p-books.com
COSMOS: A Sketch of the Physical Description of the Universe, Vol. 1
by Alexander von Humboldt
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse

From the Italian school of philosophy, the expression passed, in this signification, into the language of those early poets p 71 of nature, Parmenides and Empedocles, and from thence into the works of prose writers. We will not here enter into a discussion of the manner in which, according to the Pythagorean views, Philolaus distinguishes between Olympus, Uranus, or the heavens, and Cosmos, or how the same word, used in a plural sense, could be applied to certain heavenly bodies (the planets) revolving round one central focus of the world, or to groups of stars. In this work I use the word Cosmos in conformity with the Hellenic usage of the term subsequently to the time of Pythagorus, and in accordance with the precise definition given of it in the treatise entitled 'De Mundo', which was long erroneously attributed to Aristotle. It is the assemblage of all things in heaven and earth, the universality of created things constituting the perceptible world. If scientific terms had not long been diverted from their true verbal signification, the present work ought rather to have borne the title of 'Cosmography', divided into 'Uranography' and 'Geography.' The Romans, in their feeble essays on philosophy, imitated the Greeks by applying to the universe the term 'mundus', which, in its primary meaning, indicated nothing more than ornament, and did not even imply order or regularity in the disposition of parts. It is probable that the introduction into the language of Latium of this technical term as an equivalent for Cosmos, in its double signification, is due to Ennius,* who was a follower of the Italian school, and the translator of the writings of Epicharmus and some of his pupils on the Pythagorean philosophy.

[footnote] *See, on Ennius, the ingenious researches of Leopold Krahner, in his 'Grundlinien zur Geschichte des Verfalls der Romischen Staats-Reigion', 1837, s. 41-45 (Outlines of the History of the Decay of the Established Religion among the Romans). In all probability, Ennius did not quote from writings of Epicharmus himself, but from poems composed in the name of that philosopher, and in accordance with his views.

We would first distinguish between the physical 'history' and the physical 'description' of the world. The former, conceived in the most general sense of the word, ought, if materials for writing it existed, to trace the variations experienced by the universe in the course of ages from the new stars which have suddenly appeared and disappeared in the vault of heaven, from nebulž dissolving or condensing — to the first stratum of cryptogamic vegetation on the still imperfectly cooled surface of the earth, or on a reef of coral uplifted from the depths of ocean. 'The physical description of the world' presents a picture of all that exists in space — of the siimultaneous action of p 72 natural forces, together with the phenomena which they produce.

But if we would correctly comprehend nature, we must not entirely or absolutely separate the consideration of the present state of things from that of the successive phases through which they have passed. We can not form a just conception of their nature without looking back on the mode of their formation. It is not organic matter alone that is continually undergoing change, and being dissolved to form new combinations. The globe itself reveals at every phase of its existence the mystery of its former conditions.

We can not survey the crust of our planet without recognizing the traces of the prior existence and destruction of an organic world. The sedimentary rocks present a succession of organic forms, associated in groups, which have successively displaced and succeeded each other. The different super-imposed strata thus display to us the faunas and floras of different epochs. In this sense the description of nature is intimately connected with its history; and the geologist, who is guided by the connection existing among the facts observed, can not form a conception of the present without pursuing, through countless ages, the history of the past. In tracing the physical delineation of the globe, we behold the present and the past reciprocally incorporated, as it were, with one another; for the domain of nature is like that of languages, in which etymological research reveals a successive development, by showing us the primary condition of an idiom reflected in the forms of speech in use at the present day. The study of the material world renders this reflection of the past peculiarly manifest, by displaying in the process of formation rocks of eruption and sedimentary strata similar to those of former ages. If I may be allowed to borrow a striking illustration from the geological relations by which the physiognomy of a country is determined, I would say that domes of trachyte, cones of basalt, lava streams ('coules')of amygdaloid with elongated and parallel pores, and white deposits of pumice, intermixed with black scoriae, animate the scenery by the associations of the past which they awaken, acting upon the imagination of the enlightened observer like traditional records of an earlier world. Their form is their history.

The sense in which the Greeks and Romans originally employed the word 'history' proves that they too were intimately convinced that, to form a complete idea of the present state of the universe, it was necessary to consider it in its successive p 73 phases. It is not, however, in the definition given by Valerius Flaccus,* but in the zoological writings of Aristotle, that the word 'history' presents itself as an exposition of the results of experience and observation.

[Footnote] *Aul. Gell., 'Nect. Att.', v., 18.

The physical description of the word by Pliny the elder bears the title of 'Natural History', while in the letters of his nephew it is designated by the nobler term of 'History of Nature.' The earlier Greek historians did not separate the description of countries from the narrative of events of which they had been the theater. With these writers, physical geography and history were long intimately associated, and remained simply but elegantly blended until the period of the development of political interests, when the agitation in which the lives of men were passed caused the geographical portion to be banished from the history of nations, and raised into an independent science.

It remains to be considered whether by the operation of thought, we may hope to reduce the immense diversity of phenomena comprised by the Cosmos to the unity of a principle, and the evidence afforded by rational truths. In the present state of empirical knowledge, we can scarcely flatter ourselves with such a hope. Experimental sciences, based on the observation of the external world, can not aspire to completeness; the nature of things, and the imperfection of our organs, are alike opposed to it. We shall never succeed in exhausting the immeasurable riches of nature; and no generation of men will ever have cause to boast of having comprehended the total aggregation of phenomena. It is only by distributing them into groups that we have been able, in the case of a few, to discover the empire of certain natural laws, grand and simple as nature itself. The extent of this empire will no doubt increase in proportion as physical sciences are more perfectly developed. Striking proofs of this advancement have been made manifest in our own day, in the phenomena of electro-magnetism, the propagation of luminous waves and radiating heat. In the same manner, the fruitful doctrine of evolution shows us how, in organic development, all that is formed is sketched out beforehand, and how the tissues of vegetable and animal matter uniformly arise from the multiplication and transformation of cells.

The generalization of laws, which, being at first bounded by narrow limits, had been applied solely to isolated groups of phenomena, acquires in time more marked gradations, and gains in extent and certainty as long as the process of reasoning p 74 is applied strictly to analogous phenomena; but as soon as dynamical views prove insufficient where the specific properties and heterogeneous nature of matter come into play; it is to be feared that, by persisting in the pursuit of laws, we may find our course suddenly arrested by an impassible chasm. The principle of unity is lost sight of, and the guiding clew is rent asunder whenever any specific and peculiar kind of action manifests itself amid the active forces of nature. The law of equivalents and the numerical proportions of composition, so happily recognized by modern chemists, and proclaimed under the ancient form of atomic symbols, still remains isolated and independent of mathematicl laws of motion and gravitation.

Those productions of nature which are objects of direct observation may be logically distributed in classes, orders, and families. This form of distribution undoubtedly sheds some light on descriptive natural history, but the study of organized bodies, considered in their linear connection, although it may impart a greater degree of unity and simplicity to the distribution of groups, can not rise to the height of a classification based on one sole principle of composition and internal organization. As different gradations are presented by the laws of nature according to the extent of the horizon, or the limits of the phenomena to be considered, so there are likewise differently graduated phases in the investigation of the external world. Empiricism originates in isolated views, which are subsequently grouped according to their analogy or dissimilarity. To direct observation succeeds, although long afterward, the wish to prosecute experiments; that is to say, to evoke phenomena under different determined conditions. The rational experimentalist does not proceed at hazard, but acts under the guidance of hypotheses, founded on a half indistinct and more or less just intuition of the connection existing among natural objects or forces. That which has been conquered by observation or by means of experiments, leads, by analysis and induction, to the discovery of empirical laws. These are the phases in human intellect that have marked the different epochs in the life of nations, and by means of which that great mass of facts has been accumulated which constitutes at the present day the solid basis of the natural sciences.

Two forms of abstraction conjointly regulate our knowledge, namely, relations of 'quantity', comprising ideas of number and size, and relations of 'quality', embracing the consideration of the specific properties and the heterogeneous nature p 75 of matter. The former, as being more accessible to the exercise of thought, appertains to mathematics; the latter, from the apparent mysteries and greater difficulties, falls under the domain of the chemical sciences. In order to submit phenomena to calculation, recourse is had to a hypothetical construction of matter by a combination of molecules and atoms, whose number, form, position, and polarity determine, modify, or vary phenomena.

The mythical ideas long entertained of the imponderable substances and vital forces peculiar to each mode of organization, have complicated our views generally, and shed an uncertain light on the path we ought to pursue.

The most various forms of intuition have thus, age after age, aided in augmenting the prodigious mass of empirical knowledge, which, in our own day has been enlarged with ever-increasing rapidity. The investigating spirit of man strives from time to time, with varying success, to break through those ancient forms and symbols invented, to subject rebellious matter to rules of mechanical construction.

We are still very far from the time when it will be possible for us to reduce, by the operation of thought, all that we perceive by the senses, to the unity of a rational principle. It may even be doubted if such a victory could ever be achieved in the field of natural philosophy. The complication of phenomena, and of the vast extent of the Cosmos, would seem to oppose such a result; but even a partial solution of the problem — the tendency toward a comprehension of the phenomena of the universe — will not the less remain the eternal and sublime aim of every investigation of nature.

In conformity with the character of my former writings, as well as with the labors in which I have been engaged during my scientific career, in measurements, experiments, and the investigation of facts, I limit myself to the domain of empirical ideas.

The exposition of mutually connected facts does not exclude the classification of phenomena according to their rational connection, the generalization of many specialities in the great mass of observations, or the attempt to discover laws. Conceptions of the universe solely based upon reason, and the principles of speculative philosophy, would no doubt assign a still more exalted aim to the science of the Cosmos. I am far from blaming the efforts of others solely because their success has hitherto remained very doubtful. Contrary to the wishes and counsel of of those profound and powerful thinkers who p 76 have given new life to speculations which were already familiar to the ancients, systems of natural philosophy have in our own country for some time past turned aside the minds of men from the graver study of mathematical and physical sciences. The abuse of better powers, which has led many of our noble but ill-judging youth into the saturnalia of a purely ideal science of nature, has been signalized by the intoxication of pretended conquests, by a novel and fantastically symbolical phraseology, and by a predilection for the formulae of a scholastic rationalism, more contracted in its views than any known to the Middle Ages. I use the expression "abuse of better powers," because superior intellects devoted to philosophical pursuits and experimental sciences have remained strangers to these saturnalia. The results yielded by an earnest investigation in the path of experiment can not be at variance with a true philosophy of nature. If there be any contradiction, the fault must lie either in the unsoundness of speculation, or in the exaggerated pretensions of empiricism, which thinks that more is proved by experiment than is actually derivable from it.

External nature may be opposed to the intellectual world, as if the latter were not comprised within the limits of the former, or nature may be opposed to art when the latter is defined as a manifestation of the intellectual power of man; but these contrasts, which we find reflected in the most cultivated languages, must not lead us to separate the sphere of nature from that of mind, since such a separation would reduce the physical science of the world to a mere aggregation of empirical specialities. Science does not present itself to man until mind conquers matter in striving to subject the result of experimental investigation to rational combinations. Science is the labor of mind applied to nature, but the external world has no real existence for us beyond the image reflected within ourselves through the medium of the senses. As intelligence and forms of speech, thought and its verbal symbols, are united by secret and indissoluble links, so does the external world blend almost unconsciously to ourselves with our ideas and feelings. "External phenomena," says Hegel, in his 'Philosophy of History', "are in some degree translated in our inner representations." The objective world, conceived and reflected within us by thought, is subjected to the eternal and necessary conditions of our intellectual being. The activity of the mind exercises itself on the elements furnished to it by the perceptions of the senses. Thus, in the p 77 early ages of mankind, there manifests itself in the simple intuition of natural facts, and in the efforts made to comprehend them, the germ of the philosophy of nature. These ideal tendencies vary, and are more or less powerful, according to the individual characteristics and moral dispositions of nations, and to the degrees of their mental culture, whether attained amid scenes of nature that excite or chill the imagination.

History has preserved the record of the numerous attempts that have been made to form a rational conception of the whole world of phenomena, and to recognize in the universe the action of one sole active force by which matter is penetrated, transformed, and animated. These attempts are traced in classical antiquity in those treatises on the principles of things which emanated from the Ionian school, and in which all the phenomena of nature were subjected to hazardous speculations, based upon a small number of observations. By degrees, as the influence of great historical events has favored the development of every branch of science supported by observation, that ardor has cooled which formerly led men to seek the essential nature and connection of things by ideal construction and in purely rational principles. In recent times, the mathematical portion of natural philosophy has been most remarkably and admirably enlarged. The method and the instrument (analysis) have been simultaneously perfected. That which has been acquired by means so different — by the ingenious application of atomic suppositions, by the more general and intimate study of phenomena, and by the improved construction of new apparatus — is the common property of mankind, and shouldnot, in our opinion, now, more than in ancient times, be withdrawn from the free exercise of speculative thought.

It can not be denied that in this process of thought, the results of experience have had to contend with many disadvantages; we must not, therefore, be surprised if, in the perpetual vicissitude of theoretical views, as is ingeniously expressed by the author of 'Giordano Bruno', "most men see nothing in philosophy but a succession of passing meteors, while even the grander forms in which she has revealed herself share the fate of comets, bodies that do not rank in popular opinion among the eternal and permanent works of nature, p 78 but are regarded as mere fugitive apparitions of igncor vapor."

[Footnote] *Schelling's Bruno, 'eber das Gottliche und Naturaliche Princip. der Dinge', 181 (Bruno, on the 'Divine and Natural Principle of Things')

We would here remark that the abuse of thought, and the false track it too often pursues, ought not to sanction an opinion derogatory to the intellect, which would imply that the domain of mind is essentially a world of vague fantastic illusions, and that the treasures accumulated by laborious observations in philosophy are powers hostile to its own empire. It does not become the spirit which characterizes the present age distrustfully to reject every generalization of views and every attempt to examine into the nature of things by the process of reason and induction. It would be a denial of the dignity of human nature and the relative importance of the faculties with which we are endowed, were we to condemn at one time austere reason engaged in investigating causes and their natural connections, and at another that exercise of the imagination which prompts and excites discoveries by its creative powers.

This material taken from pages 79 to 111

COSMOS: A Sketch of the Physical Description of the Universe, Vol. 1 by Alexander von Humboldt

Translated by E C Otte

from the 1858 Harper & Brothers edition of Cosmos, volume 1 —————————————————————————

p 79

COSMOS.

————————————-

DELINEATION OF NATURE. GENERAL REVIEW OF NATURAL PHENOMENA.

WHEN the human mind first attempts to subject to its control the world of physical phenomena, and strives by meditative contemplation to penetrate the rich luxuriance of living nature, and the mingled web of free and restricted natural forces, man feels himself raised to a height from whence, as he embraces the vast horizon, individual things blend together in varied groups, and appear as if shrouded in a vapory vail. These figurative expressions are used in order to illustrate the point of view from whence we would consider the universe both in its celestial and terrestrial sphere. I am not insensible of the boldness of such an undertaking. Among all the forms of exposition to which these pages are devoted, there is none more difficult than the general delineation of nature, which we purpose sketching, since we must not allow ourselves to be overpowered by a sense of the stupendous richness and variety of the forms presented to us, but must dwell only on the consideration of masses either possessing actual magnitude, or borrowing its semblance from the associations awakened within the subjective sphere of ideas. It is by a separation and classification of phenomena by an intuitive insight into the play of obscure forces, and by animated expressions, in which the perceptible spectacle is reflected with vivid truthfulness, that we may hope to comprehend and describe the 'universal all' [Greek words] in a manner worthy of the dignity of the word 'Cosmos' in its signification of 'universe, order of the world', and 'adornment' of this universal order. May the immeasurable diversity of phenomena which crowd into the picture of nature in no way detract from that harmonious impression of rest and unity which is the ultimate object of every literary or purely artistical composition.

Beginning with the depths of space and the regions of remotest nebulae, we will gradually descend through the starry zone to which our solar system belongs, to our own terrestrial spheroid, circled by air and ocean, there to direct our attention p 80 to its form, temperature, and magnetic tension, and to consider the fullness of organic life unfolding itself upon its surface beneath the vivifying influence of light. In this manner a picture of the world may, with a few strokes, be made to include the realms of infinity no less than the minute microscopic animal and vegetable organisms which exist in standing waters and on the weather-beaten surface of our rocks. All that can be perceived by the senses, and all that has been accumulated up to the present day by an attentive and variously directed study of nature, constitute the materials from which this representation is to be drawn, whose character is an evidence of its fidelity and truth. But the descriptive picture of nature which we purpose drawing must not enter too fully into detail, since a minute enumeration of all vital forms, natural objects, and processes is not requisite to the completeness of the undertaking. The delineator of nature must resist the tendency toward endless division, in order to avoid the dangers presented by the very abundance of our empirical knowledge. A considerable portion of the qualitative properties of matter — or, to speak more in accordance with the language of natural philosophy, of the qualitative expression of forces — is doubtlessly still unknown to us, and the attempt perfectly to represent unity in diversity must therefore necessarily prove unsuccessful. Thus, besides the pleasure derived and tinged with a shade of sadness, an unsatisfied longing for something beyond the present — a striving toward regions yet unknown and unopened. Such a sense of longing binds still faster the links which, in accordance with the supreme laws of our being, connect the material with the ideal world, and animates the mysterious relation existing between that which the mind receives from without, and that which it reflects from its own depths to the external world. If, then, nature (understanding by the term all natural objects and phenomena) be illimitable in extent and contents, it likewise presents itself to the human intellect as a problem which can not be grasped, and whose solution is impossible, since it requires a knowledge of the combined action of all natural forces. Such an acknowledgement is due where the actual state and prospective development of phenomena constitute the sole objects of direct investigation, which does not venture to depart from the strict rules of induction. But, although the incessant effort to embrace nature in its universality may remain unsatisfied, the history of the contemplation of the universe (which p 81 will be considered in another part of this work) will teach us how, in the course of ages, mankind has gradually attained to a partial insight into the relative dependence of phenomena. My duty is to depict the results of our knowledge in all their bearings with reference to the present. In all that is subject to motion and change in space, the ultimate aim, the very expression of physical laws, depend upon 'mean numerical values', which show us the constant amid change, and the stable amid apparent fluctuations of phenomena. Thus the progress of modern physical science is especially characterized by the attainment and the rectification of the mean values of certain quantities by means of the processes of weighing and measuring; and it may be said, that the only remaining and widely-diffused hieroglyphic characters still in our writing — 'numbers' — appear to us again, as powers of the Cosmos, although in a wider sense than that applied to them by the Italian School.

The earnest investigator delights in the simplicity of numerical relations, indicating the dimensions of the celestial regions, the magnitudes and periodical disturbances of the heavenly bodies, the triple elements of terrestrial magnetism, the mean pressure of the atmosphere, and the quantity of heat which the sun imparts in each year, and in every season of the year, to all points of the solid and liquid surface of our planet. These sources of enjoyment do not, however, satisfy the poet of Nature, or the mind of the inquiring many. To both of these the present state of science appears as a blank, now that she answers doubtingly, or wholly rejects as unanswerable, questions to which former ages deemed they could furnish satisfactory replies. In her severer aspect, and clothed with less luxuriance, she shows herself deprived of that seductive charm with which a dogmatizing and symbolizing physical philosophy knew how to deceive the understanding and give the rein to imagination. Long before the discovery of the New World, it was believed that new lands in the Far West might be seen from the shores of the Canaries and the Azores. These illusive images were owing, not to any extraordinary refraction of the rays of light, but produced by an eager longing for the distant and the unattained. The philosophy of the Greeks, the physical views of the Middle Ages, and even those of a more recent period, have been eminently imbued with the charm springing from similar illusive phantoms of the imagination. At the limits of circumscribed knowledge, as from some lofty island shore, the eye delights to penetrate p 82 to distant regions. The belief in the uncommon and the wonderful lends a definite outline to every manifestation of ideal creation; and the realm of fancy — a fairy-land of cosmological, geognostical, and magnetic visions — becomes thus involuntarily blended with the domain of reality.

Nature, in the manifold signification of the word — whether considered as the universality of all that is and ever will be — as the inner moving force of all phenomena, or as their mysterious prototype — reveals itself to the simple mind and feelings of man as something earthly, and closely allied to himself. It is only within the animated circles of organic structure that we feel ourselves peculiarly at home. Thus, wherever the earth unfolds her fruits and flowers, and gives food to countless tribes of animals, there the image of nature impresses itself most vividly upon our senses. The impression thus produced upon our minds limits itself almost exclusively to the reflection of the earthly. The starry vault and the wide expanse of the heavens belong to a picture of the universe, in which the magnitude of masses, the number of congregated suns and faintly glimmering nebulae, although they excite our wonder and astonishment, manifest themselves to us in apparent isolation, and as utterly devoid of all evidence of their being the scenes of organic life. Thus, even in the earliest physical views of mankind, heaven and earth have been separated and opposed to one another as an upper and lower portion of space. If, then, a picture of nature were to correspond to the requirements of contemplation by the senses, it ought to begin with a delineation of our native earth. It should depict, first, the terrestrial planet as to its size and form; its increasing density and heat at increasing depths in its superimposed solid and liquid strate; the separation of sea and land, and the vital forms animating both, developed in the cellular tissues of plants and animals; the atmospheric ocean, with its waves and currents, through which pierce the forest-crowned summits of our mountain chains. After this delineation of purely telluric relations, the eye would rise to the celestial regions, and the Earth would then, as the well-known seat of organic development, be considered as a planet, occupying a place in the series of those heavenly bodies which circle round one of the innumerable host of self-luminous stars. This succession of ideas indicates the course pursued in the earliest stages of perceptive contemplation, and reminds us of the ancient conception of the "sea-girt disk of earth," supporting the vault of heaven. It begins to exercise in action p 83 at the spot where it originated, and passes from the consideration of the known to the unknown, of the near to the distant. It corresponds with the method pursued in our elementary works on astronomy (and which is so admirable in a mathematical point of view), of proceeding from the apparent to the real movements of the heavenly bodies.

Another course of ideas must, however, be pursued in a work which proposes merely to give an exposition of what is known — of what may in the present state of our knowledge be regarded as certain, or as merely probable in a greater or lesser degree — and does not enter into a consideration of the proofs on which such results have been based. Here, therefore, we do not proceed from the subjective point of view of human interests. The terrestrial must be treated only as grand and free, uninfluenced by motives of proximity, social sympathy, or relative utility. A physical cosmography — a picture of the universe — does not begin, therefore, with the picture of the universe — does not begin, therefore, with the terrestrial, but with that which fills the regions of space. But as the sphere of contemplation contracts in dimension our perception of the richness of individual parts, the fullness of physical phenomena, and of the heterogeneous properties of matter becomes enlarged. From the regions in which we recognize ony the dominion of the laws of attraction, we descend to our own planet, and to the intricate play of terrestrial forces. The method here described for the delineation of nature is opposed to that which mst be pursued in establishing conclusive results. The one enumerates what the other demonstrates.

Man learns to know the external world through the organs of the senses. Phenomena of light proclaim the existence of matter in remotest space, and the eye is thus made the medium through which we may contemplate the universe. The discovery of telescopic vision more than two centuries ago, has transmitted to latest generations a power whose limits are as yet unattained.

The first and most general consideration of the Cosmos is that of the 'contents of space' — the distribution of matter, or of creation, as we are wont to designate the assemblage of all that is and ever will be developed. We see matter either agglomerated into rotating, revolving spheres of different density and size, or scattered through space in the form of self-luminous vapor. If we consider first the cosmical vapor dispersed in definite nebulous spots, its state of aggregation will p 84 appear constantly to vary, sometimes appearing separated into round or elliptical disks, single or in pairs, occasionally connected by a thread of light; while, at another time, these nebulae occur in forms of larger dimensions, and are either elongated, or variously branched or fan-shaped or appear like well-defined rings, including a dark interior. It is conjectured that these bodies are undergoing variously developed formative processes, as the cosmical vapor becomes condensed in conformity with the laws of attraction, either round one or more of the nuclei. Between two and three thousand of such unresolvable nebulae, in which the most powerful telescopes have hitherto been unable to distinguish the presence of stars, have been counted, and their positions determined.

The genetic evolution — that perpetual state of development which seems to affect this portion of the regions of space — has led philosophical observers to the discovery of the analogy existing among organic phenomena. As in our forests we see the same kind of tree in all the various stages of its growth, and are thus enabled to form an idea of progressive, vital development, so do we also in the great garden of the universe, recognise the most different phases of sidereal formation. The process of condensation, which formed a part of the doctrines of Anaximenes and of the Ionian School, appears to be going on before our eyes. This subject of investigation and conjecture is especially attractive to the imagination, for in the study of the animated circles of nature, and of the action of all the moving forces of the universe, the charm that exercises the most powerful influence on the mind is derived less from a knowledge of that which 'is' than from a perception of that which 'will be', even though the latter be nothing more than a new condition of a known material existence; for of actual creation, of origin, the beginning of existence from non-existence, we have no experience, and can therefore form no conception.

A comparison of the various causes influencing the development manifested by the greater or less degree of condensation in the interior of nebulae, no less than a successive course of direct observations, have led to the belief that changes of form have been recognized first in Andromeda, next in the constallation Argo, and in the isolated filamentous portion of the nebula in Orion. But want of uniformity in the power of the instruments employed, different conditions of our atmosphere, and other optical relations, render a part of the results invalid as historical evidence.

p 85 'Nebulous stars' must not be confounded either with irregularly-shaped nebulous spots, properly so called, whose separate parts have an unequal degree of brightness (and which may, perhaps, become concentrated into stars as their circumference contracts), nor with the so-called planetary nebulae, whose circular or slightly oval disks manifest in all their parts a perfectly uniform degree of faint light. 'Nebulous stars' are not merely accidental bodies projected upon a nebulous ground, but are a part of the nebulous matter constituting one mass with the body which it surrounds. The not unfrequently considerable magnitude of their apparent diameter, and the remote distance from which they are revealed to us, show that both the planetary nebulae and the nebulous stars must be of enormous dimensions. New and ingenious considerations of the different influence exercised by distance* on the intensity of light of a disk of appreciable diameter, and of a single self-luminous point, render it not improbable that the planetary nebulae are very remote nebulous stars, in which the difference between the central body and the surrounding nebulous covering can no longer be detected by our telescopic instruments.

[footnote] * The optical considerations relative to the difference presented by a single luminous point, and by a disk subtending an appreciable angle, in which the intensity of light is constant at every distance, are explained in Arago's 'Analyse des Travaux de Sir William Herschel' ('Annuaire du Bureau des Long.', 1842, p. 410-412, and 441).

The magnificent zones of the southern heavens, between 50 degrees and 80 degrees, are especially rich in nebulous stars, and in compressed unresolvable nebua e. The larger of the two Magellanic clouds, which circle round the starless, desert pole of the south, appears, according to the most recent researches,* as "a collection of clusters of stars, composed of globular clusters and nebulae of different magnitude, and of large nebulous spots

p 86 not resolvable, which, producing a general brightness in the field of view, form, as it were, the back-ground of the picture."

[footnote] *The two Magellanic clouds, Nubecula major and Nubecula minor, are very remarkable objects. The larger of the two is an accumulated mass of stars, and consists of clusters of stars of irregular form, either conical masses or nebulae of different magnitudes and degrees of condensation. This is interspersed with nebulous spots, not resolvable into stars, but which are probably 'star dust', appearing only as a general radiance upon the telescopic field of a twenty-feet reflector, and forming a luminous ground on which other objects of striking and indescribable form are scattered. In no other portion of the heavens are so many nebulous and stellar masses thronged together in an equally small space. Nubecula minor is much less beautiful, has more unresolvable nebulous light, while the stellar masses are fewer and fainter in intensity. — (From a letter of Sir John Herschel, Feldhuysen, Cape of Good Hope, 13th June, 1836.)

The appearance of these clouds, of the brightly-beaming constellation Argo, of the Milky Way between Scorpio, the Centaur, and the Southern Cross, the picturesque beauty, if one may so speak, of the whole expanse of the southern celestial hemisphere, has left upon my mind an ineffaceable impression. The zodiacal light, which rises in a pyramidal form, and constantly contributes, by its mild radiance, to the external beauty of the tropical nights, is either a vast nebulous ring, rotating between the Earth and Mars, or, less probably, the exterior stratum of the solar atmosphere. Besides these luminous clouds and nebulae of definite form, exact and corresponding observations indicate the existence and the general distribution of an apparently non-luminous, infinitely-divided matter, which posssesses a force of resistance and manifests its presence in Encke's, and perhaps also in Biela's comet, by diminishing their eccentricity and shortening their period of revolution. Of this impending, ethereal, and cosmical matter, it may be supposed that it is in motion; that it gravitates, notwithstanding its original tenuity; that it is condensed in the vicinity of the great mass of the Sun; and, finally, that it may, for myriads of ages, have been augmented by the vapor emanating from the tails of comets.

If we now pass from the consideration of the vaporous matter of the immeasurable regions of space [(Greek)*] — whether scattered without definite form and limits, it exists as a cosmical other, or is condensed into nebulous spots, and becomes comprised among the solid agglomerated bodies of the universe — we approach a class of phenomena exclusively designated by the form of stars, or as the sidereal world.

[footnote] *I should have made use, in the place of garden of the universe, of the beautiful expression [Greek], borrowed by Hesychius from an unknown poet, if [Greek] had not rather signified in general an inclosed space. The connection with the German 'garten' and the English 'garden', 'gards' in Gothic (derived according to Jacob Grimm, from 'gairdan', 'to gird'), is, however, evident, as is likewise the affinity with the Slavonic 'grad', 'gorod', and as Pott remarks, in his 'Etymol. Forschungen', th. i., s. 144 (Etymol. Researches), with the Latin 'chors', whence we have the Spanish 'corte', the French 'cour', and the English word 'court', together with the Ossetic 'khart'. To these may be further added the Scandinavian 'gard',** 'gard', a place inclosed, as a court, or a country seat, and the Persian 'gerd', 'gird', a district, a circle, a princely country seat, a castle or city, as we find the term applied to the names of places in Firdusi's Schahnameh, as 'Siyawakschgird', 'Darabgird', etc.

** (This word is written 'gaard' in the Danish) — Tr.

p 87 Here, too, we find differences existing in the solidity or density of the spheroidally agglomerated matter. Our own solar system presents all stages of 'mean' density (or of the relation of 'volume' to 'mass'.) On comparing the planets from Mercury to Mars with the Sun and with Jupiter, and these two last named with the yet inferior density of Saturn, we arrive, by a descending scale — to draw our illustration from the terrestrial substances — at the respective densities of antimony, honey, water, and pine wood. In comets, which actually constitute the most considerable portion of our solar system with respect to the number of individual forms, the concentrated part, usually termed the 'head', or 'nucleus', transmits sidereal light unimpaired. The mass of a comet probably in no case equals the five thousandth part of that of the earth, so dissimilar are the formative processes manifested in the original and perhaps still progressive agglomerations of matter. In proceeding from general to special considerations, it was particularly desirable to draw attention to this diversity, not merely as a possible, but as an actually proved fact.

The purely speculative conclusions arrived at by Wright, Kant, and Lambert, concerning the general structural arrangement of the universe, and of the distribution of matter in space, have been confirmed by Sir William Herschel, on the more certain path of observation and measurement. That great and enthusiastic, although cautious observer, was the first to sound the depths of heaven in order to determine the limits and form of the starry stratum which we inhabit, and he, too, was the first who ventured to throw the light of investigation upon the relations existing between the position and distance of remote nebulae and our own portion of the sidereal universe. William Herschel, as is well expressed in the elegant inscription on his monument at Upton, broke through the inclosures of heaven ('caelorum perrupit claustra'), and, like another Columbus, penetrated into an unknown ocean, from which he beheld coasts and groups of islands, whose true position it remains for future ages to determine.

Considerations regarding the different intensity of light in stars, and their relative number, that is to say, their numerical frequency on telescopic fields of equal magnitude, have led to the assumption of unequal distances and distribution in space in the strata which they compose. Such assumptions, in as far as they may lead us to draw the limits of the individual portions of the universe, can not offer the same degree of mathematical certainty as that which may be attained in all that p 88 relates to our solar system, whether we consider the rotation of double stars with unequal velocity round one common center of gravity, or the apparent or true movements of all the heavenly bodies. If we take up the physical description of the universe from the remotest nebulae, we may be inclined to compare it with the mythical portions of history. The one begins in the obscurity of antiquity, the other in that of inaccessible space; and at the point where reality seems to flee before us, imagination becomes doubly incited to draw from its own fullness, and give definite outline and permanence to the changing forms of objects.

If we compare the regions of the universe with one of the island-studded seas of our own planet, we may imagine matter to be distributed in groups, either as unresolvable nebulae of different ages, condensed around one or more nuclei, or as already agglomerated into clusters of stars, or isolated spheroidal bodies. The cluster of stars, to which our cosmical island belongs, forms a lens-shaped, flattened stratum, detached on every side, whose major axis is estimated at seven or eight hundred, and its minor one at a hundred and fifty times the distance of Sirius. It would appear, on the supposition that the parallax of Sirius is not greater than that accurately determined for the brightest star in the Centaur (0".9128), that light traverses one distance of Sirius in three years, while it also follows, from Bessel's earlier excellent Memoir* on the parallax of the remarkable star 61 Cygni (0".3483), (whose considerable motion might lead to the inference of great proximity), that a period of nine years and a quarter is required for the transmission of light from this star to our planet.

[footnote] *See Maclear's "Results from 1839 to 1840," in the 'Trans. of the Astronomical Soc.', vol. xii., p. 370, on 'a' Centauri, the probable mean error being 0".0649. For 61 Cygni, see Bessel, in Schumacher's 'Jahrbuch', 1839, s. 47, and Schumacher's 'Astron. Nachr.', bd. xviii., s. 401, 402, probable mean error, 0".0141. With reference to the relative distances of stars of different magnitudes, how those of the third magnitude may probably be three times more remote, and the manner in which we represent to ourselves the material arrangement of the starry strata, I have found the following remarkable passage in Kepler's 'Epitome Astronomiae Copernicanae', 1618, t. i., lib. 1, p. 34-39: "Sol hic noster nil aliud est quam una ex fixis, nobis major et clarior visa, quia propior quam fixa. Pone terram stare ad latus, una semi-diametro via e lactea e, tunc ha ec via lactea apparebit circulus parvus, vel ellipsis parva, tota declinans ad latus alterum; eritque simul uno intuitu conspicua, quae nunc no potest nisi dimidia conspici quovis momento. Itaque fix arum spha era non tantum orbe stellarum, sed etiam circulo lactis versus not deorsum est terminata."

Our starry stratum is a disk of inconsiderable thickness, divided a p 89 third of its length into two branches; it is supposed that we are near this division, and nearer to the region of Sirius than to the constellation Aquila, almost in the middle of the stratum in the line of its thickness or minor axis.

This position of our solar system, and the form of the whole discoidal stratum, have been inferred from sidereal scales, that is to say, from that method of counting the stars to which I have already alluded, and which is based upon the equidistant subdivision of the telescopic field of view. The relative depth of the stratum in all directions is measured by the greater or smaller number of stars appearing in each division. These divisions give the length of the ray of vision in the same manner as we measure the depth to which the plummet has been thrown, before it reaches the bottom, although in the case of a starry stratum there can not, correctly speaking, be any idea of depth, but merely of outer limits. In the direction of the longer axis, where the stars lie behind one another, the more remote ones appear closely crowded together, united, as it were, by a milky-white radiance or luminous vapor, and are perspectively grouped, encircling as in a zone, the visible vault of heaven. This narrow and branched girdle, studded with a radiant light, and here and there interrupted by dark spots, deviates only by a few degrees from forming a perfect large circle round the concave sphere of heaven, owing to our being near the center of the large starry cluster, and almost on the plane of the Milky Way. If our planetary system were far 'outside' this cluster, the Milky Way would appear to telescopic vision as a ring, and at a still greater distance as a resolvable discoidal nebula.

Among the many self-luminous moving suns, erroneously called 'fixed stars', which constitute our cosmical island, our own sun is the only one known by direct observation to be a 'central body' in its relations to spherical agglomerations of matter directly depending upon and revolving round it, either in the form of planets, comets, or aerolite asteroids. As far as we have hitherto been able to investigate 'multiple' stars (double stars or suns), these bodies are not subject, with respect to relative motion and illumination, to the same planetary dependence that characterizes our own solar system. Two or more self-luminous bodies, whose planets and moon, if such exist, have hitherto escaped our telescopic powers of vision, certainly revolve around one common center of gravity; but this is in a portion of space which is probably occupied merely by unagglomerated matter or cosmical vapor, while in our system p 90 the center of gravity is often comprised within the innermost limits of a 'visible' central body. If, therefore, we regard the Sun and the Earth, or the Earth and the Moon, as double-stars, and the whole of our planetary solar system as a multiple cluster of stars, the analogy thus suggested must be limited to the universality of the laws of attraction in different systems, being alike applicable to the independent processes of light and to the method of illumination.

For the generalization of cosmical views, corresponding with the plan we have proposed to follow in giving a delineation of nature or of the universe, the solar system to which the Earth belongs may be considered in a two-fold relation: first, with respect to the different classes of individually agglomerated matter, and the relative size, conformation, density, and distance of the heavenly bodies of this system; and secondly, with reference to other portions of our starry cluster, and of the changes of position of its central body, the Sun.

The solar system, that is to say, the variously-formed matter circling round the Sun, consists, according to the present state of our knowledge of 'eleven primary planets',* eighteen satellites p 91 or secondary planets, and myriads of comets, three of which, known as the "planetary comets," do not pass beyond the narrow limits of the orbits described by the principal planets.

[footnote] * (Since the publication of Baron Humboldt's work in 1845, several other planets have been discovered, making the number of those belonging to our planetary system 'sixteen' instead of 'eleven'. Of these, Astrea, Hebe, Flora, and Iris are members of the remarkable group of asteroids between Mars and Jupiter. Astrea and Hebe were discovered by Hencke at Driesen, the one in 1846 and the other in 1847; Flora and Iris were both discovered in 1847 by Mr. Hind, at the South Villa Observatory, Regent's Park. It would appear from the latest determinations of their elements, that the small planets have the following order with respect to mean distance from the Sun: Flora, Iris, Vesta, Hebe, Astrea, Juno, Ceres, Pallas. Of these, Flora has the shortest period (about 3 1/4 years). The planet Neptune, which, after having been predicted by several astronomers, was actually observed on the 25th of September, 1846, is situated on the confines of our planetary system beyond Uranus. The discovery of this planet is not only highly interesting from the importance attached to it as a question of science, but also from the evidence it affords of the care and unremitting labor evinced by modern astronomers in the investigation and comparison of the older calculations, and the ingenious application of the results thus obtained to the observation of new facts. The merit of having paved the way for the discovery of the planet Neptune is due to M. Bouvard, who, in his persevering and assiduous efforts to deduce the entire orbit of Uranus from observations made during the forty years that succeeded the discovery of that planet in 1781, found the results yielded by theory to be at variance with fact, in a degree that had no parallel in the history of astronomy. This startling discrepancy, which seemed only to gain additional weight from every attempt made by M. Bouvard to correct his calculations, led Leverrier, after a careful modification of the tables of Bouvard, to establish the proposition that there was "a formal incompatibility between the observed motions of Uranus and the hypothesis that he was acted on 'only' by the Sun and known planets, according to the law of universal gravitation." Pursuing this idea, Leverrier arrived at the conclusion that the disturbing cause must be a 'planet', and finally, after an amount of labor that seems perfectly overwhelming, he, on the 31st of August, 1846, laid before the French Institute a paper, in which he indicated the exact spot in the heavens where this new planetary body would be found, giving the following data for its various elements: mean distance from the Sun, 36.154 times that of the Earth; period of revolution, 217.387 years; mean long., Jan. 1st, 1847, 318 degrees 47'; mass, 1/9300th; heliocentric long., Jan 1st1847, 326 degrees 32'. Essential difficulties still intervened, however, and as the remoteness of the planet rendered it improbable that its disk would be discernible by any telescopic instrument, no other means remained for detecting the suspected body but its planetary motion, which could only be ascertained by mapping, after every observation, the quarter of the heavens scanned, and by a comparison of the various maps. Fortunately for the verification of Leverrier's predictions, Dr. Bremiker had just completed a map of the precise region in which it was expected the new planet would apper, this being one of a series of maps made for the Academy of Berlin, of the small stars along the entire zodiac. By means of this valuable assistance, Dr. Galle, of the Berlin Observatory, was led, on the 25th of September, 1846, by the discovery of a star of the eighth magnitude, not recorded in Dr. Bremiker's map, to make the first observation of the planet predicted by Leverrier. By a singular coincidence, Mr. Adams, of Cambridge, had predicted the appearance of the planet simultaneously with M. Leverrier; but by the concurrence of several circumstances much to be regretted, the world at large were not made acquainted with Mr. Adams's valuable discovery until subsequently to the period at which Leverrier published his observations. As the data of Leverrier and Adams stand at present, there is a discrepancy between the predicted and the true distance, and in some other elements of the planet; it remains therefore, for these or future astronomers to reconcile theory with fact, or perhaps, as in the case of Uranus, to make the new planet the means of leading to yet greater discoveries. It would appear from the most recent observations, that the mass of Neptune, instead of being, as at first stated, 1/9300th, is only about 1/23000th that of the Sun, while its periodic time is now given with a greater probability at 166 years, and its mean distance from the Sun nearly 30. The planet appears to have a ring, but as yet no accurate observations have been made regarding its system of satellites. See 'Trans. Astron. Soc.', and 'The Planet Neptune', 1848, by J. P. Nicholl.) — Tr.

We may, with no incondsiderable degree of probability, include within the domain of our Sun, in the immediate sphere of its central force, a rotating ring of vaporous matter, lying probably between the orbits of Venus and Mars, but certainly beyond that of the Earth,* which appears to us in p 92 a pyramidal form, and is known as the 'Zodiacal Light'; and a host of very small asteroids, whose orbits either intersect, or very nearly approach, that of our earth, and which present us with the phenomena of aerolites and falling or shooting stars.

[footnote] * "If there should be molecules in the zones diffused by the atmosphere of the Sun of too volatile a nature either to combine with one another or with the planets, we must suppose that they would, in circling round that luminary, present all the appearances of zodiacal light, without opposing any appreciable resistance to the different bodies composing the planetary system, either owing to their extreme rarity, or to the similarity existing between their motion and that of the planets with which they come in contact." — Laplace, 'Expos. du Syst. du Monde' (ed. 5), p. 415.

When we consider the complication of variously-formed bodies which revolve round the Sun in orbits of such dissimilar eccentricity—although we may not be disposed, with the immortal author of the 'Mecanique Celeste', to regard the largr number of comets as nebulous stars, passing from one central system to another,* we yet can not fail to acknowledge that the planetary system, especially so called (that is, the group of heavenly bodies which, together with their satellites, revolve with but slightly eccentric orbits round the Sun), constitutes but a small portion of the whole system with respect to individual numbers, if not to mass.

[footnote] *Laplace, 'Exp. du Syst. du Monde', p. 396, 414.

It has been proposed to consider the telescopic planets, Vesta, Juno, Ceres, and Pallas, with their more closely intersecting, inclined, and eccentric orbits, as a zone of separation, or as a middle group in space; and if this view be adopted, we shall discover that the interior planetary group (consisting of Mercury, Venus, the Earth, and Mars) presents several very striking contrasts* when compared with the exterior group, comprising Jupiter, Saturn, and Uranus.

[footnote] *Littrow, 'Astronomie', 1825, bd.xi., 107. MŠdler, 'Astron.', 1841, ¤ 212. Laplace, 'Exp. du Syst. du Monde', p. 210.

The planets nearest the Sun, and consequently included in the inner group, are of more moderate size, denser, rotate more slowly and with nearly equal velocity (their periods of revolution being almost all about 24 hours), are less compressed at the poles, and with the exception of one, are without satellites. The exterior planets, which are further removed from the Sun, are very considerably larger, have a density five times less, more than twice as great a velocity in the period of their rotation round their axes, are more compressed at the poles, and if six satellites may be ascribed to Uranus, have a quantitative preponderance in the number of their attendant moons, which is as seventeen to one.

p 93 Such general considerations regarding certain characteristic properties appertaining to whole groups, can not, however, be applied with equal justice to the individual planets of every group, nor to the relations between the distances of the revolving planets from the central body, and their absolute size, density, period or rotation, eccentricity, and the inclination of their orbits and the axes. We know as yet of no inherent necessity, no mechanical natural law, similar to the one which teaches us that the squares of the periodic times are proportional to the cubes of the major axes, by which the above-named six elements of the planetary bodies and the form of their orbit are made dependent either on one another, or on their mean distance from the Sun. Mars is smaller than the Earth and Venus, although further removed from the Sun than these last-named planets, approaching most nearly in size to Mercury, the nearest planet to the Sun. Saturn is smaller than Jupiter, and yet much larger than Uranus. The zone of the telescopic planets, which have so inconsiderable a volume, immediately procede Jupiter (the greatest in size of any of the planetary bodies), if we consider them with regard to distance from the Sun; and yet the disks of these small asteroids, which scarcely admit of measurement, have an areal surface not much more than half that of France, Madagascar, or Borneo. However striking may be the extremely small density of all the colossal planets, which are furthest removed from the Sun, we are yet unable in this respect to recognize any regular succession.*

[footnote] *See Kepler, on the increasing density and volume of the planets in proportion with their increase of distance from the Sun, which is described as the densest of all the heavenly bodies; in the 'Epitome Astran. Copern. in' vii. 'libros digesta', 1618-1622, p. 420. Leibnitz also inclined to the opinions of Kepler and Otto von Guericke, that the planets increase in volume in proportion to their increase of distance from the Sun. See his letter to the Magdeburg Burgomaster (Mayence, 1671), in Leibnitz, 'Deutschen Schriften, herausg. von Guhrauer', th. i., 264.

Uranus appears to be denser than Saturn, even if we adopt the smaller mass, 1/24605, assumed by Lamont; and, notwithstanding the inconsiderable difference of density observed in the innermost planetary group,* we find both Venus and Mars less dense than the Earth, which lies between them.

[footnote] *On the arrangement of masses, see Encke, in Schum., 'Astr. Nachr', 1843 Nr. 488, 114.

The time of rotation certainly diminishes with increasing solar distance, but yet it is greater in Mars than in the Earth, and in Saturn than in Jupiter. The elliptic p 94 orbits of Juno, Pallas, and Mercury have the greatest degree of eccentricity, and Mars and Venus, which immediately follow each other, have the least. Mercury and Venus exhibit the same contrasts that may be observed in the four smaller planets, or asteroids, whose paths are so closely interwoven.

The eccentriciities of Juno and Pallas are very nearly identical, and reach three times as great as those of Ceres and Vesta. The same may be said of the inclination of the orbits of the planets toward the plane of projection of the ecliptic, or in the position of their axes of rotation with relation to their orbits, a position on which the relations of climate, seasons of the year, and length of the days depend more than on eccentricity. Those planets that have the most elongated elliptic orbits, as Juno, Pallas, and Mercury, have also, although not to the same degree their orbits most strongly inclined toward the ecliptic. Pallas has a comet-like inclination nearly twenty-six times greater than that of Jupiter, while in the little planet Vesta, which is so near Pallas, the angle of inclination scarcely by six times exceeds that of Jupiter. An equally irregular succession is observed in the position of the axes of the few planets (four or five) whose planes of rotation we know with any degree of certainty. It would appear from the position of the satellites of Uranus, two of which, the second and fourth, have been recently observed with certainty, that the axis of this, the outermost of all the planets is scarcely inclined as much as 11 degrees toward the plane of its orbit, while Saturn is placed between this planet, whose axis almost coincides with the plane of its orbit, and Jupiter, whose axis of rotation is nearly perpendicular to it.

In this enumeration of the forms which compose the world in space, we have delineated them as possessing an actual existence, and not as objects of intellectual contemplation, or as mere links of a mental and causal chain of connection. The planetary system, in its relations of absolute size and relative position of the axes, density, time of rotation, and different degrees of eccentricity of the orbits, does not appear to offer to our apprehension any stronger evidence of a natural necessity than the proportion observed in the distribution of land and water on the Earth, the configuration of continents, or the height of mountain chains. In these respects we can discover no common law in the regions of space or in the inequalities of the earth's crust. They are 'facts' in nature that have arisen from the conflict of manifold forces acting under unknown p 95 conditions, although man considers as 'accidental' whatever he is unable to explain in the planetary formation on purely genetic principles. If the planets have been formed out of separate rings of vaporous matter revolving round the Sun, we may conjecture that the different thickness, unequal density, temperature, and electro-magnetic tension of these rings may have given occasion to the most various agglomerations of matter, in the same manner as the amount of tangential velocity and small variations in its direction have produced so great a differencein the forms and inclinations of the elliptic orbits. Attractions of mass and laws of gravitation have no doubt exercised an influence here, no less than in the geognostic relations of the elevations of continents; but we are unable from the present forms to draw any conclusions regarding the series of conditions through which they have passed. Even the so-called law of the distances of the planets from the Sun, the law of progression (which led Kepler to conjecture the existence of a planet supplying the link that was wanting in the chain of connection between Mars and Jupiter), has been found numerically inexact for the distances between Mercury, Venus, and the Earth, and a variance with the conception of a series, owing to the necessity for a supposition in the case of the first member.

The hitherto disscovered principal planets that revolve round our Sun are attended certainly by fourteen, and probably by eighteen secondary planets (moons or satellites). The principal planets are, therefore, themselves the central bodies of subordinate systems. We seem to recognize in the fabric of the universe the same process of arrangement so frequently exhibited in the development of organic life, where we find in the manifold combinations of groups of plants or animals the same typical form repeated in the 'subordinate classes'. The secondary planets or satellites are more frequent in the external region of the planetary system, lying beyond the intersecting orbits of the smaller planets or asteroids; in the inner region none of the planets are attended by satellites, with the exception of the Earth, whose moon is relatively of great magnitude, since its diameter is equal to a fourth of that of the Earth, while the diameter of the largest of all known secondary planets — the sixth satellite of Saturn — is probably about one seventeenth, and the largest of Jupiter's moons, the third, only about one twenty-sixth part that of the primary planet or central body. The planets which are attended by the largest number of satellites are most remote from the Sun, p 96 and are at the same time the largest, most compressed at the poles, and the least dense. According to the most recent measurements of MŠdler, Uranus has a greater planetary compression than any other of the planets, viz., 1/9.92d. In our Earth and her moon, whose mean distance from one another amounts to 207,200 miles, we find that the differences of mass* and diameter between the two are much less considerable than are usually observed to exist between the principal planets and their attendant satellites, or between bodies of different orders in the solar system.

[footnote] *If, according to Burckhardt's determination, the Moon's radius be 0.2725 and its volume 1/49.00th, its density will be 0.5596, or nearly five ninths. Compare, also, Wilh. Beer and H. Madler, 'der Mond', 2, 10, and Madler, 'Ast.', 157. The material contents of the Moon are, according to Hansen, nearly 1/34th (and Šdler 1/40.6th) that of the Earth, and its mass equal to 1/87.73d that of the Earth. In the largest of Jupiter's moons, the third, the relations of volume to the central body are 1/15370th, and of mass 1/11300th. On the polar flattening of Uranus, see Schum, 'Astron. Nachr.', 1844, No. 493.

While the density of the Moon is five ninths less than that of the Earth, it would appear, if we may sufficiently depend upon the determinations of their magnitudes and masses, that the second of Jupiter's moons is actually denser than that great planet itself. Among the fourteen satellites that have been investigated with any degree of certainty, the system of the seven satellites of Saturn presents an instance of the greatest possible contrast, both in absolute magnitude and in distance from the central body. The sixth of these satellites is probably not much smaller than Mars, while our moon has a diameter which does not amount to more than half that of the latter planet. With respect to volume, the two outer, the sixth and seventh of Saturn's satellites, approach the nearest to the third and brightest of Jupiter's moons. The two innermost of these satellites belong perhaps, together with the remote moons of Uranus to the smallest cosmical bodies of our solar system, being only made visible under favorable circumstances by the most powerful instruments. They were first discovered by the forty-foot telescope of William Herschel in 1789, and were seen again by John Herschel at the Cape of Good Hope, by Vico at Rome, and by Lamont at Munich. Determinations of the 'true' diameter of satellites, made by the measurement of the apparent size of their small disks, are subjected to many optical difficulties; but numerical astronomy, whose task it is to predetermine by calculation the motions of the heavenly bodies as they will appear when viewed from the Earth, is directed almost p 97 exclusively to motion and mass, and but little to volume. The absolute distance of a satellite from its central body is greatest in the case of the outermost or seventh satellite of Saturn, its distance from the body round which it revolves amounting to more than two millions of miles, or ten times as great a distance as that of our moon from the Earth. In the case of Jupiter we find that the outermost or fourth attendant moon is only 1,040,000 miles from that planet, while the distance between Uranus and its sixth satellite (if the latter really exist) amounts to as much as 1,360,000 miles. If we compare, in each of these subordinate systems, the volume of the satellite, we discover the existence of entirely new numerical relations. The distances of the outermost satellites of Uranus, Saturn, and Jupiter are when expressed in semi-diameters of the main planets, as 91, 64, and 27. The outermost satellite of Saturn appears, therefore, to be removed only about one fifteenth further from the center of that planet than our moon is from the Earth. The first or innermost of Saturn's satellites is nearer to its central body than any other of the secondary planets, and presents, moreover, the only instance of a period of revolution of less than twenty-four hours. Its distance from the center of Saturn may, according to MŠdler and Wilhelm Beer, be expressed as 2.47 semi-diameters of that planet, or as 80,088 miles. Its distance from the surface of the main planet is therefore 47,480 miles, and from the outer-most edge of the ring only 4916 miles. The traveler may form to himself an estimate of the smallness of this amount by remembering the statement of an enterprising navigator, Captain Beechey, that he had in three years passed over 72,800 miles. If, instead of absolute distances, we take the semi-diameters of the principal planets, we shall find that even the first or nearest of the moons of Jupiter (which is 26,000 miles further removed from the center of that planet than our moon is from that of the Earth) is only six semi-diameters of Jupiter from its center, while our moon is removed from us fully 60 1/3d semi-diameters of the Earth.

In the subordinate systems of satellites, we find that the same laws of gravitation which regulate the revolutions of the principal planets round the Sun likewise govern the mutual relations existing between these planets among one another and with reference to their attendant satellites. The twelve moons of Saturn, Jupiter, and the Earth all most like the primary planets from west to east, and in elliptic orbits, deviating p 98 but little from circles. It is only in the case of one moon, and perhaps in that of the first and innermost of the satellites of Saturn (0.068), that we discover an eccentricity greater than that of Jupiter; according to the very exact observations of Bessel, the eccentricity of the sixth of Saturn's satellites (0.029) exceeds that of the Earth. On the extremest limits of the planetary system, where, at a distance nineteen times greater than that of our Earth, the centripetal force of the Sun is greatly diminished, the satellites of Uranus (which most striking contrasts from the facts observed with regard to other secondary planets. Instead, as in all other satellites, of having their orbits but slightly inclined toward the ecliptic and (not excepting even Saturn's ring, which may be regarded as a fusion of agglomerated satellites) moving from west to east, the satellites of Uranus are almost perpendicular to the ecliptic, and move retrogressively from east to west, as Sir John Herschel has proved by observations continued during many years. If the primary and secondary planets have been formed by the condensation of rotating rings of solar and planetary atmospheric vapor, there must have existed singular causes of retardation or impediment in the vaporous rings revolving round Uranus, by which, under the relations with which we are unacquainted, the revolution of the second and fourth of its satellites was made to assume a direction opposite to that of the rotation of the central planet.

It seems highly probable that the period of rotation of 'all' secondary planets is equal to that of their revolution round the main planet, and therefore that they always present to the latter the same side. Inequalities, occasioned by sight variations in the revolution, give rise to fluctuations of from 6 degrees to 8 degrees, or to an apparent libration in longitude as well as in latitude. Thus, in the case of our moon, we sometimes observe more than the half of its surface, the eastern and northern edges being more visible at one time, and the western or southern at another. By means of this libration* we are enabled to see the annular mountain Malapert (which occasionally conceals the Moon's south pole), the arctic landscape round the crater of Gioja, and the large gray plane near Endymion which exceeds in superficial extent the 'Mare Vaporum'.

[footnote] *Beer and Madler, op. cit., 185, s.208, and ¤ 347, s. 332; and ix their 'Phys. Kenntniss der himml. Korper', s. 4 und 69, Tab. 1 (Physical History of the Heavenly Bodies).

Three sevenths of the Moon's surface are entirely p 99 concealed from our observation, and must always remain so, unless new and unexpected disturbing causes come into play. These cosmical relations involuntarily remind us of nearly similar conditions in the intellectual world, where, in the domain of deep research into the mysteries and the primeval creative forces of nature, there are regions similarly turned away from us, and apparently unattainable, of which only a narrow margin has revealed itself, for thousands of years, to the human mind, appearing, from time to time, either glimmering in true or delusive light. We have hitherto considered the primary planets, their satellites, and the concentric rings which belong to one, at least, of the outermost planets, as products of tangential force, and as closely connected together by mutual attraction; it therefore now only remains for us to speak of the unnumbered host of 'comets' which constitute a portion of the cosmical bodies revolving in independent orbits round the Sun. If we assume an equable distribution of their orbits, and the limits of their perihelia, or greatest proximities to the Sun, and the possibility of their remaining invisible to the inhabitants of the Earth, and base our estimates on the rules of the calculus of probabilities, we shall obtain as the result an amount of myriads perfectly astonishing. Kepler, with his usual animation of expression, said that there were more comets in the regions of space than fishes in the depths of the ocean. As yet, however, there are scarcely one hundred and fifty whose paths have been calculated, if we may assume at six or seven hundred the number of comets whose appearance and passage through known constellations have been ascertained by more or less precise observations. While the so-called classical nations of the West, the Greeks and Romans, although they may occasionally have indicated the position in which a comet first appeared, never afford any information regarding its apparent path, the copious literature of the Chinese (who observed nature carefully, and recorded with accuracy what they saw) contains circumstantial notices of the constellations through which each comet was observed to pass. These notices go back to more than five hundred years before the Christian era, and many of them are still found to be of value in astronomical observations.*

[footnote] *The first comets of whose orbits we have any knowledge, and which were calculated from Chinese observations, are those of 240 (under Gordian II.), 539 (under Justinian), 565, 568, 574, 837, 1337, and 1385. See John Russell Hind, in Schum., 'Astron. Nachr.', 1843, No. 498. While the comet of 837 (which, according to Du Sejour, continued during twenty-four hours within a distance of 2,000,000 miles from the Earth) terrified Louis I. of France to that degree that he busied himself in building churches and founding monastic establishments, in the hope of appeasing the evils threatened by its appearance, the Chinese astronomers made observations on the path of this cosmical body, whose tail extended over a space of 60 degrees, appearing sometimes single and sometimes multiple. The first comet that has been calculated solely from European observations was that of 1456, known as Halley's comet, from the belief long, but erroneously, entertained that the period when it was first observed by that astronomer was its first and only well-attested appearance. See Arago, in the 'Annuaire', 1836, p. 204, and Langier, 'Comptes Rendus des Seances de l'Acad.', 1843, t. xvi., 1006.

p 100 Although comets have a smaller mass than any other cosmical bodies — being, according to our present knowledge, probably not equal to 1/5000th part of the Earth's mass — yet they occupy the largest space, as their tails in several instances extend over many millions of miles. The cone of luminous vapor which radiates from them has been found, in some cases (as in 1680 and 1811), to equal the length of the Earth's distance from the Sun, forming a line that intersects both the orbits of Venus and Mercury. It is even probable that the vapor of the tails of comets mingled with our atmosphere in the years 1819 and 1823.

Comets exhibit such diversities of form, which appear rather to appertain to the individual than the class, that a description of one of these "wandering light-clouds," as they were already called by Xenophanes and Theon of Alexandria, contemporaries of Pappus, can only be applied with caution to another. The faintest telescopic comets are generally devoid of visible tails, and resemble Herschel's nebulous stars. They appear like circular nebulae of faintly-glimmering vapor, with the light concentrted toward the middle. This is the most simple type; but it can not, however, be regarded as rudimentary, since it might equally be the type of an older cosmical body, exhausted by exhalation. In the larger comets we may distinguish both the so-called "head" or "nucleus," and the single or multiple tail, which is characteristically denominated by the Chinese astronomers "the brush" ('sui'). The nucleus generally presents no definite outline, although, in a few rare cases, it appears like a star of the first or second magnitude, and has even been seen in bright sunshine;* as, p 101 for instance, in the large comets of 1402, 1532, 1577, 1744, and 1843.

[footnote] *Arago, 'Annuaire', 1832, p. 209, 211. The phenomenon of the tail of a comet being visible in bright sunshine, which is recorded of the comet of 1402, occurred again in the case of the large comet of 1843, whose nucleus and tail were seen in North America on the 28th of February (according to the testimony of J. G. Clarke, of Portland, state of Maine), between 1 and 3 o'clock in the afternoon.(a) The distance of the very dense nucleus from the sun's light admitted of being measured with much exactness. The nucleus and tail appeared like a very pure white cloud, a darker space intervening between the tail and the nucleus. ('Amer. Journ. of Science', vol. xiv., No. 1, p. 229.)

[footnote] (a) [The translator was at New Bedford, Massachusetts, U.S., on the 28th February, 1843, and distinctly saw the comet, between 1 and 2 in the afternoon. The sky at the time was intensely blue, and the sun shining with a dazzling brightness unknown in European climates.] — Tr

This latter circumstance indicates, in particular individuals, a denser mass, capable of reflecting light with greater intensity. Even in Herschel's large telescope, only two comets, that discovered in Sicily in 1807, and the splendid one of 1811, exhibited well-defined disks;* the one at an angle of 1 second, and the other at 0.77 seconds, whence the true diameters are assumed to be 536 and 428 miles.

[footnote] *'Phil. Trans.' for 1808, Part ii., p. 155, and for 1812, Part i., p. 118. The diameters found by Herschel for the nuclei were 538 and 428 English miles. For the magnitudes of the comets of 1798 and 1805, see Arago, 'Annuaire', 1832, p. 203.

The diameters of the less well-defined nuclei of the comets of 1798 and 1805 did not appear to exceed 24 or 28 miles.

In several comets that have been investigated with great care, especially in the above-named one of 1811, which continued visible for so long a period, the nucleus and its nebulous envelope were entirely separated from the tail by a darker space. The intensity of light in the nucleus of comets does not augment toward the center in any uniform degree, brightly shining zones being in many cases separated by concentric nebulous envelopes. The tails sometimes appear single, sometimes, although more rarely, double; and in the comets of 1807 and 1843 the branches were of different lengths; in one instance (1744) the tail had six branches, the whole forming an angle of 60 degrees. The tails have been sometimes straight, sometimes curved, either toward both sides, or toward the side appearing to us as the exterior (as in 1811), or convex toward the direction in which the comet is moving (as in that of 1618); and sometimes the tail has even appeared like a flame in motion. The tails are always turned away from the sun, so that their line of prolongation passes through its center; a fact which, according to Edward Biot, was noticed by the Chinese astronomers as early as 837, but was first generally made known in Europe by Fracastoro and Peter Apian in the sixteenth century. These emanations may be regarded as conoidal envelopes of greater of less thickness, p 102 and, considered in this manner, they furnish a simple explanation of many of the remarkable optical phenomena already spoken of.

Comets are not only characteristically different in form, some being entirely without a visible tail, while others have a tail of immense length (as in the instance of the comet of 1618, whose tail measured 104 degrees), but we also see the same comets undergoing successive and rapidly-changing processes of configuration. These variations of form have been most accurately and admirably described in the comet of 1744, by Hensius, at St. Petersburg, and in Halley's comet, on its last reappearance in 1835, by Bessel, at Konigsberg. A more or less well-defined tuft of rays emanated from that part of the nucleus which was turned toward the Sun; and the rays being bent backward, formed a part of the tail. The nucleus of Halley's comet; with its emanations, presented the appearance of a burning rocket, the end of which was turned sideways by the force of the wind. The rays issuing from the head were seen by Arago and myself, at the Observatory at Paris, to assume very different forms on successive nights.*

[footnote] *Arago, 'Des Changements physiques de la Comete de Halley du 15-23 Oct., 1835. 'Annuaire', 1836, p. 218, 221. The ordinary direction of the emanations was noticed even in Nero's time. "Comae radios solis effugiunt." — Seneca, 'Nat. Quaest.', vii., 20.

The great Konigsberg astronomer concluded from many measurements, and from theoretical considerations, "that the cone of light issuing from the comet deviated considerably both to the right and the left of the true direction of the Sun, but that it always returned to that direction, and passed over to the opposite side, so that both the cone of light and the body of the comet from whence it emanated experienced a rotatory, or, rather, a vibratory motion in the plane of the orbit." He finds that "the attractive force exercised by the Sun on heavy bodies is inadequate to explain such vibrations, and is of opinion that they indicate a polar force, which turns one semi-diameter of the comet toward the Sun, and strives to turn the opposite side away from that luminary. The magnetic polarity possessed by the Earth may present some analogy to this, and, should the Sun have an opposite polarity, an influence might be manifested, resulting in the precession of the equinoxes." This is not the place to enter more fully upon the grounds on which explanations of this subject have been based; but observations so remarkable,* and views of so exalted p 103 a character, regarding the most wonderful class of the cosmical bodies belonging to our solar system, ought not to be entirely passed over in this sketch of a general picture of nature.

[footnote] *Bessel, in Schumacher, 'Astr. Nachr.', 1836, No. 300-302, s. 188, 192, 197, 200, 202, und 230. Also in Schumacher, 'Jahrb.', 1837, s. 149, 168. William Herschel, in his observations on the beautiful comet of 1811, believed that he had discovered evidences of the rotation of the nucleus and tail ('Phil. Trans.' for 1812, Part i., p. 140). Dunlop, at Paramatta thought the same with reference to the third comet of 1825.

Although, as a rule, the tails of comets increase in magnitude and brilliancy in the vicinity of the sun, and are directed away from that central body, yet the comet of 1823 offered the remarkable example of two tails, one of which was turned toward the sun, and the other away from it, forming with each other an angle of 160 degrees. Modifications of polarity and the unequal manner of its distribution, and of the direction in which it is conducted, may in this rare instance have occasioned a double, unchecked, continuous emanation of nebulous matter.*

[footnote] *Bessel, in 'Astr. Nachr.', 1836, No. 302, s. 231. Schum, 'Jahrb.', 1837 s. 175. See, also Lehmann, 'Ueber Cometenschweife' (On the Tails of Comets), in Bode, 'Astron. Jahrb. fur' 1826, s. 168.

Aristotle, in his 'Natural Philosophy', makes these emanations the means of bringing the phenomena of comets into a singular connection with the existence of the Milky Way. According to his views, the innumerable quantity of stars which compose this starry zone give out a self-luminous, incandescent matter. The nebulous belt which separates the different portions of the vault of heaven was therefore regarded by the Stagirite as a large comet, the substance of which was incessantly being renewed.*

[footnote] *Aristot., 'Meteor.', i., 8, 11-14, und 19-21 (ed. Ideler, t. i., p. 32-34). Biese, 'Phil. des Aristoteles', bd. ii., s. 86. Since Aristotle exercised so great an influence throughout the whole of the Middle Ages, it is very much to be regretted that he was so averse to those grander views of the elder Pythagoreans, which inculcated ideas so nearly approximating to truth respecting the structure of the universe. He asserts that comets are transitory meteors belonging to our atmosphere in the very book in which he cites the opinion of the Pythagorean school, according to which these cosmical bodies are supposed to be planets having long periods of revolution. (Aristot., i., 6, 2.) This Pythagorean doctrine, which, according to the testimony of Apollonius Myndius, was still more ancient, having originated with the Chaldeans, passed over to the Romans, who in this instance, as was their usual practice, were merely the copiers of others. The Myndian philosopher describes the path of comets as directed toward the upper and remote regions of heaven. Hence Seneca says, in his 'Nat. Quaest.', vii., 17: "Cometes non est species falsa, sed proprium sidus sicut solis et lunae: altiora mundi secat et tunc demum apparet quum in imum cursum sui venit;" and again (at vii., 27), "Cometes aternos esse et sortis ejusdem, cujus caetera (sidera), etiamsi faciem illis non habent similem." Pliny (ii., 25) also refers to Apollonius Myndius, when he says, "Sunt qui et haec sidera perpetua esse credant suoque ambitu ire, sed non nisi relicta a sole cerni."

p 104 The occulation of the fixed stars by the nucleus of a comet, or by its innermost vaporous envelopes, might throw some light on the physical character of these wonderful bodies; but we are unfortunately deficient in observations by which we may be assured* that the occulation was perfectly central; for, as it has already been observed, the parts of the envelope contiguous to the nucleus are alternately composed of layers of dense or very attenuated vapor.

[footnote] *Olbers, in 'Astr. Nachr.', 1828, s. 157, 184. Arago, 'De la Constitution physique des Cometes; Annuaire de' 1832, p. 203, 208. The ancients were struck by the phenomenon that it was possible to see through comets as through a flame. The earliest evidence to be met with of stars having been seen through comets is that of Democritus (Aristot., 'Meteor.', i., 6, 11), and the statement leads Aristotle to make the not unimportant remark, that he himself had observed the occulation of one of the stars of Gemini by Jupiter. Seneca only speaks decidedly of the transparence of the tail of comets. "We may see," says he, "stars through a comet as through a cloud ('Nat. Quaest.', vii., 18); but we can ony see through the rays of the tail, and not through the body of the comet itself: 'non in ea parte qua sidus ipsum est spissi et solidi ignis, sed qua rarus splendor occurrit et in crines dispergitur. Per intervalla ignium, non er ipsos, vides" (vii., 26). The last remark is unnecessary, since, as Galileo observed in the 'Saggiatore (Lettera a Monsignor Cesarini', 1619), we can certainly see through a flame when it is not of too great a thickness'.

On the other hand the carefully conducted measurements of Bessel prove, beyond all doubt, that on the 29th of September, 1835, the light of a star of the tenth magnitude, which was then at a distance of 7".78 from the central point of the head of Halley's comet, passed through very dense nebulous matter, without experiencing any deflection during its passage.*

[footnote] *Bessel, in the 'Astron. Nachr.', 1836, No. 301, s. 204, 206. Struve, in 'Recueil des Mem. de l'Acad. de St. Peterab.', 1836, p. 140, 143, and 'Astr. Nachr.', 1836, No. 303, s. 238, writes as follows: "At Dorpat the star was in conjunction only 2".2 from the brightest point of the comet. The star remained continually visible, and its light was not perceptibly diminished, while the nucleus of the comet seemed to be almost extinguished before the radiance of the small star of the ninth or tenth magnitude."

If such an absence of refracting power must be ascribed to the nucleus of a comet, we can scarcely regard the matter composing comets as a gaseous fluid. The question here arises whether this absence of refracting power may not be owing to the extreme tenuity of the fluid; or does the comet consist of separated particles, constituting a cosmical stratum of clouds, which, like the clouds of our atmosphere, that exercise no influence on the p 105 zenith distance of the stars, does not affect the ray of light passing through it? In the passage of a comet over a star, a more or less considerable diminution of light has often been observed; but this has been justly ascribed to the brightness of the ground from which the star seems to stand forth during the passage of the comet.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12     Next Part
Home - Random Browse