|
It is, at the same time, conceded that the view thus suggested cannot be accepted without qualification. If we carry our thoughts as far forward as palaeolithic implements carry them back, we are introduced, not to an absolute optimism, but to a relative optimism. The cosmic process brings about retrogression, as well as progression, where the conditions favor it. Only amid an infinity of modifications, adjusted to an infinity of changes of circumstances, do there now and then occur some which constitute an advance: other changes, meanwhile, caused in other organisms, usually not constituting forward steps in organization, and often constituting steps backward. Evolution does not imply a latent tendency to improve everywhere in operation. There is no uniform ascent from lower to higher, but only an occasional production of a form, which, in virtue of greater fitness for more complex conditions, becomes capable of a longer life of a more varied kind. And, while such higher type begins to dominate over lower types, and to spread at their expense, the lower types survive in habitats or modes of life that are not usurped, or are thrust into inferior habitats or modes of life in which they retrogress.
Mr. Spencer's examination of "The Principles of Sociology" has led him to the belief that what holds with organic types must hold also with types of society. Social evolution throughout the future, like social evolution throughout the past, must, while producing, step after step, higher societies, leave outstanding many lower. Varieties of men adapted here to inclement regions, there to regions that are barren, and elsewhere to regions unfitted, by ruggedness of surface or insalubrity, for supporting large populations, will, in all probability, continue to form small communities of simple structures. Moreover, during future competitions among the higher races, there will probably be left, in the less desirable regions, minor nations formed of men inferior to the highest; at the same time that the highest overspread all the great areas which are desirable in climate and fertility. But while the entire assemblage of societies thus fulfils the law of evolution by increase of heterogeneity,—while within each of them contrasts of structure, caused by differences of environments and entailed occupations, cause unlikenesses implying further heterogeneity, we may infer that the primary process of evolution—integration—which, up to the present time, has been displayed in the formation of larger and larger nations, will eventually reach a still higher stage, and bring yet greater benefits. As when small tribes were welded into great tribes, the head chief stopped inter-tribal warfare; as, when small feudal governments became subject to a king, feudal wars were prevented by him,—so, in time to come, a federation of the highest nations, exercising supreme authority (already foreshadowed by occasional agreements among "the Powers"), may, by forbidding wars between any of its constituent nations, put an end to the re-barbarization which is continually undoing civilization.
When, eventually, this peace-maintaining federation has been formed, Mr. Spencer looks for effectual progress towards that equilibrium between constitution and conditions,—between inner faculties and outer requirements,—implied by the final stage of human evolution. Adaptation to the social state, now perpetually hindered by anti-social conflict, may then go on unhindered; and all the great societies, in other respects differing, may become similar in those cardinal traits which result from complete self-ownership of the unit, and from exercise over him of nothing more than passive influence by the aggregate. On the one hand, by continual repression of aggressive instincts and by continual exercise of feelings which prompt ministration to public welfare, and, on the other hand, by the lapse of restraints gradually becoming less necessary, there will be produced, in Mr. Spencer's forecast, a kind of man so constituted that, while fulfilling his own desires, he will fulfil also the social needs. Already, small groups of men, shielded by circumstances from external antagonisms, have been moulded into forms of moral nature so superior to our own that the account of their goodness almost savors of romance; and it is reasonable to infer that what has even now happened on a small scale may, under kindred conditions, ultimately happen on a large scale. Prolonged studies, showing among other things the need for certain qualifications above indicated, but also revealing facts like that just named, have not caused our author to recede from the belief expressed nearly fifty years ago that "the ultimate man will be one whose private requirements coincide with public ones. He will be that manner of man who, in spontaneously fulfilling his own nature, incidentally performs the functions of a social unit; and yet is only enabled so to fulfil his own nature by all others doing the like."
Before taking leave of the "Principles of Sociology," we should caution the reader against a misconception that might seem, at first sight, to find some warrant in the following remark of a sympathetic reviewer: "Like Aristotle, he [Mr. Spencer] has had to delegate large portions of his work to be done for him by others." As our author has himself pointed out in "Facts and Comments," the reviewer's reference will be rightly interpreted by those who know that the work delegated by Aristotle to others was simply the collection of materials for his Natural History, not the classification of those materials, much less the drawing of inductions from them. As not one reader in ten knows this, however, wrong impressions are likely to be made by the reviewer's remark. Mr. Spencer's name being especially associated with the "Synthetic Philosophy," the sentence quoted will suggest to many the thought that large portions of that work were written by deputy. This, of course, the reviewer did not mean to say. The work to which he referred is entitled "Descriptive Sociology, or groups of sociological facts, classified and arranged by Herbert Spencer, compiled and abstracted by David Duncan, Richard Scheppig and James Collier," eight parts of which have thus far appeared. Knowing that he should be unable to read all the works of travel and history containing the facts he should need when dealing with the science of society, Mr. Spencer engaged these gentlemen—first one, then two, then three—to read up for him and arrange the extracts they made in a manner prescribed. With much material he had himself accumulated in the course of many years, our author incorporated a much larger amount of material derived from the compilations just mentioned when writing the "Principles of Sociology."
VI.
It is the two volumes entitled the "Principles of Ethics" to which we shall lastly invite attention. The six parts of which this work is composed were published in an irregular manner. Part I., presenting the data of ethics, was issued in 1879; Part IV., a treatise on "Justice," in 1891; Parts II. and III., which set forth respectively the inductions of ethics and the ethics of individual life, and which, along with Part I., form the first volume, were issued in 1892; Parts V. and VI., which treat respectively of negative beneficence and positive beneficence, were issued in 1893, and, along with Part IV., constitute the second volume. With regard to the "Principles of Ethics," considered as a whole, it should be noted that the author was prompted to prepare the work, notwithstanding the ill health by which he was incessantly interrupted, by the conviction that the establishment of rules of conduct on a scientific basis is a pressing need. Now that moral injunctions are losing the authority given by their supposed sacred origin, the secularization of morals is becoming imperative. Those who reject the current creed appear to assume that the controlling agency conferred by it may safely be thrown aside. On the other hand, those who defend the current creed allege that, in the absence of the guidance it yields, no guidance can exist, divine commandments being, in their opinion, the only possible guides. Dissenting from both of these beliefs, Mr. Spencer has had for his primary purpose in the two volumes under review to show that, apart from any supposed supernatural basis, the principles of ethics have a natural basis. In these two volumes this natural basis is set forth, and its corollaries are elaborated. If the conclusions to which the general law of evolution introduces us are not in all cases as definite as might be wished, yet our author submits that they are more definite than those to which we are introduced by the current creed. Complete definiteness is not, of course, to be expected. Right regulation of the actions of so complex a being as man, living under conditions so complex as those presented by a society, evidently forms a subject-matter unlikely to admit of specific statements throughout its entire range.
The principal inductions drawn from the data collected in the first of these volumes may be set forth in a few sentences. Multitudinous proofs are brought forward of the fact that the ethical sentiment prevailing in different societies, and in the same society under different conditions, are sometimes diametrically opposed. In Europe and in the United States to have committed a murder disgraces for all time a man's memory, and disgraces for generations all who are related to him. By the Pathans, however, a contrary sentiment is displayed. One who had killed a Mellah (priest) and failed to find refuge from the avengers, said at length: "I can but be a martyr; I will go and kill a Sahib." He was hanged after shooting a sergeant, perfectly satisfied "at having expiated his offence." The prevailing ethical sentiment in England is such that a man who should allow himself to be taken possession of and made an unresisting slave would be regarded with scorn; but the people of Drekete, a slave-district of Fiji, "said it was their duty to become food and sacrifices for the chiefs," and that "they were honored by being considered adequate to such a noble task." Less extreme, though akin in nature, is the contrast between the feelings which the history of Englishmen has recorded within a few centuries. In Elizabeth's time, Sir John Hawkins initiated the slave-trade, and, in commemoration of the achievement, was allowed to put in his coat-of-arms: "a demi-moor proper, bound with a cord,"—the honorableness of his action being thus assumed by himself, and recognized by Queen and public. At the present day, on the other hand, the making slaves of men, called by Wesley "the sum of all villanies," is regarded in England with detestation; and for many years the British government maintained a fleet to suppress the slave-trade. Again, peoples who have emerged from the primitive family-and-clan organization, hold that one who is guilty of a crime must himself bear the punishment, and it is thought extreme injustice that the punishment should fall upon any one else. The remote ancestors of the English people thought and felt differently, as do still the Australians, whose "first great principle with regard to punishment is that all the relatives of a culprit, in the event of his not being found, are implicated in his guilt: the brothers of the criminal conceive themselves to be quite as guilty as he is." Then, too, among civilized peoples the individualities of women are so far recognized that the life and liberty of a wife are not supposed to be bound up with those of her husband; and she now, having obtained a right to exclusive possession of property, contends for complete independence, domestic and political. It is, or was, otherwise in Fiji. The wives of the Fijian chiefs consider it a sacred duty to suffer strangulation on the deaths of their husbands. A woman who had been rescued by an Englishman "escaped during the night, and, swimming across the river, and presenting herself to her own people, insisted upon the completion of the sacrifice which she had in a moment of weakness reluctantly consented to forego." Another foreign observer tells of a Fijian woman who loaded her rescuer "with abuse, and ever afterwards manifested the most deadly hatred towards him." In England and on the Continent the religious prohibition of theft and the legal punishment of it are joined with a strong social reprobation, so that the offence of a thief is never condoned. In Beloochistan, on the other hand, quite contrary ideas and feelings are current. There "a favorite couplet is to the effect that the Biloch who steals and murders, secures Heaven to seven generations of ancestors." In England and the United States reprobation of untruthfulness is strongly expressed, alike by the gentleman and the laborer. In many parts of the world it is not so. In Blantyre, for example, according to MacDonald, "to be called a liar is rather a compliment." Once more: English sentiment is such that the mere suspicion of incontinence on the part of a woman is enough to blight her life; but there are peoples whose sentiments entail no such effect, and, in some cases, a reverse effect is produced: "Unchastity is, with the Wetyaks, a virtue." It seems, then, that in respect of all the leading divisions of human conduct, different races of men, and the same races at different stages, entertain opposite beliefs, and display opposite feelings.
In Mr. Spencer's opinion, the evidence here brought to a focus ought to dissipate once for all the belief in a moral sense, as commonly entertained. A long experience of mankind, however, prevents him from indulging in such an expectation. Among men at large, lifelong convictions are not to be destroyed either by conclusive arguments or multitudinous facts. Only to those who are not by creed or cherished theory committed to the hypothesis of a supernaturally created human species will the evidence above summed up prove that the human mind has no originally implanted conscience. Mr. Spencer himself at one time espoused the doctrine of the intuitive moralists, but it has gradually become clear to him that the qualifications required practically obliterate the doctrine as enunciated by them. It has become clear to him, in other words, that if among civilized folk the current belief is that a man who robs and does not repent will be eternally damned, while an accepted proverb among the Bilochs is, that "God will not favor a man who does not steal and rob," it is impossible to hold that men have in common an innate perception of right and wrong.
At the same time, while the inductions drawn by Mr. Spencer from the data of ethics show that the moral-sense doctrine in its original form is not true, they also show that it adumbrates a truth, and a much higher truth. For the facts cited, chapter after chapter, unite in proving that the sentiments and ideas current in each society become adjusted to the kinds of activity predominating in it. A life of constant external enmity generates a code in which aggression, conquest, revenge, are inculcated, while peaceful occupations are reprobated. Conversely, a life of settled internal amity generates a code inculcating the virtues conducing to harmonious co-operation,—justice, honesty, veracity, regard for others' claims. The implication is that, if the life of internal amity continues unbroken from generation to generation, there must result not only the appropriate code, but the appropriate emotional nature,—a moral sense adapted to the moral requirements. Men so conditioned will acquire to the degree needful for complete guidance that innate conscience which the intuitive moralists erroneously supposed to be possessed by mankind at large. There needs but a continuance of absolute peace externally and a rigorous insistence on non-aggression internally, to insure the moulding of men into a form naturally characterized by all the virtues. This general induction is re-enforced by especial induction. Now as displaying this high trait of nature, now as displaying that, Mr. Spencer has instanced various uncivilized peoples who, inferior to us in other respects, are morally superior to us. He has also pointed out that such peoples are, one and all, free from inter-tribal antagonisms. The peoples showing this connection between external and internal peacefulness on the one hand, and superior morality on the other, are of various races. In the Indian Hills are found some who are by origin Mongolian, Kelarian, Dravidian; in the forests of Malacca, Burma, and in secluded parts of China exist such tribes of yet other bloods; in the East Indian archipelago are some belonging to the Papuan stock; in Japan there are the amiable Ainos, who have no traditions of internecine strife; and in North Mexico exists yet another such people unrelated to the rest, the Pueblos. Our author holds that no more conclusive proof could be wished than that supplied by these isolated groups of men, who, widely remote in locality and differing in race, are alike in the two respects that circumstances have long exempted them from war, and that they are now organically good. May we not reasonably infer, asks Mr. Spencer, in conclusion, that the state reached by these small, uncultured tribes may be reached by the great cultured nations, when the life of internal amity shall be unqualified by the life of external enmity?
We bring to an end our review of the "Synthetic Philosophy" by pointing out that the ethical doctrine constituting the culmination of the system which is set forth in the "Principles of Ethics" is fundamentally a corrected and elaborated version of the doctrine propounded in "Social Statics" issued as long ago as 1850. The correspondence between the two works is shown not only by the coincidence of their constructive divisions, but also by the agreement of their cardinal ideas. As in the one, so in the other, Man, in common with lower creatures, is held to be capable of indefinite change by adaptation to conditions. In both he is regarded as undergoing transformation from a nature appropriate to his aboriginal wild life, to a nature appropriate to a settled civilized life; and in both this transformation is described as a moulding into a form fitted for harmonious co-operation. In both works, too, this moulding is said to be effected by the repression of certain primitive traits no longer needed, and the development of needful traits. As in the first work, so in this last, the great factor in the progressive modification is shown to be sympathy. It was contended in "Social Statics," as it is contended in the "Principles of Ethics," that harmonious social co-operation implies that limitation of individual freedom which results from sympathetic regard for the freedoms of others; and that the law of equal freedom is the law in conformity to which equitable individual conduct and equitable social arrangements co-exist. Mr. Spencer's theory in 1850 was, as his theory still is, that the mental products of Sympathy which constitute what is called "the moral sense," arise as fast as men are disciplined into social life; and that along with them arise intellectual perceptions of right human relations, which become clearer as the form of social life becomes better. Further, in the earlier work it was inferred, as it is inferred in the latest, that there is being effected a conciliation of individual natures with social requirements; so that there will eventually be achieved the greatest individuation, along with the greatest mutual dependence,—an equilibrium of such kind that each, in fulfilling the wants of his own life, will aid in fulfilling the wants of all other lives. We observe, finally, that, in the first work, there were drawn essentially the same corollaries respecting the rights of individuals and their relations to the State that are drawn in the "Principles of Ethics."
A word may be said in conclusion about the difference between the relation of Mr. Spencer on the one hand and Darwin on the other to the thought of the Nineteenth Century. The fact is not to be lost sight of that the principles of the Evolutionary, or, as Mr. Spencer prefers to term it, the Synthetic, philosophy were formulated before the publication of the "Origin of Species." What the ultimately general acceptance of the theory propounded in Darwin's work did for Mr. Spencer was precisely this: it greatly strengthened the biological evidence for the evolutionary hypothesis. That hypothesis was upheld, however, by evidence drawn not merely from biology, but from many other sources. Moreover, while the Darwinian theory of natural selection, supplemented as it was by the adoption of the Lamarkian factors,—the effect of use and disuse and the assumed transmissibility of acquired character,—merely attempted to explain the mode in which the changes in organic life have taken place upon the earth, the evolutionary hypothesis put forth by Mr. Spencer professed to be applicable to the whole sphere of the knowable. It is further to be borne in mind that Mr. Spencer has devoted a large part of his life to tracing in detail the applications of his fundamental principles to social, political, religious, and ethical phenomena. Darwin, on the other hand, strictly confined himself to the biological field, and left to disciples the task of indicating the bearing of the Darwinian theory upon sociology, theology, and morals.
AUTHORITIES.
The Complete Works of Herbert Spencer (The Synthetic Philosophy).
Also, "Facts and Comments," by Herbert Spencer (Appleton's).
John Fiske's "Outlines of Cosmic Philosophy."
F.H. Collins's "Epitome of the Synthetic Philosophy."
A.D. White's "Herbert Spencer: The Completion of the Synthetic Philosophy."
CHARLES ROBERT DARWIN.
1809-1882;
HIS PLACE IN MODERN SCIENCE.
BY MAYO W. HAZELTINE.
There is no doubt that, by the judgment of a large majority of scientists, the place of pre-eminence in the history of science during the nineteenth century should be assigned to Charles Robert Darwin. The theory associated with his name deserves to be called epoch-making. The Darwinian hypothesis, indeed, should not be confounded with the cosmic theory of Evolution which was formulated earlier and independently by Herbert Spencer, and supported by many arguments drawn from sources outside the field of natural history. The specific merit of the Darwinian hypothesis is that it furnishes a rational and almost universally accepted explanation of the mode in which changes have taken place in the development of organic life upon the earth. With the possible cosmical applications of his theory Darwin did not concern himself, though the bearing of his hypothesis upon wider problems was at once discerned, and has been set forth by Spencer and others. Before stating, however, the conclusions at which Darwin arrived in his "Origin of Species," the "Descent of Man," and other writings, and before indicating the extent to which these conclusions have been adopted, we should say a word about his interesting, amiable, and exemplary personality. Concerning his private life, there is no lack of information. He himself wrote an autobiographical sketch which has been amplified by his son Francis Darwin, and supplemented with numerous extracts from his correspondence.
I.
Charles Robert Darwin was born at Shrewsbury, Feb. 12, 1809. His mother was a daughter of Josiah Wedgwood, the well-known Staffordshire potter, and his father, Dr. Robert Waring Darwin, was a son of Erasmus Darwin, celebrated in the eighteenth century as a physician, a naturalist, and a poet. It is a curious fact that in some of his speculations Erasmus Darwin anticipated the views touching the evolution of organic life subsequently announced by Lamarck, and ultimately incorporated by Charles Darwin in the theory that bears his name. The only taste kindred to natural history which Dr. Darwin possessed in common with his father and his son was a love of plants. The garden of his house in Shrewsbury, where Charles Darwin spent his boyhood, was filled with ornamental trees and shrubs, as well as fruit-trees.
When Charles Darwin was about eight years old, he was sent to a day-school, and it seems that even at this time his taste for natural history, and especially for collecting shells and minerals, was well developed. In the summer of 1818 he entered Dr. Butler's great school in Shrewsbury, well known to the amateur makers of Latin verse by the volume entitled "Sabrinae Corolla." He expressed the opinion in later life that nothing could have been worse for the development of his mind than this school, as it was strictly classical, nothing else being taught except a little ancient biography and history. During his whole life he was singularly incapable of mastering any language. With respect to science, he continued collecting minerals with much zeal, and after reading White's "Selborne" he took much pleasure in watching the habits of birds. Towards the close of his school life he became deeply interested in chemistry, and was allowed to assist his elder brother in some laboratory experiments. In October, 1825, he proceeded to Edinburgh University, where he stayed for two years. He found the lectures intolerably dull, with the exception of those on chemistry. Curiously enough, while walking one day with a fellow-undergraduate, the latter burst forth in high admiration of Lamarck and his views on evolution. So far as Darwin could afterwards judge, no impression was made upon his own mind. He had previously read his grandfather's "Zooenomia," in which similar views had been propounded, but no discernible effect had been produced upon him. Nevertheless, it is probable enough that the hearing rather early in life such views maintained and praised may have favored his upholding them under a different form in the "Origin of Species."
While at Edinburgh, Darwin was a member of the Plinian Society, and read a couple of papers on some observations in natural history. After two sessions had been spent at Edinburgh, Darwin's father perceived that the young man did not like the thought of being a physician, and proposed that he should become a clergyman. In pursuance of this proposal, he went to the University of Cambridge in 1828, and three years later took a B.A. degree. In his autobiography the opinion is expressed that at Cambridge his time was wasted. It was there, however, that he became intimately acquainted with Professor Henslow, a man of remarkable acquirements in botany, entomology, chemistry, mineralogy, and geology. During his last year at Cambridge Darwin read with care and interest Humboldt's "Personal Narrative," and Sir John Herschel's "Introduction to the Study of Natural Philosophy." These books influenced him profoundly, arousing in him a burning desire to make even the most humble contribution to the structure of natural science. At Henslow's suggestion he began the study of biology, and in 1831 accompanied Professor Sedgwick in the latter's investigations amongst the older rocks in North Wales.
It was Professor Henslow who secured for young Darwin the appointment of naturalist to the voyage of the "Beagle." This voyage lasted from Dec. 27, 1831, to Oct. 2, 1836. The incidents of this voyage will be found set forth in Darwin's "Public Journeys." The observations made by him in geology, natural history, and botany gave him a place of considerable distinction among scientific men. In 1844 he published a series of observations on the volcanic islands visited during the voyage of the "Beagle," and two years later "Geological Observations on South America." These two books, together with a volume entitled "Coral Reefs," required four and a half years' steady work. In October, 1846, he began the studies embodied in "Cirripedia" (barnacles). The outcome of these studies was published in two thick volumes. The time came when Darwin doubted whether the work was worth the consumption of the time employed, but probably it proved of use to him when he had to discuss in the "Origin of Species" the principles of a natural classification. From September, 1854, and during the four ensuing years, Darwin devoted himself to observing and experimenting in relation to the transmutation of species, and in arranging a huge pile of notes upon the subject. As early as October, 1838, it had occurred to him as probable, or at least possible, that amid the struggle for existence which everywhere goes on in the animal world, favorable variations would tend to be preserved, and unfavorable ones to be destroyed. The result would be the formation of new species.
It was not until June, 1842, however, that Darwin allowed himself the satisfaction of writing a very brief abstract of his theory in thirty-five pages. This was enlarged two years later into one of 230 pages. Early in 1856, Sir Charles Lyell, the well-known geologist, advised him to write out his views upon the subject fully, and Darwin began to do so on a scale three or four times as extensive as that which was afterwards followed in his "Origin of Species." He got through about half the work on this scale. His plans were overthrown, owing to the curious circumstance that, in the summer of 1858, Mr. Alfred E. Wallace, who was then in the Malay archipelago, sent him an essay "On the Tendency of Varieties to depart indefinitely from the Original Type." It turned out upon perusal that this essay contained exactly the same theory as that which Darwin was engaged in elaborating. Mr. Wallace expressed the wish that, if Darwin thought well of the essay, he should send it to Lyell. It was Sir Charles Lyell and Sir Joseph Hooker who insisted that Darwin should allow an abstract from his manuscript, together with a letter to Prof. Asa Gray, dated Sept. 5, 1857, to be published at the same time with Wallace's essay. Darwin was unwilling to take this course, being then unacquainted with Mr. Wallace's generous disposition. As a matter of fact, the joint productions excited very little attention, and the only published notice of them asserted that what was new in them was false, and that what was true was old. From the indifference evinced to the papers which first propounded the theory of natural selection, Darwin drew the inference that it is necessary for any new view to be explained at considerable length in order to obtain the public ear.
In September, 1858, Darwin, at the earnest advice of Lyell and Hooker, set to work to prepare a volume on the transmutation of species. The book cost him more than thirteen months' hard labor. It was published in November, 1859, under the title of "Origin of Species." This, which Darwin justly regarded as the chief work of his life, was from the first highly successful. The first edition was sold on the day of publication, and the book was presently translated into almost every European tongue. Darwin himself attributed the success of the "Origin" in large part to his having previously written two condensed sketches, and to his having finally made an abstract of a much larger manuscript, which itself was an abstract. By this winnowing process he had been enabled to select the more striking facts and conclusions. As to the current assertion that the "Origin" succeeded because the subject was in the air, or because men's minds were prepared for it, Darwin was disposed to doubt whether this was strictly true. In previous years he had occasionally sounded not a few naturalists, and had never come across a single one who seemed to doubt about the permanence of species. Probably men's minds were prepared in this sense, that innumerable well-verified facts were stored away in the memories of naturalists, ready to take their proper places as soon as any theory which would account for them should be strongly supported. Darwin himself thought that he gained much by a delay in publishing, from about 1839, when the "Darwinian" theory was clearly conceived, to 1859; and that he lost nothing, because he cared very little whether men attributed most originality to him or to Wallace.
Darwin's "Variation of Animals and Plants under Domestication" was begun in 1860, but was not published till 1868. The book was a big one, and cost him four years and two months' hard labor. It gives in the first volume all his personal observations, and an immense number of facts, collected from various sources, about domestic productions, animal and vegetable. In the second volume the causes and laws of variation, inheritance, etc., are discussed. Towards the end of the work is propounded the hypothesis of Pangenesis, which has been generally rejected, and which the author himself looked upon as unverified, although by it a remarkable number of isolated facts could be connected together and rendered intelligible.
The "Descent of Man" was published in February, 1871. Touching this work, Darwin has told us that, as soon as he had become (in 1837 or 1838) convinced that species were mutable productions, he could not avoid the belief that man must come under the same law. Accordingly, he collected notes on the subject for his own satisfaction, and not for a long time with any intention of publishing. In the "Origin of Species," the derivation of any particular species is never discussed; but in order that no honorable man should accuse him of concealing his views, Darwin had thought it best to add that by that work, "light would be thrown on the origin of man and his history." It would have impeded the acceptance of the theory of natural selection if Darwin had paraded, without giving any evidence, his conviction with respect to man's origin. When he found, however, that many naturalists accepted his doctrine of the evolution of species, it seemed to him advisable to work up such notes as he possessed, and to publish a special treatise on the origin of man. He was the more glad to do so, as it gave him an opportunity of discussing at length sexual selection, a subject which had always interested him.
Darwin's book on the "Expression of Emotion in Men and Animals" was published in the autumn of 1872. This had been intended to form a chapter on the subject in the "Descent of Man," but as soon as Darwin began to put his notes together he saw that it would require a separate treatise. In July, 1875, appeared the book on "Insectivorous Plants." The fact that a plant should secrete, when properly excited, a fluid containing an acid and ferment closely analogous to the digestive fluid of an animal, was certainly a remarkable discovery. In the autumn of 1876 appeared "The Effects of Cross and Self Fertilization," a work in which are described the endless and wonderful contrivances for the transportation of pollen from one plant to another of the same species. About the same time was brought out an enlarged edition of the "Fertilization of Orchids," originally published in 1862. Among the minor works issued during the later years of Darwin's life may be mentioned particularly the little book on "The Formation of Vegetable Mould through the Action of Worms." This was the outgrowth of a short paper read before the Geological Society more than fourteen years before.
In order to appreciate the enormous amount of research accomplished by Charles Darwin, it is needful to keep in mind the conditions of ill-health under which almost continually he worked. For nearly forty years he never knew one day of the health of ordinary men. His life was one long struggle against the weariness and drain of sickness. During his last ten years there were signs of amendment in several particulars, but a loss of physical vigor was apparent. Writing to a friend in 1881, he complained that he no longer had the heart or strength to begin any prolonged investigations. In February and March, 1882, he frequently experienced attacks of pain in the region of the heart, attended with irregularity of the pulse. On April 18 he fainted, and was brought back to consciousness with great difficulty. He seemed to recognize the approach of death, and said, "I am not the least afraid to die." On the afternoon of Wednesday, April 19, he passed away. On April 26 he was interred in Westminster Abbey. The funeral was attended by representatives of France, Germany, Italy, Spain, and Russia, and by delegates of the universities and learned societies of which he had been a member. Among the pall-bearers were Sir John Lubbock, Sir Joseph Hooker, Professor Huxley, Mr. A.R. Wallace, Mr. James Russell Lowell, the Duke of Argyll, and the Duke of Devonshire. The grave is appropriately placed in the north aisle of the nave, only a few feet from the last resting-place of Sir Isaac Newton.
II.
An outline of Darwin's personality would not be complete without a glance at some of his mental characteristics, and at his attitude toward religion. Of his intellectual powers, he himself speaks with extraordinary modesty in his autobiography. He points out that he always experienced much difficulty in expressing himself clearly and concisely, but he opines that this very difficulty may have had the compensating advantage of forcing him to think long and intently about every sentence, and thus enabling him to detect errors in reasoning and in his own observations, or in those of others. He disclaimed the possession of any great quickness of apprehension or wit, such as distinguished Huxley. He protested, also, that his power to follow a long and purely abstract train of thought was very limited, for which reason he felt certain that he never could have succeeded with metaphysics or mathematics. His memory, too, he described as extensive, but hazy. So poor in one sense was it that he never could remember for more than a few days a single date or a line of poetry. On the other hand, he did not accept as well founded the charge made by some of his critics that, while he was a good observer, he had no power of reasoning. This, he thought, could not be true, because the "Origin of Species" is one long argument from the beginning to the end, and has convinced many able men. No one, he submits, could have written it without possessing some power of reasoning. He was willing to assert that "I have a fair share of invention, and of common sense or judgment, such as every fairly successful lawyer or doctor must have, but not, I believe, in any higher degree." He adds humbly that perhaps he was "superior to the common run of men in noticing things which easily escape attention, and in observing them carefully."
Writing in the last year of his life, he expressed the opinion that in two or three respects his mind had changed during the preceding twenty or thirty years. Up to the age of thirty or beyond it poetry of many kinds gave him great pleasure. Formerly, too, pictures had given him considerable, and music very great, delight. In 1881, however, he said: "Now for many years I cannot endure to read a line of poetry; I have tried lately to read Shakspeare, and found it so intolerably dull that it nauseated me. I have also almost lost my taste for pictures or music. Music generally sets me thinking too energetically of what I have been at work on, instead of giving me pleasure. I retain some taste for fine scenery, but it does not cause me the exquisite delight which it formerly did." Darwin was convinced that the loss of these tastes was not only a loss of happiness, but might possibly be injurious to the intellect, and more probably to the moral character, by enfeebling the emotional side of one's nature. So far as he could judge, his mind had become in his later years a kind of machine for grinding general laws out of large collections of facts, and that atrophy had taken place in that part of the brain on which the higher aesthetic tastes depend. Curiously enough, however, he retained his relish for novels, and for books on history, biography, and travels.
It is well known that Darwin was extremely reticent with regard to his religious views. He believed that a man's religion was essentially a private matter. Repeated attempts were made to draw him out upon the subject, and some of these were partially successful. Writing to a Dutch student in 1873, he said: "I may say that the impossibility of conceiving that this grand and wondrous universe, with our conscious selves, arose through chance seems to me the chief argument for the existence of God; but whether this is an argument of real value I have never been able to decide. I am aware that if we admit a First Cause, the mind still craves to know whence it came and how it arose. Nor can I overlook the difficulty from the immense amount of suffering through the world. I am also induced to defer to a certain extent to the judgment of the many able men who have fully believed in God; but here again I see how poor an argument this is. The safest conclusion seems to me that the whole subject is beyond the scope of man's intellect; but man can do his duty." To questions put by a German student in 1879, he replied: "Science has nothing to do with Christ, except in so far as the habit of scientific research makes a man cautious in admitting evidence. For myself I do not believe that there ever has been any revelation. As for a future life, every man must judge for himself between conflicting vague probabilities." In the same year he told another correspondent: "In my most extreme fluctuations I have never been an atheist in the sense of denying the existence of a God. I think that generally (and more and more as I grow older), but not always, that an Agnostic would be the more correct description of my state of mind." His latest view is indicated in a letter dated July 3, 1881. Here he expressed the "inward conviction that the universe is not the result of chance." He adds, however: "But, then, with me the horrid doubt always arises whether the convictions of man's mind, which has been developed from the mind of the lower animals, are of any value, or at all trustworthy. Would any one trust the convictions in a monkey's mind, if there are any convictions in such a mind?" The Duke of Argyll has recorded the few words on the subject spoken by Darwin in the last year of his life. The Duke said that it was impossible to look at the wonderful contrivances for certain purposes in nature, and fail to recognize that they were the effect and the expression of mind. Darwin looked at the Duke very hard, and said, "Well, that often comes over me with overwhelming force; but at other times"—here he shook his head vaguely—"it seems to go away."
III.
We pass to a consideration of Darwin's masterworks, the "Origin of Species," the "Variation of Animals and Plants under Domestication," and the "Descent of Man." Before indicating the conclusions reached in the first of these works, we should point out to what extent Darwin had been preceded by dissenters from the belief once almost universally entertained by biologists that species were independently created, and, once created, were immutable. Lamarck was the first naturalist whose divergent views upon the subject excited much attention. In writings published at various dates from 1801 to 1815, he upheld the doctrine that all species, including man, are descended from other species. He pronounced it probable that all changes in the organic, as well as in the inorganic world, were the result of law, and not of miraculous interposition. He seems to have been led to his opinion that the change of species had been gradual by the difficulty experienced in distinguishing species from varieties by the almost perfect gradation of forms in certain groups, and by the analogy of domestic productions. With respect to the means of modification, he attributed something to the direct action of the physical conditions of life, something to the crossing of already existing forms, and much to use and disuse, or, in other words, to the effect of habit. Finally, he held that characters acquired by an existing individual might be transmitted to its offspring.
In 1813 Dr. W.C. Wells read before the Royal Society "An Account of a White Female, Part of whose Skin resembles that of a Negro." In this paper the author distinctly recognized the principle of natural selection, but applied it only to the races of man, and in man only to certain characters. After remarking that negroes and mulattoes enjoy an immunity from certain tropical diseases, he observed, first, that all animals tend to vary in some degree, and, secondly, that agriculturalists improve their domesticated animals by selection. He added that what is done in the latter case by art seems to be done with equal efficacy, though more slowly, by nature in the formation of varieties of mankind fitted for the countries which they inhabit. Again in 1831 Mr. Patrick Matthew published a work on "Naval Timber and Arboriculture," in which he put forth precisely the same view concerning the origin of species as that propounded by Mr. Wallace and by Darwin. Unfortunately for himself, the view was cursorily suggested in scattered passages of an appendix to a work on a different subject, so that it remained unnoticed until Mr. Matthew himself drew attention to it in 1860, after the publication of the "Origin of Species." We observe finally that Mr. Herbert Spencer, in an essay published in 1852, and republished six years later, contrasted the theories of the creation and the development of organic beings. He argued from the analogy of domestic productions, from the changes which the embryos of many species undergo, from the difficulty of distinguishing species and varieties, and from the principle of general gradation, that species have been modified; and he attributed the modification to the change of circumstances.
The two volumes comprising the "Origin of Species" constitute, as the author said, one long argument. It is, of course, impossible in the space at our command to recapitulate in detail even the leading facts and inferences which are brought forward to prove that species have been modified during a long course of descent. We must confine ourselves to a succinct statement of the author's general conclusions. What he undertakes to prove is that the modification of species during a long course of descent has been effected chiefly through the natural selection of numerous successive slight favorable variations, aided in an important manner by the inherited effects of the use and disuse of parts; and in an unimportant manner,—that is, in relation to adaptive structures, whether past or present, by the direct action of external conditions, and by variations which seem to us, in our ignorance, to arise spontaneously. It should be observed that Darwin does not attribute the modification exclusively to natural selection. What he asserts is: "I am convinced that natural selection has been the main, but not the exclusive, means of modification." He submits that a false theory would hardly explain in so satisfactory a manner as does the theory of natural selection the several large classes of facts marshalled in the two volumes now under review. If it be objected that this is an unsafe method of arguing, Darwin rejoins that it is a method usual in judging of the common events of life, and has often been used by the greatest natural philosophers. The undulatory theory of light, for instance, has thus been arrived at; and the belief in the revolution of the earth on its own axis was, until lately, supported by scarcely any direct evidence. It is no valid objection to the Darwinian theory of the origin of species that science as yet throws no light on the far higher problem of the essence or origin of life. Neither has any one explained what is the essence of the attraction of gravity, though nobody now objects to following out the results consequent on this unknown element of attraction.
Why, it may be asked, did nearly all the most eminent naturalists and geologists until recently decline to believe in the mutability of species? Darwin replies that the belief that species were immutable productions was almost unavoidable as long as the history of the world was thought to be of short duration. Even now that we have acquired some idea of the lapse of time, men are too apt to assume without proof that the geological record is so perfect that it would have afforded plain evidence of the mutation of species if they had really undergone mutation. The chief cause, however, of the once-prevalent unwillingness to admit that one species has given birth to other and distinct species is the fact that men are slow to admit great changes of which they do not see the steps. The difficulty is the same which was experienced by many geologists when Lyell first insisted that long lines of inland cliffs had been formed and great valleys excavated, not by catastrophes, but by the slow-moving agencies which we see still at work. The human mind cannot grasp the full meaning of the term of even a million years; cannot add up and perceive the full effects of many slight variations accumulated during an almost infinite number of generations.
When the first edition of the "Origin of Species" was published in 1859, Darwin wrote that he by no means expected to convince experienced naturalists whose minds were stocked with a multitude of facts, all regarded during a long course of years from a point of view directly opposite to his. He looked forward with confidence, however, to the future, to young and rising naturalists, who would be able to view both sides of the question with impartiality. He predicted that, when the conclusions reached by him and by Mr. Wallace concerning the origin of species should be generally accepted, there would be a considerable revolution in natural history. Naturalists, for instance, would be forced to acknowledge that the only distinction between species and well-marked varieties is that the latter are known or believed to be connected at the present day by intermediate gradations, whereas species were formerly, though they are not now, thus connected. It might thus come to pass that forms generally acknowledged in 1859 to be merely varieties, would thereafter be thought worthy of specific names; in which case scientific and common language would come into accordance. In short, Darwin looked forward to the time when species would have to be treated in the same manner as genera are treated by those naturalists who admit that genera are merely artificial combinations made for convenience.
Darwin also foresaw that when his theory of the origin of species should be adopted, other and more general departments of natural history would rise greatly in interest. The terms used by naturalists—such terms as affinity, relationship, community of type, paternity, morphology, adaptive characters, rudimentary and abortive organs, etc.—would cease to be metaphorical, and would have a plain signification. "When," he wrote, "we no longer look at an organic being as a savage looks at a ship, as something wholly beyond his comprehension; when we regard every production of nature as one which has had a long history; when we contemplate every complex structure and instinct as the summing up of many contrivances, each useful to the possessor, in the same way as any great mechanical invention is the summing up of the labor, the experience, the reason, and even the blunders of numerous workmen; when we thus view each organic being, how far more interesting—I speak from experience—does the study of natural history become." Once more: "When we can feel assured that all the individuals of the same species, and all the closely allied species of most genera, have within a not very remote period descended from one parent, and have migrated from some one birthplace; and when we better know the many means of migration, then, by the light which geology now throws, and will continue to throw, on former changes of climate and of the level of the land, we shall surely be enabled to trace in an admirable manner the former migrations of the inhabitants of the whole world."
When Darwin published the "Origin of Species," he was aware that theologians and philosophers seemed to be fully satisfied with the view that each species had been independently created, and was immutable. To his own mind, however, it accorded better with what was known of the laws impressed on matter by the Creator that the production and extinction of the past and present inhabitants of the world should have been due to secondary causes like those determining the birth and death of the individual. "When I view," he said, "all beings not as special creations, but as the lineal descendants of some few beings which lived long before the first bed of the Cambrian system was deposited, they seem to me to become ennobled." And again: "As all the living forms of life are the lineal descendants of those which lived long before the Cambrian epoch, we may feel certain that the ordinary succession by generation has never once been broken, and that no cataclysm has desolated the whole world. Hence we may look with some confidence to a secure future of great length. And as natural selection works slowly by and for the good of each being, all corporeal and mental endowments will tend to progress towards perfection."
For his own part, Darwin could see no good reason why the views propounded in the two volumes comprising the "Origin of Species" should shock the religious feelings of any one. Touching the likelihood of such a result, he reassured himself by recalling the fact that the greatest discovery ever made by man—namely, the law of the attraction of gravitation—was attacked by Leibnitz "as subversive of natural, and inferentially, of revealed, religion." Darwin was confident that, if any such impressions were made by his theory, they would prove but transient, and that ultimately men would come to see that it is just as noble a conception of the Deity to believe that He created a few original forms capable of self-development into other and needful forms as to believe that it required the fresh act of creation to supply the voids caused by the action of His laws.
IV.
It was, as we have said, in 1868 that Darwin published the two volumes collectively entitled "Variation of Animals and Plants under Domestication." It is the second and largely corrected edition brought out in 1875 which we have under our eye. It is the outcome of the views maintained by the author in this work and elsewhere that not only the various domestic races but the most distinct genera and orders within the same great class—for instance, mammals, birds, reptiles, and fishes—are all the descendants of one common progenitor, and the whole vast amount of difference between these forms has primarily arisen from simple variability. Darwin recognized that he who for the first time should consider the subject under this point of view would be struck dumb with amazement. He submits, however, that the amazement ought to be lessened when we reflect that beings almost infinite in number during an almost infinite lapse of time have often had their whole organization rendered in some degree plastic, and that each slight modification of structure which was in any way beneficial under excessively complex conditions of life has been preserved, whilst each which was in any way injurious has been rigorously destroyed. The long-continued accumulation of beneficial variations will infallibly have led to structures as diversified, as beautifully adapted for various purposes, and as excellently co-ordinated as we see in the animals and plants around us. Hence Darwin regards selection as the paramount power, whether applied by man to the formation of domestic beings or by nature to the production of species. Employing a favorite metaphor, he said: "If an architect were to rear a noble and commodious edifice without the use of cut stone, by selecting from the fragments at the base of a precipice wedge-form stones for his arches, elongated stones for his lintels, and flat stones for his roof, we should admire his skill and regard him as the paramount power. Now, the fragments of stone, though indispensable to the architect, bear to the edifice built by him the same relation which the fluctuating variations of organic beings bear to the varied and admirable structures ultimately acquired by their modified descendants."
Some critics of the Darwinian theory of the origin of species have declared that natural selection explains nothing, unless the precise cause of each slight individual difference be made clear. Darwin rejoins that if it were explained to a savage utterly ignorant of the art of building how the edifice had been raised, stone upon stone, and why wedge-formed fragments were used for the arches, flat stones for the roof, etc.; and if the use of each part and of the whole building were pointed out,—it would be unreasonable if he declared that nothing had been made clear to him, because the precise cause of the shape of each fragment could not be told. This, in Darwin's opinion, is a nearly parallel case, with the objection that selection explains nothing because we know not the cause of each individual difference in the structure of each being. The shape of the fragments of stone at the base of the hypothetical precipice may be called accidental, but the term is not strictly applicable; for the shape of each depends on a long sequence of events, all obeying natural laws; on the nature of the rock, on the lines of deposition or cleavage, on the form of the mountain, which depends on its upheaval and subsequent denudation, and, lastly, on the storm or earthquake which throws down the fragments.
In regard to the use, however, to which the fragments may be put, their shape may be strictly said to be accidental. Here Darwin acknowledged that we are brought face to face with a great difficulty in alluding to which he felt that he was travelling beyond his proper province. "An omniscient Creator must have foreseen every consequence which results from the laws imposed by Him. But can it be reasonably maintained that the Creator intentionally ordered, if we use the words in any ordinary sense, that certain fragments of rock should assume certain shapes, so that the builder might erect his edifice? If the various laws which have determined the shape of each fragment were not predetermined for the builder's sake, can it be maintained with any greater probability that He specially ordained for the sake of the breeder each of the innumerable variations in our domestic animals and plants,—many of these variations being of no service to man, and not beneficial, far more often injurious, to the creatures themselves? Did He ordain that the crop and tail-feathers of the pigeon should vary in order that the fancier might make his grotesque pouter and fan-tail breeds? Did He cause the frame and mental qualities of the dog to vary in order that a breed might be formed of indomitable ferocity with jaws fitted to pin down the bull for man's brutal sport?"
It is obvious, however, that if we give up the principle in one case,—if we do not admit that the variations of the primeval dog were intentionally guided in order that the greyhound, for instance, that perfect image of symmetry and vigor, might be formed,—no shadow of reason can be assigned for the belief that variations similar in nature and the result of the same general laws which have been the groundwork through natural selection of the formation of the most perfectly adapted animals in the world, man included, were intentionally and specially guided. Darwin, therefore, was unable to follow the distinguished botanist, Prof. Asa Gray, in his belief that "variation has been led along certain beneficial lines," like a stream "along definite and useful lines of irrigation." Darwin's conclusion was that, if we assume that each particular variation was from the beginning of all time preordained, then that plasticity of organization which leads to many injurious deviations of structure, as well as the redundant power of reproduction which inevitably leads to a struggle for existence, and, as a consequence, to a natural selection or survival of the fittest, must appear to us superfluous laws of nature.
V.
Next to the "Origin of Species," the volume which sets forth Darwin's theory of the "Descent of Man" naturally excited the most widespread attention. This book, which took the author three years to write, was published in 1871, a second and carefully revised edition appearing three years later. The data brought together occupy more than six hundred pages. The conclusions reached may be summed up in a few paragraphs. The principal induction from the evidence is that man is descended from some less highly organized form. It was Darwin's conviction that the grounds upon which this conclusion rests will never be shaken, for the close similarity between man and the lower animals in embryonic development, as well as in innumerable points of structure and constitution, both of high and of the most trifling importance,—the rudiments which he retains and the abnormal reversions to which he is occasionally liable,—are facts which cannot be disputed. Viewed in the light of our knowledge of the whole organic world, their meaning is unmistakable. The great principle of evolution stands out clear and firm when these groups of facts are considered in connection with others, such as the mutual affinities of the members of the same group, their geographical distribution in past and present times, and their geological succession. It is pronounced incredible that all these facts should speak falsely. He who is not content to look like a savage at the phenomena of nature as disconnected cannot any longer believe that man is the product of a separate act of creation. He will be forced to admit that the close resemblance of the embryo of man to that, for instance, of a dog,—the construction of his skull, limbs, and whole frame on the same plan with that of other mammals, independently of the uses to which the parts may be put; the occasional reappearance of various structures, for instance, of several muscles which man does not normally possess, but which are common to the Quadrumana, and a crowd of analogous facts,—all point in the plainest manner to the conclusion that man is the co-descendant with other mammals of a common progenitor.
Darwin recognized that the high standard of our intellectual powers and moral disposition constitutes the greatest difficulty which presents itself after we have been driven by the mass of biological evidence to accept his conclusion as to the origin of man. Touching this point, he observes: "Every one who admits the principle of evolution must see that the mental powers of the higher animals, which are the same in kind with those of man, though so different in degree, are capable of advancement. Thus the interval between the mental powers of one of the higher apes and of a fish, or between those of an ant and scale-insect, is immense; yet their development does not offer any special difficulty, for with our domesticated animals the mental faculties are certainly variable, and the variations are inherited. No one doubts that their mental faculties are of the utmost importance to animals in a state of nature. Therefore the conditions are favorable for their development through natural selection. The same conclusion may be extended to man; the intellect must have been all-important to him, even at a very remote period, as enabling him to invent and use language, to make weapons, tools, traps, etc., whereby, with the aid of his social habits, he long ago became the most dominant of all living creatures."
It is further pointed out that a great stride in the development of man's intellect must have followed as soon as the half-art and half-instinct of language came into use; for the continued use of language must have reacted on the brain, and produced an inherited effect, and this again will have reacted on the improvement of language. The largeness of the brain in man relatively to his body, compared with the size of that organ in the lower animals, is attributable in chief part to the early use of some simple form of language, that engine which affixes signs to all sorts of objects and qualities, and excites trains of thought which would never arise from the mere impression of the senses, or, if they did arise, could not be followed out. The higher intellectual powers of man, such as those of ratiocination, abstraction, self-consciousness, etc., probably follow from the continued improvement and exercise of the other mental faculties.
How man's moral qualities came to be developed is an interesting problem which is considered by Darwin at some length. He holds that their foundation lies in the social instincts under which term are included family ties. These instincts are highly complex, and, in the case of the lower animals, give special tendencies toward certain definite actions. But the more important elements are love and the distinct emotion of sympathy. Animals endowed with the social instincts take pleasure in one another's company, warn one another of danger, defend and aid one another in many ways. These instincts do not extend to all the individuals of the species, but only to those of the same community. As, however, they are highly beneficial to the species, they have in all probability been acquired through natural selection. In Darwin's judgment the moral nature of man has reached its present standard partly through the advancement of his reasoning powers, and consequently, of a just public opinion, but especially from his sympathies having been rendered more tender and widely diffused through the effects of habit, example, instruction, and reflection. It is pronounced not improbable that, after long practice, virtuous tendencies may be inherited.
Let us look a little more closely at the matter, for the difficulty of explaining morality forms one of the greatest obstacles to the acceptance of the Darwinian account of the descent of man. What do we mean by a moral being? Manifestly, a moral being is one who is capable of reflecting on his past actions and their motives, and of approving of some while he disapproves of others. Man is the one being who certainly deserves this designation, though attempts have recently been made to show that a rudimentary morality may be traced in some of the lower animals. In the fourth chapter of the book before us, Darwin undertakes to demonstrate that the moral sense follows,—first, from the enduring and ever-present nature of the social instincts; secondly, from man's appreciation of the approbation and disapprobation of his fellows; and, thirdly, from the high activity of his mental faculties, with past impressions extremely vivid; in these latter respects he differs from the lower animals. Owing to this condition of mind, man cannot avoid looking both backwards and forwards, and comparing past impressions. Hence, after some temporary desire or passion has mastered his social instincts, he reflects and compares the now weakened impression of such past impulses with the ever-present social instincts; and he then feels that sense of dissatisfaction which all unsatisfied instincts leave behind them, and resolves to act differently for the future. This dissatisfaction Darwin would identify with conscience. Any instinct permanently stronger or more enduring than another gives rise to a feeling which we express by saying that it ought to be obeyed. Darwin suggests that a pointer dog, if able to reflect on his past conduct, would say to himself I ought (as indeed we say of him) to have pointed at that hare, and not have yielded to the passing temptation of hunting it.
The belief in God has often been advanced as not only the greatest, but the most decisive, of all the distinctions between man and the lower animals. Darwin brings forward in the book before us a quantity of reasons for holding it to be impossible that this belief is innate or instinctive in man. In some races of men, for instance, we encounter a total want of the idea of God. On the other hand, a belief in all-pervading spiritual agencies seems to be universal, and apparently follows from a considerable advance in man's reason, and from a still greater advance in the faculties of imagination, curiosity, and wonder. "I am aware," says Darwin, "that the assumed instinctive belief in God has been used by many persons as an argument for His existence. But this is a rash argument, as we should thus be compelled to believe in the existence of many cruel and malignant spirits only a little more powerful than man; for the belief in them is far more general than in a beneficent deity. The idea of a universal and beneficent Creator does not seem to arise in the mind of man until he has been elevated by long-continued culture."
How does the belief in the advancement of man from some low organized form bear on the belief in the immortality of the soul? Sir John Lubbock has proved that the barbarous races of man possess no clear belief of the kind; but, as Darwin continually reminds us, arguments derived from the primeval beliefs of savages are of little or no avail on either side of a question. Attention is directed by Darwin to the more relevant fact that few persons feel any anxiety from the impossibility of determining at what precise period in the development of the individual, from the first trace of a minute germinal vesicle, man becomes an immortal being. He submits that there should be no greater cause for anxiety because the period cannot possibly be determined in the gradually ascending organic scale.
Darwin was well aware that the conclusions arrived at in the work before us—namely, that man is descended from some lowly organized form—would be highly distasteful to many. The very persons, however, who regard the conclusions with distaste admit without hesitation that they are descended from barbarians. Darwin recalls the astonishment which he himself felt on first seeing a party of Fuegians on a wild and broken shore, when the reflection rushed upon his mind that such men had been his ancestors. These men were absolutely naked and bedaubed with paint, their long hair was tangled, their mouths frothed with excitement, and their expression was wild, startled, and distrustful. They possessed hardly any arts, and, like wild animals, lived on what they could catch; they had no government, and were merciless to every one not of their own small tribe. Remembering the impression made on him by the Fuegians, Darwin suggests that he who has seen a savage in his native land will not feel much shame if forced to acknowledge that the blood of some more humble creature flows in his veins. "For my own part," he says, "I would as soon be descended from that heroic little monkey who braved his dreaded enemy in order to save the life of his keeper,—or from that old baboon, who, descending from the mountains, carried away in triumph his young comrade from a crowd of astonished dogs,—as from a savage who delights to torture his enemies, offers up bloody sacrifices, practises infanticide without remorse, treats his wives like slaves, knows no decency, and is haunted by the grossest superstitions." Darwin holds, in fine, that man may be excused for feeling some pride at having risen, though not through his own exertions, to the very summit of the organic scale; it is further submitted that the fact of his having thus risen, instead of having been aboriginally placed there, may give him hope for a still higher destiny in the distant future.
As a scientist, however, Darwin is not concerned with hopes or fears, but simply with the truth, as man's reason enables him to discern it. We must recognize, he thinks, as the truth, established by an overwhelming array of inductive evidence, that man, with all his noble qualities, with sympathy which he feels for the most debased, with benevolence which extends not only to other men, but to the humblest living creature, with his godlike intellect, which has penetrated into the movements and constitution of the solar system—with all these exalted powers—man still bears in his bodily frame the indelible stamp of his lowly origin.
VI.
We have said that Darwin's theory of the origin of species, together with its corollary, the descent of man, has met with almost universal acceptance by scientists. We have to use the qualifying adverb, because some of Darwin's contemporaries, including Virchow and Owen, not to mention St. George Mivart and the Duke of Argyll, have withheld their adhesion. Since his death, moreover, his disciples have tended to split into two schools. On the one hand, Weismann has rejected the Lamarckian factors,—the effect of use and disuse upon organs, and the transmissibility of acquired characters. The importance of these factors has been emphatically re-asserted, on the other hand, by Lankester and others. Whether biologists, however, range themselves in the Neo-Darwinian or in the Neo-Lamarckian camp, the value of the principle of natural selection is acknowledged by all, and nobody now asserts the independent creation and permanence of species.
AUTHORITIES.
The Complete Works of Darwin, published by D. Appleton and Company.
The Works of Alfred Russel Wallace.
Francis Darwin's "Life of Charles Darwin."
Huxley's Writings, passim.
Haeckel's "Natural History of Creation."
Weismann's "Studies in the Theory of Descent" and subsequent papers.
Romanes's "Scientific Evidences of Organic Evolution."
Lankester's "Degeneration."
Fiske's "Darwinism and Other Essays."
For adverse criticism of Darwin, read Mivart's "Genesis of Species," and the Duke of Argyll's "Unity of Nature."
JOHN ERICSSON.
1803-1889.
NAVIES OF WAR AND COMMERCE.
BY W.F. DURAND, PH.D.
The exact combination of inspiration, heredity, and environment which serves to produce genius will perhaps ever be a problem beyond the skill of human intelligence. When the rare elements do combine, however, the result is always worthy of most careful study, both because great achievements furnish a healthy stimulus to emulation, and because some glimpse may be gained of Nature's working in the formation of her rarest products.
Few lives better illustrate these remarks than that of John Ericsson. Born of middle-class parentage and with no apparent source of heredity from which to draw the stores of genius which he displayed throughout his life, and with surroundings in boyhood but little calculated to awaken and inspire the life-work which later made him famous, from this beginning and with these early surroundings John Ericsson became unquestionably the greatest of the engineers of the age in which he lived and of the century which witnessed such mighty advances along all engineering lines. The imprint left by Ericsson's life on the engineering practice of his age was deep and lasting, and if one may dare look into the future, the day is far removed when engineers will have passed beyond their dependence on his life and labors.
It is perhaps not amiss that, before looking more closely at the achievements of Ericsson's life and activity, note should be taken of the large dependence of our present civilization and mode of life on the engineer and his work.
In different ages of the world's history each has received its name, appropriate or fanciful as the case may have been. For the modern age no name is perhaps more adequately descriptive than the "Age of Energy," the age in which our entire fabric of civilization rests upon the utilization of the energies of nature for the needs of humanity, and to an extent little appreciated by those who have not considered the matter from this point of view. If we consider the various elements which enter into our modern civilization,—the items which enter into the daily life of the average man or woman; the items which we have come to consider as necessities and those which we may consider as luxuries; the items which go to make up our needs as expressed in terms of shelter, food, intercommunication between man and his fellow, and pleasure,—the most casual consideration of such will serve to show distributed throughout almost the entire fabric of our civilization dependence at some point on the power of the steam-engine, the water-wheel, or windmill, the subtle electric current, or the heat-energy of coal, petroleum oil, or natural gas. The harnessing and efficient utilization of these great natural energies is the direct function of the engineer, or more especially of the dynamic engineer, and in this noble guild of workers, Ericsson carved for himself an enduring place and left behind a record which should serve as an inspiration to all who are following the same pathway in later years.
No one feature perhaps better differentiates our modern civilization from that of earlier times, four hundred years ago, or even one hundred, than that of intercommunication between man and his fellow. Compare the opportunities for such intercommunication in the present with those in the time of Queen Elizabeth, Sir Isaac Newton, George Washington, or Napoleon I. We now have our steamships, steam and electric railroads, cable, telegraph, and telephone. A few years ago not a single one was known. The modern age is one which demands the utmost in the possibility of communication between man and his kind, and in this respect the wide world is now smaller than the confines of an English county a century ago.
In this field, as we shall see, Ericsson did some of his greatest work, and left perhaps his most permanent record for the future.
Ericsson's life falls most naturally into three periods chronologically or geographically, and likewise into three periods professionally, though the latter mode of subdivision has by no means the same boundaries as the former. The first mode of subdivision gives us the life in Sweden, the life in England, and the life in the United States. The second mode gives us the life of struggle and obscurity, the life of struggle, achievement, and recognition, and the calmer and easier life of declining years with recognition, reward, and the assurance of a life's work well done.
John Ericsson was born in the province of Vermland, Sweden, in 1803. His father was Olof Ericsson, a mine owner and inspector who was well educated after the standard of his times, having graduated at the college in Karlstad, the principal town of the province. His mother was Britta Sophia Yngstrom, a woman of Flemish-Scotch descent, and to whom Ericsson seems to have owed many of his stronger characteristics. Three children were born: Caroline in 1800, Nils in 1802, and John in 1803. Of John's earliest boyhood we have but slight record, but there seems to have been a clear foreshadowing of his future genius. He was considered the wonder of the neighborhood, and busied himself day after day with the machinery of the mines, drawing the form on paper with his rude tools or making models with bits of wood and cord, and endeavoring thus to trace the mystery of its operation.
In 1811 the Ericsson family fell upon evil times. Due to a war with Russia, business became disturbed and in the end Olof Ericsson became financially ruined. This brought the little family face to face with the realities of life, and we soon after find the father occupying a position as inspector on the Goeta Canal, a project which was just then occupying serious attention after having been neglected for nearly one hundred years, and nearly three hundred years after it was first proposed in 1526. Through this connection, in 1815, John and Nils Ericsson were appointed as cadets in a corps of Mechanical Engineers to be employed in carrying out the Government's plans with reference to the canal. During the winter of 1816-17 and at the age of thirteen, John Ericsson received regular instruction from some of his officers in Algebra, Chemistry, Field Drawing, and Geometry, and the English language. Ericsson's education previous to this seems to have consisted chiefly in lessons at home or from tutors, after the manner of the time. He had thus received instruction in the ordinary branches and in drawing and some chemistry. His training in drawing seems to have been unusually thorough and comprehensive, and with a natural genius for such work, his later remarkable skill at the drawing board is doubtless in no small measure due to the excellent instruction which he received in his early years. His progress in his duties as a young engineer was rapid, and he was soon given employment in connection with the canal-work, involving much responsibility and calling for experience and skill.
At length on reaching the age of seventeen he became stirred with military ambition, and, dissatisfied with his present prospects, he left his position with its opportunities for the future, and entered the Swedish army as ensign of a regiment of Field Chasseurs. This regiment was famous for its rifle practice, and Ericsson was soon one of its most expert marksmen. The routine of army life was, however, far from being sufficient to satisfy the uneasy genius of John Ericsson, and we soon find him engaged in topographical surveying for the Government, and so rapid and industrious in his work that as the surveyors were paid in accordance with the amount accomplished, he was carried on the pay rolls as two men, and paid as such, in order that the amount which he received might not seem too excessive for one individual. Even this was not sufficient to exhaust his energy, and about this time he conceived the idea of publishing a book of plates descriptive of the machinery commonly employed in the mining operations of his day. To this end he collected a large number of sketches which he had prepared in his earlier years, and made arrangements to take up the work of preparation for publication. The drawings selected were to be engraved for the book, and, nothing daunted by the undertaking, Ericsson proposed to do this work himself. After some discouragement the engraving was undertaken, and eighteen copper plates of the sixty-five selected, averaging in size fifteen by twenty inches, were completed within a year. In various ways the project met with delays, and it soon became apparent that the rapid advance in the applications of machinery to mining would render the work out of date, and it was at length abandoned.
At about this time Ericsson seems to have taken up seriously his work on his so-called "flame-engine," certain experiments made by his father having suggested to him the hope that a source of power might in this way be developed which would be more economical than the steam-engine. At this point we see entering into Ericsson's life an idea which never left him, which controlled much of his work in mid-life, and which attracted no small part of his attention throughout his closing years. This idea was the discovery of some form of heat-engine which should be more economical than the steam-engine, especially as it was in his day. The flame-engine idea grew rapidly, and soon absorbed his chief attention. Military life now lost its attraction, and in 1826 obtaining leave of absence he left his native land and turned his face toward London, doubtless with the hope strong within him that a substitute for the steam-engine had been found, and that his future lay secure and easy before him.
The characteristic features of Ericsson's life up to this time, when he had reached his twenty-third year, are energy, industry, independence, all in most pronounced degree, and combined with a most astonishing insight into mechanical and scientific questions. It was not a period of achievement, but one of formation and of development in those qualities which were soon to make him famous in both worlds. Of his work during this period of life little or nothing outside the idea embodied in the flame-engine can be said to belong to the permanent record of his life's achievement. This appeared in the "Caloric" engine, and still later in the well-known Ericsson "Air" engine of the present day.
This era was one of development and promise, and richly were the promises fulfilled in the achievements of his later years. A careful study of his life to this point is sufficient to show that, with health and time, such a nature would certainly leave a mark wide and deep on the world in which it was placed. His characteristics were such that achievement was the very essence of life, and, with the promise and potency as revealed in this first twenty-three years of his life, we may be well prepared for the brilliant record of the remaining sixty-three.
With Ericsson's arrival in London began the second important period of his life. His first efforts were directed toward the introduction of the flame-engine, but he soon found unexpected difficulties in the use of coal as fuel instead of wood, and it became clear that in order to live he must turn his attention to other matters for a time. Then followed a series of remarkable pieces of work in which Ericsson's genius showed itself, either in original invention or in the adaptation and improvement of the existing facts and material of engineering practice. While thus occupied, his leave from his regiment expired, and he seems to have overlooked taking proper steps to have it renewed. He was thus placed technically in the attitude of a deserter. Through the intervention of a friend, however, he was soon afterward restored, and promoted to the rank of Captain in the Swedish Army. This commission he immediately resigned, and thus his record became technically cleared of all reproach.
To give a mere list of the work with which Ericsson was occupied during the years from 1827 to 1839, when he removed to the United States, would be no small task, and reference to the more important only can be here made. Compressed air for transmitting power, forced draft for boilers by means of centrifugal blowers, steam boilers of new and improved types, the surface condenser for marine engines, the location of the engines of a ship for war purposes below the water line, the steam fire-engine, the design and construction of the "Novelty" (a locomotive for the Rainhill contest in 1829, when Stephenson's "Rocket" was awarded the prize, though Ericsson, heavily handicapped in time and by lack of a track on which to adjust and perfect the "Novelty," achieved a result apparently in many ways superior to Stephenson's with the "Rocket"), various designs for rotary engines, an apparatus for making salt from brine, further experimental work with various forms of heat, or so-called "caloric" engines, and the final development, in 1833, of a type from which great results were for a time expected, superheated steam and engines for its use, a deep-sea-sounding apparatus embodying the same principle as that later developed by Lord Kelvin in the well-known apparatus of the present day, a machine for cutting files automatically, various types of steam-engines, and finally his work in connection with the introduction of the screw-propeller as a means of propulsion for steam vessels. These are some of the important lines of work on which Ericsson was engaged during the twelve years of his life in London. In connection with some he was undoubtedly a pioneer, and deserves credit as an original inventor; in connection with others, his work was that of improvement or adaptation; but in all his influence was profound, and the legacy which we have received from this period of engineering progress is due in no small degree to Ericsson, and to his work in London during these years. At a later point we shall refer in some further detail to these questions, but desire for the moment, rather, to gain a broad and comprehensive view of his life as a whole.
Ericsson has been by some called a spendthrift in invention, and the term is not without some justice in its application. His genius was uneasy, and his mind was oppressed by the wealth of his ideas. It was this very wealth which led him from one idea to another, without always taking sufficient time in which to develop and perfect his plans. Rich in invention, he cared but little for exploitation, and when the truth of his predictions was demonstrated, or the ground of his expectation justified, he was eager for new achievements and new combinations of the materials of engineering progress. In this spirit of struggle and unrest, he passed the years in London, rapidly becoming known for his versatility in invention, and for his daring and originality in the details of his engineering work. From 1833 to 1839, or during the second half of this term of residence in London, he became in increasing measure absorbed in his work connected with the screw-propeller as a means of marine propulsion.
Ericsson's name in the popular mind has been most commonly associated with the "Monitor" and her fight with the "Merrimac" in the Civil War, and next, probably, with the screw-propeller as a means of marine propulsion. It will, therefore, be proper at the present point to refer in some further detail to the circumstances connected with his relation to the introduction of the screw-propeller. |
|