p-books.com
COSMOS: A Sketch of the Physical Description of the Universe, Vol. 1
by Alexander von Humboldt
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse

The most important and decisive observations that we possess on the nature and the light of comets are due to Arago's polarization experiments. His polariscope instructs us regarding the physical constitution of the Sun and comets, indicating whether a ray that reaches us from a distance of many millions of miles transmits light directly or by reflection; and if the former, whther the source of light is a solid, a liquid, or a gaseous body. His apparatus was used at the Paris Observatory in examining the light of Capella and that of the great comet of 1819. The latter showed polarized, and therefore reflected light, while the fixed star, as was to be expected, appeared to be a self-luminous sun.*

[footnote] *On the 3d of July, 1819, Arago made the first attempt to analyze the light of comets by polarization, on the evening of the sudden appearance of the great comet. I was present at the Paris Observatory, and was fully convinced, as were also Matthieu and the late Bouvard of the dissimilarity in the intensity of the light seen in the polariscope, when the instrument received cometary light. When it received light from Capella, which was near the comet, and at an equal altitude, the images were of equal intensity. On the reappearance of Halley's comet in 1835, the instrument was altered so as to give, according to Arago's chromatic polarization, two images of complementary colors (green and red). ('Annales de Chimie', t. xiii., p. 108; 'Annuaire', 1832, p. 216.) "We must conclude from these observations," says Arago, "that the cometary light was not entirely composed of rays having the properties of direct light, there being light which was reflected specularly or polarized, that is, coming from the sun. It can not be stated with absolute certainty that comets shine only with borrowed light, for bodies, in becoming self-luminous, do not, on that account, lose the power of reflecting foreign light."

The existance of polarized cometary light announced itself not only by the inequality of the images, but was proved with greater certainty on the reappearance of Halley's comet, in the year 1835, by the more striking contrast of the complementary colors, deduced from the laws of chromatic polarization discovered by Arago in 1811. These beautiful experiments still leave it undecided whether, in addition to this reflected solar light, comets may not have light of their own. Even in the case of the planets, as, for instance, in Venus, an evolution of independent light seems very probable.

The variable intensity of light in comets can not always be p 106 explained by the position of their orbits and their distance from the Sun. It would seem to indicate, in some individuals, the existence of an inherent process of condensation, and an increased or diminished capacity of reflecting borrowed light. In the comet of 1618, and in that which has a period of three years, it was observed first by Hevelius that the nucleus of the comet diminished at its perihelion and enlarged at its aphelion, a fact which, after remaining long unheeded, was again noticed by the talented astronomer Valz at Nismes. The regularity of the change of volume, according to the different degrees of distance from the Sun, appears very striking. The physical explanation of the phenomenon can not, however, be sought in the condensed layers of cosmical vapor occurring in the vicinity of the Sun, since it is difficult to imagine the nebulous envelope of the nucleus of the comet to be vesicular and impervious to the other.*

[footnote] *Arago, in the 'Annuaire', 1832, p. 217-220. Sir John Herschel, 'Astron.', 488.

The dissimilar eccentricity of the orbits of comets has, in recent times (1819), in the most brilliant manner enriched our knowledge of the solar system. Encke has discovered the existence of a comet of so short a period of revolution that it remains entirely within the limits of our planetary system, attaining its aphelion between the orbits of the smaller planets and that of Jupiter. Its eccentricity must be assumed at 0.845, that of Juno (which has the greatest eccentricity of any of the planets) being 0.255. Encke's comet has several times, although with difficulty, been observed by the naked eye, as in Europe in 1819, and according to Rumker, in New Holland in 1822. Its period of revolution is about 3 1/3d years; but, from a careful comparison of the epochs of its return to its perihelion, the remarkable fact has been discovered that these periods have diminished in the most regular manner between the years 1786 and 1838, the diminution amounting, in the course of 52 years, to about 1 3/10th days. The attempt to bring into unison the results of observation and calculation in the investigation of all the planetary disturbances, with the view of explaining this phenomenon, has led to the adoption of the very probable hypothesis that there exists dispersed in space a vaporous substance capable of acting as a resisting medium. This matter diminished the tangential force, and with it the major axis of the comet's orbit. The value of the constant of the resistance appears to be somewhat different before and after the perihelion; and this may, perhaps, be ascribed p 107 to the altered form of the small nebulous star in the vicinity of the Sun, and to the action of the unequal density of the strata of cosmical ether.*

[footnote] *Encke, in the 'Astronomiche Nachrichten', 1843, No. 489, s. 130-132.

These facts, and the investigations to which they have led, belong to the most interesting results of modern astronomy. Encke's comet has been the means of leading astronomers to a more exact investigation of Jupiter's mass (a most important point with reference to the calculation of perturbations); and, more recently, the course of this comet has obtained for us the first determination, although only an approximative one, of a smaller mass for Mercury.

The discovery of Encke's comet, which had a period of only 3 1/3d years, was speedily followed, in 1826, by that of another, Biela's comet, whose period of revolution is 6 3/4th years, and which is likewise planetary, having its aphelion beyond the orbit of Jupiter, but within that of Saturn. It has a fainter light than Encke's comet, and, like the latter, its motion is direct, while Halley's comet moves in a course opposite to that pursued by the planets. Biela's comet presents the first certain example of the orbit of a comet intersecting that of the Earth. This position, with reference to our planet, may therefore be productive of danger, if we can associate an idea of danger with so extraordinary a natural phenomenon, whose history presents no parallel, and the results of which we are consequently unable correctly to estimate. Small masses endowed with enormous velocity may certainly exercise a considerable power; but Laplace has shown that the mass of the comet of 1770 is probably not equal to 1/5000th that of the Earth, or about 1/2000th that of the Moon.*

[footnote] *Laplace, 'Expos. du Syst. du Monde', p. 216, 237.

We must not confound the passage of Biela's comet through the Earth's orbit with its proximity to, or collision with our globe. When this passage took place, on the 29th of October, 1832, it required a full month before the Earth would reach the point of intersection of the two orbits. These two comets of short periods of revolution also intersect each other, and it has been justly observed,* that amid the many perturbations experienced by such small bodies from the largr planets, there is a 'possibility' — supposing a meeting of these comets to occur in October — that the inhabitants of the Earth may witness the extraordinary spectacle of an encounter between two cosmical bodies, and possibly of their reciprocal penetration and amalgamation, or of their destruction by means of exhausting emanations.

[footnote] *Littrow, 'Beschreibende Astron.', 1835, s. 274. On the inner comet recently discovered by M. Faye, at the Observatory of Paris, and whose eccentricity is 0.551, its distance at its perihelion 1.690, and its distance at its aphelion 5.832, see Schumacher, 'Astron. Nachr.', 1844, No. 495. Regarding the supposed identity of the comet of 1766 with the third comet of 1819, see 'Astr. Nachr.', 1833, No. 239; and on the identity of the comet of 1743 and the fourth comet of 1819, see No. 237 or the last mentioned work.

Events of this nature, resulting either from deflection occasioned by disturbing masses or primevally intersecting orbits, must have been of frequent occurrence in the course of millions of years in the immeasurable regions of ethereal space; but they must be regarded as isolated occurrences, exercising no more general or alternative effects on cosmical relations than the breaking forth or extinction of a volcano within the limited sphere of our Earth.

A third interior comet, having likewise a short period of revolution was discovered by Faye on the 22d of November, 1843, at the Observatory at Paris. Its elliptic path, which approaches much more nearly to a circle than that of any other known comet, is included within the orbits of Mars and Saturn. This comet, therefore, which, according to Goldschmidt, passes beyond the orbit of Jupiter, is one of the few whose perihelia are beyond Mars. Its period of revolution is 7 29/100 years, and it is not improbable that the form of its present orbit may be owing to its great approximation to Jupiter at the close of the year 1839.

If we consider the comets in their inclosed elliptic orbits as members of our solar system, and with respect to the length of their major axes, the amount of their eccentricity, and their periods of revolution, we shall probably find that the three planetary comets of Encke, Biela, and Faye are most nearly approached in these respects, first, by the comet discovered in 1766 by Messier, and which is regarded by Clausen as identical with the third comet of 1819; and next, by the fourth comet of the last-mentioned year, discovered by Blaupain, but considered by Clausen as identical with that of the year 1743, and whose orbit appears, like that of Lexell's comet, to have suffered great variations from the proximity and attraction of Jupiter. The two last-named comets would likewise seem to have a period of revolution not exceeding five or six years, and their aphelia are in the vicinity of Jupiter's orbit. Among the comets that have a period of revolution of from seventy to p 109 seventy-six years, the first in point of importance with respect to theoretical and physical astronomy is Halley's comet, whose last appearance, in 1835, was much less brilliant than was to be expected from preceding ones; next we would notice Olbers's comet, discovered on the 6th of March, 1815; and, lastly, the comet discovered by Pons in the year 1812, and whose elliptic orbit has been determined by Encke. The two latter comets were invisible to the naked eye. We now know with certainty of nine returns of Halley's large comet, it having recently been proved by Laugier's calculations*, that in the Chinese table of comets, first made known to us by Edward Biot, the comet of 1378 is identical with Halley's; its periods of revolution have varied in the interval between 1378 and 1835 from 74.91 to 77.58 years, the mean being 76.1.

[footnote] *Laugier, in the 'Comptes Rendus des Seances de l'Academie', 1843, t. xvi., p. 1006.

A host of other comets may be contrasted with the cosmical bodies of which we have spoken, requiring several thousand years to perform their orbits, which it is difficult to determine with any degree of certainty. The beautiful comet of 1811 requires, according to Argelander, a period of 3065 years for its revolution, and the colossal one of 1680 as much as 8800 years, according to Encke's calculation. These bodies respectively recede, therefore, 21 and 44 times further than Uranus from the Sun, that is to say, 33,600 and 70,400 millions of miles. At this enormous distance the attractive force of the Sun is still manifested; but while the velocity of the comet of 1680 at its perihelion is 212 miles in a second, that is, thirteen times greater than that of the Earth, it scarcely moves ten feet in the second when at its aphelion. This velocity is only three times greater than that of water in our most sluggish European rivers, and equal only to half that which I have observed in the Cassiquiare, a branch of the Orinoco. It is highly probable that, among the innumerable host of uncalculated or undiscovered comets, there are many whose major axes greatly exceed that of the comet of 1680. In order to form some idea by numbers, I do not say of the sphere of attraction, but of the distance in space of a fixed star, or other sun, from the aphelion of the comet of 1680 (the furthest receding cosmical body with which we are acquainted in our solar system), it must be remembered that, according to the most recent determinations of parallaxes, the nearest fixed star is full 250 times further removed from our sun than the comet in its aphelion. The comet's distance is only 44 p 110 times that of Uranus, while 'a' Centauri is 11,000 and 61 Cygni 31,000 times that of Uranus, according to Bessel's determinations.

Having considered the greatest distances of comets from the central body, it now remains for us to notice instances of the greatest proximity hitherto measured. Lexell and Burckhardt's comet of 1770, so celebrated on account of the disturbances it experienced from Jupiter, has approached the Earth within a smaller distance than any other comet. On the 28th of June, 1770, its distance from the Earth was ony six times than of the Moon. The same comet passed twice, viz., in 1769 and 1779, through the system of Jupiter's four satellites without producing the slightest notable change in the well-known orbits of these bodies. The great comet of 1680 approached at its perihelion eight or nine times nearer to the surface of the Sun than Lexell's comet did to that of our Earth, being on the 17th of December a sixth part of the Sun's diameter, or seven tenths of the distance of the Moon from that luminary. Perihelia occurring beyond the orbit of Mars can seldom be observed by the inhabitants of the Earth, owing to the faintness of the light of distant comets; and among those already calculated the comet of 1729 is the only one which has its perihelion between the orbits of Pallas and Jupiter; it was even observed beyond the latter.

Since scientific knowledge, although frequently blended with vague and superficial views, has been more extensively diffused through wider circles of social life, apprehensions of the possible evils threatened by comets have acquired more weight as their direction has become more definite. The certainty that there are within the known planetary orbits comets which revisit our regions of space at short intervals — that great disturbances have been produced by Jupiter and Saturn in their orbits, by which such as were apparently harmless have been converted into dangerous bodies — the intersection of the Earth's orbit by Biela's comet — the cosmical vapor, which, acting as a resisting and impeding medium, tends to contract all orbits — the individual difference of comets, which would seem to indicate considerable decreasing gradations in the quantity of the mass of the nucleus, are all considerations more than equivalent, both as to number and variety, to the vague fears entertained in early ages of the general conflagration of the world by 'flaming swords', and stars with 'fiery streaming hair'. As the consolatory considerations which may be derived from the calculus of probabilities address themselves to reason and to p 111 meditative understanding only, and not to the imagination or to a desponding condition of mind, modern science has been accused, and not entirely without reason, of not attempting to allay apprehensions which it has been the very means of exciting. It is an inherent attribute of the human mind to experience fear, and not hope or joy, at the aspect of that which is unexpected and extraordinary.*

[footnote] *Fries, 'Vorlesungen uber die Sternkunde', 1833, s. 262-267 (Lectures on the Science of Astronomy). An infelicitously chosen instance of the good omen of a comet may be found in Seneca, 'Nat. Quest.', vii., 17 and 21. The philosopher thus writes of the comet: "Quem nos Neronis principatu latissimo vidimus et qui cometis detraxit infamiam."

The strange form of a large comet, its faint nebulous light, and its sudden appearance in the vault of heaven, have in all regions been almost invariably regarded by the people at large as some new and formidable agent inimical to the existing state of things. The sudden occurrence and short duration of the phenomenon lead to the belief of some equally rapid reflection of its agency in terrestrial matters, whose varied nature renders it easy to find events that may be regarded as the fulfillment of the evil foretold by the appearance of these mysterious cosmical bodies. In our own day, however, the public mind has taken another and more cheerful, although singular, turn with regard to comets; and in the German vineyards in the beautiful valleys of the Rhine and Moselle, a belief has arisen, ascribing to these once ill-omened bodies a beneficial influence on the ripening of the vine. The evidence yielded by experience, of which there is no lack in these days, when comets may so frequently be observed, has not been able to shake the common belief in the meteorological myth of the existence of wandering stars capable of radiating heat.

This material taken from pages 111- 147

COSMOS: A Sketch of the Physical Description of the Universe, Vol. 1 by Alexander von Humboldt

Translated by E C Otte

from the 1858 Harper & Brothers edition of Cosmos, volume 1 —————————————————————————

From comets I would pass to the consideration of a far more enigmatical class of agglomerated matter — the smallest of all asteroids, to which we apply the name 'a‘rolites', or 'meteoric stones',* when they reach our atmosphere in a fragmentary condition.

[footnote] * (Much valuable information may be obtained regarding the origin and composition of a‘rolites or meteoric stones in Memoirs on the subject, by Baumbeer and other writers, in the numbers of Poggendorf's 'Annalen', from 1845 to the present time.) — Tr.

If I should seem to dwell on the specific enumeration of these bodies, and of comets, longer than the general nature of this work might warrant, I have not done so undesignedly. The diversity existing in the individual characteristics of comets has already been noticed. The imperfect knowledge we possess of their physical character renders it p 112 diifficult in a work like the present, to give the proper degree of circumstantiality to the phenomena, which, although of frequent recurrence, have been observed with such various degrees of accuracy, or to separate the necessary from the accidental. It is only with respect to measurements and computations that the astronomy of comets has made any marked advancement, and, consequently, a scientific consideration of these bodies must be limited to a specification of the differences of physiognomy and conformation in the nucleus and tail, the instances of great approximation to other cosmical bodies, and of the extremes in the length of their orbits and in their periods of revolution. A faithful delineation of these phenomena, as well as of those which we proceed to consider, can only be given by sketching individual features with the animated circumstantiality of reality.

Shooting stars, fire-balls, and meteoric stones are, with great probability, regarded as small bodies moving with planetary velocity, and revolving in obedience to the laws of general gravity in conic sections round the Sun. When these masses meet the Earth in their course, and are attracted by it, they enter within the limits of our atmosphere in a luminous condition, and frequently let fall more or less strongly heated stony fragments, covered with a shining black crust. When we enter into a careful investigation of the facts observed at those epochs when showers of shooting stars fell periodically in Cumana in 1799, and in North America during the years 1833 and 1834, we shall find that 'fire-balls' can not be considered separately from shooting stars. Both these phenomena are frequently not only simultaneous and blended together, but they likewise are often found to merge into one another, the one phenomenon gradually assuming the character of the other alike with respect to the size of their disks, the emanation of sparks, and the velocities of their motion. Although exploding smoking luminous fire-balls are sometimes seen, even in the brightness of tropical daylight,* equaling in size the apparent p 113 diameter of the Moon, innumerable quantities of shooting stars have, on the other hand, been observed to fall in forms of such extremely small dimensions that they appear only as moving points or 'phosphorescent lines.'**

[footnote] *A friend of mine, much accustomed to exact trigonometrical measurements, was in the year 1788 at Popayan, a city which is 2 degrees 26' north latitude, lying at an elevation of 5583 feet above the level of the sea, and at noon, when the sun was shining brightly in a cloudless sky, saw his room lighted up by a fire-ball. He had his back to the window at the time, and on turning round, perceived that great part of the path traversed by the fire-ball was still illuminated by the brightest radiance. Different nations have had the most various terms to express these phenomena: The Germans use the word 'Sternschnuppe', literally 'star snuff' — an expression well suited to the physical views of the vulgar in former times, according to which, the lights in the firmament were said to undergo a process of 'snuffing' or cleaning; and other nations generally adopt a term expressive of a 'shot' or 'fall' of stars, as the Swedish 'stjernifall', the Italian 'stella cadente', and the English 'star shoot.' In the woody district of the Orinoco, on the dreary banks of the Cassiquiare, I heard the natives in the Mission of Vasiva use terms still more inelegant than the German 'star snuff.' ('Relation Historique du Voy. aux RŽgions Equinox.', t. ii., p. 513.) These same tribes term the pearly drops of dew which cover the beautiful leaves of the heliconia 'star spit.' In the Lithuanian mythology, the imagination of the people has embodied its ideas of the nature and signification of falling stars under nobler and more graceful symbols. The Parc¾, 'Werpeja', weave in heaven for the new-born child its thread of fate, attaching each separate thread to a star. When death approaches the person, the thread is rent, and the star wanes and sinks to the earth. Jacob Grimm, 'Deutsche Mythologie', 1843, s. 685.

[footnote] ** According to the testimony of Professor Denison Olmsted, of Yale College, New Haven, Connecticut. (See Poggend., 'Annalen der Physik', bd. xxx., s. 194.) Kepler, who excluded fire-balls and shooting stars from the domain of astronomy, because they were, according to his views, "meteors arising from the exhalations of the earth, and blending with the higher ether," expresses himself, however, generally with much caution. He says: "Stell¾ cadentes sunt materia viscida inflammata. Earum aliqu¾ inter cadendum absumuntur, aliqu¾ ver in terram cadunt, pondere suo tract¾. Nec est dissimile vero, quasdam conglobatas esse ex materia f¾culent‰, in ipsam auram ¾theream immixta: exque a‘theris regione, tractu rectilineo, per a‘rem trajicere, ceu minutos competas, occult‰ causa motus utrorumque." — Kepler, 'Epit. Astron. Copernican¾', t. i., p. 80.

It still remains undertermined whether the many luminous bodies that shoot across the sky may not vary in their nature. On my return from the equinoctial zones, I was impressed with an idea that in the torrid regions of the tropics I had more frequently than in our colder latitudes seen shooting stars fall as if from a height of twelve or fifteen thousand feet; that they were of brighter colors, and left a more brilliant line of light in their track; but this impression was no doubt owing to the greater transparency of the tropical atmosphere*, which enables the eye to penetrate further into distance.



[footnote] *'Relation Historique', t. i., p. 80, 213, 527. If in falling stars, as in comets, we distinguish between the head or nucleus and the tail, we shall find that the greater transparency of the atmosphere in tropical climates is evinced in the greater length and brilliancy of the tail which may be observed in those latitudes. The phenomenon is therefore not necessarily more frequent there, because it is oftener seen and continues longer visible. The influence exercised on shooting stars by the character of the atmosphere is shown occasionally even in our temperate zone, and at very small distances apart. Wartmann relates that on the occasion of a November phenomenon at two places lying very near each other, Geneva and Aux Planchettes, the number of the meteors counted were as 1 to 7. (Wartmann, 'MŽm. sur les Etoiles filantes', p. 17.) The tail of a shooting star (or its 'train'), on the subject of which Brandes has made so many exact and delicate observations, is in no way to be ascribed to the continuance of the impression produced by light on the retina. It sometimes continues visible a whole minute, and in some rare instances longer than the light of the nucleus of the shooting star; in which case the luminous track remains motionless. (Gilb., 'Ann.', bd. xiv., s. 251.) This circumstance further indicates the analogy between large shooting stars and fire-balls. Admiral Krusenstern saw, in his voyage round the world, the train of a fire-ball shine for an hour after the lluminous body itself had disappeared, and scarcely move throughout the whole time. ('Reise', th. i., s. 58.) Sir Alexander Burnes gives a charming description of the transparency of the clear atmosphere of Bokhara, which was once so favorable to the pursuit of astronomical observations. Bokhara is situated in 39 degrees 48' north latitude, and at an elevation of 1280 feet above the level of the sea. "There is a constant serenity in its atmosphere, and an admirable clearness in the sky. At night, the stars have uncommon luster, and the Milky Way shines gloriously in the firmament. There is also a never-ceasing display of the most brilliant meteors, which dart like rockets in the sky; ten or twelve of them are sometimes seen in an hour, assuming every color — fiery red, blue, pale, and faint. It is a noble country for astronomical science, and great must have been the advantage enjoyed by the famed observatory of Samarkand." (Burnes, 'Travels into Bokhara', vol. ii. (1834), p. 158.) A mere traveler must not be reproached for calling ten or twelve shooting stars in an hour "many," since it is only recently that we have learned, from careful observations on this subject in Europe, that eight is the mean number which may be seen in an hour in the field of vision of one individual (Quetelet, 'Corresp. MathŽm.', Novem., 1837, p. 447); this number is, however, limited to five or six by that diligent observer, Olbers. (Schum., 'Jahrb.', 1838, s. 325.)



p 114 Sir Alexander Burnes likewise extols as a consequence of the purity of the atmosphere in Bokhara the enchanting and constantly-recurring spectacle of variously-colored shooting stars.

The connection of meteoric stones with the grander phenomenon of fire-balls — the former being known to be projected from the latter with such force as to penetrate from ten to fifteen feet into the earth — has been proved, among many other instances, in the falls of azzzuerolites at Barbotan, in the Department des Landes (24th July, 1790), at Siena (16th June, 1794), at Weston, in Connecticut, U. S. (14th December, 1807), and at Juvenas in the Department of Ardche (14th June, 1821). Meteoric stones are in some instances thrown from dark clouds suddenly formed in a clear sky, and fall with a noise resembling thunder. Whole districts have thus occasionally been covered with thousands of fragmentary masses, of uniform character but unequal magnitudes, that p 115 have been hurled from one of these moving clouds. In less frequent cases, as in that which occurred on the 16th of September, 1843, at Kleinwenden, near MŸhilhausen, a large a‘rolite fell with a thundering crash while the sky was clear and cloudless. The intimate affinity between fire-balls and shooting stars is further proved by the fact that fire-balls, from which meteoric stones have been thrown have occasionally been found, as at Angers, on the 9th of June, 1822, having a diameter scarcely equal to that of the small fire-works called Roman candles.

The formative power, and the nature of the physical and chemical processes involved in these phenomena are questions all equally shrouded in mystery, and we are as yet ignorant whether the particles composing the dense mass of meteoric stones are originally, as in comets, separated from one another when they become luminous to our sight, or whether in the case of smaller shooting stars, any compace substance actually falls, or, finally, whether a meteor is composed only of a smoke-like dust, containing iron and nickel; while we are wholly ignorant of what takes place within the dark cloud from which a noise like thunder is often heard for many minutes before the stones fall.*

[footnote] *On 'mŽteoric dust', see Arago, in the 'Annuaire' for 1832, p. 254. I haave very recently endeavored to show, in another work ('Asie Centrale', t. i., p. 408). how the Scythian saga of the sacred gold, which fell burning from heaven, and remained in the possession of the Golden Horde of the Paralat¾ (Herod., iv., 5-7), probably originated in the vague recollection of the fall of an a‘rolite. The ancients had also some strange fictions (Dio Cassius, lxxv., 1259) or silver which had fallen from heaven, and with which it had been attempted, under the Emperor Severus, to cover bronze coins; metallic iron was however, known to exist in meteoric stones. (Plin., ii., 56.) The frequently-recurring expression 'lapidibus pluit' must not always be understood to refer to falls of a‘rolites. In Liv., xxv., 7, it probably refers to pumice ('rapilli') ejected from the volcano, Mount Albanus (Monte Cavo), which was not wholly extinguished at the time. (See Heyne, 'Opuscula Acad.', t. iii., p. 261; and my 'Relation Hist.', t. i., p. 394.) The contest of Hercules with the Ligyans, on the road from the Caucasus to the Hesperides, belongs to a different sphere of ideas, being an attempt to explain mythically the origin of the round quartz blocks in the Ligyan field of stones at the mouth of the Rhone, which Aristotle supposes to have been ejected from a fissure during an earthquake, and Posidonius to have been caused by the force of the waves of an inland piece of water. In the fragments that we still possess of the play of ®schylus, the 'Prometheus Delivered', every thing proceeds, however, in part of the narration, as in a fall of a‘rolites, for Jupiter draws together a cloud, and causes the "district around to be covered by a shower of round stones". Posidonius even ventured to deride the geognostic myth of the blocks and stones. The Lygian field of stones was, however, very naturally and well described by the ancients. The district is now known as 'La Crau.' (See Guerin, 'Mesures BaromŽtriques dans les Alpes, et MŽtŽorologie d'Avignon', 1829, chap. xii., p. 115.)

p 116 We can ascertain by measurement the enormous, wonderful, and wholly planetary velocity of shooting stars, fire-valls and meteoric stones, and we can gain a knowledge of what is the general and uniform character of the phenomenon, but not of the genetically cosmical process and the results of the metamorphoses. If meteoric stones while revolving in space are already consolidated into dense masses,* less dense, however, p 117 than the mean density of the earth, they must be very small nuclei, which surrounded by inflammable vapor or gas, form the innermost part of fire-balls, from the height and apparent diameter of which we may, in the case of the largest, estimate that the actual diameter varies from 500 to about 2800 feet.

[footnote] *The specific weight of a‘rolites varies from 1.9 (Alais) to 4.3 (Tabor). Their general density may be set down as 3, water being 1. As to what has been said in the text of the actual diameters of fire-balls, we must remark, that the numbers have been taken from the few measurements that can be relied upon as correct. These give for the fire-ball of Weston, Connecticut (14th December, 1807), only 500; for that observed by Le Roi (10th July, 1771) about 1000 and for that estimated by Sir Charles Blagden (18th January, 1783) 2600 feet in diameter. Brandes ('Unterhaltungen' bd.i., s. 42) ascribes a diameter varying from 80 to 120 feet to shooting stars, and a luminous train extending from 12 to 16 miles. There are, however, ample optical causes for supposing that the apparent diameter of fire-balls and shooting stars has been very much overrated. The volume of the largest fire-ball yet observed can not be compared with that of Ceres, estimating generally so exact and admirable treatise, 'On the Connection of the Physical Sciences', 1835, p. 411.) With the view of elucidating what has been stated in the text regarding the large z‘rolite that fell into the bed of the River Narni, but has not again been found, I will give the passage made known by Pertz, from the 'Chronicon Benedicti, Monachi Sancti Andre¾ in Mont Soracte', a MS. belonging to the tenth century, and preserved in the Chigi Library at Rome. The Barbarous Latin of that age has been left unchanged. "Anno 921, temporibus domini Johannis Decimi pape, in anno pontificatus illius 7 visa sunt signa. Nam juxta urben Romam lapides plurimi de c¾lo cadere visi sunt. In civilate qu¾ vocatur Narnia tam diri ac tetri, ut nihil aliud credatur, quam de infernalibus locis deducti essent. Nam ita ex illis lapidibus unus omnium maximum est, ut decidens in flumen Narnus, ad mensuram unius cubiti super aquas fluminus usque hodie videretur. Nam et ignit¾ita ut pene terra contingeret. AliAnno 921, temporibus domini Johannis Decimi pape, in anno pontificatus illius 7 visa sunt signa. Nam juxta urben Romam lapides plurimi de c¾lo cadere visi sunt. In civilate qu¾ vocatur Narnia tam diri ac tetri, ut nihil aliud credatur, quam de infernalibus locis deducti essent. Nam ita ex illis lapidibus unus omnium maximum est, ut decidens in flumen Narnus, ad mensuram unius cubiti super aquas fluminus usque hodie videretur. Nam et ignit¾ ita ut pene terra contingeret. Ali cadentes," etc. (Pertz, 'Monum. Germ. Hist. Scriptores', t. iii., p. 715.) On the a‘rolites of gos Potamus, which fell, according to the Parian Chroniccle, in the 78 1 Olympiad, see Bšckh, 'Corp. Inscr. Graec', t. ii., p. 302, 320, 340; also Aristot., 'Meteor.', i., 7 (Ideler's 'Comm.', t. i., p. 404-407); Stob., 'Eel. Phys.', i., 25, p. 508 (Heeren); Plut., 'Lys.', c. 12; Diog. Laert., ii., 10; and see, also, subsequent notes in this work. According to a Mongolisn tradition, a black fragment of a rock, forty feet in height, fell from heaven on a plain near the source of the Great Yellow River in Western China. (Abel RŽmusat, in LamŽtherie, 'Jour. de Phys.', 1819, Mai p. 264.)

The largest meteoric masses as yet known are those of Otumpa, in Chaco, and of Bahia, in Brazil, described by Rubi de Celis as being from 7 to 7 1/2 feet in length. The meteoric stone of gos Potamos, celebrated in antiquity, and even mentioned in the Chronicle of the Parian Marbles, which fell about the year in which Socrates was born, has been described as of the size of two mill-stones, and equal in weight to a full wagon load. Notwithstanding the failure that has attended the efforts of the African traveler, Brown, I do not wholly relinquish the hope that, even after the lapse of 2312 years, this Thracian meteoric mass, which it would be so difficult to destroy, may be found, since the region in which it fell is now bcome so easy of access to European travelers. The huge a‘rolite which in the beginning of the tenth century fell into the river at Narni, projected between three and four feet above the surface of the water, as we learn from a document lately discovered by Pertz. It must be remarked that these meteoric bodies, whether in ancient or modern times can only be regarded as the principal fragments of masses that have been broken up by the explosion either of a fire-ball of a dark cloud.

On considering the enormous velocity with which, as has been mathematically proved, meteoric stones reach the earth from the extremest confines of the atmosphere, and the lengthened course traversed by fire-balls through the denser strata of the air, it seems more than improbable that these metalliferous stony masses, containing perfectly-formed crystals of olivine, labradorite, and pyroxene, should in so short a period of time has been converted from a vaporous condition to a solid nucleus. Moreover, that which falls from meteoric masses, even where the internal composition is chemically different, exhibits almost always the peculiar character of a fragment, being of a prismatic or truncated pyramidal form, with broad, somewhat curved faces, and rounded angles. But whence comes this form, which was first recognized by Schreiber as characteristic of the 'severed' part of a rotating planetary body? Here, as in the sphere of organic life, all that appertains to the history of development remains hidden in obscurity. Meteoric masses become luminous and kindle at heights which p 118 must be regarded as almost devoid of air, of occupied by an atmosphere that does not even contain 1/100000th part of oxygen. The recent investigations of Biot on the important phenomenon of twilight* have considerably lowered the lines which had, perhaps with some degree of temerity, been usually termed the boundaries of the atmosphere; but processes of light may be evolved independently of the presence of oxygen, and Poisson conjectured that a‘roliteswere ignited far beyond the range of our atmosphere. Numerical calculation and geometrical measurement are the only means by which as in the case of the larger bodies of our solar system, we are enabled to impart a firm and safe basis to our investigations of meteoric stones.

[footnote] *Biot, 'TraitŽ d'Astronomie Physique' (3me Žd.), 1841, t. i., p. 149, 177, 238, 312. My lamented friend Poisson endeavored, in a singular manner, to solve the difficulty attending an assumption of the spontaneous ignition of meteoric stones at an elevation where the density of the atmosphere is almost null. These are his words: "It is difficult to attribute, as is uaually done, the incandescence of a‘rolites to friction against the molecules of the atmosphere at an elevation above the earth where the density of the air is almost null. May we not suppose that the electric fluid, in a neutral condition, forms a kind of atmosphere, extending far beyond the mass of our atmosphere, yet subject to terrestrial attraction, although physically imponderable, and consequently following our globe in its motion? According to this hypothesis, the bodies of which we have been speaking would, on entering this imponderable atmosphere, decompose the neutral fluid by their unequal action on the two electricities, and they would thus be heated, and in a state of incandescence, by becoming electrified." (Poisson, 'Rech. sur la ProbabilitŽ des Jugements', 1837, p. 6.)

Although Halley pronounced the great fire-ball of 1686, whose motion was opposite to that of the earth in its orbit,* to be a cosmical body, Chadni, in 1794, first recognized, with ready acuteness of mind, the connection between fire-balls and the stones projected from the atmosphere, and the motions of the former bodies in space.**

[footnote] *'Philos. Transact.', vol. xxix., p. 161-163.

[footnote] **The first edition of Chlandni's important treatise, 'Ueber den Ursprung der von Pallas gefundenen und anderen Eisenmassen' (On the Origin of the masses of Iron found by Pallas, and other similar masses), appeared two months prior to the shower of stones at Siena, and two years before Lichtenberg stated, in the 'GŸttingen Taschenbuch', that "stones reach our atmosphere from the remoter regions of space.' Comp., also, Olbers's letter to Benzenberg, 18th Nov., 1837, in Benzenberg's 'Treatise on Shooting Stars', p. 186.

A brilliant confirmation of the cosmical origin of these phenomena has been afforded by Denison Olmsted, at New Haven, Connecticut, who has shown on the concurrent authority of all eye-witnesses, that during the celebrated fall of shooting stars on the night between the 12th p 119 and 13th of November, 1833, the fire-balls and shooting stars all emerged from one and the same quarter of the heavens, namely, in the vicinity of the star 'gamma' in the constellation Leo, and did not deviate from this point, although the star changed its apparent height and azimuth during the time of the observation. Such an independence of the Earth's rotation shows that the luminous body must have reached our atmosphere from 'without.' According to Encke's computation* of the whole p 120 number of observations made in the United States of North America, between the thirty-fifth and the forty-second degrees of latitude, it would appear that all these meteors came from the same point of space in the direction in which the Earth was moving at the time.

[footnote] *Encke, in Poggend., 'Annalen', bd. xxxiii. (1834), s. 213. Arago, in the 'Annuaire' for 1836, p. 291. Two letters which I wrote to Benzenberg, May 19 and October 22, 1837, on the conjectural precession of the nodes in the orbit of periodical falls of shooting stars. (Benzenberg's 'Sternsch.', s. 207 and 209.) Olbers subsequently adopted this opinion of the gradual retardation of the November phenomenon. ('Astron. Nachr.', 1838, No. 372, s. 180.) If I may venture to combine two of the falls of shooting stars mentioned by the Arabian writers with the epochs found by Boguslawski for the fourteenth century, I obtain the following more or less accordant elements of the movements of the nodes: In Oct., 902, on the night in which King Ibrahim ben Ahmed died, there fell a heavy shower of shooting stars, "like a fiery rain;" and this year was, therefore, called the year of stars. (Conde, 'Hist. de la Domin.' de los Arabes', p. 346.) On the 19th of Oct., 1202, the stars were in motion all night. "They fell like locusts." ('Comptes Rendus', 1837, t. i., p. 294; and Fr¾hn, in the 'Bull. de l'AcadŽmie de St. PŽtersbourg', t. iii., p. 308.) On the 21st Oct., O.S., 1366, "'die sequente post festum XI. millia Virginum ab hora matutina usque ad horam primam vis¾ sunt quasi stell¾ de c¾lo cadere continuo, et in tanta multitudine, quod nemo narrare suf ficit.'" This remarkable notice, of which we shall speak more fully in the subsequent part of this work, was found by the younger Von Boguslawski, in Benesse (de Horowic) de Weitmil or WeithmŸl, 'Chronicon Ecclesi¾ Pragensis', p. 389. This chronicle may also be found in the second part of 'Scriptores rerum Bohemicarum', by Pelzel and Dobrowsky, 1784. (Schum., 'Astr. Nachr.', Dec., 1839.) On the night between the 9th and 10th of November, 1787, many falling stars were observed at Manheim, Southern Germany, by Hemmer (KŠmtz, 'Meteor.', th. iii., s. 237.) After midnight, on the 12th of November, 1799, occurred the extraordinary fall of stars at Cumana, which Bonpland and myself have described, and which was observed over a great part of the earth. ('Relat. Hist.', t. i., p. 519-527.) Between the 12th and 13th of November, 1822, shooting stars, intermingled with fire-balls, were seen in large numbers by Kloden, at Potsdam. (Gilbert's 'Ann.', bd. lxxii., s. 291.) On the 13th of November, 1831, at 4 o'clock in the morning, a great shower of falling stars was seen by Captain BŽrard, on the Spanish coast, near Carthagena del Levante. ('Annuaire', 1836, p. 297.) In the night between the 12th and 13th of November, 1833, occurred the phenomenon so admirably described by Professor Olmsted, in North America. In the night of the 13-14th of November, 1834, a similar fall of shooting stars was seen in North America, although the numbers were not quite so considerable. (Poggend., 'Annalen', bd. xxxiv., s. 129.) On the 13th of November, 1835, a barn was set on fire by the fall of a sporadic fire-ball, at Belley, in the Department de l'Ain. ('Annuaire', 1836, p. 296.) In the year 1838, the stream showed itself most decidedly on the night of the 13-14th of November. ('Astron. Nachr.', 1838, No. 372.)

On the recurrence of falls of shooting stars in North America, in the month of November of the years 1834 and 1837, and in the analogous falls observed at Bremen in 1838, a like general parallelism of the orbits, and the same direction of the meteors from the constellation Leo, were again noticed. It has been supposed that a greater parallelism was observable in the direction of periodic falls of shooting stars than in those of sporadic occurrence; and it has further been remarked, that in the periodically-recurring falls in the month of August, as, for instance, in the year 1839, the meteors came principally from one point between Perseus and Taurus, toward the latter of which constellations in the Earth was then moving. This peculiarity of the phenomenon, manifested in the retrograde direction of the orbits in November and August, should be thoroughly investigated by accurate observations, in order that it may either be fully confirmed or refuted.

The heights of shooting stars, that is to say, the heights of the points at which they begin and cease to be visible, vary exceedingly, fluctuating between 16 and 140 miles. This important result, and the enormous velocity of these problematical asteroids, were first ascertained by Benzenberg and Brandes, by simultaneous observations and determinations of parallax at the extremities of a base line of 49,020 feet in length.*

[footnote] *I am well aware that, among the 62 shooting stars simultaneously observed in Silesia, in 1823, at the suggestion of Professor Brandes some appeared to have an elevation of 183 to 240, or even 400 miles. (Brandes, 'Unterhaltungen fŸr Freunde der Astronomie und Physik', heft i., s. 48. Instructive Narratives for the Lovers of Astronomy and Physics.) But Olbers considered that all determinations for elevations beyond 120 miles must be doubtful, owing to the smallness of the parallax.

The relative velocity of motion is from 18 to 36 miles in a second, and consequently equal to planetary velocity. This planetary velocity,* as well as the direction of the orbits p 121 of fire-balls and shooting stars, which has frequently been observed to be opposite to that of the Earth, may be considered as conclusive arguments against the hypothesis that a‘rolites derive their origin from the so-called active 'lunar volcanoes.'

[footnote] *The planetary velocity of translation, the movement in the orbit, is in Mercury 26.4, in Venus 19.2, and in the Earth 16.4 miles in a second.

Numerical views regarding a greater or lesser volcanic force on a small cosmical body, not surrounded by any atmosphere, must, from their nature, be wholly arbitrary. We may imagine the reaction of the interior of a planet on its crust ten or even a hundred times greater than that of our present terrestrial volcanoes; the direction of masses projected from a satellite revolving from west to east might appear retrogressive, owing to the Earth in its orbit subsequently reaching that point of space at which these bodies fall. If we examine the whole sphere of relations which I have touched upon in this work, in order to escape the charge of having made unproved assertions, we shall find that the hypothesis of the selenic origin of meteoric stones* depends upon a number of conditions p 122 whose accidental coincidence could alone convert a possible into an actual fact.

[footnote] *Chladni states that an Italian physicist, Paolo Maria Terzago, on the occasion of the fall of an a‘rolite at Milan in 1660, by which a Franciscan monk was killed, was the first who surmised that a‘rolites were of selenic origin. He says, in a memoir entitled 'Mus¾um Septalianum, Manfredi Septal¾, Patricii Mediolanensis, industrioso labore constructum' (Tortona, 1664, p. 44), "Labant philosophorum mentes sub horum lapidum ponderibus; ni dicire velimus, lunan terram alteram, sine mundum esse, ex cujus montibus divisa frustra in inferiorem nostrum hunc orben dela bantur." Without any previous knowledge of this conjecture, Olbers was led, in the year 1795 (after the celebrated fall at Siena on the 16th of June, 1794), into an investigation of the amount of the initial tangential force that would be requisite to bring to the Earth masses projected from the Moon. This ballistic problem occupied, during ten or twelve years, the attention of the geometricians Laplace, Biot, Brandes, and Poisson. The opinion which was then so prevalent, but which has since been abandoned, of the existence of active volcanoes in the Moon, where air and water are absent, led to a confusion in the minds of the generality of persons between mathematical possibilities and physical probabilities. Olbers, Brandes, and Chladni thought "that the velocity of 16 to 32 miles, with which fire-balls and shooting stars entered our atmosphere," furnished a refutation to the view of their selenic origin. According to Olbers, it would require to reach the Earth, setting aside the resistance of the air, an initial velocity of 8292 feet in the second; according to Laplace, 7862; to Biot, 8282; and to Poisson, 7595. Laplace states that this velocity is only five or six times as great as that of a cannon ball; but Olbers has shown "that, with such an initial velocity as 7500 or 8000 feet in a second, meteoric stones would arrive at the surface of our earth with a velocity of only 35,000 feet (or 1.53 German geographical mile). But the measured velocity of meteoric stones averages five such miles, or upward of 114,000 feet to a second; and, consequently, the original velocity of projection from the Moon must be almost 110,000 feet, and therefore fourteen times greater than Laplace asserted." (Olbers, in Schum, 'Jahrb.', 1837, p. 52-58; and in Gehler, 'Neues Physik.' 'Wšrterbuche', bd. vi., abth.3, s. 2199-2136.) If we could assume volcanic forces to be still active on the Moon's surface, the absence of atmospheric resistance would certainly give to their projectile force an advantage over that of our terrestrial volcanoes; but even in respect to the measure of the latter force (the projectile force of our own volcanoes), we have no observations on which any reliance can be placed, and it has probably been exceedingly overrated. Dr. Peters, who accurately observed and measured the phenomena presented by ®tna, found that the greatest velocity of any of the stones projected from the crater was only 1250 feet to a second. Observations on the Peak of Teneriffe, in 1798, gave 3000 feet. Although Laplace, at the end of his work ('Expos. du Syst. du Monde', ed. de 1824, p. 399), cautiously observes, regarding a‘rolites, "that in all probability they come from the depths of space," yet we see from another passage (chap. vi., p. 233) 6that, being probably unacquainted with the extraordinary planetary velocity of meteoric stones, he inclines to the hypothesis of their lunar origin, always, however, assuming that the stones projjected from the Moon "become satellites of our Earth, describing around it more or less eccentric orbits, and thus not reaching its atmosphere until several or even many revolutions have been accomplished." As an Italian at Tortona had the fancy that a‘rolites came from the Moon, so some of the Greek philosophers thought they came from the Sun. This was the opinion of Diogenes Laertius (ii., 9) regarding the origin of the mass that fell at "gos Potamos (see note, p. 116). Pliny, whose labors in recording the opinions and statements of preceding writers are astonishing, repeats the theory, and derides it the more freely, because he, with earlier writers (Diog. Laert., 3 and 5, p. 99, HŸbner), accuses Anaxagoras of having predicted the fall of a‘rolites from the Sun: "Celebrant Gr¾ci Anaxagoram Clazomenium Olympiadis septuagesim¾ octav¾ secundo anno pr¾dixisse c¾lestium litterarum scientia quibus diebus saxum casurum esse e sole, idque factum interdia in Thraci¾ parte ad gos flumen. Quod si quis pr¾dictum credat, simul fateatur necesse est, majoris miraculi divinitatem Anaxagor¾ fuisse, solvique rerum natur¾ intellectum, et confundi omnia, si aut ipse Sol lapis esse aut unquam lapidem in eo fuisse credatur; decidere tamen crebro non erit dubium." The fall of a moderate-sized stone, which is preserved in the Gymnasium at Abydos, is also reported to have been foretold by Anaxagoras. The fall of a‘rolites in bright sunshine, and when the Moon's disk was invisible, probably led to the idea of sun-stones. Moreover, according to one of the physical dogmas of Anaxagoras, which brought on him the persecution of the theologians (even as they have attacked the geologists of our own times), the Sun was regarded as "a molten fiery mass" ([Greed words]). In accordance with these views of Anaxagoras, we find Euripides, in 'Pha‘ton', terming the Sun "a golden mass;" that is to say, a fire-colored, brightly-shining matter, but not leading to the inference that a‘rolites are golden sun-stones. (See note to page 115.) Compare Valckenaer, 'Diatribe in Eurip. perd. Dram. Reliquias', 1767, p. 30. Diog. Laert., ii., 40. Hence, among the Greek philosophers, we find four hypotheses regarding the origin of falling stars: a telluric origin from ascending exhalations; masses of stone raised by hurricane (see Aristot., 'Meteor., lib. i., cap. iv., 2-13, and cap. vii., 9); a solar origin; and, lastly, an origin in the regions of space, as heavenly bodies which had long remained invisible. Respecting this last opinion, which is that of Diogenes of Apollonia, and entirely accords with that of the present day, see pages 124 and 125. It is worthy of remark, that in Syria, as I have been assured by a learned Orientalist, now resident at Smyrna, Andrea de Nericat, who instructed me in Persian, there is a popular belief that a‘rolites chiefly fall on clear moonlight nights. The ancients, on the contrary, especially looked for their fall during lunar eclipses. (See Pliny, xxxvii., 10, p. 164. Solinus, c. 37. Salm., 'Exere.', p. 531; and the passages collected by Ukert, in his 'Geogr. der Griechen und Ršmer', th. ii., 1, s. 131, note 14.) On the improbability that meteoric masses are formed from metal-dissolving gases, which, according to Fusinieri, may exist in the highest strata of our atmosphere, and previously diffused through an almost boundless space, may suddenly assume a solid condition, and on the penetration and misceability of gases, see my ' Relat. Hist.', t. i., p. 525.

p 122 The view of the original existence of p 123 small planetary masses in space is simpler, and at the same time, more analogous with those entertained concerning the formation of other portions of the solar system.

It is very probable that a large number of these cosmical bodies traverse space undestroyed by the vicinity of our atmosphere, and revolve round the Sun without experiencing any alteration but a slight increase in the eccentricity of their orbits, occasioned by the attraction of the Earth's mass. We may, consequently, suppose the possibility of these bodied remaining invisible to us during many years and frequent revolutions. The supposed phenomenon of ascending shooting stars and fire-balls, which Chladni has unsuccessfully endeavored to explain on the hypothesis of the 'reflection' of strongly compressed air, appears at first sight as the consequence of some unknown tngential force propelling bodies from the earth; but Bessel has shown by theoretical deductions, confirmed by Feldt's carefully-conducted calculations, that, owing to the absence of any proofs of the simultaneous occurrence of the observed disappearances, the assumptiopn of an ascent of shooting stars was rendered wholly improbable, and inadmissible as a result of observation.*

[footnote] *Bessel, in Schum., 'Astr. Nachr.', 1839, No 389 und 381, s. 222 und 346. At the conclusion of the Memoir there is a comparison of the Sun's longitudes with the epochs of the November phenomenon, from the period of the first observations in Cumana in 1799,

The opinion advanced by Olbers that the explosion of shooting stars and ignited fire-balls not moving in straight lines may impel meteors upward in the manner of rockets, and influence the direction of their orbits, must be made the subject of future researches.

Shooting stars fall either seprately and in inconsiderable numbers, that is, sporadically, or in swarms of many thousands. p 124 The latter, which are compared by Arabian authors to swarms of locusts, are periodic in their occurrence, and move in streams, generally in a parallel direction. Among periodic falls, the most celebrated are that known as the November phenomenon, occurring from about the 12th to the 14th of November, and that of the festival of St. Lawrence (the 10th of August), whose "fiery tears" were noticed in former times in a church calendar of England, no less than in old traditionary legends, as a meteorological event of constant recurrence.*

[footnote] *Dr. Thomas Forster ('The Pocket Encyclopedia of Natural Phenomena' 1827, p. 17) states that a manuscript is preserved in the library of Christ's College, Cambridge,** written in the tenth century by a monk, and entitled 'Ephemerides Rerum Naturalium', in which the natural phenomena for each day of the year are inscribed as, for instance, the first flowering of plants, the arrival of birds, etc.; the 10th of August is distinguished by the word "meteorodes." It was this indication, and the tradition of the fiery tears of St. Lawrence, that chiefly induced Dr. Forster to undertake his extremely zealous investigation of the August phenomena. (Quetelet, 'Correspond. MathŽm.', SŽrie III., t. i., 1837, p. 433.)

[further footnote] **[No such manuscript is at present known to exist in the library of that college. For this information I am indebted to the inquiries of Mr. Cory, of Pembroke College, the learned editor of 'Hieroglyphics of Horapollo Nilous', Greek and English, 1840.] — Tr.

Notwithstanding the great quantity of shooting stars and fire-balls of the most various dimensions, which, according to Klšden, were seen to fall at Potsdam on the night between the 12th and 13th of November, 1822, and on the same night of the year in 1832 throughout the whole of Europe, from Portsmouth to Orenburg on the Ural River, and even in the southern hemisphere, as in the Isle of France, no attention was directed to the 'periodicity' of the phenomenon, and no idea seems to have been entertained of the connection existing between the fall of shooting stars and the recurrence of certain days, until the prodigious swarm of shooting stars which occurred in North America between the 12th and 13th of November, 1833, and was observed by Olmsted and Palmer. The stars fell on this occasion, like flakes of snow, and it was calculated that at least 240,000 had fallen during a period of nine hours. Palmer, of New Haven, Connecticut, was led, in consequence of this splendid phenomenon, to the recollection of the fall of meteoric stones in 1799, first described by Ellicot and myself,* and which, by p 125 a comparison of the facts I had adduced, showed that the phenomenon had been simultaneously seen in the New Continent, from the equator to New Herrnhut in Greenland (65 degrees 14' north latitude), and between 46 degrees and 82 degrees longitude.

[footnote] *Humb., 'Rel. Hist.', t. i., p. 519-527. Ellicot in the 'Transactions of the American Society', 1804, vol. vi., . 29. Arago makes the following observations in reference to the November phenomena: "We thus become more and more confirmed in the belief that there exists a zone composed of millions of small bodies, whose orbits cut the plane of the ecliptic at about the point which out Earth annually occupies between the 11th and 13th of November. It is a new planetary world beginning to be revealed to us." ('Annuaire', 1836, p. 296.)

The identity of the epochs was recognized with astonishment. The stream which had been seen from Jamaica to Boston (40 degrees 21' north latitude) to traverse the whole vault of heaven on the 12th and 13th of November, 1833, was again observed in the United States in 1834, on the night between the 13th and 14th of November, although on this latter occasion it showed itself with somewhat less intensity. In Europe the periodicity of the phenomenon has since been manifested with great regularity.

Another and a like regularly recurring phenomenon is that noticed in the month of August, the meteoric stream of St. Lawrence, appearing between the 9th and 14th of August. Muschenbrock,* as early as in the middle of the last century, drew attention to the frequency of meteors in the month of August' but their certain periodic return about the time of St. Lawrence's day was first shown by Quetelet, Olbers, and Benzenberg.

[footnote] *Compare Muschenbroek, 'Introd. ad Phil. Nat.', 1762, t. ii., p. 1061; Howard, 'On the Climate of London', vol. ii., p. 23, observations of the year 1806; seven years, therefore aftr the earliest observations of Brandes (Benzenberg, 'Ÿber Sternschnuppen', s. 240-244); the August observations of Thomas Forster, in Quetelet, op. cit., p. 438-453; those of Adolph Erman, Boguslawski, and Kreil, in Schum., 'Jahrb.', 1838, s. 317-330. Regarding the point of origin in Perseus, on the 10th of August, 1839, see the accurate measurements of Bessel and Erman (Schum., 'Astr. Nachr.', No. 385 und 428); but on the 10th of August, 1837, the path does not apper to have been retrograde; see Arago in 'Comptes Rendus', 1837, t. ii., p. 183.

We shall, no doubt, in time, discover other periodically appearing streams,* probably about the 22d to the p. 126 25th of April, between the 6th and 12th of December, and, to judge by the number of true falls of a‘rolites enumerated by Capocci, also between the 27th and 29th of November, of about the 17th of July.

[footnote] *On the 25th of April, 1095, "innumerable eyes in France saw stars falling from heaven as thickly as hail" ('ut grando, nisi lucerent, pro densitate putaretur'; Baldr., p. 88), and this occurrence was regarded by the Council of Clermont as indicative of the great movement in Christendom. (Wilken, 'Gesch. der KreuzzŸge', bd. i., s. 75.) On the 25th of April, 1800, a great fall of stars was observed in Virginia and Massachusetts; it was "a fire of rockets that lasted two hours." Arago was the first to call attention to the "trainŽe d'astero•des," as a recurring phenomenon. ('Annuaire', 1836, p. 297.) The falls of a‘rolites in the beginning of the month of December are also deserving of notice. In reference to their periodic recurrence as a meteoric stream, we may mention the early observation of Brandes on the night of the 6th and 7th of December, 1798 (when he counted 2000 falling stars), and very probably the enormous fall of a‘rolites that occurred at the Rio Assu, near the village of Macao, in the Brazils, on the 11th of December, 1836. (Brandes, 'Unterhalt. fŸr Freunde der Physik', 1825, heft i., s. 65, and 'Comptes Rendus', t. v., p. 211.) Capocci, in the interval between 1809 and 1839, a space of thirty years, has discovered twelve authenticated cases of a‘rolites occurring between the 27th and 29th of November, besides others on the 13th of November, the 10th of August, and the 17th of July. ('Comptes Rendus', t. xi., p. 357.) It is singular that in the portion of the Earth's path corresponding with the months of January and February, and probably also with March, no 'periodic' streams of falling stars of a‘rolites have as yet been noticed; although when in the South Sea in the year 1803, I observed on the 15th of March a remarkably large number of falling stars, and they were seen to fall as in a swarm in the city of Quito, shortly before the terrible earthquake of Riobamba on the 4th of February, 1797. From the phenomena hitherto observed, the following epochs seem especially worthy of remark: 22d to the 25th of April. 17th of July (17th to the 26th of July?). (Quet., 'Corr.', 1837, p. 435.) 10th of August. 12th to the 14th of November. 27th to the 29th of November. 6th to the 12th of December. When we consider that the regions of space must be occupied by myriads of comets, we are led by analogy, notwithstanding the differences existing between isolated comets and rings filled with asteroids, to regard the frequency of these meteoric streams with less astonishment than the first consideration of the phenomenon would be likely to excite.

Although the phenomena hitherto observed appear to have been independent of the distance from the pole, the temperature of the air, and other climatic relations, there is, however, one perhaps accidentally coincident phenomenon which must not be wholly disregarded. The Northern Light, the Aurora Borealis, was unusually brilliant on the occurrence of the Borealis, was unusually brilliant on the occurrence of the splendid fall of meteors of the 12th and 13th November, 1833, described by Olmsted. It was also observed at Bremen in 1838, where the periodic meteoric fall was, however, less remarkable than at Richmond, near London. I have mentioned in another work the singular fact observed by Admiral Wrangel, and frequently confirmed to me by himself,* that when he p 127 was on the Siberian coast of the Polar Sea, he observed, during an Aurora Borealis, certain portions of the vault of heaven which were not illuminated, light up and continue luminous whenever a shooting star passed over them.

[footnote] *Ferd. v. Wrangle, 'Reise lŠngs der NordkŸste von Sibirien in den Jahren', 1820-1824, th. ii., s. 259. Regarding the recurrence of the denser swarm of the November stream after an interval of thirty-three years, see Olbers, in 'Jahrb.', 1837, s. 280. I was informed in Cumana that shortly before the fearful earthquake of 1766, and consequently thirty-three years (the same interval) before the great fall of stars on the 11th and 12th of November, 1799, a similar fiery manifestation had been observed in the heavens. But it was on the 21st of October, 1766, and not in the beginning of November, that the earthquake occurred. Possibly some traveler in Quito may yet be able to ascertain the day on which the volcano of Cayambe, which is situated there, was for the space of an hour enveloped in falling stars, so that the inhabitants endeavored to appease heaven by religious processions. ('Relat. Hist.', t. i., chap. iv., p 307; chap. x., p. 520 and 527.)

The different meteoric streams, each of which is composed of myriads of small cosmical bodies, probably intersect our Earth's orbit in the same manner as Biela's comet. According to this hypothesis, we may represent to ourselves these asteroid-meteors as composing a closed ring or zone, within which they all pursue one common orbit. The s aller planets between Mars and Jupiter present us if we except Pallas with an analogous relation in their constantly intersecting orbits. As yet, however, we have no certain knowledge as to whether changes in the periods at which the stream becomes visible, or the 'retardations' of the phenomena of which I have already spoken, indicate a regular precession of oscillation of the nodes — that is to say, of the points of intersection of the Earth's orbit and of that of the ring; or whether this ring or zone attains so considerable a degree of breadth from the irregular grouping and distances apart of the small bodies, that it requires several days for the Earth to traverse it. The system of Saturn's satellites shows us likewise a group of immense width, composed of most intimately-connected cosmical bodies. In this system, the orbit of the outermost (the seventh) satellite has such a vast diameter, that the Earth, in her revolution round the Sun, requires three days to traverse an extent of space equal to this diameter. If, therefore, in one of these rings, which we regard as the orbit of a periodical stream, the asteroids should be so irregularly distributed as to consist of but few groups sufficiently dense to give rise to these phenomena, we may easily understand why we so seldom witness such glorious spectacles as those exhibited in the November months of 1799 and 1833. The acute mind of Olbers led him almost to predict that the next appearance of the phenomenon of shooting stars and fire-balls intermixed, falling like flakes of snow, would not recur until between the 12th and 14th of November, 1867.

p 128 The stream of the November asteroids has occasionally only been visible in a small section of the Earth. Thus, for instance, a very splendid 'meteoric shower' was seen in England in the year 1837, while a most attentive and skillful observer at Braunsberg, in Prussia only saw on the same night, which was there uninterruptedly clear, a few sporadic shooting stars fall between seven o'clock in the evening and sunrise the next morning. Bessel* concluded from this "that a dense group of the bodies composing the great ring may have reached that part of the Earth in which England is situated, while the more eastern districts of the Earth might be passing at the time through a part of the meteoric ring proportionally less densely studded with bodies."

[footnote] *From a letter to myself, dated Jan. 24th, 1838. The enormous swarm of falling stars in November, 1799, was almost exclusively seen in America, where it was witnessed from New Herrnhut in Greenland to the equator. The swarms of 1831 and 1832 were visible only in Europe, and those of 1833 and 1834 only in the United States of North America.

If the hypothesis of a regular progression or oscillation of the nodes should acquire greater weight, special interest will be attached to the investigation of older observations. The Chinese annals, in which great falls of shooting stars, as well as the phenomena of comets, are recorded, go back beyond the age of Tyrt¾s, or the second Messenian war. They give a description of two streams in the month of March, one of which is 687 years anterior to the Christian era. Edward Biot has observed that among the fifty-two phenomena which he has collected from the Chinese annals, those that were of most frequent recurrence are recorded at periods nearly corresponding with the 20th and 22d of July, O.S., and might consequently be identical with the stream of St. Lawrence's day, taking into account that it has advanced since the epochs* indicated.

[footnote] *Lettre de M. Edouard Biot ˆ M. Quetelet, sur les anciennes apparitions d'Etoiles Filantes en Chine, in the 'Bull. de l'AcadŽmie de Bruxelles', 1843, t. x., No. 7, p. 8. On the notice from the 'Chronicon Ecclesi¾ Pragensis', see the younger Boguslawski, in Poggend., 'Annalen', bd. xlviii., s. 612.

If the fall of shooting stars of the 21st of October, 1366, O.S. (a notice of which was found by the younger Von Boguslawski, in Benessius de Horowic's 'Chronicon Ecclesi¾ Pragensis'), be identical with our November phenomenon, although the occurrence in the fourteenth century was seen in broad daylight, we find by the precession in 477 years that this system of meteors, or, rather, its common center of gravity, must describe p 129 a retrograde orbit round the Sun. It also follows, from the views thus developed, that the non-appearance, during certain years, in any portion of the Earth, of the two streams hitherto observed in November and about the time of St. Lawrence's day, must be ascribed either to an interruption in the meteoric ring, that is to say, to intervals occurring between the asteroid groups, or, according to Poisson to the action of the larger planets* on the form and position of this annulus.

[footnote] *"It appears that an apparently inexhaustible number of bodies, too small to be observed, are moving in the regions of space, either around the Sun or the planets, or perhaps even around their satellites. It is supposed that when these bodies come in contact with our atmosphere, the difference between their velocity and that of our planet is so great, that the friction which they experience from their contact with the air heats them to incandescence, and sometimes causes their explosion. If the group of falling stars form an annulus around the Sun, its velocity of circulation may be very different from that of our Earth; and the displacements it may experience in space, in consequence of the actions of the various planets, may render the phenomenon of its intersecting the planes of the ecliptic possible at some epochs, and altogether impossible at others." — Poisson, 'Recherches sur la ProbabilitŽ des Jugements', p. 306, 307.

The solid masses which are observed by night to fall to the earth from fire-balls, and by day generally when the sky is clear, from a cark small cloud, are accompanied by much candescence. They undeniably exhibit a great degree of general identity with respect to their external form, the character of their crust, and the chemical composition of their principal constituents. These characteristics of identity have been observed at all the different epochs and in the most various parts of the earth in which these meteoric stones have been found. This striking and early-observed analogy of physiognomy in the denser meteoric masses is, however, met by many exceptions regarding individual points. What differences, for instance, do we not find between the malleable masses of for instance, do we not find between the malleable masses of iron of Hradeschina in the district of Agram, those from the shores of the Sisim in the government of Jeniseisk, rendered so celebrated by Pallas, or those which I brought from Mexico,* all of which contain 96 per cent. of iron, from the a‘rolites of Siena, in which the iron scarcely amounts to 2 per cent., or the earthy a‘rolite of Alais (in the Department du Gard), which broke up in water, or, lastly, from those of Jonzac and Javenas, which contained no metallic iron, but presented a p 130 mixture of oryctognostically distinct crystalline compoonents!

[footnote] *Humboldt, 'Essai Politique sur la Nouv. Espagne' (2de Ždit.), t. iii. p. 310.

These differences have led mineralogists to separate these cosmical masses into two classes, namely, those containing nickelliferous meteoric iron, and those consisting of fine or coarsely-granular meteoric dust. The crust or rind of a‘rolites is peculiarly characteristic of these bodies, being only a few tenths of a line in thickness, often glossy and pitch-like, and occasionally veined.*

[footnote] *The peculiar color of their crust was observed even as early as in the time of Pliny (ii., 56 and 58): "colore adusto." The phrase "lateribus pluisse" seems also to refer to the burned outer surface of a‘rolites.

There is only one instance on record, as far as I am aware (the a‘rolite of Chantonnay, in La VendŽe), in which the rind was absent, and this meteor, like that of Juvenas, presented likewise the peculiarity of having pores and vesicular cavities. In all other cases the black crust is divided from the inner light-gray mass by as sharply-defined a line of separation as is the black leaden-colored investment of the white granit blocks* which I brought from the cataracts of the Orinoco, and which are also associated with many other cataracts, as, for instance, those of the Nile and of the Congo River.



[footnote] * Humb., 'Rel. Hist.', t. ii., chap xx., p. 299-302.

The greatest heat employed in our porcelain ovens would be insufficient to produce any thing similar to the crust of meteoric stones, whose interior remains wholly unchanged. Here and there, facts have been observed which would seem to indicate a fusion together of the meteoric fragments; but, in general, the character of the aggregate mass, the absence of compression by the fall, and the inconsiderable degree of heat possessed by these bodies when they reach the earth, are all opposed to the hypothesis of the interior being in a state of fusion during their short passage from the boundary of the atmosphere to our Earth.

The chemical elements of which these meteoric masses consist, and on which Berzelius has thrown so much light, are the same as those distributed throughout the earth's crust, and are fifteen in number, namely, iron, nickel, cobalt, manganese, chromium, copper, arsenic, zinc, potash, soda, sulphur, phosphorus, and carbon, constituting altogether nearly one third of all the known simple bodies. Notwithstanding this similarity with the primary elements into which inorganic bodies are chemically reducible, the aspect of a‘rolites, owing to the mode in which their constituent parts are compounded, presents, generally, some features foreign to our telluric rocks and minerals. The pure native iron, which is almost always p 131 found incorporated with a‘rolites, imparts to them a peculiar, but not consequently, a 'selenic' character; for in other regions of space, and in other cosmical bodies besides our Moon, water may be wholly absent, and processes of oxydation of rare occurence.

Cosmical gelatinous vesicles, similar to the organic 'nostoc' (masses which have been supposed since the Middle Ages to be connected with shooting stars), and those pyrites of Sterlitamak, west of the Uralian Mountains, which are said to have constituted the interior of hailstones,* must both be classed among the mythical fables of meteorology.

[footnote] *Gustav Rose, 'Reise nach dem Ural', bd. II., s. 202.

Some few a‘rolites, as those composed of a finely granular tissue of olivine, augite, and labradorite blended together* (as the meteoric stone found at Juvenas, in the Department de l'Ardche, which resembled dolorite), are the only ones, as Gustav Rose has remarked, which have a more familiar aspect.

[footnote] *Gustav Rose, in Poggend., 'Ann.', 1825, bd. iv., x. 173-192. Rammelsberg, 'Erstes Suppl. zum chem. Handwšrterbuche der Mineralogie', 1843, s. 102. "It is," says the clear-minded observer Olbers, "a remarkable but hitherto unregarded fact, that while shells are found in secondary and tertiary formations, no 'fossil meteoric stones' have as yet been discovered. May we conclude from this circumstance that previous to the present and last modification of the earth's surface no meteoric stones fell on it, although at the present time it appears probable, from the researches of Schreibers, that 700 fall annually?" (Olbers, in Schum., 'Jahrb.', 1838, s. 329.) Problematical nickelliferous masses of native iron have been found in Northern Asia (at the gold-washing establishment at Petropawlowsk, eighty miles southeast of Kusnezk), imbedded thirty-one feet in the ground, and more recently in the Western Carpathians (the mountain chain of Magura, at Szlanicz), both of which are remarkably like meteoric stones. Compart Erman, 'Archiv fŸr wissenschaftliche Kunde von Russland', bd. i., s. 315, and Haidinger, 'Bericht Ÿber Szlaniczer SchŸrfe in Ungarn.'

These bodiescontain, for instance, crystalline substances, perfectly similar to those of our earth's crust; and in the Siberian mass of meteoric iron investigated by Pallas, the olivine only differs from common olivine by the absence of nickel, which is replaced by the oxyd of tin.*

[footnote] *Berzelius, 'Jahresber.', bd. xv., s. 217 und 231. Rammelsberg, 'Handwšrterb., abth. ii., s. 25-28.

As meteoric olivine, like our basalt, contains from 47 to 49 per cent. of magnesia, constituting, according to Berzelius, almost the half of the earthy components of meteoric stones, we can not be surprised at the great quantity of silicate of magnesia found in these cosmical bodies. If the z‘rolite of Juvenas contain separable crystals of augite and labradorite, the numerical relation of the constituents p 132 render it at least probable that the meteoric masses of Chateau-Renard may be a compound of diorite, consisting of hornblende and albite, and those of Blansko and Chantonnay compounds of hornblende and labradorite. The proofs of the telluric and atmospheric origin of aUerolites, which it is attempted to base upon the oryctognostic analogies presented by these bodies, do not appear to me to possess any great weight.

Recalling to mind the remarkable interview between Newton and Conduit at Kensington,* I would ask why the elementary substances that compose one group of cosmical bodies, or one planetary system, may not, in a great measure, be identical?

[footnote] * "Sir Isaac Newton said he took all the planets to be composed of the same matter with the Earth, viz., earth, water, and stone, but variously connected." — Turner, 'Collections for the History of Grantham, containing authentic Memoirs of Sir Isaac Newton', p. 172.

Why should we not adopt this view, since we may conjecture that these planetary bodies, like all the larger or smaller agglomerated masses revolving round the sun, have been thrown off from the once far more expanded solar atmosphere, and been formed from vaporous rintgs describing their orbits round the central body? We are not, it appears to me, more justified in applying the term telluric to the nickel and iron, the olivine and pyroxene (augite), found in meteoric stones, than in indicating the German plants which I found beyond the Obi as European species of the flora of Northern Asia. If the elementary substances composing a group of cosmical bodies of different magnitudes be identical, why should they not likewise, in obeying the laws of mutual attraction, blend together under definite relations of mixture, composing the white glittring snow and ice in the polar zones of the planet Mars, or constituting in the smaller cosmical masses mineral bodies inclosing crystals of olivine, augite, and labradorite? Even in the domain of pure conjecture we should not suffer ourselves to be led away by unphilosophical and arbitrary views devoid of the support of inductive reasoning.

Remarkable obscurations of the sun's disk, during which the stars have been seen at mid-day (as, for instance, in the obscuration of 1547, which continued for three days, and occurred about the time of the eventful battle of MŸhlberg), can not be explained as arising from volcanic ashes or mists, and were regarded by Kepler as owing either to a 'materia cometica', or to a black cloud formed by the sooty exhalations of the solar body. The shorter obscurations of 1090 and 1203, which continued, the one only three, and the other six p 133 hours, were supposed by Chladni and Schnurrer to be occasioned by the passage of meteoric masses before the sun's disk. Since the period that streams of meteoric shooting stars were first considered with reference to the direction of their orbit as a closed ring, the epochs of these mysterious celestial phenomena have been observed to present a remarkable connection with the regular recurrence of swarms of shooting stars Adolph Erman has evinced great acuteness of mind in his accurate investigation of the facts hitherto observed on this subject, and his researches have enabled him to discover the connection of the sun's conjunction with the August asteroids on the 7th of February, and with the November asteroids on the 12th of May, the latter period corresponding with the days of St. Mamert (May 11th), St. Pancras (May 12th), and St. Servatius (May 13th), which according to popular belief, were accounted "cold days."*

[footnote] Adolph Erman, in Poggend., 'Annalen', 1839, bd. xlviii., s. 582-601. Biot had previously thrown doubt regarding the probability of the November stream reappearing in the beginning of May ('Comptes Rendus', 1836, t. ii., p. 670). MŠdler has examined the mean depression of temperature on the three ill-named days of May by Berlin observations for eighty-six years ('Verhandl. des Vereins zur Bedfšrd, des Gartenbaues', 1834, s. 377), and found a retrogression of temperature amounting to 2.2 degrees Fahr. from the 11th to the 13th of May, a period at which nearly the most rapid advance of heat takes place. It is much to be desired that this phenomenon of depressed temperature, which some have felt inclined to attribute to the melting of the ice in the northeast of Europe, should be also investigated in very remote spots, as in America, or in the southern hemisphere. (Comp. 'Bull. de l'Acad. Imp. de St. PŽtersbourg', 1843, t. i., No. 4.)

The Greek natural philosophers, who were but little disposed to pursue observations, but evinced inexhaustible fergility of imagination in giving the most various interpretation of half-perceived facts, have, however, left some hypotheses regarding shooting stars and meteoric stones which strikingly accord with the views now almost universally admitted of the cosmical process of these phenomena. "Falling stars," says Plutarch, in his life of Lysander,* are, according to the opinion of some physicists, not eruptions of the ethereal fire extinguished in the air immediately after its ignition, nor yet an inflammatory combustion of the air, which is dissolved in large quantities in the upper regions of space, but these meteors are rather a fall of celestial bodies, which, in consequence of a certain intermission in the rotatory force, and by the impulse of some irregular movements, have been hurled down not only to the inhabited portions of the Earth, but also beyond it into the great ocean, where we can not find them."

[footnote] *Plut., 'Vit¾ par, in Lysandro', cap. 22. The statement of Damachos (Da•machos), that for seventy days continuously there was a fiery cloud seen in the sky, emitting sparks like falling stars, and which then, sinking nearer to the earth, let fall the stone of ®gos Potamos, "which, however, was only a small part of it," is extremely improbable, since the direction and velocity of the fire-cloud would in that case of necessity have to remain for so many days the same as those of the earth; and this, in the fire-ball of the 19th of July, 1686, described by Halley ('Trans.', vol. xxix., p. 163), lasted only a few minutes. It is not altogether certain whether Da•machos, the writer, [Greek words], was the same person as Da•machos of Plat¾a, who was sent by Selencus to India to the son of Androcottos, and who ws charged by Strabo with being "a speaker of lies" (p. 70, Casaub.). From another passage of Plutarch ('Compar. Solonis c. Cop.', cap. 5) we should almost believe that he was. At all events, we have here only the evidence of a very late author, who wrote a century and a half after the fall of a‘rolites occurred in Thrace, and whose authenticity is also doubted by Plutarch.

Diogenes of Apollonia* expresses himself still more explicitly.

[footnote] *Stob., ed. Heeren, i., 25, p. 508; Plut., 'de plac. Philos.', ii., 13.

According to his views, "Stars that are 'invisible', and, consequently, have no name, move in space together with those that are visible. These invisible stars frequently fall burning at ®gos Potamos." The Apollonian, who held all other stellar bodies, when luminous, to be of a pumice-like nature, probably grounded his opinions regarding shooting stars and meteoric masses on the doctrine of Anaxagoras the Clazomenian, who regarded all the bodies in the universe "as fragments of rocks, which the fiery ether, in the force of its gyratory motion, had torn from the Earth and converted into stars." In the Ionian school, therefore, according to the testimony transmitted to us in the views of Diogenes of Apollonia, a‘rolites and stars were ranged in one and the same class; both, when considered with reference to their primary origin, being equally telluric, this being understood only so far as the Earth was then regarded as a central body,* p 135 forming all things around it in the same manner was we, according to our present views, suppose the planets of our system to have originated in the expanded atmosphere of another central body, the Sun.

[footnote] *The remarkable passage in Plut., 'de plac. Philos.', ii., 13, runs thus: "Anaxagoras teaches that the surrounding ether is a fiety substance, which, by the power of its rotation, tears rocks from the earth, inflames them, and converts them into stars." Applying an ancient fable to illustrate a physical dogma, the Clazomenian appears to have ascribed the fall of the Nem¾an Lion to the Peloponnesus from the Moon to such a rotatory or centrifugal force. (®lian., xii., 7; Plut., 'de Facie in Orge Lun¾' c. 24; Schol. ex Cod. Paris., in 'Apoll. Argon.', lib. i., p. 498, ed. Schaef., t. ii., p. 40; Meineke, 'Annal. Alex.', 1843, p. 85.) Here, instead of stones from the Moon, we have an animal from the Moon! According to an acute remark of Bšckh, the ancient mythology of the Nem¾an lunar lion has an astronomical origin, and is symbolically connected in chronology with the cycle of intercalation of the lunar year, with the moon-worship at Nem¾a, and the games by which it was accompanied.

These views must not, therefore, be confounded with what is commonly termed the telluric or atmospheric origin of meteoric stones, nor yet with the singular opinion of Aristotle, which supposed the enormous mass of ®gos Potamos to have been raised by a hurricane. That rrogant spirit of incredulity, which rejects facts without attempting to investigate them, is in some cases almost more injurious than an unquestioning credulity. Both are alike detrimental to the force of investigation. Notwithstanding that for more than two thousand years the annals of different nations had recorded falls of meteoric stones, many of which had been attested beyond all doubt by the evidence of irreproachable eye-witnesses — notwithstanding the important part enacted by the B¾tylia in the meteor-worship of the ancients — notwithstanding the fact of the companions of Cortez having see an a‘rolite at Cholula which had fallen on the neighboring pyramid — notwithstanding that califs and Mongolian chiefs had caused swords to be forged from recently-fallen meteoric stones — nay, notwithstanding that several persons had been struck dead by stones falling from heaven, as for instance, a monk at Crema on the 4th of September, 1511, another monk at Milan in 1650, and two Swedish sailors on board ship in 1674, yet this great cosmical phenomenon remained almost wholly unheeded, and its intimate connection drawn to the subject by Chladni, who had already gained immortal renown by his discovery of the sound-figures. He who is penetrated with a sense of this mysterious connection, and whose mind is open to deep impressions of nature, will feel himself moved by the deepest and most solemn emotion at the sight of every star that shoots across the vault of heaven, no less than at the glorious spectacle of meteoric swarms in the November phenomenon or on St. Lawrence's day. Here motion is suddenly revealed in the midst of nocturnal rest. The still radiance of the vault of heaven is for a moment animated with life and movement. In the mild radiance left on the track of the shooting star, imagination pictures the lengthened path of the meteor through the vault of heaven, p 136 while, every where around, the luminous asteroids proclaim the existence of one common material universe.

If we compare the volume of the innermost of Saturn's satellites, or that of Ceres, with the immense volume of the Sun, all relations of magnitude vanish from our minds. The extinction of suddenly resplendent stars in Cassiopeia, Cygnus, and Serpentarius have already led to the assumption of other and non-luminous cosmical bodies. We now know that the meteoric asteroids, spherically agglomerated into small masses, revolve round the Sun, intersect, like comets, the orbits of the luminous larger planets, and become ignited either in the vicinity of our atmosphere or in its upper strata.

The only media by which we are brought in connection with other planetary bodies, and with all portions of the universe beyond our atmosphere, are light and heat (the latter of which can scarcely be separated from the former),* and those mysterious powers of attraction exercised by remote masses, according to the quantity of their constituents, upon our globe, the ocean, and the strata of our atmosphere.

[footnote' *The following remarkable passage on the radiation of heat from the fixed stars, and on their low combustion and vitality — one of Kepler's many aspirations — occurs in the 'Paralipom. in Vitell. Astron. parsOpticqa', 1604, Propos. xxxii., p. 25: "Luciis proprium est calor, sydera omnia calefaciunt. De syderum luce claritatis ratio testatur, calorem universorum in minori esse proportione ad calorem unius solis, quam ut ab homine, cujus est certa caloris mensura, utrque simul percipi et judicari possit. De cincindularum lucula tenuissima negare non potes, quin cum calore sit. Vivunt enim et moventur, hoc auten non sine calefactione perficitur. Sic neque putrescentium lignorum lux sui calore destituitur; nam ipsa puetredo quidam lentus ignis est. Inest et stirpibus suus calor." (Compare Kepler, 'Epit. Astron. Copernican¾', 1618, t. i., lib. i., p. 35.)

Another and different kind of cosmical, or, rather, material mode of contact is, however, opened to us, if we admit falling stars and meteoric stones to be planetary asteroids. They not only act upon us merely from a distance by the excitement of luminous or calorific vibrations, or in obedience to the laws of mutual attraction, but they acquire an actual material existence for us, reaching our atmosphere from the remoter regions of universal space, and remaining on the earth itself. Meteoric stones are the only means by which we can be brought in possible contact with that which is foreign to our own planet. Accustomed to gain our knowledge of what is not telluric solely through measurement, calculations, and the deductions of reason, we experience a sentiment of astonishment at finding that we may examine, weigh, and analyze bodies that appertain p 137 to the outer world. This awakens, by the power of the imagination, a meditative, spiritual train of thought, where the untutored mind perceives only scintillations of light in the firmament, and sees in the blackened stone that falls from the exploded cloud nothing beyond the rough product of a powerful natural force.

Although the asteroid-swarms, on which we have been led, from special predilection, to dwell somewhat at length, approximate to a certain degree, in their inconsiderable mass and the diversity of their orbits, to comets, they present this essential difference from the latter bodies, that our knowledge of their existence is almost entirely limited to the moment of their destruction, that is, to the period when, drawn within the sphere of the Earth's attraction they become luminous and ignite.

In order to complete our view of all that we have learned to consider as appertaining to our solar system, which now, since the discovery of the small planets, of the interior comets of short revolutions, and of the meteoric asteroids, is so rich and complicated in its form, it remains for us to speak of the ring of Zodiacal light, to which we have already alluded. Those who have lived for many years in the zone of palms must retain a pleasing impression of the mild radiance with which the zodiacal light, shooting pyramidally upward, illumines a part of the uniform length of tropical nights. I have seen it shine with an intensity of light equal to the milky way in Sagittarius, and that not only in the rare and dry atmosphere of the summits of the Andes, at an elevation of from thirteen to fifteen thousand feet, but even on the boundless grassy plains, the Illanos of Venezuela, and on the sea-shore, beneath the ever-clear sky of Cumana. This phenomenon was often rendered especially beautiful by the passage of light, fleecy clouds, which stood out in picturesque and bold relief from the luminous back-ground. A notice of this a‘rial spectacle is contained in a passage in my journal, while I was on the voyage from Lima to the western coasts of Mexico: "For three or four nights (between 10¼degrees and 14¼degrees north latitude) the zodiacal light has appeared in greater splendor than I have ever observed it. The transparency of the atmosphere must be remarkably great in this part of the Southern Ocean, to judge by the radiance of the stars and nebulous spots. From the 14th to the 19th of March a regular interval of three quarters of an hour occurred between the disappearance of the sun's disk in the ocean and the first manifestation of the zodiacal p 138 light, although the night was already perfectly dark. an hour after sunset it was seen in great briliancy between Aldebaran and the Pleiades; and on the 18th of March it attained an altitude of 39¼degrees5'minutes. Narrow elongated clouds are scattered over the beautiful deep azure of the distant horizon, flitting past the zodiacal light as before a golden curtain. Above these, other clouds are from time to time reflecting the most brightly variegated colors. It seems a second sunset. On this side of the vault of heaven the lightness of the night appears to increase almost as much as at the first quarter of the moon. Toward 10 o'clock the zodiacal light generally becomes very faint in this part of the Southern Ocean, and at midnight I have scarcely been able to trace a vestige of it. On the 16th of March, when most strongly luminous a faint reflection was visible in the east." In our gloomy so-called "temperate" northern zone, the zodiacal light is only distinctly visible in the beginning of Spring, after the evening twilight, in the western part of the sky, and at the close of Autumn, before the dawn of day, above the eastern horizon.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse