p-books.com
Bronchoscopy and Esophagoscopy - A Manual of Peroral Endoscopy and Laryngeal Surgery
by Chevalier Jackson
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

We are concerned here mainly with the technic of the insertion of the intratracheal tube. The larynx should be examined with the mirror, preferably before the day of operation, for evidence of disease, and incidentally to determine the size of the catheter to be introduced, though the latter can be determined after the larynx is laryngoscopically exposed. The following list of rules for the introduction of the catheter will be of service (see Fig. 59).

RULES FOR INSERTION OF THE CATHETER FOR INSUFFLATION ANESTHESIA

1. The patient should be fully under the anesthetic by the open method so as to get full relaxation of the muscles of the neck. 2. The patient's head must be in full extension with the vertex firmly pushed down toward the feet of the patient, so as to throw the neck upward and bring the occiput down as close as possible beneath the cervical vertebrae. 3. No gag should be used, because the patient should be sufficiently anesthetized not to need a gag, and because wide gagging defeats the exposure of the larynx by jamming down the mandible. 4. The epiglottis must be identified before it is passed. 5. The speculum must pass sufficiently far below the tip of the epiglottis so that the latter will not slip. 6. Too deep insertion must be avoided, as in this case the speculum goes posterior to the cricoid, and the cricoid is lifted, exposing the mouth of the esophagus, which is bewildering until sufficient education of the eye enables the operator to recognize the landmarks. 7. The patient's head is lifted off the table by the spatular tip of the laryngoscope. Actual lifting of the head will not be necessary if the patient is fully relaxed; but the idea of lifting conveys the proper conception of laryngeal exposure (Fig. 55).



[71] CHAPTER V—BRONCHOSCOPIC OXYGEN INSUFFLATION

Bronchoscopic oxygen insufflation is a life-saving measure equalled by no other method known to the science of medicine, in all cases of asphyxia, or apnea, present or impending. Its especial sphere of usefulness is in severe cases of electric shock, hanging, smoke asphyxia, strangulation, suffocation, thoracic or abdominal pressure, apnea, acute traumatic pneumothorax, respiratory arrest from absence of sufficient oxygen, or apnea from the presence of quantities of irrespirable or irritant gases. Combined with bronchoscopic aspiration of secretions it is the best method of treatment for poisoning by chlorine gas, asphyxiating, and other war gases.

Bronchoscopic oxygen insufflation should be taught to every interne in every hospital. The emergency or accident ward of every hospital should have the necessary equipment and an interne familiar with its use. The method is simple, once the knack is acquired. The patient being limp and recumbent on a table, the larynx is exposed with the laryngoscope, and the bronchoscope is inserted as hereinafter described. The oxygen is turned on at the tank and the flow regulated before the rubber tube from the wash-bottle of tank is attached to the side-outlet of the bronchoscope. It is necessary to be certain that the flow is gentle, so that, with a free return flow the introduced pressure does not exceed the capillary pressure; otherwise the blood will be forced out of the capillaries and the ischemia of the lungs will be fatal. Another danger is that overdistension causes inhibition of inspiration resulting in apnea continuing as long as the distension is maintained, if not longer. The return flow from the bronchoscope should be interrupted for 2 or 3 seconds several times a minute to inflate the lungs, but the flow must not be occluded longer than 3 seconds, because the intrapulmonary pressure would rise. A pearl of amyl nitrite may be broken in the wash bottle. Slow rhythmic artificial respiratory movements are a useful adjunct, and unless the operator is very skillful in gauging the alternate pressures and releases with the thumb according to the oxygen pressure, it is vitally necessary to fill and deflate the lungs rhythmically by one of the well known methods of artificial respiration. Anyone skilled in the introduction of the bronchoscope can do bronchoscopy in a few seconds, and it is especially easy in cases of respiratory arrest, because of the limp condition of the patient.

The foregoing applies to cases in which a pulmotor would be used, such as apnea from electric shocks, etc. For obstructive dyspnea and asphyxia, tracheotomy is the procedure of choice, and the skillful tracheotomist would be justified in preferring tracheotomy for the other class of cases, insufflating the oxygen and amyl nitrite through the tracheotomic wound. The pulmotor and similar mechanisms are, perhaps, the best things the use of which can be taught to laymen; but as compared to bronchoscopic oxygen insufflation they are woefully inefficient, because the intraoral pressure forces the tongue back over the laryngeal orifice, obstructing the airway in this "death zone." By the introduction of the bronchoscope this death zone is entirely eliminated, and a free airway established for piping the oxygen directly into the lungs.



[73] CHAPTER VI—POSITION OF THE PATIENT FOR PERORAL ENDOSCOPY

It is the author's invariable practice to place the patient in the dorsally recumbent position. The sitting position is less favorable. While lying on a well-padded, flat table the patient is readily controlled, the head is freely movable, secretions can be easily removed, the view obtained by the endoscopist is truly direct (without reversal of sides), and, most important, the employment of one position only favors smoother and more efficient team work, and a better endoscopic technic.

General Principles of Position.—As will be seen in Fig. 47 the trachea and esophagus are not horizontal in the thorax, but their long axes follow the curves of the cervical and dorsal spine. Therefore, if we are to bring the buccal cavity and pharynx in a straight line with the trachea and esophagus it will be found necessary to elevate the whole head above the plane of the table, and at the same time make extension at the occipito-atloid joint. By this maneuver the cervical spine is brought in line with the upper portion of the dorsal spine as shown in Fig. 55. It was formerly taught, and often in spite of my better knowledge I am still unconsciously prone to allow the head and cervical spine to assume a lower position than the plane of the table, the so-called Rose position. With the head so placed, it is impossible to enter the lower air or food passages with a rigid tube, as will be shown by a study of the radiograph shown in Fig. 49. Extension of the head on the occipito-atloid joint is for the purpose of freeing the tube from the teeth, and the amount required will vary with the degree to which the mouth can be opened. Whether the head be extended, flexed, or kept mid-way, the fundamental principle in the introduction of all endoscopic tubes is the anterior placing of the cervical spine and the high elevation of the head. The esophagus, just behind the heart, turns ventrally and to the left. In order to pass a rigid tube through this ventral curve the dorsal spine is now extended by lowering the head and shoulders below the plane of the table. This will be further explained in the chapter on esophagoscopy. In all of these procedures, the nose of the patient should be directed toward the zenith, and the assistant should prevent rotation of the head as well as prevent lowering of the head. The patient should be urged as follows: "Don't hold yourself so rigid." "Let your head and neck go loose." "Let your head rest in my hand." "Don't try to hold it." "Let me hold it." "Relax." "Don't raise your chest."

[FIG. 47.—Schematic illustration of normal position of the intra-thoracic trachea and esophagus and also of the entire trachea when the patient is in the correct position for peroral bronchoscopy. When the head is thrown backward (as in the Rose position) the anterior convexity of the cervical spine is transmitted to the trachea and esophagus and their axes deviated. The anterior deviation of the lower third of the esophagus shows the anatomical basis for the "high low" position for esophagoscopy]

[FIG. 48.—Correct position of the cervical spine for esophagoscopy and bronchoscopy. (Illustration reproduced from author's article Jour. Am. Med. Assoc., Sept. 25, 1909)]

[FIG. 49.—Curved position of the cervical spine, with anterior convexity, in the Rose position, rendering esophagoscopy and bronchoscopy difficult or impossible. The devious course of the pharynx, larynx and trachea are plainly visible. The extension is incorrectly imparted to the whole cervical spine instead of only to the occipito-atloid joint. This is the usual and very faulty conception of the extended position. (Illustration reproduced from author's article, Jour. Am. Med. Assoc., Sept. 25, 1909.)]

[76] For direct laryngoscopy the patient's head is raised above the plane of the table by the first assistant, who stands to the right of the patient, holding the bite block on his right thumb inserted in the left corner of the patient's mouth, while his extended right hand lies along the left side of the patient's cheek and head, and prevents rotation. His left hand, placed under the patient's occiput, elevates the head and maintains the desired degree of extension at the occipito-atloid joint (Fig. 50).

[FIG 50.—Direct laryngoscopy, recumbent patient. The second assistant is sitting holding the head in the Boyce position, his left forearm on his left thigh his left foot on a stool whose top is 65 cm. lower than the table-top. His left hand is on the patient's sterile-covered scalp, the thumb on the forehead, the fingers under the occiput, making forced extension. The right forearm passes under the neck of the patient, so that the index finger of the right hand holds the bite-block in the left corner of the patient's mouth. The fingers of the operator's right hand pulls the upper lip out of all danger of getting pinched between the teeth and the laryngoscope. This is a precaution of the utmost importance and the trained habit of doing it must be developed by the peroral endoscopist.]

Position for Bronchoscopy and Esophagoscopy.—The dorsally recumbent patient is so placed that the head and shoulders extend beyond the table, the edge of which supports the thorax at about the level of the scapulae. During introduction, the head must be maintained in the same relative position to the table as that described for direct laryngoscopy, that is, elevated and extended. The first assistant, in this case, sits on a stool to the right of the patient's head, his left foot resting on a box about 14 inches in height, the left knee supporting the assistant's left hand, which being placed under the occiput of the patient maintains elevation and extension. The right arm of the assistant passes under the neck of the patient, the bite block being carried on the middle finger of the right hand and inserted into the left side of the patient's mouth. The right hand also prevents rotation of the head (Fig. 51). As the bronchoscope or esophagoscope is further inserted, the head must be placed so that the tube corresponds to the axis of the lumen of the passage to be examined. If the left bronchus is being explored, the head must be brought strongly to the right. If the right middle lobe bronchus is being searched, the head would require some left lateral deflection and a considerable degree of lowering, for this bronchus, as before mentioned, extends anteriorly. During esophagoscopy when the level of the heart is reached, the head and upper thorax must be strongly depressed below the plane of the table in order to follow the axis of the lumen of the ventrally turning esophagus; at the same time the head must be brought somewhat to the right, since the esophagus in this region deviates strongly to the left.

[FIG. 51.—Position of patient and assistant for introduction of the bronchoscope and esophagoscope. The middle of the scapulae rest on the edge of the table; the head and shoulders, free to move, are supported by the assistant, whose right arm passes under the neck; the right middle finger inserts the bite block into the left side of the mouth. The left hand, resting on the left knee maintains the desired degree of elevation, extension and lateral deflection required by the operator. The patient's vertex should be 10 cm. higher than the level of the top of the table. This is the Boyce position, which has never been improved upon for bronchoscopy and esophagoscopy.]

[FIG. 52.—Schema of position for endoscopy. A. Normal recumbency on the table with pillow supporting the head. The larynx can be directly examined in this position, but a better position is obtainable. B. Head is raised to proper position with head flexed. Muscles of front of neck are relaxed and exposure of larynx thus rendered easier; but, for most endoscopic work, a certain amount of extension is desired. The elevation is the important thing. C. The neck being maintained in position B, the desired amount of extension of the head is obtained by a movement limited to the occipito-atloid articulation by the assistant's hand placed as shown by the dart (B). D. Faulty position. Unless prevented, almost all patients will heave up the chest and arch the lumbar spine so as to defeat the object and to render endoscopy difficult by bringing the chest up to the high-held head, thus assuming the same relation of the head to the chest as exists in the Rose position (a faulty one for endoscopy) as will be understood by assuming that the dotted line, E, represents the table. If the pelvis be not held down to the table the patient may even assume the opisthotonous position by supporting his weight on his heels on the table and his head on the assistant's hand.]

In obtaining the position of high head with occipito-atloid extension, the easiest and most certain method, as pointed out to me by my assistant, Gabriel Tucker, is first to raise the head, strongly flexed, as shown in Fig. 52; then while maintaining it there, make the occipito-atloid extension. This has proven better than to elevate and extend in a combined simultaneous movement.

If the patient would relax to limpness exposure of the larynx would be easily obtained, simply by lifting the head with the lip of the laryngoscope passed below the tip of the epiglottis (as in Fig. 55) and no holding of the head would be necessary. But only rarely is a patient found who can do this. This degree of relaxation is of course, present in profound general ether anesthesia, which is not to be thought of for direct laryngoscopy, except when it is used for the purpose of insertion of intratracheal insufflation anesthetic tubes. For this, of course, the patient is already to be deeply anesthetized. The muscular tension exerted by some patients in assuming and holding a faulty position is almost as much of a hindrance to peroral endoscopy as is the position itself. The tendency of the patient to heave up his chest and assume a false position simulating the opisthotonous position (Fig. 52) must be overcome by persuasion. This position has all the disadvantages of the Rose position for endoscopy.

[FIG. 53.—The author's position for the removal of foreign bodies from the larynx or from any of the upper air or food passages. If dislodged, the intruder will not be aided by gravity to reach a deeper lodgement.]

The one exception to these general positions is found in procedures for the removal of foreign bodies from the larynx. In such cases, while the same relative position of the head to the plane of the table is maintained, the whole table top is so inclined as to elevate the feet and lower the head, known as Jackson's position. This semi-inversion of the patient allows the foreign body to drop into the pharynx if it should be dislodged, or slip from the forceps (Fig. 53).



[82] CHAPTER VII—DIRECT LARYNGOSCOPY

Importance of Mirror Examination of the Larynx.—The presence of the direct laryngoscope incites spasmodic laryngeal reflexes, and the traction exerted somewhat distorts the tissues, so that accurate observations of variations in laryngeal mobility are difficult to obtain. The function of the laryngeal muscles and structures, therefore, can best be studied with the laryngeal mirror, except in infants and small children who will not tolerate the procedure of indirect laryngoscopy. A true idea of the depth of the larynx is not obtained with the mirror, and a view of the ventricles is rarely had. With the introduction of the direct laryngoscope it is found that the larynx is funnel shaped, and that the adult cords are situated about 3 cm. below the aryepiglottic folds; the cords also assume their true shelf-like character and take on a pinkish or yellowish tinge, rather than the pearly white seen in the mirror. They are not to any extent differentiated by color from the neighboring structures. Their recognition depends almost wholly on form, position and movement.

Accurate observation is stimulated in all pathologic cases by making colored crayon sketches, however crude, of the mirror image of the larynx. The location of a growth may be thus graphically recorded, so that at the time of operation a glance will serve to refresh the memory as to its site. It is to be constantly kept in mind, however, that in the mirror image the sides are reversed because of the facing positions of the examiner and patient. Direct laryngoscopy is the only method by which the larynx of children can be seen. The procedure need require less than a minute of time, and an accurate diagnosis of the condition present, whether papilloma, foreign body, diphtheria, paralysis, etc., may be thus obtained. The posterior pharyngeal wall should be examined in all dyspneic children for the possible existence of retropharyngeal abscess.

[PLATE II—DIRECT AND INDIRECT LARYNGEAL VIEWS FROM AUTHOR'S OIL-COLOR DRAWINGS FROM LIFE: 1, Epiglottis of child as seen by direct laryngoscopy in the recumbent position. 2, Normal larynx spasmodically closed, as is usual on first exposure without anesthesia. 3, Same on inspiration. 4, Supraglottic papillomata as seen on direct laryngoscopy in a child of two years. 5, Cyst of the larynx in a child of four years, seen on direct laryngoscopy without anesthesia. 6, Indirect view of larynx eight weeks after thyrotomy for cancer of the right cord in a man of fifty years. 7, Same after two years. An adventitious band indistinguishable from the original one has replaced the lost cord. 8, Condition of the larynx three years after hemilaryngectomy for epithelioma in a patient fifty-one years of age. Thyrotomy revealed such extensive involvement, with an open ulceration which had reached the perichondrium, that the entire left wing of the thyroid cartilage was removed with the left arytenoid. A sufficiently wide removal was accomplished without removing any part of the esophageal wall below the level of the crico-arytenoid joint. There is no attempt on the part of nature to form an adventitious cord on the left side. The normal arytenoid drew the normal cord over, approximately to the edge of the cicatricial tissue of the operated side. The voice, at first a very hoarse whisper, eventually was fairly loud, though slightly husky and inflexible. 9, The pharynx seen one year after laryngectomy for endothelioma in a man aged sixty-eight years. The purple papilla; anteriorly are at the base of the tongue, and from this the mucosa slopes downward and backward smoothly into the esophagus. There are some slight folds toward the left and some of these are quite cicatricial. The epiglottis was removed at operation. The trachea was sutured to the skin and did not communicate with the pharynx. (Direct view.)]

Contraindications to Direct Laryngoscopy.—There are no absolute contraindications to direct laryngoscopy in any case where direct laryngoscopy is really needed for diagnosis or treatment. In extremely dyspneic patients, if the operator is not confident in his ability for a prompt and sure introduction of a bronchoscope, it may be wise to do a tracheotomy first.

Instructions to the Patient.—Before beginning endoscopy the patient should be told that he will feel a very disagreeable pressure on his neck and that he may feel as though he were about to choke. He must be gently but positively made to understand (1) that while the procedure is alarming, it is absolutely free from danger; (2) that you know just how it feels; (3) that you will not allow his breath to be shut off completely; (4) that he can help you and himself very much by paying close attention to breathing deeply and regularly; (5) and that he must not draw himself up rigidly as though "walking on ice," but must be easy and relaxed.

Direct Laryngoscopy. Adult Patient.—Before starting, every detail in regard to instrumental equipment and operating room assistants, (including an assistant to hold the arms and legs of the patient) must be complete. Preparation of the patient and the technic of local anesthesia have been discussed in their respective chapters. The dorsally recumbent patient is draped with (not pinned in) a sterile sheet. The head, covered by sterile towels, is elevated, and slight extension is made at the occipitoatloid joint by the left hand of the first assistant. The bite block placed on the assistant's right thumb is inserted into the left angle of the patient's open mouth (see Fig. 50).

The laryngoscope must always and invariably be held in the left hand, and in such a manner that the greatest amount of traction is made at the swell of the horizontal bar of the handle, rather than on the vertical bar.

The right hand is then free for the manipulation of forceps, and the insertion of the bronchoscope or other instrument. During introduction, the fingers of the right hand retract the upper lip so as to prevent its being pinched between the laryngoscope and the teeth. The introduction of the direct laryngoscope and exposure of the larynx is best described in two stages. 1. Exposure and identification of the epiglottis. 2. Elevation of the epiglottis and all the tissues attached to the hyoid bone, so as to expose the larynx to direct view.

First Stage.—The spatular end of the laryngoscope is introduced in the right side of the patient's mouth, along the right side of the anterior two-thirds of the tongue. It was the German method to introduce the laryngoscope over the dorsum of the tongue but in order to elevate this sometimes powerful muscular organ considerable force may be required, which exercise of force may be entirely avoided by crowding the tongue over to the left. When the posterior third stage of the tongue is reached, the tip of the laryngoscope is directed toward the midline and the dorsum of the tongue is elevated by a lifting motion imparted to the laryngoscope. The epiglottis will then be seen to project into the endoscopic field, as seen in Fig. 54.

[FIG. 54.—End of the first of direct laryngoscopy, recumbent adult patient. The epiglottis is exposed by a lifting motion of the spatular tip on the tongue anterior to the epiglottis.]

Second Stage.—The spatular end of the laryngoscope should now be tipped back toward the posterior wall of the pharynx, passed posterior to the epiglottis, and advanced about 1 cm. The larynx is now exposed by a motion that is best described as a suspension of the head and all the structures attached to the hyoid bone on the tip of the spatular end of the laryngoscope (Fig. 55). Particular care must be taken at this stage not to pry on the upper teeth; but rather to impart a lifting motion with the tip of the speculum without depressing the proximal tubular orifice. It is to be emphasized that while some pressure is necessary in the lifting motion, great force should never be used; the art is a gentle one. The first view is apt to find the larynx in state of spasm, and affords an excellent demonstration of the fact that the larynx can he completely closed without the aid of the epiglottis. Usually little more is seen than the two rounded arytenoid masses, and, anterior to them, the ventricular bands in more or less close apposition hiding the cords (Fig. 56). With deep general anesthesia or thorough local anesthesia the spasm may not be present. By asking the patient to take a deep breath and maintain steady breathing, or perhaps by requesting a phonatory effort, the larynx will open widely and the cords be revealed. If the anterior commissure of the larynx is not readily seen, the lifting motion and elevation of the head should be increased, and if there is still difficulty in exposing the anterior commissure the assistant holding the head should with the index finger externally on the neck depress the thyroid cartilage. If by this technic the larynx fails to be revealed the endoscopist should ask himself which of the following rules he has violated.

[FIG. 55.—Schema illustrating the technic of direct laryngoscopy on the recumbent patient. The motion is imparted to the tip of the laryngoscope as if to lift the patient by his hyoid hone. The portion of the table indicated by the dotted line may be dropped or not, but the back of the head must never go lower than here shown, for direct laryngoscopy; and it is better to have it at least 10 cm. above the level of the table. The table may be used as a rest for the operator's left elbow to take the weight of the head. (Note that in bronchoscopy and esophagoscopy the head section of the table must be dropped, so as to leave the head and neck of the patient out in the air, supported by the second assistant.)]

[FIG. 56.—Endoscopic view at the end of the second stage of direct laryngoscopy. Recumbent patient. Larynx exposed waiting for larynx to relax its spasmodic contraction.]

RULES FOR DIRECT LARYNGOSCOPY 1. The laryngoscope must always be held in the left hand, never in the right. 2. The operator's right index finger (never the left) should be used to retract the patient's upper lip so that there is no danger of pinching the lip between the instrument and the teeth. 3. The patient's head must always be exactly in the middle line, not rotated to the right or left, nor bent over sidewise; and the entire head must be forward with extension at the occipitoatloid joint only. 4. The laryngoscope is inserted to the right side of the anterior two-thirds of the tongue, the tip of the spatula being directed toward the midline when the posterior third of the tongue is reached. 5. The epiglottis must always be identified before any attempt is made to expose the larynx. 6. When first inserting the laryngoscope to find the epiglottis, great care should be taken not to insert too deeply lest the epiglottis be overridden and thus hidden. 7. After identification of the epiglottis, too deep insertion of the laryngoscope must be carefully avoided lest the spatula be inserted back of the arytenoids into the hypo-pharynx. 8. Exposure of the larynx is accomplished by pulling forward the epiglottis and the tissues attached to the hyoid bone, and not by prying these tissues forward with the upper teeth as a fulcrum. 9. Care must be taken to avoid mistaking the ary-epiglottic fold for the epiglottis itself. (Most likely to occur as the result of rotation of the patient's head.) 10. The tube should not be retained too long in place, but should be removed and the patient permitted to swallow the accumulated saliva, which, if the laryngoscope is too long in place, will trickle down the trachea and cause cough. (Swallowing is almost impossible while the laryngoscope is in position.) The secretions may be removed with the aspirator. 11. The patient must be instructed to breathe deeply and quietly without making a sound.

[88] Difficulties of Direct Laryngoscopy.—The larynx can be directly exposed in any patient whose mouth can be opened, although the ease varies greatly with the type of patient. Failure to expose the epiglottis is usually due to too great haste to enter the speculum all the way down. The spatula should glide slowly along the posterior third of the tongue until it reaches the glossoepiglottic fossa, while at the same time the tongue is lifted; when this is done the epiglottis will stand out in strong relief. The beginner is apt to insert the speculum too far and expose the hypopharynx rather than the larynx. The elusiveness of the epiglottis and its tendency to retreat downward are very much accentuated in patients who have worn a tracheotomic cannula; and if still wearing it, the patient can wait indefinitely before opening his glottis. Over extension of the patient's head is a frequent cause of difficulty. If the head is held high enough extension is not necessary, and the less the extension the less muscular tension there is in the anterior cervical muscles. Only one arytenoid eminence may be seen. The right and the left look different. Practice will facilitate identification, so that the endoscopist will at once know which way to look for the glottis.

Of the difficulties that pertain to the operator himself the greatest is lack of practice. He must learn to recognize the landmarks even though a high degree of spasm be present. The epiglottis and the two rounded eminences corresponding to the arytenoids must be in the mind's eye, for it is only on deep, relaxed inspiration that anything like a typical picture of the larynx will be seen. He must know also the right from the left arytenoid when only one is seen in order to know whether to move the lip of the laryngoscope to the right or the left for exposure of the interior of the larynx.

Instruments for Direct Laryngoscopy.—In undertaking direct laryngoscopy one must always be prepared for bronchoscopy, esophagoscopy, and tracheotomy, as well. Preparations for bronchoscopy are necessary because the pathological condition may not be found in the larynx, and further search of the trachea or bronchi may be required. A foreign body in the larynx may be aspirated to a deeper location and could only be followed with the bronchoscope. Sudden respiratory arrest might occur, from pathology or foreign body, necessitating the inserting of the bronchoscope for breathing purposes, and the insufflation of oxygen and amyl nitrite. Trachectomy might be required for dyspnea or other reasons. It might be necessary to explore the esophagus for conditions associated with laryngeal lesions, as for instance a foreign body in the esophagus causing dyspnea by pressure. In short, when planning for direct laryngoscopy, bronchoscopy, or esophagoscopy, prepare for all three, and for tracheotomy. A properly done direct laryngoscopy would never precipitate a tracheotomy in an unanesthetized patient; but direct laryngoscopy has to deal so frequently with laryngeal stenosis, that routine preparation for tracheotomy a hundred unnecessary times is fully compensated for by the certainty of preparedness when the rare but urgent occasion arises.

Direct Laryngoscopy in Children.—The epiglottis in children is usually strongly curled, often omega shaped, and is very elusive and slippery. The larynx of a child is very freely movable in the neck during respiration and deglutition, and has a strong tendency to retreat downward during examination, and thus withdraw the epiglottis after the arytenoids have been exposed. In following down with the laryngoscope the speculum is prone to enter the hypopharynx. Lifting in this location will expose the mouth of the esophagus and shut off the larynx, and may cause respiratory arrest. Practice, however, will soon develop a technic and ability to recognize the landmarks in state of spasm, so that on exposing the approximated arytenoid eminences the endoscopist will maintain his position and wait for the larynx to open. The procedure should be done without any form of anesthesia for the following reasons: 1. Anesthesia is unnecessary. 2. It is extremely dangerous in a dyspneic patient. 3. It is inadmissable in a patient with diphtheria. 4. If anesthesia is to be used, direct laryngoscopy will never reach its full degree of usefulness, because anesthesia makes a major procedure out of a minor one. 5. Cocain in children is dangerous, and its application more annoying than the examination.

Inducing a Child to Open its Mouth (Author's Method).—The wounding of the child's mouth, gums, and lips, in the often inefficacious methods with gags, hemostats, raspatories, etcetera, are entirely unnecessary. The mouth of any child not unconscious can be opened quickly and without the slightest harm by passing a curved probe between the clenched jaws back of the molars and down back of the tongue toward the laryngopharynx. This will cause the child to gag, when its mouth invariably opens.



[91] CHAPTER VIII—DIRECT LARYNGOSCOPY (Continued)

Technic of Laryngeal Operations.—Preparation of the patient and anesthesia have been mentioned under their respective chapters. The prime essential of successful laryngeal operations is perfect mastery of continuous left-handed laryngeal exposure. The right hand must be equally trained in the manipulation of forceps, and the right eye to gauge depth. Blood and secretions are best removed by a suction tube (Fig. 9) inserted through the laryngoscope, or directly into the pharynx outside the laryngoscope.

For the removal of benign growths the author's papilloma forceps, Fig. 29, or the laryngeal grasping forceps shown in Fig. 17 will prove more satisfactory than any form of cutting forceps. These growths should be removed superficially flush with the normal structure. The crushing of the base incident to the plucking off of the growth causes its recession. By this conservative method damage to the cords and impairment of the voice are avoided. For growths in the anterior portion of the larynx, and in fact for the removal of most small benign growths, the anterior commissure laryngoscope is especially adapted. Its shape allows its introduction into the vestibule of the larynx, and if desired it may be introduced through the glottic chink for the treatment of subglottic conditions. It will not infrequently be observed that a pedunculated subglottic growth which is found with difficulty will be pulled upward into view by the gauze swab introduced to remove secretions. The growth is then often held tightly between the approximated cords for a few seconds—perhaps long enough to grasp it with forceps.

[92] Removal of Growth from the Laryngeal Ventricle.—After exposing the larynx in the usual manner, if the head is turned strongly to the right, the tip of the laryngoscope, directed from the right side of the mouth, may be used to lift the left ventricular hand and thus expose the ventricle, from which a growth may be removed in the usual manner (Fig. 57). The right ventricle is exposed by working from the left side of the mouth.

[FIG. 57.-Schema illustrating the lateral method of exposing a growth in the ventricle of Morgagni, by bending the patient's head to the opposite side, while the second assistant externally fixes the larynx with his hand. M, Patient's mouth; T, thyroid cartilage; R, right side; L, left. V, B, ventricular band. C, C, vocal cord. The circular drawing indicates the endoscopic view obtainable by this method. The tube, E, is dropped to the corner of the mouth, B, and the tube is inserted down to R. The lip of the spatula can then be used to lift the ventricular band so as to expose more of the ventricle. The drawing shows an unusually shallow ventricle.]

Taking a Laryngeal Specimen for Diagnosis.—The diagnosis of carcinoma, sarcoma, and some other conditions can be made certain only by microscopic study of tissue removed from the growth. The specimen should be ample but will necessarily be small. If the suspected growth be small it should be removed entire, together with some of the basal tissues. If it is a large growth, and there are objections to its entire removal, the edge of the growth, including apparently normal as well as neoplastic tissue, is necessary. If it is a diffuse infiltrative process, a specimen should be taken from at least two locations. Tissue for biopsy is to be taken with the punch forceps shown in Fig. 28 or that in Fig. 33. The forceps may be inserted through the tube or from the angle of the mouth; the "extubal" method (see Fig. 58).

[FIG. 58.—Schema illustrating removal of a tumor from the upper part of the larynx by the author's "extubal" method for large tumors. The large alligator basket punch forceps, F, is inserted from the right corner of the mouth and the jaws are placed over the tumor, T, under guidance of the eye looking through the laryngoscope, L. This method is not used for small tumors. It is excellent for amputation of the epiglottis with these same punch forceps or with the heavy snare.]

Removal of large benign tumors above the cords may be done with the snare or with the large laryngeal punch forceps. Both are used in the extubal method.

Amputation of the epiglottis for palliation of odynophagia or dysphagia in tuberculous or malignant disease, is of benefit when the ulceration is confined to this region; though as to tuberculosis the author feels rather conservatingly inclined. Early malignancy of the extreme tip can be cured by such means. The function of the epiglottis seems to be to split the food bolus and direct its portions laterally into the pyriform sinuses, rather than to take any important part in the closure of the larynx. Following the removal of the epiglottis there is rarely complaint of food entering the larynx. The projecting portion of the epiglottis may be amputated with a heavy snare, or by means of the large laryngeal punch forceps (Fig. 33).

Endoscopic Operations for Laryngeal Stenosis.—Web formations may be excised with sliding punch forceps, or if the web is due to contraction only, incision of the true band may allow its retraction. In some instances liberation of adhesions will favor the formation of adventitious vocal cords. A sharp anterior commissure is a large factor in good phonation.

Endoscopic evisceration of the larynx will cure a few cases of laryngeal cicatricial stenosis, and should be tried before resorting to laryngostomy. A sliding punch forceps is used to remove all the tissue in the larynx out to the perichondrium, but care should be taken in cicatricial cases to avoid removing any part of either arytenoid cartilage. In cases of posticus paralysis the excision may include portions of the vocal processes of the arytenoids. Ventriculocordectomy is preferable to evisceration. The ventricular floor is removed with punch forceps (Fig. 33) first on one side, then after two months, on the other.

Vocal Results.—A whispering voice can always be had as long as air can pass through the larynx, and this may be developed to a very loud penetrating stage whisper. If the arytenoid motility has been uninjured the repeated pulls on the scar tissue may draw out adventitious bands and develop a loud, useful, though perhaps rough and inflexible voice.

Galvano-cauterization is the best method of treatment for chronic subglottic edema or hyperplasia such as is seen in children following diphtheria, when the stenosis produced prevents extubation or decannulation. The utmost caution should be used to avoid deep cauterizations; they are almost certain to set up perichondritis which will increase the stenosis. Some of the most difficult cases that have come to the author have been previously cauterized too deeply.

Galvano-cautery puncture of tuberculous infiltrations of the larynx at times yields excellent results in cases with mild pulmonary lesions, and has quite replaced the use of the curette, lactic acid, and other caustics. The direct method of exposing the larynx renders the application of the cautery point easy and accurate. In severely stenosed tuberculous larynges a tracheotomy should first be done, for though the reaction is slight it might be sufficient to close a narrowed glottis. The technic is the usual one for laryngeal operations. Local anesthesia suffices. The larynx is exposed. The rheostat having been previously adjusted to heat the electrode to nearly white heat, the circuit is broken and the electrode introduced cold. When the point is in contact with the desired location the current is turned on and the point thrust in as deeply as desired. Usually it should penetrate until a firm resistance is felt; but care must be used not to damage the cricoarytenoid joint. The circuit is broken at the instant of withdrawal. Punctures should be made as nearly as possible perpendicular to the surface, so as to minimize the destruction of epithelium and thus lessen the reaction. A minute gray fibrous slough detaches itself in a few days. Cautery puncture should be repeated every two or three weeks, selecting a new location each time, until the desired result is obtained. Great caution, as mentioned above, must be used to avoid setting up perichondritis. Many cases of laryngeal tuberculosis will recover as quickly by silence and a general antituberculous regime.

Radium, in form of capsules or of needles inserted in the tissues may be applied with great accuracy; but the author is strongly impressed with pyriform sinus applications by the Freer method.

After-care of endolaryngeal operations includes careful cleansing of the teeth and mouth; and if the extrinsic area of the larynx is involved in the wound, sterile liquid food and water should be given for four days. The patient should be watched for complications by a special nurse who is familiar with the signs of laryngeal dyspnea (q.v.). Complications during endolaryngeal operations are rare. Dyspnea may require tracheotomy. Idiosyncrasy to cocain, or the sight or taste of blood may nauseate the patient and cause syncope. Serious hemorrhage could occur only in a hemophile. The careless handling of a bite block might damage a frail tool or dental fixture.

Complications after endolaryngeal operations are unusual. Carelessness in asepsis has been known to cause cervical cellulitis. Emphysema of the neck has occurred. Edema of the larynx occasionally occurs, and might necessitate tracheotomy. Serious bleeding after operation is very rare except in bleeders. Hemorrhage within the larynx can be stopped by the introduction of a roll of gauze from above, tracheotomy having been previously performed. Morphin subcutaneously administered, has a constricting action on the vessels which renders it of value in controlling hemorrhage.



[97] CHAPTER IX—INTRODUCTION OF THE BRONCHOSCOPE

No one should do bronchoscopy until he is able to expose the glottis by left-handed direct laryngoscopy in less than one minute. When he has mastered this, one minute more should be sufficient to introduce the bronchoscope into the trachea.

TECHNIC OF BRONCHOSCOPY

Local anesthesia is usually employed in the adult. The patient is placed in the Boyce position shown in Fig. 51, with head and shoulders projecting over the edge of the table and supported by an assistant. The glottis is exposed by left-handed laryngoscopy. The instrument-assistant now inserts the distal end of the bronchoscope into the lumen of the laryngoscope, the handle being directed to the right in a horizontal position. The operator now grasps the bronchoscope, his eye is transferred from the laryngoscope to the bronchoscope, and the bronchoscope is advanced and so directed that a good view of the glottis is obtained. The slanted end of the bronchoscope should then be directed to the left, so as clearly to expose the left cord. In this position it will be found that the tip of the slanted end is in the center of the glottic chink and will slip readily into the trachea. No great force should be used, because if the bronchoscope does not go through readily, either the tube is too large a size or it is not correctly placed (Fig. 60). Normally, however, there is some slight resistance, which in cases of subglottic laryngitis may be considerable. The trained laryngologist will readily determine by sense of touch the degree of pressure necessary to overcome it. When the bronchoscope has been inserted to about the second or third tracheal ring, the heavy laryngoscope is removed by rotating the handle to the left, removing the slide, and withdrawing the instrument. Care must be taken that the bronchoscope is not withdrawn or coughed out during the removal of the laryngoscope; this can be avoided by allowing the ocular end to rest against the gown-covered chest of the operator. If preferred the operator may train his instrumental assistant to take off the laryngoscope, while the operator devotes his attention to preventing the withdrawal of the bronchoscope by holding the handle with his right hand. At the moment of insertion of the bronchoscope through the glottis, an especially strong upward lift on the beak of the spatula will facilitate the passage. It is necessary to be certain that the axis of the bronchoscope corresponds to the axis of the trachea, in order to avoid injury to the subglottic tissue which might be followed by subglottic edema (Fig. 47). If the subglottic region is already edematous and causes resistance, slight rotation to the laryngoscope, and bronchoscope will cause the bronchoscope to enter more easily.

[FIG. 59.—Insufflation anesthesia with Elsberg apparatus. Anesthetist has exposed the larynx and is about to introduce the silk-woven catheter. Note the full extension of the head on the table.]

[FIG. 60.—Schema illustrating the introduction of the bronchoscope through the glottis, recumbent patient. The handle, H, is always horizontally to the right. When the glottis is first seen through the tube it should be centrally located as at K. At the next inspiration the end B, is moved horizontally to the left as shown by the dart, M, until the glottis shows at the right edge of the field, C. This means that the point of the lip, B, is at the median line, and it is then quickly (not violently) pushed through into the trachea. At this same moment or the instant before, the hyoid bone is given a quick additional lift with the tip of the laryngoscope.]

[FIG. 61.—Schema illustrating oral bronchoscopy. The portion of the table here shown under the head is, in actual work, dropped all the way down perpendicularly. It appears in these drawings as a dotted line to emphasize the fact that the head must be above the level of the table during introduction of the bronchoscope into the trachea. A, Exposure of larynx; B, bronchoscope introduced; C, slide removed; D, laryngoscope removed leaving bronchoscope alone in position.]

Difficulties in the Introduction of the Bronchoscope.—The beginner may enter the esophagus instead of the trachea: this might be a dangerous accident in a dyspneic case, for the tube could, by pressure on the trachea, cause respiratory arrest. A bronchoscope thus misplaced should be resterilized before introducing it into the air passages, for while the lower air passages are usually free from bacteria, the esophagus is a septic canal. If the given technic is carefully carried out the bronchoscope will not be contaminated with mouth secretions. The trachea is recognized as an open tube, with whitish rings, and the expiratory blast can be felt and tubular breathing heard; while if by mistake the bronchoscope has entered the gullet it will be observed that the cervical esophagus has collapsed walls. A puff of air may be felt and a fluttering sound heard when the tube is in the esophagus, but these lack the intensity of the tracheal blast. Usually a free flow of secretion is met with in the esophagus. In diseased states the tracheal rings may not be visible because of swollen mucosa, or the trachea itself may be in partial collapse from external pressure. The true expiratory blast will, however, always be recognized when the tube is in the trachea. Wide gagging of the mouth renders exposure of the larynx difficult.

[FIG. 62.—Insertion of the bronchoscope. Note direction of the trachea as indicated by the bronchoscope. Note that the patient's head is held above the level of the table. The assistant's left hand should be at the patient's mouth holding the bite-block. This is removed and the assistant is on the wrong side of the table in the illustration in order not to hide the position of the operator's hands. Note the handle of the bronchoscope is to the right.]

[FIG. 63.—The heavy laryngoscope has been removed leaving the light bronchoscope in position. The operator is inserting forceps. Note how the left hand of the operator holds the tube lightly between the thumb and first two fingers of the left hand, while the last two fingers are hooked over the upper teeth of the patient "anchoring" the tube to prevent it moving in or out or otherwise changing the relation of the distal tube-mouth to a foreign body or a growth while forceps are being used. Thus, also, any desired location of the tube can be maintained in systematic exploration. The assistant's left hand is dropped out of the way to show the operator's method. The assistant during bronchoscopy holds the bite-block like a thimble on the index finger of the left hand, and the assistant should be on the right side of the patient. He is here put wrongly on the left side so as not to hide the instruments and the manner of holding them.]

Examination of the Trachea and Bronchi.—All bronchial orifices must be identified seriatim; because this is the only way by which the bronchoscopist can know what part of the tree he is examining. Appearances alone are not enough. It is the order in which they are exposed that enables the inexperienced operator to know the orifices. After the removal of the laryngoscope, the bronchoscope is to be held by the left hand like a billiard cue, the terminal phalanges of the left middle and ring fingers hooking over the upper teeth, while the thumb and index finger hold the bronchoscope, clamping it to the teeth tightly or loosely as required (Fig. 63). Thus the tube may be anchored in any position, or at any depth, and the right hand which was directing the tube may be used for the manipulation of instruments. The grasp of the bronchoscope in the right hand should be similar to that of holding a pen, that is, the thumb, first, and second fingers, encircle the shaft of the tube. The bronchoscope should never be held by the handle (Fig. 64) for this grasp does not allow of tactile sense transmission, is rigid, awkward, and renders rotation of the tube a wrist motion instead of but a gentle finger action. Any secretion in the trachea is to be removed by sponge pumping before the bronchoscope is advanced. The inspection of the walls of the trachea is accomplished by weaving from side to side and, if necessary, up and down; the head being deflected as required during the search of the passages, so that the larynx be not made the fulcrum in the lever-like action.

[FIG. 64.—At A is shown an incorrect manner of holding the bronchoscope. The grasp is too rigid and the position of the hand is awkward. B, Correct manner, the collar being held lightly between the finger and the thumb The thumb must not occlude the tube mouth.]

The Fulcrum of the Bronchoscopic Lever is at the Upper Thoracic Aperture; Never at the Larynx.—Disregard of this rule will cause subglottic edema and will limit the lateral motion of the tip of the bronchoscope. It is the function of the assistant to make the head and neck follow the direction of the proximal end of the bronchoscope and thus avoid any pressure on the larynx (see Peroral Endoscopy, Fig. 135, p. 164).

In passing down the trachea the following two rules must be kept in mind: 1. Before attempting to enter either main bronchus the carina must be identified. 2. Before entering either main bronchus the orifices of both should be identified and inspected. The carina is identified as a sharp vertical spur (recumbent patient) at the distal end of the trachea, on either side of which are the openings of the main bronchi. As the carina is situated to the left of the midline of the trachea, the lip of the bronchoscope should be turned toward the left, and slight lateral pressure should be made on the left tracheal wall while the head of the patient is held slightly to the right. This will expose the left bronchial orifice and carina.

Entering the Bronchi.—The lip of the bronchoscope should be turned in the direction of the bronchus to be explored, and the axis of the bronchoscope should be made to correspond as nearly as possible to the axis of this bronchus. The position of the lip is designated by the direction taken by the handle. Upon entering the right bronchus, the handle of the bronchoscope is turned horizontally to the right, and at the same time the assistant deflects the head to the left.

The right upper-lobe bronchus is recognized by its vertical spur; the orifice is exposed by displacing the right lateral wall of the right main bronchus at the level of the carina. Usually this orifice will be thus brought into view. If not the bronchoscope may be advanced downward 1 or 2 cm., carefully to avoid overriding. This branch is sometimes found coming off the trachea itself, and even if it does not, the overriding of the orifice is certain if the right bronchus is entered before search is made for the upper-lobe-bronchial orifice. The head must be moved strongly to the left in order to view the orifice. A lumen image of the right upper-lobe bronchus is not obtainable because of the sharp angles at which it is given off. The left upper-lobe bronchus is entered by keeping the handle of the bronchoscope (and consequently the lip) to the left, and, by keeping the head of the patient strongly to the right as the bronchoscopist goes down the left main bronchus. This causes the lip of the bronchoscope to bear strongly on the left wall of the left main bronchus, consequently the left upper-lobe-bronchial orifice will not be overridden. The spur separating the upper-lobe-bronchial orifice from the stem bronchus is at an angle approximately from two to eight o'clock, as usually seen in the recumbent patient. A lumen image of a descending branch of the upper-lobe bronchus is often obtained, if the patient's head be borne strongly enough to the right.

[FIG. 65.—Schema illustrating the entering of the anteriorly branching middle lobe bronchus. T, Trachea; B, orifice of left main bronchus at bifurcation of trachea. The bronchoscope, S, is in the right main bronchus, pointing in the direction of the right inferior lobe bronchus, I. In order to cause the lip to enter the middle lobe bronchus, M, it is necessary to drop the head so that the bronchoscope in the trachea TT, will point properly to enable the lip of the tube mouth to enter the middle lobe bronchus, as it is seen to have done at ML.]

Branches of the stem bronchus in either lung are exposed, or their respective lumina presented, by manipulation of the lip of the bronchoscope, with movement of the head in the required direction. Posterior branches require the head quite high. A large one in the left stem just below the left upper-lobe bronchus is often invaded by foreign bodies. Anterior branches require lowering the head. The middle-lobe bronchus is the largest of all anterior branches. Its almost horizontal spur is brought into view by directing the lip of the bronchoscope upward, and dropping the head of the patient until the lip bears strongly on the anterior wall of the right bronchus (see Fig. 65).



[106] CHAPTER X—INTRODUCTION OF THE ESOPHAGOSCOPE

The esophagoscope is to be passed only with ocular guidance, never blindly with a mandrin or obturator, as was done before the bevel-ended esophagoscope was developed. Blind introduction of the esophagoscope is equally as dangerous as blind bouginage. It is almost certain to cause over-riding of foreign bodies and disease. In either condition perforation of the esophagus is possible by pushing a sharp foreign body through the normal wall or by penetrating a wall weakened by disease. Landmarks must be identified as reached, in order to know the locality reached. The secretions present form sufficient lubrication for the instrument. A clear conception of the endoscopic anatomy, the narrowings, direction, and changes of direction of the axis of the esophagus, are necessary. The services of a trained assistant to place the head in the proper sequential "high-low" positions are indispensible (Figs. 52 and 70). Introduction may be divided into four stages. 1. Entering the right pyriform sinus. 2. Passing the cricopharyngeus. 3. Passing through the thoracic esophagus. 4. Passing through the hiatus.

The patient is placed in the Boyce position as described in Chapter VI. As previously stated, the esophagus in its upper portion follows the curves of the cervical and dorsal spine. It is necessary, therefore, to bring the cervical spine into a straight line with the upper portion of the dorsal spine and this is accomplished by elevation of the head—the "high" position (Figs. 66-71).

[PLATE III—ESOPHAGOSCOPIC VIEWS FROM OIL-COLOR DRAWINGS FROM LIFE, BY THE AUTHOR: 1, Direct view of the larynx and laryngopharynx in the dorsally recumbent patient, the epiglottis and hyoid bone being lifted with the direct laryngoscope or the esophageal speculum. The spasmodically adducted vocal cords are partially hidden by the over-hang of the spasmodically prominent ventricular hands. Posterior to this the aryepiglottic folds ending posteriorly in the arytenoid eminences are seen in apposition. The esophagoscope should be passed to the right of the median line into the right pyriform sinus, represented here by the right arm of the dark crescent. 2, The right pyriform sinus in the dorsally recumbent patient, the eminence at the upper left border, corresponds to the edge of the cricoid cartilage. 3, The cricopharyngeal constriction of the esophagus in the dorsally recumbent patient, the cricoid cartilage being lifted forward with the esophageal speculum. The lower (posterior) half of the lumen is closed by the fold corresponding to the orbicular fibers of the cricopharyngeus which advances spasmodically from the posterior wall. (Compare Fig. 10.) This view is not obtained with an esophagoscope. 4, Passing through the right pyriform sinus with the esophagoscope; dorsally recumbent patient. The walls seem in tight apposition, and, at the edges of the slit-like lumen, bulge toward the observer. The direction of the axis of the slit varies, and in some instances it is like a rosette, depending on the degree of spasm. 5, Cervical esophagus. The lumen is not so patulent during inspiration as lower down; and it closes completely during expiration. 6, Thoracic esophagus; dorsally recumbent patient. The ridge crossing above the lumen corresponds to the left bronchus. It is seldom so prominent as in this patient, but can always be found if searched for. 7, The normal esophagus at the hiatus. This is often mistaken for the cardia by esophagoscopists. It is more truly a sphincter than the cardia itself. In the author's opinion there is no truly sphincteric action at the cardia. It is the failure of this hiatal sphincter to open as in the normal deglutitory cycle that produces the syndrome called "cardiospasm." 8, View in the stomach with the open-tube gastroscope. The form of the folds varies continually. 9, Sarcoma of the posterior wall of the upper third of the esophagus in a woman of thirty-one years. Seen through the esophageal speculum, patient sitting. The lumen of the mouth of the esophagus, much encroached upon by the sarcomatous infiltration, is seen at the lower part of the circle. 10, Coin (half-dollar) wedged in the upper third of the esophagus of a boy aged fourteen years. Seen through the esophageal speculum, recumbent patient. Forceps are retracting the posterior lip of the esophageal "mouth" preparatory to removal. 11, Fungating squamous-celled epithelioma in a man of seventy-four years. Fungations are not always present, and are often pale and edematous. 12, Cicatricial stenosis of the esophagus due to the swallowing of lye in a boy of four years. Below tile upper stricture is seen a second stricture. An ulcer surrounded by an inflammatory areola and the granulation tissue together illustrates the etiology of cicatricial tissue. The fan-shaped scar is really almost linear, but it is viewed in perspective. Patient was cured by esophagoscopic dilatation. 13, Angioma of the esophagus in a man of forty years. The patient had hemorrhoids and varicose veins of the legs. 14, Luetic ulcer of the esophagus 26 cm. from the upper teeth in a woman of thirty-eight years. Two scars from healed ulcerations are seen in perspective on the anterior wall. Branching vessels are seen in the livid areola of the ulcers. 15, Tuberculosis of the esophagus in a man of thirty-four years. 16, Leukoplakia of the esophagus near the hiatus in a man aged fifty-six years.]

The hypopharynx tapers down to the gullet like a funnel, and the larynx is suspended in its lumen from the anterior wall. The larynx is attached only to the anterior wall, but is held closely against the posterior pharyngeal wall by the action of the inferior constrictor of the pharynx, and particularly by its specialized portion—the cricopharyngeus muscle. A bolus of food is split by the epiglottis and the two portions drifted laterally into the pyriform sinuses, the recesses seen on either side of the larynx. But little of the food bolus passes posterior to the larynx during the act of swallowing. It is through the pyriform sinus that the esophagoscope is to be inserted, thereby following the natural food passage. To insert the esophagoscope in the midline, posterior to the arytenoids, requires a degree of force dangerous to exert and almost certain to produce damage to the cricoarytenoid joint or to the pharyngeal wall, or to both.

The esophagoscope is steadied by the left hand like a billiard cue, the terminal phalanges of the left middle and ring fingers hooked over the upper teeth, while the left index finger and thumb encircle the tube and retract the upper lip to prevent its being pinched between the tube and upper teeth. The right hand holds the tube in pen fashion at the collar of the handle, not by the handle. During introduction the handle is to be pointed upward toward the zenith.

Stage I. Entering the Right Pyriform Sinus.—The operator standing (as in Fig. 66), inserts the esophagoscope along the right side of the tongue as far as and down the posterior pharyngeal wall. A lifting motion imparted to the tip of the esophagoscope by the left thumb will bring the rounded right arytenoid eminence into view (A, Fig. 69). This is the landmark of the pyriform sinus, and care must be taken to avoid injury by hooking the tube mouth over it or its fellow. The tip of the tube should now be directed somewhat toward the midline, remembering the funnel shape of the hypopharynx. It will then be found to glide readily through the right pyriform sinus for 2 or 3 cm., when it comes to a full stop, and the lumen disappears. This is the spasmodically closed cricopharyngeal constriction.

[FIG. 66.—Esophagoscopy by the author's "high-low" method. First stage. "High" position. Finding the right pyriform sinus. In this and the second stage the patient's vertex is about 15 cm. above the level of the table.]

Stage 2. Passing the cricopharyngeus is the most difficult part of esophagoscopy, especially if the patient is unanesthetized. Local anesthesia helps little, if at all. The handle of the esophagoscope is still pointing upward and consequently we are sure that the lip of the esophagoscope is directed anteriorly. Force must not be used, but steady firm pressure against the tonically contracted cricopharyngeus is made, while at the same time the distal end of the esophagoscope is lifted by the left thumb. At the first inspiration a lumen will usually appear in the upper portion of the endoscopic field. The tip of the esophagoscope enters this lumen and the slanted end slides over the fold of the cricopharyngeus into the cervical esophagus. There is usually from 1 to 3 cm. of this constricted lumen at the level of the cricopharyngeus and the subjacent orbicular esophageal fibers.

[109] [FIG. 67.—Schematic illustration of the author's "high-low" method of esophagoscopy. In the first and second stages the patient's head fully extended is held high so as to bring it in line with the thoracic esophagus, as shown above. The Rose position is shown by way of accentuation.]

[FIG. 68.—Schematic illustration of the anatomic basis for difficulty in introduction of the esophagoscope. The cricoid cartilage is pulled backward against the cervical spine, by the cricopharyngeus, so strongly that it is difficult to realize that the cricopharyngeus is not inserted into the vertebral periosteum instead of into the median raphe.]

[FIG. 69.—The upper illustration shows movements necessary for passing the cricopharyngeus.

The lower illustration shows schematically the method of finding the pyriform sinus in the author's method of esophagoscopy. The large circle represents the cricoid cartilage. G, Glottic chink, spasmodically closed; VB, ventricular band; A, right arytenoid eminence; P, right pyriform sinus, through which the tube is passed in the recumbent posture. The pyriform sinuses are the normal food passages.]

Stage 3. Passing Through the Thoracic Esophagus.—The thoracic esophagus will be seen to expand during inspiration and contract during expiration, due to the change in thoracic pressure. The esophagoscope usually glides easily through the thoracic esophagus if the patient's position is correct. After the levels of the aorta and left bronchus are passed the lumen of the esophagus seems to have a tendency to disappear anteriorly. The lumen must be kept in axial view and the head lowered as required for this purpose.

Stage 4. Passing Through the Hiatus Esophageus.—When the head is dropped, it must at the same time be moved horizontally to the right in order that the axis of the tube shall correspond to the axis of the lower third of the esophagus, which deviates to the left and turns anteriorly. The head and shoulders at this time will be found to be considerably below the plane of the table top (Fig. 71). The hiatal constriction may assume the form of a slit or rosette. If the rosette or slit cannot be promptly found, as may be the case in various degrees of diffuse dilatation, the tube mouth must be shifted farther to the left and anteriorly. When the tube mouth is centered over the hiatal constriction moderately firm pressure continued for a short time will cause it to yield. Then the tube, maintaining this same direction will, without further trouble glide into and through the abdominal esophagus. The cardia will not be noticed as a constriction, but its appearance will be announced by the rolling in of reddish gastric mucosal folds, and by a gush of fluid from the stomach.

[FIG. 70.—Schematic illustration of the author's "high-low" method of esophagoscopy, fourth stage. Passing the hiatus. The head is dropped from the position of the 1st and 2nd stages, CL, to the position T, and at the same time the head and shoulders are moved to the right (without rotation) which gives the necessary direction for passing the hiatus.]

[FIG. 71.—Esophagoscopy by the author's "high-low" method. Stage 4. Passing the hiatus The patient's vertex is about 5 cm. below the top of the table.]

Normal esophageal mucosa under proper illumination is glistening and of a yellowish or bluish pink. The folds are soft and velvety, rendering infiltration quickly noticeable. The cricoid cartilage shows white through the mucosa. The gastric mucosa is a darker pink than that of the esophagus and when actively secreting, its color in some cases tends toward crimson.

Secretions in the esophagus are readily aspirated through the drainage canal by a negative pressure pump. Food particles are best removed by "sponge pumping," or with forceps. Should the drainage canal become obstructed positive pressure from the pump will clear the canal.

Difficulties of Esophagoscopy.—The beginner may find the esophagoscope seemingly rigidly fixed, so that it can be neither introduced nor withdrawn. This usually results from a wedging of the tube in the dental angle, and is overcome by a wider opening of the jaws, or perhaps by easing up of the bite block, but most often by correcting the position of the patient's head. If the beginner cannot start the tube into the pyriform sinus in an adult, it is a good plan to expose the arytenoid eminence with the laryngoscope and then to insert the 7 mm. esophagoscope into the right pyriform sinus by direct vision. Passing the cricopharyngeal and hiatal spasmodically contracted narrowings will prove the most trying part of esophagoscopy; but with the head properly held, and the tube properly placed and directed, patient waiting for relaxation of the spasm with gentle continuous pressure will usually expose the lumen ahead. In his first few esophagoscopies the novice had best use general anesthesia to avoid these difficulties and to accustom himself to the esophageal image. In the first favorable subject—an emaciated individual with no teeth—esophagoscopy without anesthesia should be tried.

In cases of kyphosis it is a mistake to try to straighten the spine. The head should be held correspondingly higher at the beginning, and should be very slowly and cautiously lowered.

Once inserted, the esophagoscope should not be removed until the completion of the procedure, unless respiratory arrest demands it. Occasionally in stenotic conditions the light may become covered by the upwelling of a flood of fluid, and it will be thought the light has gone out. As soon as the fluid has been aspirated the light will be found burning as brightly as before. If a lamp should fail it is unnecessary to remove the tube, as the light carrier and light can be withdrawn and quickly adjusted. A complete instrument equipment with proper selection of instruments for the particular case are necessary for smooth working.

Ballooning Esophagoscopy.—By inserting the window plug shown in Fig. 6 the esophagus may be inflated and studied in the distended state. The folds are thus smoothed out and constrictions rendered more marked. Ether anesthesia is advocated by Mosher. The danger of respiratory arrest from pressure, should the patient be dyspneic, is always present unless the anesthetic be given by the intratracheal method. If necessary to use forceps the window cap is removed. If the perforated rubber diaphragm cap be substituted the esophagus can be reballooned, but work is no longer ocularly guided. The fluoroscope may be used but is so misleading as to render perforation and false passage likely.

Specular Esophagoscopy.—Inspection of the hypopharynx and upper esophagus is readily made with the esophageal speculum shown in Fig. 4. High lesions and foreign bodies lodged behind the larynx are thus discovered with ease, and such a condition as a retropharyngeal abscess which has burrowed downward is much less apt to be overlooked than with the esophagoscope. High strictures of the esophagus may be exposed and treated by direct visual bouginage until the lumen is sufficiently dilated to allow the passage of the esophagoscope for bouginage of the deeper strictures.

Technic of Specular Esophagoscopy.—Recumbent patient. Boyce position. The larynx is to be exposed as in direct laryngoscopy, the right pyriform sinus identified, the tip of the speculum inserted therein, and gently insinuated to the cricopharyngeal constriction. Too great extension of the head is to be avoided—even slight flexion at the occipito-atloid joint may be found useful at times. Moderate anterior or upward traction pulls the cricoid away from the posterior pharyngeal wall and the lumen of the esophagus opens above a crescentic fold (the cricopharyngeus). The speculum readily slides over this fold and enters the cervical esophagus. In searching for foreign bodies in the esophagus the speculum has the disadvantage of limited length, so that should the foreign body move downward it could not be followed.

Complications Following Esophagoscopy.—These are to be avoided in large measure by the exercise of gentleness, care, and skill that are acquired by practice. If the instructions herein given are followed, esophagoscopy is absolutely without mortality apart from the conditions for which it is done.

Injury to the crico-arytenoid joint may simulate recurrent paralysis. Posticus paralysis may occur from recurrent or vagal pressure by a misdirected esophagoscope. These conditions usually recover but may persist. Perforation of the esophageal wall may cause death from septic mediastinitis. The pleura may be entered,—pyopneumothorax will result and demand immediate thoracotomy and gastrostomy. Aneurysm of the aorta may be ruptured. Patients with tuberculosis, decompensating cardiovascular lesions, or other advanced organic disease, may have serious complications precipitated by esophagoscopy.

Retrograde Esophagoscopy.—The first step is to get rid of the gastric secretions. There is always fluid in the stomach, and this keeps pouring out of the tube in a steady stream. Fold after fold is emptied of fluid. Once the stomach is empty, the search begins for the cardial opening. The best landmark is a mark with a dermal pencil on the skin at a point corresponding to the level of the hiatus esophageus. When it is desired to do a retrograde esophagoscopy and the gastrostomy is done for this special purpose, it is wise to have it very high. Once the cardia is located and the esophagus entered, the remainder of the work is very easy. Bouginage can be carried out from below the same as from above and may be of advantage in some cases. Strictural lumina are much more apt to be concentric as approached from below because there has been no distortion by pressure dilatation due to stagnation of the food operating through a long period of time. At retrograde esophagoscopy there seems to be no abdominal esophagus and no cardia. The esophagoscope encounters only the diaphragmatic pinchcock which seems to be at the top of the stomach like the puckering string at the top of a bag.

Retrograde esophagoscopy is sometimes useful for "stringing" the esophagus in cases in which the patient is unable to swallow a string because he is too young or because of an epithelial scaling over of the upper entrance of the stricture. In such cases the smallest size of the author's filiform bougies (Fig. 40) is inserted through the retrograde esophagoscope (Fig. 43) and insinuated upward through the stricture. When the tip reaches the pharynx coughing, choking and gagging are noticed. The filiform end is brought out the mouth sufficiently far to attach a silk braided cord which is then pulled down and out of the gastrostomic opening. The braided silk "string" must be long enough so that the oral and the abdominal ends can be tied together to make it "endless;" but before doing so the oral end should be drawn through nose where it will be less annoying than in the mouth. The purpose of the "string" is to pull up the retrograde bougies (Fig. 35)



[117] CHAPTER XI—ACQUIRING SKILL

Endoscopic ability cannot be bought with the instruments. As with all mechanical procedures, facility can be obtained only by educating the eye and the fingers in repeated exercise of a particular series of maneuvers. As with learning to play a musical instrument, a fundamental knowledge of technic, positions, and landmarks is necessary, after which only continued manual practice makes for proficiency. For instance, efficient use of forceps requires that they be so familiar to the grasp that their use is automatic. Endoscopy is a purely manual procedure, hence to know how is not enough: manual practice is necessary. Even in the handling of the electrical equipment, practice in quickly locating trouble is as essential as theoretic knowledge. There is no mystery about electric lighting. No source of illumination other than electricity is possible for endoscopy. Therefore a small amount of electrical knowledge, rendered practical by practice, is essential to maintain the simple lighting system in working order. It is an insult to the intelligence of the physician to say that he cannot master a simple problem of electric testing involving the locating of one or more of five possibilities. It is simply a matter of memorizing five tests. It is repeated for emphasis that a commercial current reduced by means of a rheostat should never be used as a source of current for endoscopy with any kind of instrument, because of the danger to the patient of a possible "grounding" of the circuit during the extensive moist contact of a metallic endoscopic tube in the mediastinum. The battery shown in Fig. 8 should be used. The most frequent cause of trouble is the mistake of over-illuminating the lamps. The lamp should not be over-illuminated to the dazzling whiteness usually used in flash lights. Excessive illumination alters the proper perception of the coloring of the mucosa, besides shortening the life of the lamps. The proper degree of brightness is obtained when, as the current is increased, the first change from yellow to white light is obtained. Never turn up the rheostat without watching the lamp.

Testing for Electric Defects.—These tests should be made beforehand; not when about to commence introduction.

If the first lamp lights up properly, use it with its light-carrier to test out the other cords.

If the lamp lights up, but flickers, locate the trouble before attempting to do an endoscopy. If shaking the carrier cord-terminal produces flickering there may be a film of corrosion on the central contact of the light carrier that goes into the carrier cord-terminal.

If the lamp fails to show a light, the trouble may be in one of five places which should be tested for in the following order and manner. 1. The lamp may not be firmly screwed into the light-carrier. Withdraw the light-carrier and try screwing it in, though not too strongly, lest the central wire terminal in the lamp be bent over. 2. The light-carrier may be defective. 3. The cord may be defective or its terminals not tight in the binding posts. If screwing down the thumb nuts does not produce a light, test the light-carrier with lamp on the other cords. Reserve cords in each pair of binding posts are for use instead of the defective cords. The two sets of cords from one pair of binding posts should not be used simultaneously. 4. The lamp may be defective. Try another lamp. 5. The battery may be defective. Take a cord and light-carrier with lamp that lights up, detaching the cord-terminals at the binding posts, and attach the terminals to the binding posts of the battery to be tested.

Efficient use of forceps requires previous practice in handling of the forceps until it has become as natural and free from thought as the use of knife and fork. Indeed the coordinate use of the bronchoscopic tube-mouth and the forceps very much resembles the use of knife and fork. Yet only too often a practitioner will telegraph for a bronchoscope and forceps, and without any practice start in to remove an entangled or impacted foreign body from the tiny bronchi of a child. Failure and mortality are almost inevitable. A few hundred hours spent in working out, on a bit of rubber tubing, the various mechanical problems given in the section on that subject will save lives and render easily successful many removals that would otherwise be impossible.

It is often difficult for the beginner to judge the distance the forceps have been inserted into the tube. This difficulty is readily solved if upon inserting the forceps slowly into the tube, he observes that as the blades pass the light they become brightly illuminated. By this light reflex it is known, therefore, that the forceps blades are at the tube-mouth, and distance from this point can be readily gauged. Excellent practice may be had by picking up through the bronchoscope or esophagoscope black threads from a white background, then white threads from a black background, and finally white threads on a white background and black threads on a black background. This should be done first with the 9 mm. bronchoscope. It is to be remembered that the majority of foreign body accidents occur in children, with whom small tubes must be used; therefore, practice work, after say the first 100 hours, should be done with the 5 mm. bronchoscope and corresponding forceps rather than adult size tubes, so that the operator will be accustomed to work through a small calibre tube when the actual case presents itself.

[120] Cadaver Practice.—The fundamental principles of peroral endoscopy are best taught on the cadaver. It is necessary that a specially prepared subject be had, in order to obtain the required degree of flexibility. Injecting fluid of the following formula worked out by Prof. J. Parsons Schaeffer for the Bronchoscopic Clinic courses, has proved very satisfactory: Sodium carbonate—1 1/2 lbs. White arsenic—2 1/2 lbs. Potassium nitrate—3 lbs. Water—5 gal.

Boil until arsenic is dissolved. When cold add: Carbolic acid 1500 c.c. Glycerin 1250 c.c. Alcohol (95%) 1250 c.c.

For each body use about 3 gal. of fluid.

The method of introduction of the endoscopic tube, and its various positions can be demonstrated and repeatedly practiced on the cadaver until a perfected technic is developed in both the operator and assistant who holds the head, and the one who passes the instruments to the operator. In no other manner can the landmarks and endoscopic anatomy be studied so thoroughly and practically, and in no other way can the pupil be taught to avoid killing his patient. The danger-points in esophagoscopy are not demonstrable on the living without actually incurring mortality. Laryngeal growths may be simulated, foreign body problems created and their mechanical difficulties solved and practice work with the forceps and tube perfected.

Practice on the Rubber-tube Manikin.—This must be carried out in two ways. 1. General practice with all sorts of objects for the education of the eye and the fingers. 2. Before undertaking a foreign body case, practice should be had with a duplicate of the foreign body.

It is not possible to have a cadaver for daily practice, but fortunately the eye and fingers may be trained quite as effectually by simulating foreign body conditions in a small red rubber tube and solving these mechanical problems with the bronchoscope and forceps. The tubing may be placed on the desk and held by a small vise (Fig. 72) so that at odd moments during the day or evening the fascinating work may be picked up and put aside without loss of time. Complicated rubber manikins are of no value in the practice of introduction, and foreign body problems can be equally well studied in a piece of rubber tubing about 10 inches long. No endoscopist has enough practice on the living subject, because the cases are too infrequent and furthermore the tube is inserted for too short a space of time. Practice on the rubber tube trains the eye to recognize objects and to gauge distance; it develops the tactile sense so that a knowledge of the character of the object grasped or the nature of the tissues palpated may be acquired. Before attempting the removal of a particular foreign body from a living patient, the anticipated problem should be simulated with a duplicate of the foreign body in a rubber tube. In this way the endoscopist may precede each case with a practical experience equivalent to any number of cases of precisely the same kind of foreign body. If the object cannot be removed from the rubber tube without violence, it is obvious that no attempt should be made on the patient until further practice has shown a definite method of harmless removal. During practice work the value of the beveled lip of the bronchoscope and esophagoscope in solving mechanical problems will be evidenced. With it alone, a foreign body may be turned into favorable positions for extraction, and folds can always be held out of the way. Sufficient combined practice with the bronchoscope and the forceps enable the endoscopist easily to do things that at first seem impossible. It is to be remembered that lateral motion of the long slender tube-forceps cannot be controlled accurately by the handle, this is obtained by a change in position of the endoscopic tube, the object being so centered that it is grasped without side motion of the forceps. When necessary, the distal end of the forceps may be pushed laterally by the manipulation of the bronchoscope.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse