p-books.com
Bronchoscopy and Esophagoscopy - A Manual of Peroral Endoscopy and Laryngeal Surgery
by Chevalier Jackson
Previous Part     1  2  3  4  5  6
Home - Random Browse

Tracheotomic cannulae should be made of sterling silver. German silver plated with pure silver is good enough for temporary use, but the plating soon wears off under the galvanic action set up between the two metals. Aluminum becomes roughened by boiling and contact with secretions, and causes the formation of granulations which in time lead to stenosis. Hard rubber tubes cannot be boiled, the walls are so thick as to leave too little lumen, and the rubber is irritating to the tissues. All tracheotomy tubes should be fitted with pilots. Many of the tubes furnished to patients have no pilots to facilitate the introduction, and the tubes are inserted with somewhat the effect of a cheese tester, and with great pain and suffering on the part of the patient. Most of the the tubes in the shops are too short to allow for the swelling of the tissues of the neck following the operation. They may reach the trachea at the time of the operation, but as soon as the reactionary swelling occurs, the end of the tube is pulled out (Fig. 103) of the tracheal incision; the air hissing along the tube is considered by the attendant to indicate that the tube is still in place, and the increasing dyspnea and accelerated respiratory rate are attributed to supposed pneumonia or edema of the lungs, under which erroneous diagnosis the patient is buried. In all cases in which it is reported that in spite of tracheotomy the dyspnea was only temporarily relieved, the fault is the lack of a "plumber." That is, an attendant who will make sure that there is at all times a clear airway all the way down to the lungs. With a bronchoscope and aspirator he will see that the airway is clear. To begin with, a proper sized cannula must be selected. The series of different sized, full curved tubes, one of which is illustrated in Fig. 104, will under all conditions reach the trachea. If the tube seems to be too long in any given case, it will usually be found that the tracheotomy has been done too high, and a lower one should be done at once. If the operation has not been done too high, and the cannula is too long, a pad of gauze under the shield will take up the surplus length. In cases of tracheal compression from new growth, thymus or other such cases, in which the ordinary tube will not pass the obstruction, the author's long cane-shaped cannula (see Fig. 104) can be inserted past the obstruction, and if necessary into either bronchus. The fenestrum placed in the cannula in many of the older tubes, with the supposed function of allowing partial breathing through the larynx, is a most pernicious thing. A properly fitted tube should not take up more than half of the cross section of the trachea, and should allow the passage of sufficient air for free laryngeal breathing when it is completely corked. The fenestrum is, moreover, rarely so situated that air can pass through it; the fenestral edges act as a constant irritant to the wound, producing bleeding and granulation tissue.

[FIG. 103.—Schema showing thick pad of gauze dressing, filling the space, A, and used to hold out the author's full-curved cannula when too long, prior to reactionary swelling, and after subsidence of the latter. At the right is shown the manner in which the ordinary cannula of the shops permits a patient to asphyxiate, though some air is heard passing through the tracheal opening, H, after the cannula has been partially withdrawn by swelling of the tissues, T.]

[FIG. 104.—The author's tracheotomic cannulae. A, shows cane-shaped cannula for use in intrathoracic compressive or other stenoses. B, shows full curved cannula for regular use. Pilots are made to fit the outer cannula; the inner cannula not being inserted until after withdrawal of the pilot.]

Anesthesia.—No dyspneic patient should be given a general anesthetic; because any patient dyspneic enough to need a tracheotomy for dyspnea is depending largely upon the action of the accessory respiratory muscles. When this action is stopped by beginning unconsciousness, respiration ceases. If the trachea is not immediately opened, artificial respiration instituted, and oxygen insufflated, the patient dies on the table. Skin infiltration along the line of incision with a very weak cocaine solution (1/10 of 1 per cent), apothesine (2 per cent), novocaine, Schleich's fluid or other local anesthetic, suffices to render the operation painless. The deeper structures have little sensation and do not require infiltration. It has been advocated that an interannular injection of cocaine solution with a hypodermic syringe be done just prior to incision of the trachea for the purpose of preventing cough after the incision of the trachea and the insertion of the cannula. It would seem, however, that this introduces the risk of aspiration pneumonia and pulmonary abscess, by permitting the aspiration and clotting of blood in small bronchi, followed by subsequent breaking down of the clots. As the author has so often said, "The cough reflex is the watch dog of the lungs," and if not drugged asleep by local or general anesthesia can safely be relied upon to prevent all possibility of the blood or the pus which nearly always is present in acute or chronic conditions calling for tracheotomy, being aspirated into the deeper air-passages. Cocaine in any form, by any method, and in any dosage, is dangerous in very young children.

Technic.—The patient should be placed in the recumbent position, with the extended head held in the midline by an assistant. The shoulders, not the neck, should be slightly raised with a sand bag. The head should be somewhat lower than the feet, to lessen the danger of aspiration of blood. A midline incision dividing the skin and fascia is made from the thyroid notch to just above the suprasternal notch. The cricoid is now located, and the deeper dissection is continued from below this point. The ribbon muscles are separated with dissecting scissors or knife, and held apart with retractors. If the isthmus of the thyroid gland is in the way, it may be retracted upward; if large, however, it should be divided and ligated, for it is apt to slip over the tracheal incision afterward, and render difficult the quick finding of the incision during after-care. This covering of the tracheal incision by the slipping back of the drawn-aside thyroidal isthmus is one of the most frequent avoidable causes of mortality, because it deflects the cannula off into the tissues when it is replaced after cleaning during the early postoperative period. The corrugated surface of the trachea can be felt, and its exact location can be determined by the index finger. If the tracheotomy is proceeding in an orderly manner, all bleeding points should be caught and tied with plain catgut (No. 1) before the trachea is opened. Because of distension of vessels during cough, all but the tiniest vessels should be ligated. Side-cut veins are particularly treacherous. They should be freed of tissue, cut across and the divided ends ligated.

The incision in the trachea should be as low as possible, and should never be made through the first ring. The incision should be through the third, fourth and fifth rings. Only in cases of laryngoptosis will it be necessary to incise the trachea higher than this. The incision must be made in the midline, and in the long axis of the trachea, and care must be exercised that the point of the knife does not perforate the posterior tracheal wall. Stab incisions are always to be avoided. If the incision in the trachea is found to be of insufficient length, the original incision must be found and elongated. A second incision must not be made, for the portion of cartilage between the two incisions will die and will almost certainly make a site of future tracheal stenosis. The cricoid should never be cut, for stenosis is almost sure to follow the wearing of a cannula in this position. A Trousseau dilator should now be inserted in the tracheal incision, its blades gently separated. With the tracheal lumen thus opened, a cannula of proper size is introduced with absolute certainty of its having entered the trachea. A quadruple-folded square of gauze in the form of a pad about four inches square is moistened with mercuric chloride solution (1:10,000) and is slit from the lower border to its midpoint. This pad is slipped from above downward under the tape holder of the cannula, the slit permitting the tubal part of the cannula to reach the central part of the pad (Fig. 108), and completely covers the wound. No attempt should be made to suture the skin wound, for this tends to form a pocket in which lodge the bronchial secretions that escape alongside the tube, resulting in infection of the wound. Furthermore it renders the daily changing of the tube much more difficult. In fact it prevents the attendant from being certain that the tube is actually placed in the trachea. Suturing of the skin to the trachea should never be done, for the sutures soon tear out and often set up a perichondritis of the tracheal cartilages, with resulting difficult decannulation.

[FIG. 105.—Schema of practical gross anatomy to be memorized for emergency tracheotomy. The middle line is the safety line, the higher the wider. Below, the safety line narrows to the vanishing point VP. The upper limit of the safety line is the thyroid notch until the trachea is bared, when the limit falls below the first tracheal ring. In practice the two-dark danger lines are pushed back with the left thumb and middle finger as shown in Fig. 106, thus throwing the safety line into prominence. This is generally known as Jackson's tracheotomic triangle.]

[FIG. 106.—Schema showing the author's method of rapid tracheotomy. First stage. The hands are drawn ungloved for the sake of clearness. The upper hand is the left, of which the middle finger (M) and the thumb are used to repress the sterno-cleido-mastoid muscles, the finger and thumb being close to the trachea in order to press backward out of the way the carotid arteries and the jugular vein. This throws the trachea forward into prominence, and one deep slashing cut will incise all of the soft tissues down to the trachea.]

Emergency Tracheotomy.—Stabbing of the cricothyroid membrane, or an attempted stabbing of the trachea, so long taught as an emergency tracheotomy, is a mistake. The author's "two stage, finger guided" method is safer, quicker, more efficient, and not likely to be followed by stenosis. To execute this promptly, the operator is required to forget his textbook anatomy and memorize the schema (Fig. 105). The larynx and trachea are steadied by the thumb and middle finger of the left hand, which at the same time push back the important nerves and vessels which parallel the trachea, and render the central safety line more prominent (Fig. 106). A long incision is now made from the thyroid notch almost to the suprasternal notch, and deep enough to reach the trachea. This completes the first stage.

[FIG. 107.—Illustrating the author's method of quick tracheotomy. Second stage. The fingers are drawn ungloved for the sake of clearness. In operating the whole wound is full of blood, and the rings of the trachea are felt with the left index which is then moved slightly to the patient's left, while the knife is slid down along the left index to exactly the middle line when the trachea is incised.]

Second stage. The entire wound is full of blood and the trachea cannot be seen, but its corrugations can be very readily felt by the tip of the free left index finger. The left index finger is now moved a little to the patient's left in order that the knife shall come precisely in the midline of the trachea, and three rings of the trachea are divided from above downward (Fig. 107). The Trousseau dilator should now be inserted, the head of the table should be lowered, and the patient should be turned on the side to allow the blood to run away from the wound. If respiration has ceased, a cannula is slipped in, and artificial respiration is begun. Oxygen insufflation will aid in the restoration of respiration, and a pearl of amyl nitrite should be crushed in gauze and blown in with the oxygen. In all such cases, excessive pressure of oxygen should be avoided because of the danger of producing ischemia of the lungs. Hope of restoring respiration should not be abandoned for half an hour at least. One of the author's assistants, Dr. Phillip Stout, saved a patient's life by keeping up artificial respiration for twenty minutes before the patient could do his own breathing.

The after-care of the tracheotomic wound is of the utmost importance. A special day and night nurse are required. The inner tube of the cannula must be removed and cleaned as soon as it contains secretion. Secretion coughed out must be wiped away quickly, but gently, before it is again aspirated. The gauze dressing covering the wound must be changed as soon as soiled with secretions from the wound and the air-passages. Each fresh pad should be moistened with very weak bichloride of mercury solution (1:10,000). The outer tube must be changed every twenty-four hours, and oftener if the bronchial secretion is abundant. Student-physicians who have been taught my methods and who have seen the cases in care of our nurses have often expressed amazement at the neglect unknowingly inflicted on such cases elsewhere, in the course of ordinary routine surgery. It is not unusual for a patient to be sent to the Bronchoscopic Clinic who has worn his cannula without a single changing for one or two years. In some cases the tube had broken and a portion had been aspirated into the trachea.

[FIG. 108.—Method of dressing a tracheotomic wound. A broad quadruple, in-folded pad of gauze is cut to its centre so that it can be slipped astride of the tube of the cannula back of the shield. No strings, ravellings or strips of gauze are permissible because of the risk of their getting down into the trachea.]

If the respiratory rate increases, instead of attributing it to pulmonary complications, the entire cannula should be removed, the wound dilated with the Trousseau forceps, the interior of the trachea inspected, and all secretions cleaned away. Then the tracheal mucosa below the wound should be gently touched with a sterile bent probe, to induce cough to rid the lower air passages of accumulated secretions. In many cases it is a life-saving procedure to insert a sterile long malleable aspirating tube to remove secretions from the lower air-passages. When all is clear, a fresh sterile cannula which has been carefully inspected to see that its lumen has been thoroughly cleaned, is inserted, and its tapes tied. Good "plumbing," that is, the maintenance at all times of a clear, clean passage in all the "pipes," natural and artificial, is the reason why the mortality in the Bronchoscopic Clinic has been less than half of one per cent, while in ordinary routine surgical care in all hospitals collectively it ranges from 10 to 20 per cent.

Bronchial Aspiration.—As mentioned above, bronchial aspiration is often necessary. When the patient is unable to get up secretions, he will, as demonstrated by the author many years ago, "drown in his own secretions." In some cases bronchoscopic aspiration is required (Peroral Endoscopy, p. 483). Occasionally, very thick secretions will require removal with forceps. Pus may become very thick and gummy from the administration of morphin. Opiates do not lessen pus formation, but they do lessen the normal secretions that ordinarily increase the quantity and fluidity of the pus. When to this is added the dessicating effect of the air inhaled through the cannula, unmoistened by the upper air-passages, the secretions may be so thick as to form crusts and plugs that are equivalent to foreign bodies and require removal with forceps. Diphtheritic membrane in the trachea may require removal with bronchoscope and forceps. Thinner secretions may be removed by sponge-pumping. In most cases, however, secretions can be brought up through an aspirating tube, connected to a bronchoscopic aspirating syringe (Fig. 11), an ordinary aspirating bottle, or preferably, a mechanical aspirator such as that shown in Fig. 12. In this, combined with bronchoscopic oxygen insuflation (q.v.), we have a life-saving measure of the highest efficiency in cases of poisoning by chlorine and other irritant and asphyxiating gases. An aspirating tube for insertion into the deeper air passages should be of copper, so that it can be bent to the proper curve to reach into the various parts of the tracheobronchial tree, and it should have a removable copper-wire core to prevent kinking, and collapse of the lumen. The distal end should be thickened, and also perforated at the sides, to prevent drawing-in of the mucosa and trauma thereto. A rubber tube may be used, but is not so satisfactory. The one shown in Fig. 10 I had made by Mr. Pilling, and it has proved very satisfactory.

Decannulation.—When the tracheal incision is placed below the first ring, no difficulty in decannulation should result from the operation per se. When by temporarily occluding the cannula with the finger it is evident that the laryngeal aperture has regained sufficient size to allow free breathing, a smaller-sized tracheotomic tube should be substituted to allow free passage of air around the cannula in the trachea. In doing this, the amount of secretion and the handicap of impaired glottic mobility in the expulsion of thick secretions must be borne in mind. Babies labor under a special handicap in their inefficient bechic expulsion and especially in their small cannulae which are so readily occluded. If breathing is not free and quiet with the smaller tube; the larger one must be replaced. If, however, there is no trouble with secretions, and the breathing is free and quiet, the inner cannula should be removed, and the external orifice of the outer cannula firmly closed with a rubber cork. If the laryngeal condition has been acute, decannulation can usually be safely done after the patient has been able to sleep quietly for three nights with a corked cannula. If free breathing cannot be obtained when the cannula is corked, the larynx is stenosed, and special work will be required to remove the tube. Children sometimes become panic stricken when the cannula is completely corked at once and they are forced to breathe through the larynx instead of the easier shortcut through the neck. In such a case, the first step is partially to cork the cannula with a half or two-thirds plug made from a pure rubber cord fashioned in the desired shape by grinding with an emery wheel (Fig. 112). Thus the patient is gradually taught to use the natural air-way, still feeling that he has an "anchor to windward" in the opening in the cannula. When some swelling of the laryngeal structures still exists, this gradual corking has a therapeutic effect in lessening the stenosis by exercising the muscles of abduction of the cords and mobilizing the cricoarytenoid articulation during the inspiratory effort. The forced respiration keeps the larynx freed from secretions, which are more or less purulent and hence irritating. After removing the cannula, in order that healing may proceed from the bottom upward, the wound should be dressed in the following manner: A single thickness of gauze should be placed over the wound and the front of the neck, and a gauze wedge firmly inserted over this to the depths of the tracheotomic wound, all of this dressing being held in place by a bandage. If the skin-wound heals before the fibrous union of the tracheal cartilages is complete, exuberant granulations are apt to form and occlude the trachea, perhaps necessitating a new tracheotomy for dyspnea.

It is so important to fix indelibly in the mind the cardinal points concerning tracheotomy that I have appended to this chapter the teaching notes that I have been for years giving my classes of students and practitioners, hundreds of whom have thanked me for giving them the clear-cut conception of tracheotomy that enabled them, when their turn came to do an emergency tracheotomy, to save human life.

RESUME OF TRACHEOTOMY

Instruments. Headlight Sandbag Scalpel Hemostats Small retractors Tenaculum Tracheotomic cannulae (proper kind) Long. Half area cross-section trachea. Proper curve: Radius too short will press ant. tracheal wall; too long, post. wall. Sterling Silver Tracheobronchial aspirator. Probe. Tapes for cannulae Trousseau dilator Sponges Infiltration syringe and solution Oxygen tank.

Indications: Laryngeal dyspnea. (Indrawing guttural and clavicular fossae and at epigastrium. Pallor. Restlessness. Drowning in his own secretions.)

Do it early. Don't wait for cyanosis. [294] Never use general anesthesia on dyspneic patient. Forget about "high" and "low" distinctions until trachea is exposed. Memorize Jackson's tracheotomic triangle. Patient recumbent, sand bag under shoulders or neck. Nose to zenith. Infiltration, Intradermatic. Incise from Adam's apple to guttural fossa. Hemostasis. Keep in middle line. Feel for trachea. Expose isthmus of thyroid gland. Draw it upward or downward or cut it. Ligature, torsion, etc. before incising trachea. Hold trachea with tenaculum. Incise trachea below first ring. Avoid cutting cricoid or first ring. Cut 3 rings vertically. Don't hack. Don't cut posterior wall which almost touches the anterior wall during cough. Spread carefully, with Trousseau dilator. Insert cannula; see it enter tracheal lumen; remove pilot; tie tapes. Don't suture wound. Dress with large squares. Don't give morphine. Decannulation by corking partially, after changing to smaller cannula. Do not remove cannula permanently until patient sleeps without indrawing with corked cannula.

RESUME OF EMERGENCY TRACHEOTOMY

The following notes should be memorized. 1. Essentials: Knife and pair of hands (but full equipment better). [295] 2. Don't do a laryngotomy, or stabbing. 3. "Two stage, finger guided" operation better. 4. Sand bag or substitute. 5. Press back danger lines with left thumb and middle finger, making safety line and trachea prominent. 6. Memorize Jackson's tracheotomic triangle. 7. Incise exactly in middle line from Adam's apple to sternum. 8. Feel for tracheal corrugations with left index in pool of blood, following trachea with finger downward from superficial Adam's apple. 9. Pass knife along index and incise trachea (not too deeply, may cut posterior wall). 10. Don't mind bleeding; but keep middle line and keep head straight; keep head low; don't bother about thyroid gland. 11. Don't expect hiss when trachea is cut if patient has stopped breathing. 12. Start artificial respiration. 13. Amyl nitrite. Oxygen. 14. Practice palpation of the neck until the tracheal landmarks are familiar. 15. Practice above technic, up to point of incision, at every opportunity. 16. Jackson's tracheotomic triangle: A triangulation of the front of the neck intended to facilitate a proper emergency tracheotomy. Apex at suprasternal notch. Sides anterior edge sternomastoids. Base horizontal line lower edge cricoid.

RESUME OF AFTER-CARE OF A TRACHEOTOMIC CASE

1. Always bear in mind that tracheotomy is not an ultimate object. The ultimate object is to pipe air down into the lungs. Tracheotomy is only a means to that end. 2. Sterile tray beside bed should contain duplicate (exact) tracheotomy tube, Trousseau dilator, hemostat, thumb forceps, silver probe, scissors, scalpel, probe-pointed curved bistoury. Sterile gloves ready. 3. Special nursing necessary for safety. 4. Laxative. 5. Sponge away secretions before they are drawn in. 6. Cover wound with wide large gauze square slit so it fits around cannula under the tape holder. Pull off ravelings. Keep wet with 1 : 10,000 Bichloride solution. 7. Change dressing every hour or oftener. 8. Abundance of fresh air, temperature preferably about 70 degrees. 9. Nurse should remove inner cannula as often as needed and clean it with pipe cleaner before boiling. 10. Outer cannula should be changed every day by the surgeon or long-experienced tracheotomy nurse. A pilot should be used and care should be taken not to injure the cut ends of the tracheal cartilage. 11. A sterile, bent probe may be inserted downward in the trachea with both cannulae out to excite cough if necessary to expel secretions. An aspirating tube should be used, when necessary. 12. A patient with a properly fitted cannula free of secretions breathes noiselessly. Any sound demands immediate attention. 13. If the respiratory rate increase it is much more likely to be due to obstruction in, malposition of, or shortness of the cannula than to lung complications. 14. Be sure that: (a) The cannula is clear and clean. (b) The cannula is long enough to reach well down into the trachea. A cannula that was long enough when the operation was done may be too short after the cervical tissues swell. (c) The distal end of the cannula actually is deeply in the trachea. The only way to be sure is, when inserting the cannula, to spread the wound and the tracheal incision with a Trousseau dilator, then see the interior of the tracheal lumen and see the cannula enter therein. 15. If after attending to the above mentioned details there are still signs of obstructive dyspnea, a bronchoscopy should be done for finding and removal of the obstruction in the trachea or main bronchi. 16. If all the "pipes," natural and instrumental, are clear there can be no such thing as obstructive dyspnea. 17. Pneumonia and pulmonary edema may exist before tracheotomy, but they are rare sequelae. 18. Decannulation, in cases of tracheotomy done for temporary conditions should not be attempted until the patient has slept at least 3 nights with his cannula tightly corked. A properly fitted cannula (i.e. one not larger than half the area of cross section of the trachea) permits the by-passage of plenty of air. A partial cork should be worn for a few days first for testing and "weaning" a child away from the easier breathing through the neck. In cases of chronic laryngeal stenosis a prolonged test is necessary before attempting decannulation. 19. A tracheotomic case may be aphonic, hence unable to call for help. 20. The foregoing rules apply to the post-operative periods. After the wound has healed and a fistula is established, the patient, if not a child, may learn to care for his own cannula. [298] 21. Do not give cough-sedatives or narcotics. The cough reflex is the watch dog of the lungs.

NOTES ON NURSING TRACHEOTOMIZED PATIENTS

Bedside tray should contain: Duplicate cannula Scalpel Trousseau dilator Hemostat Dressing forceps Sterile vaseline Scissors Tape Probe Gauze sponges Gauze squares Probe-pointed curved bistoury.

1. Room should be abundantly ventilated, as free from dust and lint as possible, and the air should be moistened by steam in winter. 2. Keep mouth clean. Tooth brush. Rinse alcohol 1:10. 3. Sponge away secretion after the cough before drawn in. 4. Remove inner cannula (not outer) as often as needed. Not less often than every hour. Replace immediately. Never boil a cannula until you have thoroughly cleaned it. 5. Obstruction of cannula calling for cleaning indicated by: Blue or ashy color. Indrawing at clavicles, sternal notch, epigastrium. Noisy breathing. (Learn sound.) 6. Surgeon (in our cases) will change outer cannula once daily or oftener. 7. Duplicate cannulae. 8. Be careful in cleaning cannulae not to damage. 9. Watch for loose parts on cannula. 10. Change dressing (in our cases) as often as soiled. Not less often than every hour. Large squares. Never narrow strips. 11. Watch color of lips and ears and face. [299] 12. Report at once if food or water leaks through wound. (Coughing and choking). 13. Never leave a tracheotomized patient unwatched during the first days or weeks, according to case. 14. Remember Trousseau dilator or hemostat will spread the tracheal wound or fistula when cannula is out. 15. Remember life depends on a clear cannula if the patient gets no air through the mouth. 16. Remember it takes very little to clog the small cannula of a child. 17. Remember a tracheotomized patient cannot call for help. 18. Decannulation. Testing by corking partially. Watch corks not too small, or broken. Attach them by braided silk thread. Pure rubber cord ground down makes best cork.



[300] CHAPTER XXXVIII—CHRONIC STENOSIS OF THE LARYNX AND TRACHEA

The various forms of laryngeal stenosis for which tracheotomy or intubation has been performed, and the difficulties encountered in restoring the natural breathing, may be classified into the following types: 1. Panic 2. Spasmodic 3. Paralytic 4. Ankylotic (arytenoid) 5. Neoplastic 6. Hyperplastic 7. Cicatricial (a) Loss of cartilage (b) Loss of muscular tissue (c) Fibrous

Panic.—Nothing so terrifies a child as severe dyspnea; and the memory of previous struggles for air, together with the greater ease of breathing through the tracheotomic cannula than through even a normal larynx, incites in some cases so great a degree of fear that it may properly be called panic, when attempts at decannulation are made. Crying and possibly glottic spasm increase the difficulties.

Spasmodic stenosis may be associated with panic, or may be excited by subglottic inflammation. Prolonged wearing of an intubation tube, by disturbing the normal reciprocal equilibrium of the abductors and adductors, is one of the chief causes. The treatment for spasmodic stenosis and panic is similar. The use of a special intubation tube having a long antero-posterior lumen and a narrow neck, which form allows greater action of the musculature, has been successful in some cases. Repeated removal and replacement of the intubation tube when dyspnea requires it may prove sufficient in the milder cases. Very rarely a tracheotomy may be required; if so, it should be done low. The wearing of a tracheotomic cannula permits a restoration of the muscle balance and a subsidence of the subglottic inflammation. Corking the cannula with a slotted cork (Fig. 111) will now restore laryngeal breathing, after which the tracheotomic cannula may be removed.

[PLATE V—PHOTOPROCESS REPRODUCTIONS OF THE AUTHOR'S OIL-COLOR DRAWINGS FROM LIFE—LARYNGEAL AND TRACHEAL STENOSES:

1, Indirect view, sitting position; postdiphtheric cicatricial stenosis permanently cured by endoscopic evisceration. (See Fig. 5.) 2, Indirect view, sitting position; posttyphoid cicatricial stenosis. Mucosa was very cyanotic because cannula was re-moved for laryngoscopy and bronchoscopy. Cured by laryngostomy. (See Fig. 6.) 3, Indirect view, sitting position; posttyphoid infiltrative stenosis, left arytenoid destroyed by necrosis. Cured by laryngostomy; failure to form adventitious band (Fig. 7) because of lack of arytenoid activity. 4, Indirect view, recumbent position; posttyphoid cicatricial stenosis. Cured of stenosis by endoscopic evisceration with sliding punch forceps. Anterior commissure twice afterward cleared of cicatricial tissue as in the other case shown in Fig. 15. Ultimate result shown in Fig. 8. 5, Same patient as Fig. 1; sketch made two years after decannulation and plastic. 6, Same patient as Fig. 2; sketch made four years after decannulation and plastic. 7, Same patient as Fig. 3; sketch made three years after decannulation and plastic. 8, Same patient as Fig. 4; sketch made one year after decannulation, fourteen months after clearing of the anterior commissure to form adventitious cords. 9, Direct view, recumbent patient; web postdiphtheric (?) or congenital (?). "Rough voice" since birth, but larynx never examined until stenosed after diphtheria. Web removed and larynx eviscerated with punch forceps; recurrence of stenosis (not of web). Cure by laryngostomy. This view also illustrates the true depth of the larynx which is often overlooked because of the misleading flatness of laryngeal illustrations. 10, Direct laryngoscopic view; postdiphtheric hypertrophic subglottic stenosis. Cured by galvanocauterization. 11, Direct laryngoscopic view; postdiphtheric hypertrophic supraglottic stenosis. Forceps excision; extubation one month later; still well after four years. 12, Bronchoscopic view of posttracheotomic stenosis following a "plastic flap" tracheotomy done for acute edema. 13, Direct laryngoscopic view; anterolateral thymic compression stenosis in a child of eighteen months. Cured by thymopexy. 14, Indirect laryngoscopic (mirror) view; laryngostomy rubber tube in position in treatment of post-typhoid stenosis. 15, Direct view; posttyphoid stenosis after cure by laryngostomy. Dotted line shows place of excision for clearing out the anterior commissure to restore the voice. 16, Endoscopic view of posttracheotomic tracheal stenosis from badly placed incision and chondrial necrosis. Tracheotomy originally done for influenzal tracheitis. Cured by tracheostomy.]

Paralysis.—Bilateral abductor laryngeal paralysis causes severe stenosis, and usually tracheotomy is urgently required. In cadaveric paralysis both cords are in a position midway between abduction and adduction, and their margins are crescentic, so that sufficient airway remains. Efforts to produce the cadaveric position of the cords by division or excision of a portion of the recurrent laryngeal nerves, have been failures. The operation of ventriculocordectomy consists in removing a vocal cord and the portion or all of the ventricular floor by means of a punch forceps introduced through the direct laryngoscope. Usually it is better to remove only the portion of the floor anterior to the vocal process of the arytenoid. In some cases monolateral ventriculocordectomy is sufficient; in most cases, however, operation on both sides is needed. An interval of two months between operations is advisable to avoid adhesions. In almost all cases, ventriculocordectomy will result in a sufficient increase in the glottic chink for normal respiration. The ultimate vocal results are good. Evisceration of the larynx, either by the endoscopic or thyrotomic method, usually yields excellent results when no lesion other than paralysis exists. Only too often, however, the condition is complicated by the results of a faultily high tracheotomy. A rough, inflexible voice is ultimately obtained after this operation, especially if the arytenoid cartilage is unharmed. In recent bilateral recurrent paralysis, it may be worthy of trial to suture the recurrent to the pneumogastric. Operations on the larynx for paralytic stenosis should not be undertaken earlier than twelve months from the inception of the condition, this time being allowed for possible nerve regeneration, the patient being made safe and comfortable, meanwhile, by a low tracheotomy.

Ankylosis.—Fixation of the crico-arytenoid joints with an approximation of the cords may require evisceration of the larynx. This, however, should not be attempted until after a year's lapse, and should be preceded by attempts to improve the condition by endoscopic bouginage, and by partial corking of the tracheotomic cannula.

Neoplasms.—Decannulation in neoplastic cases depends upon the nature of the growth, and its curability. Cicatricial contraction following operative removal of malignant growths is best treated by intubational dilatation, provided recurrence has been ruled out. The stenosis produced by benign tumors is usually relieved by their removal.

Papillomata.—Decannulation after tracheotomy done for papillomata should be deferred at least 6 months after the discontinuance of recurrence. Not uncommonly the operative treatment of the growths has been so mistakenly radical as to result in cicatricial or ankylotic stenoses which require their appropriate treatments. It is the author's opinion that recurrent papillomata constitute a benign self-limited disease and are best treated by repeated superficial removals, leaving the underlying normal structures uninjured. This method will yield ultimately a perfect voice and will avoid the unfortunate complications of cicatricial hypertrophic and ankylotic stenosis.

Compression Stenosis of the Trachea.—Decannulation in these cases can only follow the removal of the compressive mass, which may be thymic, neoplastic, hypertrophic or inflammatory. Glandular disease may be of the Hodgkins' type. Thymic compression yields readily to radium and the roentgenray, and the tuberculous and leukemic adenitides are sometimes favorably influenced by the same agents. Surgery will relieve the compression of struma and benign neoplasms, and may be indicated in certain neoplasms of malignant origin. The possible coexistence of laryngeal paralysis with tracheal compression is frequently overlooked by the surgeon. Monolateral or bilateral paralysis of the larynx is by no means an uncommon postoperative sequel to thyroidectomy, even though the recurrent nerves have been in no way injured at operation. Probably a localized neuritis, a cicatricial traction, or inclusion of a nerve trunk accounts for most of these cases.

Hyperplastic and cicatricial chronic stenoses preventing decannulation may be classified etiologically as follows: 1. Tuberculosis 2. Lues 3. Scleroma 4. Acute infectious diseases (a) Diphtheria (b) Typhoid fever (c) Scarlet fever (d) Measles (e) Pertussis 5. Decubitus (a) Cannular (b) Tubal 6. Trauma (a) Tracheotomic (b) Intubational (c) Operative (d) Suicidal and homicidal (e) Accidental (by foreign bodies, external violence, bullets, etc.)

Most of the organic stenoses, other than the paralytic and neoplastic forms, are the result of inflammation, often with ulceration and secondary changes in the cartilages or the soft tissues.

[304] Tuberculosis.—In the non-cicatricial forms, galvanocaustic puncture applied through the direct laryngoscope will usually reduce the infiltrations sufficiently to provide a free airway. Should the pulmonary and laryngeal tuberculosis be fortunately cured, leaving, however, a cicatricial stenosis of the larynx, decannulation may be accomplished by laryngostomy.

Lues.—Active and persistent antiluetic medication must precede and accompany any local treatment of luetic laryngeal stenosis. Prolonged stretching with oversized intubation tubes following excision or cauterization may sometimes be successful, but laryngostomy is usually required to combat the vicious contraction of luetic cicatrices.

Scleroma is rarely encountered in America. Radiotherapy has been advocated and good results have been reported from the intravenous injection of salvarsan. Radium may be tried, and its application is readily made through the direct laryngoscope.

Diphtheria.—Chronic postdiphtheritic stenosis may be of the panic, spasmodic or, rarely, the paralytic types; but more often it is of either the hypertrophic or cicatricial forms. Only too frequently the stenosis should be called posttracheotomic rather than postdiphtheritic, since decannulation after the subsidence of the acute stenosis would have been easy had it not been for the sequelae of the faulty tracheotomy. Prolonged intubation may induce either a supraglottic or subglottic tissue hyperplasia. The supraglottic type consists in an edematous thickening around the base of the epiglottis, sometimes involving also the glossoepiglottic folds and the ventricular bands. An improperly shaped or fitted tube is the usual cause of this condition, and a change to a correct form of intubation tube may be all that is required. Excessive polypoid tissue hypertrophy should be excised. The less redundant cases subside under galvanocaustic treatment, which may be preceded by tracheotomy and extubation, or the intubation tube may be replaced after the application of the cautery. The former method is preferable since the patient is far safer with a tracheotomic cannula and, further, the constant irritation of the intubation tube is avoided. Subglottic hypertrophic stenosis consists in symmetrical turbinal-like swellings encroaching on the lumen from either side. Cautious galvanocauterant treatment accurately applied by the direct method will practically always cure this condition. Preliminary tracheotomy is required in those cases in which it has not already been done, and in the cases in which a high tracheotomy has been done, a low tracheotomy must be the first step in the cure. Cicatricial types of postdiphtheritic stenosis may be seen as webs, annular cicatrices of funnel shape, or masses of fibrous tissue causing fixation of the arytenoids as well as encroachment on the glottic lumen. (See color plates.)

As a rule, when a convalescent diphtheritic patient cannot be extubated two weeks after three negative cultures have been obtained the advisability of a low tracheotomy should be considered. If a convalescent intubated patient cough up a tube and become dyspneic a low tracheotomy is usually preferable to forcing in an oversized intubation tube.

Typhoid Fever.—Ulcerative lesions in the larynx during typhoid fever are almost always the result of mixed infection, though thrombosis of a small vessel, with subsequent necrosis is also seen. If the ulceration reaches the cartilage, cicatricial stenosis is almost certain to follow.

Trauma.—The chief traumatic factors in chronic laryngeal stenosis are: (a) prolonged presence of a foreign body in the larynx (b) unskilled attempts at intubation and the wearing of poorly fitting intubation tubes; (c) a faulty tracheotomy; (d) a badly fitting cannula; (e) war injuries; (f) attempted suicide; (g) attempted homicide; (h) neglect of cleanliness and care of either intubation tubes or tracheotomic cannulae allowing incrustation and roughening which traumatize the tissues at each movement of the ever-moving larynx and trachea.

Treatment of Cicatricial Stenosis.—A careful direct endoscopic examination is essential before deciding on the method of treatment for each particular case. Granulations should be removed. Intubated cases are usually best treated by tracheotomy and extubation before further endoscopic treatment is undertaken. A certain diagnosis as to the cause of the condition must be made by laboratory and therapeutic tests, supplemented by biopsy if necessary. Vigorous antiluetic treatment, especially with protiodide of mercury, must precede operation in all luetic cases. Necrotic cartilage is best treated by laryngostomy. Intubational dilatation will succeed in some cases.

[FIG. 109.—Schema showing the author's method of laryngostomy. The hollow upward metallic branch (N) of the cannula (C) holds the rubber tube (R) back firmly against the spur usually found on the back wall of the trachea. Moreover, the air passing up through the rubber tube (R) permits the patient to talk in a loud whisper, the external orifice of the cannula being occluded most of the time with the cork (K). The rubber tubing, when large sizes are reached may extend down to the lower end of the cannula, the part C coming out through a large hole cut in the tubing at the proper distance from the lower end.]

Laryngoscopic bouginage once weekly with the laryngeal bougies (Fig. 42) will cure most cases of laryngeal stenosis. For the trachea, round, silk-woven, or metallic bougies (Fig. 40) are better.

[307] Laryngostomy consists in a midline division of the laryngeal and tracheal cartilages as low as the tracheotomic fistula, excision of thick cicatricial tissue, very cautious incision of the scar tissue on the posterior wall, if necessary, and the placing of the author's laryngostomy tube for dilatation (Fig. 109). Over the upward branch of the laryngostomy tube is slipped a piece of rubber tubing which is in turn anchored to the tape carrier by braided silk thread. Progressively larger sizes of rubber tubing are used as the laryngeal lumen increases in size under the absorptive influence of the continuous elastic pressure of the rubber. Several months of wearing the tube are required until dilatation and epithelialization of the open trough thus formed are completed. Painstaking after-care is essential to success. When dilatation and healing have taken place, the laryngostomy wound in the neck is closed by a plastic operation to convert the trough into a trachea by supplying an anterior wall.

Intubational treatment of chronic laryngeal stenosis may be tried in certain forms of stenosis in which the cicatrices do not seem very thick. The tube is a silver-plated brass one of large size (Fig. 110). A post which screws into the anterior surface of the tube prevents its expulsion. Over the post is slipped a block which serves to keep open the tracheal fistula. Detailed discussion of these operative treatments is outside the scope of this work, but mention is made for the sake of completeness. Before undertaking any of the foregoing procedures, a careful study of the complete descriptions in Peroral Endoscopy is necessary, and a practical course of training is advisable.

[FIG. 110.—The author's retaining intubation tube for treatment of chronic laryngeal stenosis. The tube (A) is introduced through the mouth, then the post (B) is screwed in through the tracheal wound. Then the block (C) is slid into the wound, the square hole in the block guarding the post against all possibility of unscrewing. If the threads of the post are properly fitted and tightly screwed up with a hemostat, however, there is no chance of unscrewing and gauze packing is used instead of the block to maintain a large fistula. The shape of the intubation tube has been arrived at after long clinical study and trials, and cannot be altered without risk of falling into errors that have been made and eliminated in the development of this shape.]



[309] CHAPTER XXXIX—DECANNULATION AFTER CURE OF LARYNGEAL STENOSIS

In order to train the patient to breathe again through the larynx it is necessary to occlude the cannula. This is best done by inserting a rubber cork in the inner cannula. At first it may be necessary to make a slot in the cork so as to permit some air to enter through the tube to supplement the insufficient supply obtainable through the insufficiently patulous glottis, new corks with smaller grooves being substituted as laryngeal breathing becomes easier. Corking the cannula is an excellent orthopedic treatment in certain cases where muscle atrophy and partial inflammatory fixation of the cricoarytenoid joints are etiological factors in the stenosis. The added pull of the posterior cricoarytenoid muscles during the slight effort at inspiration restores their tone and increases the mobility of all the attached structures. By no other method can panic and spasmodic stenosis be so efficiently cured.

[FIG. 111.—Illustration of corks used to occlude the cannula in training patients to breathe through the mouth again, before decannulation. The corks allow air leakage, the amount of which is regulated by the use of different shapes. A smaller and still smaller air leak is permitted until finally an ungrooved cork is tolerated. A central hole is sometimes used instead of a slot. A, one-third cork; B, half cork; C, three-quarter cork; D, whole cork.]

Following the subsidence of an acute laryngeal stenosis, it is my rule to decannulate after the patient has been able to breathe through the larynx with the cannula tightly corked for 3 days and nights. This rule does not apply to chronic laryngeal stenosis, for while the lumen under ordinary conditions might be ample, a slight degree of inflammation might render it dangerously small. In these cases, many weeks are sometimes required to determine when decannulation is safe. A test period of a few months is advisable in most cases of chronic laryngeal stenosis. Recurrent contractions after closure of the wound are best treated by endoscopic bouginage. The corks are best made of pure rubber cord, cut and ground to shape, and grooved, if desired, on a small emery wheel (Fig. 112). The ordinary rubber corks and those made of cork-bark should not be used because of their friability, and the possible aspiration of a fragment into the bronchus, where rubber particles form very irritant foreign bodies.

[FIG. 112.—This illustration shows the method of making safe corks for tracheotomic cannulae by grinding pure rubber cord to shape on an emery wheel. After grinding the taper, if a partial cork is desired, a groove is ground on the angle of the wheel. If a half-cork is desired half of the cork is ground away on the side of the wheel. Reliable corks made in this way are now obtainable from Messers Charles J. Pilling and Son.]



BIBLIOGRAPHY

The following list of publications of the author may be useful for reference: 1. Peroral Endoscopy and Laryngeal Surgery, Textbook, 1914. (Contains full bibliography to date of publication.) 2. Acromegaly of the Larynx. Journ. Amer. Med. Asso., Nov. 30, 1918, Vol. LXXI, pp. 1787-1789. 3. A Fence Staple in the Lung. A New Method of Bronchoscopic Removal. Journ. Amer. Med. Asso., Vol. LXIV, June 5, 1917, pp. 1906-7. 4. Amalgam Tooth-filling Aspirated into Lung During Extraction. Dental Cosmos, Vol. LIX, May, 1917, pp. 500-502. 5. Amalgam Filling Removed from Lung after a Seven Months' Sojourn: Case Report. Dental Cosmos, April, 1920. 6. A Mechanical Spoon for Esophagoscopic Use. The Laryngoscope, January, 1918, PP. 47-48. 7. An Anterior Commissure Laryngoscope. The Laryngoscope, Vol. XXV, Aug., 1915, P. 589. 8. Ancient Foreign Body Cases. Editorial. The Laryngoscope, Vol. XXVII, July, 1917, PP. 583-584. 9. An Esophagoscopic Forceps. The Laryngoscope, Jan., 1918, p. 49. 10. A New Diagnostic Sign of Foreign Body in Trachea or Bronchi, the "Asthmatoid Wheeze." Amer. Journ. Med. Sciences, Vol. CLVI, No. 5, Nov., 1918, p. 625. 11. A New Method of Working Out Difficult Mechanical Problems of Bronchoscopic Foreign-body Extraction. The Laryngoscope, Vol. XXVII, Oct., 1917, p. 725. 12. Arachidic Bronchitis. Journ. Amer. Med. Asso., Aug. 30, 1919, Vol. LXXIII, pp. 672-677. 13. Band of a Gold Crown in the Bronchus: Report of a Case. Dental Cosmos. Vol. LX, Oct., 1918, p. 905. 14. Bronchiectasis and Bronchiectatic Symptoms Due to Foreign Bodies. Penn. Med. Journ., Vol. XIX, Aug., 1916, pp. 807-814. 15. Bronchoscopic and Esophagoscopic Postulates. Annals of Otology, Rhinology and Laryngology, June, 1916, pp. 414-416. 16. Bronchoscopic Removal of a Collar Button after Twenty-six Years Sojourn in the Lung. Annals of Otology, Rhinology and Laryngology, June, 1913. 17. Bronchoscopy. Keen's Surgery, 1921, Vol. VIII. 18. Caisson Bronchoscopy in Lung-abscess Due to Foreign Body. Surg., Gyn. and Obstet., Oct., 1917, pp. 424-428. 19. Cancer of the Larynx. Is it Preceded by a Recognizable Precancerous Condition? Proceedings Amer. Laryngol. Soc., 1922. 20. Din. Editorial. The Laryngoscope, Vol. XXVI, Dec., 1916, pp. 1385-1387. 23. Endoscopie Perorale et Chirurgie Laryngienne. Arch. de Laryngol., T. XXXVII, No. 3, 1914, pp. 649-680. 24. Endoscopy and the War. Editorial. The Laryngoscope, Vol. XXVI, June, 1916, p. 992. 25. Endothelioma of the Right Bronchus Removed by Peroral Bronchoscopy. Amer. Journ. of Med. Sci., No. 3, Vol. CLII, March, 1917, p. 371. 26. Esophageal Stenosis Following the Swallowing of Caustic Alkalies, Journ. Amer. Med. Asso., July 2, 1921, Vol. LXXVII, pp. 22-23. 27. Esophagoscopic Radium Screens. The Laryngoscope, Feb., 1914. 28. Foreign Bodies in the Insane. Editorial. The Laryngoscope, Vol. XXVII, June, 1917, pp. 513-515. 29. Foreign Bodies in the Larynx, Trachea, Bronchi and Esophagus Etiologically Considered. Trans. Sec. Laryn., Otol. and Rhin., Amer. Med. Asso., 1917, pp. 36-56. 30. Gold Three-tooth Molar Bridge Removal from the Right Bronchus: Case Report. Dental Cosmos, Oct., 1919. 31. High Tracheotomy and Other Errors the Chief Causes of Chronic Laryngeal Stenosis. Surg., Gyn. and Obstet., May, 1921, pp. 392-398. 32. Inducing a Child to Open Its Mouth. Editorial. The Laryngoscope, Vol. XXVI, Nov., 1917, p. 795. 33. Intestinal Foreign Bodies. Editorial. The Laryngoscope, Vol. XXVI, May, 1916, p. 929. 34. Laryngoscopic, Esophagoscopic and Bronchoscopic Clinic. International Clinics, Vol. IV, 1918. J. B. Lippincott Co. 35. Local Application of Radium Supplemented by Roentgen Therapy (Discussion). Amer. Journ. of Roentgenology. 36. Localization of the Lobes of the Lungs by Means of Transparent Outline Films. Amer. Journ. Roent., Vol. V, Oct., 1918, p. 456. Also Proc. Amer. Laryn., Rhin. and Otol. Soc., 1918. 37. Mechanical Problems of Bronchoscopic and Esophagoscopic Foreign Body Extraction, Journ. Am. Med. Assn., Jan. 27, 1917. 38. Observation on the Pathology of Foreign Bodies in the Air and Food Passages Based on the Analysis of 628 Cases. Mutter Lecture, 1917, Surg. Gyn. and Obstet., Mar., 1919, pp. 201-261. 39. Orthopedic Treatment by Corking. Journ. of Laryn. and Otol., London, Vol. XXXII, Feb., 1917. 40. Peroral Endoscopy. Journ. of Laryn. and Otol., Edinburgh, Nov., 1921. 41. Peroral Endoscopy and Laryngeal Surgery. The Laryngoscope, Feb., 1919. 42. Postulates on the Cough Reflex in Some of its Medical and Surgical Phases. Therapeutic Gazette, Sept. 15, 1920. 43. Prognosis of Foreign Body in the Lung. Journ., Amer. Med. Asso., Oct. 8, 1921, Vol. LXXVII, pp. 1178-1181. 44. Pulsion Diverticulum of the Esophagus. Surg., Gyn. and Obstet., Vol. XXI, July, 1915, PP. 52-55. 45. Radium. Editorial. The Laryngoscope, Vol. XXVI, Aug., 1916, pp. 1111-1113. 46. Reaction after Bronchoscopy. Penn. Med. Journ., April, 1919. Vol. XXII P. 434. 47. Root-canal Broach Removed from the Lung by Bronchoscopy. The Dental Cosmos, Vol. LVII, March, 1915, p. 247. 48. Safety Pins in Stomach, Peroral Gastroscopic Removal without Anesthesia. Journ. Amer. Med. Asso., Feb. 26, 1921, Vol. LXXVI, pp. 577-579. 49. Symptomatology and Diagnosis of Foreign Bodies in the Air and Food Passages. Am. Journ. Med. Sci., May, 1921, Vol. CLXI, No. 5, p. 625. 50. The Bronchial Tree, Its Study by Insufllation of Opaque Substances in the Living. Amer. Journ. Roentgenology, Vol. 5, Oct., 1918, p. 454. Also Proc. Amer. Laryn., Rhinol. and Otol. Soc., 1918. 51. Thymic Death. Editorial. The Laryngoscope, Vol. XXVI, May, 1916, p. 929. 52. Tracheobronchitis Due to Nitric Acid Fumes. New York Med. Journ., Nov. 4, 1916, PP. 898-899. 53. Treatment of Laryngeal Stenosis by Corking the Tracheotomic Cannula, The Laryngoscope, Jan., 1919. 54. Ventriculocordectomy. Proceedings Amer. Laryngol. Soc., 1921. 55. New Mechanical Problems in the Bronchoscopic Extraction of Foreign Bodies from the Lungs and Esophagus. Annals of Surgery, Jan., 1922. 56. The Diaphragmatic Pinchcock in So-called Cardiospasm. Laryngoscope, Jan., 1922.

THE END

Previous Part     1  2  3  4  5  6
Home - Random Browse