of over half a million dollars, I had some realization of the magic power of water when applied to these desert lands."

The same thing might be said of other regions throughout the West. In the Salton district of California a marvelous change has been brought about by irrigation. A few years ago that was one of the most desolate and forbidding regions on our continent. Now it is covered with several thousands of acres of alfalfa and other crops, and it bids fair to be a great fruit region. Of southern California it is said, "The irrigation systems of this part of the state are known all over the world, and have created a prosperous commonwealth in a region which would be a scene of utter desolation without them."

This locality presents a better opportunity for the scientific study of farming by irrigation than exists anywhere else in the world. Here all land values depend directly on ability to obtain a water supply. So precious is the water and so abundant are the rewards that follow its application to the soil that the most careful consideration is given to the various sources of supply and distribution.

As land becomes scarcer and the cost of living greater on account of the increase in population, men are turning more and more to irrigation to solve the problem of food supply.

As showing what may be accomplished by irrigation, the report of the last census says: "The construction of large irrigation works on the Platte, Yellowstone and Arkansas Rivers would render fertile an area equal to that of some eastern states. Engineers are grappling with the great problems of conserving the flood waters of these streams, which now are wasted and help to increase the destructive floods of the Mississippi. The solving of these problems will change a vast area of country, now practically worthless, into valuable farms."

The "Great Bend" country, drained by the Columbia River, contains several million acres of land which only requires water to make it of great agricultural value.

The Gila River basin contains more than 10,000,000 acres of fertile land, capable of producing immense crops if irrigated, but without irrigation it is a desert land where only sage-brush and cactus flourish.

From arid lands capable of producing excellent crops but lacking in the magical element of water, we pass to the consideration of lands where the richest of soils are shut off from productiveness because they are covered with water. On the lower Mississippi the soil is richer than in any other part of the United States, but much of it is overflowed so frequently that it is unfit for cultivation. Dykes and levees have reclaimed thousands of acres of such overflow land. Many states control large marshy sections that have been or may be reclaimed.

In southern Florida lie the Everglades, a vast country which has been worse than valueless; a malarial region abounding in alligators, rattlesnakes, scorpions and other dangerous animals and insects. The state of Florida has undertaken the work of draining this great swamp, and when the task is completed, Florida will have added to its resources 3,000,000 acres of the richest soil for the raising of winter vegetables and fruits.

Florida is engaged in another great project—the digging of an inside passage connecting its inland tidal waters by a canal system which will open to navigation a continuous inland waterway six hundred miles in length. In digging these canals through the marshes bordering the coast, thousands of acres of exceedingly fertile land have been reclaimed and are now producing valuable crops.

The Kankakee marshes in Indiana have been drained, adding many thousands of acres of rich soil to the agricultural area of the state.

In all, about 80,000,000 acres are so wet that they must be drained in order to make them produce good farm crops, but which, while now covered only with marsh grass or undergrowth, is capable of being made the most fertile of all land.

This swamp land is ten times the area of Holland, which supports a population of 5,000,000 people. It is therefore easy to see how greatly we may add to our productive territory and our national wealth by reclamation through drainage.

We now come to the use of water as power; and although in the last fifty years this subject has received little attention, as manufacturing increases and as fuel decreases and becomes higher, the value of water becomes more evident, and water-power sites are being eagerly sought.

Our age may come to be known in the future as the age of power, because through the application of mechanical power man has gained such marvelous control over the world about him. Wind and water led in the production of power until about 1870, since which time they have scarcely increased at all, the greater advantages of steam and electricity having driven them out.

As long as all factories had to be built by the side of streams having suitable water-power, the number and size of factories were always extremely limited. With the introduction of steam it became possible to build factories at mines, in forests, in fruit or grain regions, wherever the supply of raw material was plentiful, and to multiply factories of all kinds in cities near the markets for their product, or where labor was cheap and abundant. But power could only be used where it was developed, and the size of the power plant depended on the amount of business done by each individual user.

Now a new era of power has again enlarged the possibilities of manufacturing. By means of electricity the work, not only of factories, but also of the home and the farm may be done in any place where electricity can be installed. We must bear in mind that electricity is never a source of power, but is only the agent that carries power to the user. The source of all electric power is either steam or water, produced by water-wheels, turbines, steam-engines or gas-engines. The economical way to furnish electric power is to establish central power plants, and electricity may be conveyed from them for many miles. An electric railway, telegraph, or telephone system many miles in length is operated from a single power plant. Electric light and power are transmitted all over the largest cities. It is no longer necessary that a factory be of any specified size nor that it have any waste power. If it be within reach of the electrical current it may use as much or as little as is needed.

The cheapness of electric power must always depend on nearness to the source of supply or to the market. Until a short time ago it was customary to locate electric power-houses near the market, that is, in cities. But the benefits to be derived from having the electric plant near the source of power, so that the cost of production is greatly lessened, are becoming better recognized. This will make water-power increasingly valuable.

It is even now practicable to develop water-power, wherever located, for the production of electricity. Although the lowest grade coals are used for electric power at the mines yet they can now be used for still other purposes. Coal or other fuel once used can not be replaced, but when electricity is derived from water-power only energy otherwise wasted is used. This energy, if derived from water-power, is all added to our assets instead of being lost.

For many years the amount of power used for manufacturing and other purposes has doubled about once in ten years, and the steady pace kept by different lines of development shows how closely they are related. Our power, our forest cut, the use of our iron and other minerals, our coal and petroleum, the railroad earnings, freight and passenger traffic, and our agricultural products all double themselves every ten years. This means that in ten years we shall require twice as much power as now, but will have far less coal to use. This raises the question,—have we available water-power to conserve our coal supply? Let us see. It is estimated that we are now using 26,000,000 horse-power of energy derived from steam, 3,000,000 horse-power derived from water, and 800,000 from gas or oil, a total of 29,800,000 horse-power. It is also estimated that there is now running idly over dams, falls, and rapids 30,000,000 horse-power of energy. In other words, we are wasting every day enough water to run every factory and mill, and to turn every wheel, to move every electric car and to supply every electric light or power-station in the country.

The amount of water-power is gauged solely by the low-water stage of the stream. A river is considered to produce only as much power as it can furnish at its season of lowest water. At other times factories may be operated more actively, but usually most of the extra power is wasted during a large part of the year.

If these storm or flood waters can be stored in reservoirs, the stream-flow throughout the year can be made fairly uniform and the power possibilities greatly increased. The Geological Survey believes that by storing the flood waters and regulating the flow of the streams, the large rivers of the United States may be made to furnish 150,000,000 horse-power, enough, if it could be utilized, to supply every power need of our country for many years to come without using a ton of our coal, and without in any way decreasing the water.

Of course this can never be practicable. Much power will always be needed where no stream for power is available. But the lesson is plain that where water can be used it should be, both in order to save the coal and because it can be produced more cheaply. The 30,000,000 horse-power now available, if produced in our most modern electric plants, would require the burning of nearly 225,000,000 tons of coal, and if in the average plant run by steam-engines, more than 650,000,000 tons of coal, which is fifty per cent. more than all the coal that is now produced in this country. At three dollars per ton it would cost $2,000,000,000 a year to supply the coal to furnish the power that we might have, one might almost say, as a by-product from the improving of the rivers for navigation. The development of the water-power possibilities of the country is now going forward at a rapid rate, however.

Dams on the Susquehanna River will soon make 30,000 horse-power available, which could be increased to 200,000 by building storage reservoirs.

A dam just begun at the rapids of the Mississippi River at Keokuk, Iowa, will, when completed, furnish 200,000 horse-power. Niagara is producing 56,000 horse-power on the United States side. The Muscle Shoals Falls rapids in the Tennessee River is furnishing 188,000 horse-power. Illinois will greatly increase its possibilities for offering cheap power to factories, when the Lakes to Gulf Canal with 173,000,000 horse-power worth $12,750,000 yearly, and the Chicago Drainage or Sanitary Canal, which has nearly 60,000 horse-power, are complete. Both of these projects were undertaken by the state.

In California 250,000 horse-power is now in operation, and 5,000,000 horse-power might easily be developed in that state alone, which at the price of coal would be worth a billion dollars a year.

New England has the oldest system of water-power control, because before the era of steam it was the chief manufacturing region of the country. The Merrimac, flowing through New Hampshire and Massachusetts, is the most carefully conserved river in the world, and Governor Dingley of Maine said that the water-power of Maine is equal to the working energy of 13,000,000 men.

The money value is counted at twenty dollars a year per horse power, but it frequently brings as high as one hundred or even one hundred and fifty dollars a year in a good manufacturing region, so that the value of our water-power facilities can hardly be computed.

An ideal picture of the harmonious development of our water resources for all purposes is one that is not too difficult to realize. It is the ideal that should be always before us in the improvement of our waterways, and we should bear in mind that although the expense will be heavy, it will not cost more than one-tenth as much to improve all the important waterways as to equip the railways to carry the traffic they will be called on to carry in the next ten years; and also that in the past, for every dollar that has been spent on waterways, almost twenty-five dollars has been spent on railways. The railways are a great and important part of our national development, but the waterways should not be neglected. Rather, the two should be so harmonized and adjusted as to make one great commercial system that will furnish cheap and abundant transportation for all our commerce.

The most complete plan for conserving our waters is as follows: First, build storage reservoirs along the upper stretches of the river to hold the overflow waters of the flood season which are to be turned into the main channel when the water becomes too low for ordinary navigation.

These storage reservoirs should be on the lowest grade of land, that which would be least productive. The reservoirs should be well stocked with the best varieties of fish to make them profitable. The banks should be planted with forest trees and made as attractive as they can be made to form public parks and pleasure grounds for the people, where boating, fishing and bathing may be enjoyed.

The next point is to remove all obstructions from the river, to canalize it at shallow places or rapids, so that the whole river will be navigable, and, if necessary, to deepen the channel so that it will carry large vessels between two important points.

Dams should be built to take advantage of every opportunity for water-power. One of the worst mistakes in the past has been the failure to use the power that might have been developed in improving the streams for navigation.

Rivers should be made profitable still further by stocking with fish and should be kept clear of factory refuse and sewage. Soil-wash should be lessened by planting trees and shrubs along the banks; and where overflow or erosion lowers the value of the land or repeatedly ruins the crops, dykes and levees should be built.

The rivers most important commercially should be improved first. Canals should be cut between waterways where large benefits will result; overflow and swamp land should be drained, and in arid regions every particle of water conserved for irrigation purposes.

The irrigation canals may also be used to supply water-power, and the canals may be used as are other canals for towing barges. If electric power is produced, electric towing is cheap and very desirable as a means of transportation.

In short, our water supply should be as carefully used and with as little waste as the land of forests. The most important improvements needed are, a Lakes to Gulf Waterway that shall be safe and practicable at least for vessels of moderate size; the improvement of the Ohio, Missouri, Tennessee and Upper Mississippi Rivers; an inner coast passage from New England to Florida, and in navigable rivers dredging and deepening if necessary, to make many outlets to the sea which will afford cheap transportation.

In the West, the Columbia, San Joaquin and Sacramento Rivers with their branches should be made navigable. Many western rivers have been almost ruined by filling with rocks in hydraulic mining, but this is now prohibited by law and if the channels were cleared they would again become navigable.

Appropriations for much of this work have already been made by Congress, but the work is not systematically planned. The cost of all of it would be about sixty-two and a half cents a year for each man, woman and child in the country and every one would receive some benefit.

The National Conservation Commission on Waterways found that the average family pays for transportation or freight on all its food and clothing and the necessities of life, nearly or quite one-third their actual cost. "It is estimated that the direct benefits would be a yearly saving in freight handling of $250,000,000, a yearly saving in flood damage of $150,000,000, a saving in forest fires of at least $25,000,000, a benefit through cheapened power of fully $75,000,000 and a yearly saving in farm production of $500,000,000; a total of $1,000,000,000, or twelve dollars and fifty cents for each person—twenty times the cost! And this does not take into account the benefits from irrigation, drainage, and the lessening of disease by a pure water supply."

REFERENCES

Waters. Report of the National Conservation Commission.

Report of Inland Waterways Commission, 1908.

American Inland Waterways. H. Quick.

Waterways and Water Transportation. J. S. Jeans.

Waterway Transportation in Europe. L. G. McPherson.

Highways of Progress. J. J. Hill.

Navigation Resources of the United States. (Johnson.) Report, Governor's Conference.

Conservation of Power Resources. (H. St. Clair Putnam.) Report, Governor's Conference.

Florida's Waterways. (Miles.) Report, Governor's Conference.

Our Water Resources. (Lyman Cooley.) Report, Governor's Conference.

The Lakes-to-Gulf Waterway. (Randolph.) Report, Governor's Conference.

Water Resources. (Kummel.) Report, Governor's Conference.

Necessity for Waterway Improvement. (Austin.) Report, Governor's Conference.

Report Congressional Committee on European Waterways. Senate Document, 1910.

River and Harbor Bill. Senate Document. Burton, 1910.

Forests, Water Storage, Power and Navigation. (Taylor.) Proceedings of the Am. Hydrochemical Society.

Our Inland Waterways. (McGee.)

Outlines of Hydrology. (McGee.)

Natural Movement of Water in Semi-arid Regions. (McGee.)

Irrigation in the United States. Dept. Commerce and Labor Census Bureau.

Irrigation Projects of the U. S. Reclamation Service.

Reports of Irrigation in various states. Apply to Governor.



CHAPTER V.

COAL

When we begin to study the mineral resources of the country we pass to conditions altogether different from those which we have been considering. Heretofore we have been dealing with resources that can be renewed, the soil by proper management, the forests by replanting, the waters by nature's own processes; but the fuels, the iron and many other mineral resources once used are gone for ever.

As to their importance Andrew Carnegie says: "Of all the world's metals iron is in our day the most useful. The opening of the iron age marked the beginning of real industrial development. To-day the position of nations may almost be measured by its production and use. Iron and coal form the foundation of our prosperity. The value of each depends upon the amount and nearness of the other. In modern times the manufacturing and transportation industries rest upon them, and with sufficient land and a fertile soil, these determine the progress of any people."

We are sometimes told that we need have no anxiety about the future, that new discoveries and inventions will take the place of the present fuels, and even substitutes for minerals will be devised long before the supply is exhausted. This may be true, and in a way the future must take care of itself, but until new inventions have actually been made it is criminal to waste present resources and blindly trust that time will make our folly appear good judgment and foresight.

We have vast mineral resources unused; the present generation, even its children and its children's children need have no fear of a shortage. But in the use of those resources that are steadily and for ever diminishing we must look a long way into the future. We are under the most solemn obligation to take only our part of the store, and leave the rest untouched and unspoiled for those who are to come after us. When we consider what these mineral resources have done for our country in the last fifty years, when we realize that it is only by having cheap and abundant coal, iron, and copper that our railroads, our various electric systems, and our great manufactories have been developed, we can realize our duty to give the coming generations an equal opportunity to develop their ideas.

The yearly products of the mines of the United States are now valued at more than $2,000,000,000. Sixty-five car-loads of freight out of every hundred carried by our railroads are made up of mineral products. More than a million men are employed at the mines, and more than twice that number in handling and transporting mine products.

Of every one hundred tons of coal mined in the whole world, the United States produces forty-three tons. We supply forty-five tons out of every hundred of iron ore, twenty-two tons of gold, thirty tons of silver, thirty-three tons of lead, nearly twenty-eight tons of the zinc, about fifty-five tons of the copper, and sixty-three tons of the petroleum consumed by all civilized countries.

This would be a cause for great national pride if we did not need also to consider the shameful fact that our wastes or losses in the mining, handling, and use of our mineral products are estimated at more than $1,500,000 per day, or, for the year, the gigantic sum of $547,500,000. That is, more than one-fourth of the entire output is wasted!

Of all our minerals, the fuels which supply heat, light, and power for domestic and manufacturing purposes, are the most necessary and important. Other materials can not be manufactured without their aid. Almost every particular of modern life would be changed if we no longer had plenty of fuel. Its use means its immediate and complete destruction, which is true of no other resource, and the use of fuels is increasing and will increase so rapidly that their conservation is becoming a serious problem.

The principal fuels are coal, gas, oil, peat, alcohol, and wood, and of these, coal is at present by far the most important. The first record of coal mined in this country was in 1814, when twenty-two tons of anthracite, or hard coal, were mined in Pennsylvania. An increasing amount was mined each year, but until 1821 the production was less than five hundred tons per year. In 1822 the production advanced to nearly 60,000 tons, and since that time has increased by leaps and bounds.

During the seventy-five years from 1820 to 1895, nearly 4,000,000,000 tons were mined by methods so wasteful that 6,000,000,000 tons were destroyed or allowed to remain in the ground so that it could never be recovered. Within the next ten years as much was produced as in the entire seventy-five preceding years, and in this period 3,000,000,000 tons were destroyed or left in the ground beyond the reach of future use. Up to this time the actual amount of coal used has been over 7,500,000,000 tons; the waste 9,000,000,000 tons.

Experts estimate that in the beginning there were somewhere about 2,000,000,000,000 tons of available coal, so that we have now, with all our wastefulness, used less than two per cent. of our original inheritance. But we must remember that in the ten years closing with 1905, we used as much as during the entire history of our country up to that time, and the rate of consumption is still increasing. In 1907 the amount mined was about 450,000,000 tons. Counting on a continuance of the same rate of increase, in 1917 it will be 900,000,000 tons a year, and if the same conditions should continue for twenty years we should be using and wasting in one year as much as we have used in all our history up to the present time. By that time more than one-eighth of our original supply will be gone, and in less than two hundred years nearly all of it will have for ever disappeared.

That is a long time to look forward, but a short time in looking backward. It carries us back only to the childhood of Benjamin Franklin and others prominent in our early history; and if this nation could look forward to only an equal period of prosperous development in the future the time would seem short indeed.

But the danger of our coal supply becoming exhausted lies not so much in its present use as in the rapid increase in its consumption. Fifty years ago (about the time of the Civil War) we were using an amount equal to a little more than a quarter of a ton for every man, woman and child then in the country. Now the rate is five tons, or twenty times that amount, for each person of all our greatly increased population.

The Pittsburg Coal Company owns about one-seventh of the great Pennsylvania anthracite fields. From the amount it is now mining each year and judging from the amount of coal it is able, with present methods, to reclaim from an acre of coal land, the estimate is made that this Pittsburg field will be exhausted in ninety-three years. A like comparison of all the eastern fields indicates that by the beginning of the next century there will be practically no cheap fuel left in the entire Appalachian basin.

The Geological Survey reports that, taking into account the available coal which can be reached and mined by present methods, and supposing the present conditions of use, waste, and increase to continue, the coal supply will be exhausted by the year 2015 A. D., but taking into account the probable improvements in its use, the year 2027 A. D. is estimated as the time when the present coal fields will be exhausted, and the middle of that century as the time when all coal fields in the United States will be gone.

This true story well illustrates the need of conservation and the folly of careless waste. High in the hills of the Pittsburg region a thick bed of excellent coal was found by the early settlers. It was impossible for them to build roads up the steep cliffs, so some method of getting the coal down to the valleys had to be devised. Buffaloes roamed the western plains in countless millions, and were so abundant about Pittsburg that the supply seemed inexhaustible. So the pioneers killed the buffaloes, filled each skin with a few bushels of coal, sewed it up, and tumbled it down the mountain side.

This was the way they marketed their coal—by destroying their buffaloes. For many years no one dreamed that there was any end to the supply of buffaloes. And so both east and west they were killed for their skins, which sold for a few cents, for their horns, for a supply of steak, or for mere sport; and then one day people woke up to find that the buffalo had disappeared, not in one settlement only, as they had supposed, but everywhere. There are a few remaining, carefully cared for by the government. They are among our most valued possessions, and yet only a few years ago they were destroyed, wasted, by millions.

This passing of the buffalo, the skins of which, as common then as burlap bags are now, were used to market our first coal, carries with it a deep lesson as to what will happen to the coal itself, even within the present century, unless our people awake to the consequence of what they are doing and make a determined effort to stop all unnecessary waste.

Let us see where and how these wastes occur. The first serious loss of our coal occurs at the mines. There are three great wastes in mining.

(1) A coal bed is not made up entirely of pure coal, especially if it be very thick. Sometimes there are layers of shale or clay, which makes a large amount of ash. This can never be sold as regular marketable coal; but it is rich in carbon, and much of it might be used if it could be marketed near the mines and sold as low-grade coal. In the past there has been almost no market for it, and if it were either in the roof or bottom of the coal bed, it has been left unmined. If mixed with pure coal, the low-grade coal was thrown into great heaps at the mouth of the mine. This refuse coal is called culm. The amount varies from one-tenth to one-half of the coal in nearly every coal bed, and would probably average one-fourth in all the mines of the country.

This material is rich in carbon, and when used in gas-engines will furnish more power than the best Pocahontas coal when steam-engines are used. Thus one-fourth of all our coal is wasted at the mines simply because steam-engines instead of gas-producer engines have been employed. If in the future installation of power this fact is taken into consideration, it will make the cost less to the user, and at the same time utilize a large proportion of our impure coal and save the higher grades for other purposes.

(2) In the mining of coal it was formerly the unfailing custom to leave supporting pillars of coal for the over-lying rocks to rest upon, to make suitable working-rooms, etc. These pillars, twelve to eighteen inches square, and higher than a man's head, are scattered throughout the entire mines and are usually of the highest grade coal. In many mines, also, a roof of coal a foot or more in thickness must be left because the material above the coal is not solid enough to prevent cave-ins. When the mine is abandoned and closed these pillars and roofings remain untouched, because removing them constitutes one of the greatest dangers to life, and is one of the frequent causes of mine accidents. It is improbable that the coal thus left in abandoned mines will ever be reclaimed, because not enough is left to make it profitable at present prices to re-open the mines; and frequently the rocks cave in about these pillars and make the task almost impossible.

(3) By careless blasting an unnecessarily large amount of coal is blown into powder,—the slack which has not been marketed at all until within the last few years. Much of this slack, which is the best grade of coal in a pulverized form, is left inside the mines. These wastes in abandoned roofing, pillars, and small-sized coal, together make a total which for all the mines in the country will average fully one-fourth more of the coal that is in the ground.

It is to be noted, however, that conditions are changing for the better. The most modern mines use fewer supporting pillars of coal, and these are of larger size, so that there is less danger of accidents. Wherever possible they use timbers of wood instead of these smaller pillars of coal. They also mine as near the top of the seam of coal as can be done safely, and so regulate the blasting that much less slack is made than by the heavy discharges. These changes in mining methods save a far larger proportion of coal, and also prevent many accidents, which are the most unfortunate feature of coal mining, and the one which should receive most careful consideration. (See chapter on Health.)

One large mining company in Kentucky raises its own timbers by planting trees in straight, close rows on its coal land, thus making the land produce its own mine timbers to conserve the coal below. This company claims to have lost but one life in ten years, and to save seventy-five per cent. of its coal. This is a striking illustration of what better mining methods will do for both the miner and the mine owner and of how forestry may be an aid to the conservation of coal and also of human life in the mines.

We have already shown how half of the coal is wasted, but there still remains another source of waste at the mines. This is a large but unknown quantity. Coal usually exists in beds or layers with shale or rock between, much as a "layer-cake" is made, the layers of cake being represented by the coal and the icing between by these "rock-partings," as they are called. In rich fields, there are from three to ten of these rich layers or beds of coal, one above another. It often happens that the thickest and best layer is the lowest, and when this is the case, it is usually mined first, regardless of the fact that some, and possibly all, of the higher beds are dislocated and broken or filled with deadly gases. Nearly all this loss could be avoided by simply mining the upper stratum first.

So much for waste at the mines. This is serious enough if it were all, but it is not all, it is only the beginning. Let us see now what becomes of the coal that is marketed. The railroads are the largest single users of coal, and here we are confronted with the surprising statement that our locomotives consume three tons of coal in doing the same work that is performed by English locomotives with one ton. This difference is said to be due to different construction of the engines themselves, and to more careful stoking, or firing. Our locomotives use 100,000,000 tons per year, and by even the best methods known a large proportion of the heat units is wasted. Great effort should be made to improve the locomotives so that they will consume less coal; but as long as the railroad companies own the coal mines, as they do in many instances, they can obtain coal so cheaply that the cost of the improved form of engine is greater than the amount saved.

Another great use lies in the manufacture of coke, which is used in the making of steel, and here, too, we see where great wastes have existed. The old form of coke-oven was called the bee-hive on account of its shape. These old style ovens consume all the coal with the exception of the fixed carbon which is left behind as coke. At the prices which prevailed in 1907, the value of the by-products wasted in bee-hive coke-ovens was a little over $55,000,000—surely a loss worth considering. A different form of coke-ovens is much used abroad and is coming into use in this country. This is the retort or by-product oven, sometimes called the recovery oven.

The bee-hive ovens are usually located near the mines where the cost of coal is low, with small expense for transporting it. On the other hand, the by-product ovens are established near the larger cities in order to dispose of their gas and other by-products. Here the cost of transportation must be added to that of the coal, but the products are marketed near by instead of at a distance, as in the case of the bee-hive ovens. The most improved by-product ovens produce not only coke and gas, but coal-tar, pitch, ammonia, and creosoting oils, all extremely valuable and adding greatly to the value of the output of the ovens.

Electricity is another form of light and power which involves a large waste of the energy of coal; only one-fifth of one per cent., that is, one-five hundredth of the value of the coal is used in electricity, and there is at present no known remedy for this.

There are methods, however, of lessening even this waste, and these are constantly receiving more attention. One is for the electric plants located in cities to sell their exhaust steam or water heated by the coal as it is converted into electric power, as a by-product. The electric power-house thus becomes a central heating plant to supply stores, offices, and residences. Another system being tried abroad, though scarcely past the experimental stage in this country, establishes great electric power-houses at the coal mines to use the culm, low-grade slack, and lignites, the lowest form of coal, in short, all the waste of the mines. Still another plan is the manufacturing of electricity by water-power, as we have seen in a previous chapter.

The manufacturing industries of the country waste a large amount of fuel annually, but here the waste is mostly due to expensive methods of producing power, and to careless stoking, and is largely preventable. As we have shown, gas-engines are a far more economical form of producing power than are steam-engines. Steam uses from five to ten per cent. of the heat-units of coal, gas-producer engines use fifty per cent. and burn a lower grade of coal.

One of the great problems of cities is the heavy volume of bituminous or soft coal smoke that hangs over the entire surrounding region, levying a heavy tax in cleaning and laundry work, making the air difficult to breathe, and shutting out the daylight itself. Every residence adds its mite, but the factories and public buildings are the worst offenders. There are several good smoke-consuming devices on the market that have been thoroughly tested by the government, which will furnish their names on application.

If factory owners who use steam power could realize that the gases, the highest heat-producing part of the coal, escape with the smoke, and that by using smoke consumers they not only prevent all the evils of the smoke nuisance but save fully half of the value of their coal, they would gladly put in this equipment. What manufacturer would not eagerly welcome any device that would cut his fuel bills in half?

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse