|
And now arises a serious difficulty. If the coral polypes cannot live at a greater depth than one hundred or one hundred and fifty feet, how can they have built up the base of the reef-cone, which may be two thousand feet, or more, below the surface of the sea?
In order to get over this objection, it was at one time supposed that the reef-building polypes had settled upon the summits of a chain of submarine mountains. But what is there in physical geography to justify the assumption of the existence of a chain of mountains stretching for one thousand miles or more, and so nearly of the same height, that none should rise above the level of the sea, nor fall one hundred and fifty feet below that level?
How, again, on this hypothesis, are atolls to be accounted for, unless, as some have done, we take refuge in the wild supposition that every atoll corresponds with the crater of a submarine volcano? And what explanation does it afford of the fact that, in some parts of the ocean, only atolls and encircling reefs occur, while others present none but fringing reefs?
These and other puzzling facts remained insoluble until the publication, in the year 1840, of Mr. Darwin's famous work on coral reefs;[123] in which a key was given to all the difficult problems connected with the subject, and every difficulty was shown to be capable of solution by deductive reasoning from a happy combination of certain well-established geological and biological truths. Mr. Darwin, in fact, showed that, so long as the level of the sea remains unaltered in any area in which coral reefs are being formed, or if the level of the sea relatively to that of the land is falling, the only reefs which can be formed are fringing reefs. While if, on the contrary, the level of the sea is rising relatively to that of the land, at a rate not faster than that at which the upward growth of the coral can keep pace with it, the reef will gradually pass from the condition of a fringing, into that of an encircling or barrier reef. And, finally, that if the relative level of the sea rise so much that the encircled land is completely submerged, the reef must necessarily pass into the condition of an atoll.
For, suppose the relative level of the sea to remain stationary, after a fringing reef has reached that distance from the land at which the depth of water amounts to one hundred and fifty feet. Then the reef cannot extend seaward by the migration of coral germs, because these coral germs would find the bottom of the sea to be too deep for them to live in. And the only manner in which the reef could extend outwards, would be by the gradual accumulation, at the foot of its seaward face, of a talus of coral fragments torn off by the violence of the waves, which talus might, in course of time, become high enough to bring its upper surface within the limits of coral growth, and in that manner provide a sort of factitious sea-bottom upon which the coral embryos might perch. If, on the other hand, the level of the sea were slowly and gradually lowered, it is clear that the parts of its bottom originally beyond the limit of coral growth would gradually be brought within the required distance of the surface, and thus the reef might be indefinitely extended. But this process would give rise neither to an encircling reef nor to an atoll, but to a broad belt of upheaved coral rock, increasing the dimensions of the dry land, and continuous seawards with the fresh fringing reef.
Suppose, however, that the sea-level rose instead of falling, at the same slow and gradual rate at which we know it to be rising in some parts of the world,—not more, in fact, than a few inches, or, at most, a foot or two, in a hundred years. Then, while the reef would be unable to extend itself seaward, the sea-bottom outside it being gradually more and more removed from the depth at which the life of the coral polypes is possible, it would be able to grow upwards as fast as the sea rose. But the growth would take place almost exclusively around the circumference of the reef, this being the only region in which the coral polypes would find the conditions favourable for their existence. The bottom of the lagoon would be raised, in the main, only by the coral debris and coral mud, formed in the manner already described; consequently, the margins of the reef would rise faster than the bottom, or, in other words, the lagoon would constantly become deeper. And, at the same time, it would gradually increase in breadth; as the rising sea, covering more of the land, would occupy a wider space between the edge of the reef and what remained of the land. Thus the rising sea would eventually convert a large island with a fringing reef into a small island surrounded by an encircling reef. And it will be obvious that when the rising of the sea has gone so far as completely to cover the highest points of the island, the reef will have passed into the condition of an atoll.
But how is it possible that the relative level of the land and sea should be altered to this extent? Clearly, only in one of two ways: either the sea must have risen over those areas which are now covered by atolls and encircling reefs; or, the land upon which the sea rests must have been depressed to a corresponding extent.
If the sea has risen, its rise must have taken place over the whole world simultaneously, and it must have risen to the same height over all parts of the coral zone. Grounds have been shown for the belief that the general level of the sea may have been different at different times; it has been suggested, for example, that the accumulation of ice about the poles during one of the cold periods of the earth's history necessarily implies a diminution in the volume of the sea proportioned to the amount of its water thus permanently locked up in the Arctic and Antarctic ice-cellars; while, in the warm periods, the greater or less disappearance of the polar ice-cap implies a corresponding addition of water to the ocean. And no doubt this reasoning must be admitted to be sound in principle; though it is very hard to say what practical effect the additions and subtractions thus made have had on the level of the ocean; inasmuch as such additions and subtractions might be either intensified or nullified, by contemporaneous changes in the level of the land. And no one has yet shown that any such great melting of polar ice, and consequent raising of the level of the water of the ocean, has taken place since the existing atolls began to be formed.
In the absence of any evidence that the sea has ever risen to the extent required to give rise to the encircling reefs and the atolls, Mr. Darwin adopted the opposite hypothesis, viz., that the land has undergone extensive and slow depression in those localities in which these structures exist.
It seems, at first, a startling paradox, to suppose that the land is less fixed than the sea; but that such is the case is the uniform testimony of geology. Beds of sandstone or limestone, thousands of feet thick, and all full of marine remains, occur in various parts of the earth's surface, and prove, beyond a doubt, that when these beds were formed, that portion of the sea-bottom which they then occupied underwent a slow and gradual depression to a distance which cannot have been less than the thickness of those beds, and may have been very much greater. In supposing, therefore, that the great areas of the Pacific and of the Indian Ocean, over which atolls and encircling reefs are found scattered, have undergone a depression of some hundreds, or, it may be, thousands of feet, Mr. Darwin made a supposition which had nothing forced or improbable, but was entirely in accordance with what we know to have taken place over similarly extensive areas, in other periods of the world's history. But Mr. Darwin subjected his hypothesis to an ingenious indirect test. If his view be correct, it is clear that neither atolls, nor encircling reefs, should be found in those portions of the ocean in which we have reason to believe, on independent grounds, that the sea-bottom has long been either stationary, or slowly rising. Now it is known that, as a general rule, the level of the land is either stationary, or is undergoing a slow upheaval, in the neighborhood of active volcanoes; and, therefore, neither atolls nor encircling reefs ought to be found in regions in which volcanoes are numerous and active. And this turns out to be the case. Appended to Mr. Darwin's great work on coral reefs, there is a map on which atolls and encircling reefs are indicated by one colour, fringing reefs by another, and active volcanoes by a third. And it is at once obvious that the lines of active volcanoes lie around the margins of the areas occupied by the atolls and the encircling reefs. It is exactly as if the upheaving volcanic agencies had lifted up the edges of these great areas, while their centres had undergone a corresponding depression. An atoll area may, in short, be pictured as a kind of basin, the margins of which have been pushed up by the subterranean forces, to which the craters of the volcanoes have, at intervals, given vent.
Thus we must imagine the area of the Pacific now covered by the Polynesian Archipelago, as having been, at some former time, occupied by large islands, or, may be, by a great continent, with the ordinarily diversified surface of plain, and hill, and mountain chain. The shores of this great land were doubtless fringed by coral reefs; and, as it slowly underwent depression, the hilly regions, converted into islands, became, at first, surrounded by fringing reefs, and then, as depression went on, these became converted into encircling reefs, and these, finally, into atolls, until a maze of reefs and coral-girdled islets took the place of the original land masses.
Thus the atolls and the encircling reefs furnish us with clear, though indirect, evidence of changes in the physical geography of large parts of the earth's surface; and even, as my lamented friend, the late Professor Jukes,[124] has suggested, give us indications of the manner in which some of the most puzzling facts connected with the distribution of animals have been brought about. For example, Australia and New Guinea are separated by Torres Straits, a broad belt of sea one hundred or one hundred and twenty miles wide. Nevertheless, there is in many respects a curious resemblance between the land animals which inhabit New Guinea and the land animals which inhabit Australia. But, at the same time, the marine shellfish which are found in the shallow waters of the shores of New Guinea are quite different from those which are met with upon the coasts of Australia. Now, the eastern end of Torres Straits is full of atolls, which, in fact, form the northern termination of the Great Barrier Reef which skirts the eastern coast of Australia. It follows, therefore, that the eastern end of Torres Straits is an area of depression, and it is very possible, and on many grounds highly probable, that, in former times, Australia and New Guinea were directly connected together, and that Torres Straits did not exist. If this were the case, the existence of cassowaries and of marsupial quadrupeds, both in New Guinea and in Australia, becomes intelligible; while the difference between the littoral molluscs of the north and the south shores of Torres Straits is readily explained by the great probability that, when the depression in question took place, and what was, at first, an arm of the sea became converted into a strait separating Australia from New Guinea, the northern shore of this new sea became tenanted with marine animals from the north, while the southern shore was peopled by immigrants from the already existing marine Australian fauna.
Inasmuch as the growth of the reef depends upon that of successive generations of coral polypes, and as each generation takes a certain time to grow to its full size, and can only separate its calcareous skeleton from the water in which it lives at a certain rate, it is clear that the reefs are records not only of changes in physical geography, but of the lapse of time. It is by no means easy, however, to estimate the exact value of reef chronology, and the attempts which have been made to determine the rate at which a reef grows vertically have yielded anything but precise results. A cautious writer, Mr. Dana,[125] whose extensive study of corals and coral reefs makes him an eminently competent judge, states his conclusion in the following terms:—
"The rate of growth of the common branching madrepore is not over one and a half inches a year. As the branches are open, this would not be equivalent to more than half an inch in height of solid coral for the whole surface covered by the madrepore; and, as they are also porous, to not over three-eighths of an inch of solid limestone. But a coral plantation has large bare patches without corals, and the coral sands are widely distributed by currents, part of them to depths over one hundred feet where there are no living corals; not more than one-sixth of the surface of a reef region is, in fact, covered with growing species. This reduces the three-eighths to ONE-SIXTEENTH. Shells and other organic relics may contribute one-fourth as much as corals. At the outside, the average upward increase of the whole reef-ground per year would not exceed ONE-EIGHTH of an inch.
"Now some reefs are at least two thousand feet thick, which at one-eighth of an inch a year, corresponds to one hundred and ninety-two thousand years."*
* Dana, Manual of Geology, p. 591.
Halve, or quarter, this estimate if you will, in order to be certain of erring upon the right side, and still there remains a prodigious period during which the ancestors of existing coral polypes have been undisturbedly at work; and during which, therefore, the climatal conditions over the coral area must have been much what they are now.
And all this lapse of time has occurred within the most recent period of the history of the earth. The remains of reefs formed by coral polypes of different kinds from those which exist now, enter largely into the composition of the limestones of the Jurassic period;[126] and still more widely different coral polypes have contributed their quota to the vast thickness of the carboniferous and Devonian strata. Then as regards the latter group of rocks in America, the high authority already quoted tells us:—
"The Upper Helderberg period is eminently the coral reef period of the palaeozoic ages. Many of the rocks abound in coral, and are as truly coral reefs as the modern reefs of the Pacific. The corals are sometimes standing on the rocks in the position they had when growing: others are lying in fragments, as they were broken and heaped by the waves; and others were reduced to a compact limestone by the finer trituration before consolidation into rock. This compact variety is the most common kind among the coral reef rocks of the present seas; and it often contains but few distinct fossils, although formed in water that abounded in life. At the fall of the Ohio, near Louisville, there is a magnificent display of the old reef. Hemispherical Favosites, five or six feet in diameter, lie there nearly as perfect as when they were covered by their flowerlike polypes; and besides these, there are various branching corals, and a profusion of Cyathophyllia, or cup-corals."*
* Dana, Manual of Geology, p. 272.
Thus, in all the great periods of the earth's history of which we know anything, a part of the then living matter has had the form of polypes, competent to separate from the water of the sea the carbonate of lime necessary for their own skeletons. Grain by grain, and particle by particle, they have built up vast masses of rock, the thickness of which is measured by hundreds of feet, and their area by thousands of square miles. The slow oscillations of the crust of the earth, producing great changes in the distribution of land and water, have often obliged the living matter of the coral-builders to shift the locality of its operations; and, by variation and adaptation to these modifications of condition, its forms have as often changed. The work it has done in the past is, for the most part, swept away, but fragments remain, and, if there were no other evidence, suffice to prove the general constancy of the operations of Nature in this world, through periods of almost inconceivable duration.
NOTES
AUTOBIOGRAPHY
[Footnote 1: Autobiography: Huxley's account of this sketch, written in 1889, is as follows: "A man who is bringing out a series of portraits of celebrities, with a sketch of their career attached, has bothered me out of my life for something to go with my portrait, and to escape the abominable bad taste of some of the notices, I have done that."]
[Footnote 2: pre-Boswellian epoch: the time before Boswell. James Boswell (1740-1795) wrote the famous Life of Samuel Johnson. Mr. Leslie Stephen declares that this book "became the first specimen of a new literary type." "It is a full-length portrait of a man's domestic life with enough picturesque detail to enable us to see him through the eyes of private friendship. . . ." A number of biographers since Boswell have imitated his method; and Leslie Stephen believes that "we owe it in some degree to his example that we have such delightful books as Lockhart's Life of Scott or Mr. Trevelyan's Life of Macaulay."]
[Footnote 3: "Bene qui latuit, bene vixit": from Ovid. He who has kept himself well hidden, has lived well.]
[Footnote 4: Prince George of Cambridge: the grandson of King George III, second Duke of Cambridge, and Commander-in-chief of the British Army.]
[Footnote 5: Mr. Herbert Spencer (1820—1903): a celebrated English philosopher and powerful advocate of the doctrine of evolution. Spencer is regarded as one of the most profound thinkers of modern times. He was one of Huxley's closest friends.]
[Footnote 6: in partibus infidelium: in the domain of the unbelievers.]
[Footnote 7: "sweet south upon a bed of violets." Cf. Twelfth Night, Act I, sc. I, l. 5.
O, it came o'er my ear like the sweet sound That breathes upon a bank of violets, Stealing and giving odour.
For the reading "sweet south" instead of "sweet sound," see Rolfe's edition of Twelfth Night.]
[Footnote 8: "Lehrjahre": apprenticeship.
Charing Cross School of Medicine: a school connected with the Charing Cross Hospital in the Strand, London.]
[Footnote 9: Nelson: Horatio Nelson, a celebrated English Admiral born in Norfolk, England, 1758, and died on board the Victory at Trafalgar, 1805. It was before the battle off Cape Trafalgar that Nelson hoisted his famous signal, "England expects every man will do his duty." Cf. Tennyson's Ode to the Duke of Wellington, stanza VI, for a famous tribute to Nelson.]
[Footnote 10: middies: abbreviated form for midshipmen.]
[Footnote 11: Suites a Buffon: sequels to Buffon. Buffon (1707-1781) was a French naturalist who wrote many volumes on science.]
[Footnote 12: Linnean Society: a scientific society formed in 1788 under the auspices of several fellows of the Royal Society.]
[Footnote 13: Royal Society: The Royal Society for Improving Natural Knowledge; the oldest scientific society in Great Britain, and one of the oldest in Europe. It was founded by Charles II, in 1660, its nucleus being an association of learned men already in existence. It is supposed to be identical with the Invisible College which Boyle mentions in 1646. It was incorporated under the name of The Royal Society in 1661. The publications of the Royal Society are called Philosophical Transactions. The society has close connection with the government, and has assisted the government in various important scientific undertakings among which may be mentioned Parry's North Pole expedition. The society also distributes $20,000 yearly for the promotion of scientific research.]
[Footnote 14: Rastignac: a character in Le Pere Goriot. At the close of the story Rastignac says, "A nous deux, maintenant":—Henceforth there is war between us.]
[Footnote 15: Pere Goriot: a novel of Balzac's with a plot similar to King Lear.]
[Footnote 16: Professor Tyndall (1820-1893): a distinguished British physicist and member of the Royal Society. He explored with Huxley the glaciers of Switzerland. His work in electricity, radiant heat, light and acoustics gave him a foremost place in science.]
[Footnote 17: Ecclesiastical spirit: the spirit manifested by the clergy of England in Huxley's time against the truths of science. The clergy considered scientific truth to be disastrous to religious truth. Huxley's attitude toward the teaching of religious truth is illuminated by this quotation, which he uses to explain his own position: "I have the fullest confidence that in the reading and explaining of the Bible, what the children will be taught will be the great truths of Christian Life and conduct, which all of us desire they should know, and that no effort will be made to cram into their poor little minds, theological dogmas which their tender age prevents them from understanding." Huxley defines his idea of a church as a place in which, "week by week, services should be devoted, not to the iteration of abstract propositions in theology, but to the setting before men's minds of an ideal of true, just and pure living; a place in which those who are weary of the burden of daily cares should find a moment's rest in the contemplation of the higher life which is possible for all, though attained by so few; a place in which the man of strife and of business should have time to think how small, after all, are the rewards he covets compared with peace and charity."]
[Footnote 18: New Reformation: Huxley writes: "We are in the midst of a gigantic movement greater than that which preceded and produced the Reformation, and really only the continuation of that movement. . . . But this organization will be the work of generations of men, and those who further it most will be those who teach men to rest in no lie, and to rest in no verbal delusion."]
ON THE ADVISABLENESS OF IMPROVING NATURAL KNOWLEDGE (1866)
[Footnote 19: On the Advisableness of Improving Natural Knowledge: from Method and Results: also published in Lay Sermons, Addresses and Reviews.]
For the history of the times mentioned in this essay, see Green's Short History of the English People.]
[Footnote 20: The very spot: St. Martin's Borough Hall and Public Library, on Charing Cross Road, near Trafalgar Square.]
[Footnote 21: Defoe (1661-1731): an English novelist and political writer. On account of his political writings Defoe was sentenced to stand in the pillory, and to be "imprisoned during the Queen's pleasure." During this imprisonment he wrote many articles. Later in life he wrote Robinson Crusoe, The Fortunes and Misfortunes of Moll Flanders, Journal of the Plague Year, and other books less well known.]
[Footnote 22: unholy cursing and crackling wit of the Rochesters and Sedleys: John Wilmot, the second Earl of Rochester, and Sir Charles Sedley, were both friends of Charles II, and were noted for biting wit and profligacy. Green, in his Short History of the English People, thus describes them: "Lord Rochester was a fashionable poet, and the titles of some of his poems are such as no pen of our day could copy. Sir Charles Sedley was a fashionable wit, and the foulness of his words made even the porters in the Covent Garden belt him from the balcony when he ventured to address them."]
[Footnote 23: Laud: Archbishop of Canterbury. Laud was born in 1573, and beheaded at London in 1645. He was throughout the reign of Charles I a staunch supporter of the King. He was impeached by the Long Parliament in 1640 and executed on Tower Hill, in 1645.]
[Footnote 24: selenography: the scientific study of the moon with special reference to its physical condition.]
[Footnote 25: Torricellian experiment: a reference to the discovery of the principle of the barometer by the Italian, Torricelli, in 1643.]
[Footnote 26: Sir Francis Bacon (1561-1626): Bacon endeavored to teach that civilization cannot be brought to a high point except as man applies himself to the study of the secrets of nature, and uses these discoveries for inventions which will give him power over his environment. The chief value of the work was that it called attention to the uses of induction and to the experimental study of facts. See Roger's A Student's History of Philosophy, page 243.]
[Footnote 27: The learned Dr. Wallis (1616-1703): Dr. Wallis is regarded as the greatest of Newton's predecessors in mathematical history. His works are numerous and are on a great variety of subjects. He was one of the first members of the Royal Society.]
[Footnote 28: "New Philosophy": Bacon's ideas on science and philosophy as set forth in his works.]
[Footnote 29: Royal Society: see note, page 11.]
[Footnote 30: Newton, Sir Isaac (1642-1721): a distinguished natural philosopher of England. Newton was elected a member of the Royal Society in 1672. His most important scientific accomplishment was the establishing of the law of universal gravitation. The story of the fall of the apple was first related by Voltaire to whom it was given by Newton's niece.]
[Footnote 31: "Philosophical Transactions": the publications of the Royal Society.]
[Footnote 32: Galileo (1564-1642): a famous Italian astronomer. His most noted work was the construction of the thermometer and a telescope. He discovered the satellites of Jupiter in 1610. In 1610, also, he observed the sun's spots. His views were condemned by the Pope in 1616 and in 1633 he was forced by the Inquisition to abjure the Copernican theory.]
[Footnote 33: Vesalius (1514-1564): a noted Belgian anatomist.]
[Footnote 34: Harvey (1578-1657): an English physiologist and anatomist. He is noted especially for his discovery of the circulation of the blood.]
[Footnote 35: Subtle speculations: Selby gives examples from questions discussed by Thomas Aquinas. Whether all angels belong to the same genus, whether demons are evil by nature, or by will, whether they can change one substance into another, . . . whether an angel can move from one point to another without passing through intermediate space.]
[Footnote 36: Schoolmen: a term used to designate the followers of scholasticism, a philosophy of dogmatic religion which assumed a certain subject-matter as absolute and unquestionable. The duty of the Schoolman was to explain church doctrine; these explanations were characterized by fine distinctions and by an absence of real content. See Roger's A Student's History of Philosophy; also Baldwin's Dictionary of Philosophy and Psychology.]
[Footnote 37: "writ in water": an allusion to Keats' request that the words "Here lies one whose name was writ in water" be his epitaph. The words are inscribed on his tomb in the Protestant Cemetery at Rome.]
[Footnote 38: Lord Brouncker: The first president of the Royal Society after its incorporation in 1662 was Lord Brouneker.]
[Footnote 39: revenant: ghost.]
[Footnote 40: Boyle: Robert Boyle (1627-1691): a British chemist and natural philosopher who was noted especially for his discovery of Boyle's law of the elasticity of air.]
[Footnote 41: Evelyn (1620-1706): an English author and member of the Royal Society. His most important work is the Diary, valuable for the full account which it gives of the manners and customs of the time.]
[Footnote 42: The Restoration: In English history the re-establishing of the English monarchy with the return of King Charles II in 1660; by extension the whole reign of Charles II: as, the dramatists of the Restoration. Century Dictionary.]
[Footnote 43: Aladdin's lamps: a reference to the story of the Wonderful Lamp in the Arabian Nights. The magic lamp brought marvelous good fortune to the poor widow's son who possessed it. Cf. also Lowell's Aladdin:—
When I was a beggarly boy, And lived in a cellar damp, I had not a friend or a toy, But I had Aladdin's lamp; When I could not sleep for the cold, I had fire enough in my brain, And builded, with roofs of gold, My beautiful castles in Spain!]
[Footnote 44: "When in heaven the stars": from Tennyson's Specimens of a Translation of the Iliad in Blank Verse.]
[Footnote 45: "increasing God's honour and bettering man's estate": Bacon's statement of his purpose in writing the Advancement of Learning.]
[Footnote 46: For example, etc.: could the sentence beginning thus be written in better form?]
[Footnote 47: Rumford (1738-1814): Benjamin Thompson, Count Rumford, an eminent scientist. Rumford was born in America and educated at Harvard. Suspected of loyalty to the King at the time of the revolution, he was imprisoned. Acquitted, he went to England where he became prominent in politics and science. Invested with the title of Count by the Holy Roman Empire, he chose Rumford for his title after the name of the little New Hampshire town where he had taught. He gave a large sum of money to Harvard College to found the Rumford professorship of science.]
[Footnote 48: eccentric: out of the centre.]
A LIBERAL EDUCATION (1868)
[Footnote 49: A Liberal Education: from Science and Education; also published in Lay Sermons, Addresses and Reviews.]
[Footnote 50: Ichabod: cf. 1 Sam. iv, 21.]
[Footnote 51: senior wranglership: in Cambridge University, England, one who has attained the first class in the elementary division of the public examination for honors in pure and mixed mathematics, commonly called the mathematical tripos, those who compose the second rank of honors being designated senior optimes, and those of the third order junior optimes. The student taking absolutely the first place in the mathematical tripos used to be called senior wrangler, those following next in the same division being respectively termed second, third, fourth, etc., wranglers. Century Dictionary.]
[Footnote 52: double-first: any candidate for the degree of Bachelor of Arts in Oxford University who takes first-class honors in both classics and mathematics is said to have won a double-first.]
[Footnote 53: Retzsch (1779-1857): a well-known German painter and engraver.]
[Footnote 54: Test-Act: an English statute of 1673. It compelled all persons holding office under the crown to take the oaths of supremacy and of allegiance, to receive the sacrament according to the usage of the Church of England, and to subscribe to the Declaration against Transubstantiation.]
[Footnote 55: Poll: an abbreviation and transliteration of [Footnote Greek words], "the mob"; university slang for the whole body of students taking merely the degree of Bachelor of Arts, at Cambridge.]
[Footnote 56: pluck: the rejection of a student, after examinations, who does not come up to the standard.]
ON A PIECE OF CHALK
[Footnote 57: On a Piece of Chalk: a lecture to working-men from Lay Sermons, Addresses and Reviews.]
[Footnote 58: Needles of the Isle of Wight: the needles are three white, pointed rocks of chalk, resting on dark-colored bases, and rising abruptly from the sea to a height of 100 feet. Baedeker's Great Britain.]
[Footnote 59: Lulworth in Dorset, to Flamborough Head: Lulworth is on the southern coast of England, west of the Isle of Wight: Flamborough Head is on the northeastern coast of England and extends into the German Ocean.]
[Footnote 60: Weald: a name given to an oval-shaped chalk area in England, beginning near the Straits of Dover, and extending into the counties of Kent, Surrey, Hants, and Sussex.]
[Footnote 61: Lieut. Brooke: Brooke devised an apparatus for deep-sea sounding from which the weight necessary to sink the instrument rapidly, was detached when it reached the bottom. The object was to relieve the strain on the rope caused by rapid soundings. Improved apparatuses have been invented since the time of Brooke.]
[Footnote 62: Ehrenberg (1795-1876): a German naturalist noted for his studies of Infusoria.]
[Footnote 63: Bailey of West Point (1811-1857): an American naturalist noted for his researches in microscopy.]
[Footnote 64: enterprise of laying down the telegraph-cable: the first Atlantic telegraph-cable between England and America was laid in 1858 by Cyrus W. Field of New York. Messages were sent over it for a few weeks; then it ceased to act. A permanent cable was laid by Mr. Field in 1866.]
[Footnote 65: Dr. Wallich (1786-1854): a Danish botanist and member of the Royal Society.]
[Footnote 66: Mr. Sorby: President of the Geological Society of England, and author of many papers on subjects connected with physical geography.]
[Footnote 67: Sir Charles Lyell (1797-1875): a British geologist, and one of the first to uphold Darwin's Origin of Species.]
[Footnote 68: Echinus: the sea-urchin; an animal which dwells in a spheroidal shell built up from polygonal plates, and covered with sharp spines.]
[Footnote 69: Somme: a river of northern France which flows into the English Channel northeast of Dieppe.]
[Footnote 70: the chipped flints of Hoxne and Amiens: the rude instruments which were made by primitive man were of chipped flint. Numerous discoveries of large flint implements have been made in the north of France, near Amiens, and in England. The first noted flint implements were discovered in Hoxne, Suffolk, England, 1797. Cf. Evans' Ancient Stone Implements and Lyell's Antiquity of Man.]
[Footnote 71: Rev. Mr. Gunn (1800-1881): an English naturalist. Mr. Gunn sent from Tasmania a large number of plants and animals now in the British Museum.]
[Footnote 72: "the whirligig of time": cf. Shakespeare, Twelfth Night, Act V, se. I, l. 395.]
[Footnote 73: Euphrates and Hiddekel: cf. Genesis ii, 14.]
[Footnote 74: the great river, the river of Babylon: cf. Genesis xv, 18]
[Footnote 75: Without haste, but without rest: from Goethe's Zahme Xenien. In a letter to his sister, Huxley says: "And then perhaps by the following of my favorite motto,—
"'Wie das Gestirn, Ohne Hast, Ohne Rast'—
something may be done, and some of Sister Lizzie's fond imaginations turn out not altogether untrue." The quotation entire is as follows:—
Wie das Gestirn, Ohne Hast, Aber ohne Rast, Drehe sich jeder Um die eigne Last.]
THE PRINCIPAL SUBJECTS OF EDUCATION (1882)
[Footnote 76: The Principal Subjects of Education: an extract from the essay, Science and Art in Relation to Education.]
[Footnote 77: this discussion: "this" refers to the last sentence in the preceding paragraph, in which Huxley says that it will be impossible to determine the amount of time to be given to the principal subjects of education until it is determined "what the principal subjects of education ought to be."]
[Footnote 78: Francis Bacon: cf. note [Footnote 26].]
[Footnote 79: the best chance of being happy: In connection with Huxley's work on the London School Board, his biographer says that Huxley did not regard "intellectual training only from the utilitarian point of view; he insisted, e. g., on the value of reading for amusement as one of the most valuable uses to hardworked people."]
[Footnote 80: "Harmony in grey": cf. with l. 34 in Browning's Andrea del Sarto.]
[Footnote 81: Hobbes (1588-1679): noted for his views of human nature and of politics. According to Minto, "The merits ascribed to his style are brevity, simplicity and precision."]
[Footnote 82: Bishop Berkeley (1685-1753): an Irish prelate noted for his philosophical writings and especially for his theory of vision which was the foundation for modern investigations of the subject. "His style has always been esteemed admirable; simple, felicitous and sweetly melodious. His dialogues are sustained with great skill." Minto's Manual of English Prose Literature.]
[Footnote 83: We have been recently furnished with in prose: The Iliad of Homer translated by Lang, Leaf and Myers, the first edition of which appeared in 1882, is probably the one to which Huxley refers. The Odyssey, translated by Butcher and Lang, appeared in 1879. Among the best of the more recent translations of Homer are the Odyssey by George Herbert Palmer; the Iliad by Arthur S. Way, and the Odyssey by the same author.]
[Footnote 84: Locke (1632-1704): an English philosopher of great influence. His chief work is An Essay Concerning Human Understanding.]
[Footnote 85: Franciscus Bacon sic cogitavit: thus Francis Bacon thought.]
THE METHOD OF SCIENTIFIC INVESTIGATION (1863)
[Footnote 86: The Method of Scientific Investigation is an extract from the third of six lectures given to workingmen on The Causes of the Phenomena of Organic Nature in Darwiniana.]
[Footnote 87: these terrible apparatus: apparatus is the form for both the singular and plural; apparatuses is another form for the plural.]
[Footnote 88: Incident in one of Moliere's plays: the allusion is to the hero, M. Jourdain in the play, "La Bourgeois Gentilbomme."]
[Footnote 89: these kind: modern writers regard kind as singular. Shakespeare treated it as a plural noun, as "These kind of knaves I knew."]
[Footnote 90: Newton: cf. [Footnote 30].]
[Footnote 91: Laplace (1749-1827): a celebrated French astronomer and mathematician. He is best known for his theory of the formation of the planetary systems, the so-called "nebular hypothesis." Until recently this hypothesis has generally been accepted in its main outlines. It is now being supplanted by the "Spiral Nebular Hypothesis" developed by Professors Moulton and Chamberlin of the University of Chicago. See Moulton's Introduction to Astronomy, p. 463.]
ON THE PHYSICAL BASIS OF LIFE (1868)
[Footnote 92: On the Physical Basis of Life: from Methods and Results; also published in Lay Sermons, Addresses and Reviews. "The substance of this paper was contained in a discourse which was delivered in Edinburgh on the evening of Sunday, the 8th of November, 1868—being the first of a series of Sunday evening addresses upon non-theological topics, instituted by the Rev. J. Cranbrook. Some phrases, which could possess only a transitory and local interest, have been omitted; instead of the newspaper report of the Archbishop of York's address, his Grace's subsequently published pamphlet On the Limits of Philosophical inquiry is quoted, and I have, here and there, endeavoured to express my meaning more fully and clearly than I seem to have done in speaking—if I may judge by sundry criticisms upon what I am supposed to have said, which have appeared. But in substance, and, so far as my recollection serves, in form, what is here written corresponds with what was there said."—Huxley.]
[Footnote 93: Finner whale: a name given to a whale which has a dorsal fin. A Finner whale commonly measures from 60 to 90 feet in length.]
[Footnote 94: A fortiori: with stronger reason: still more conclusively.]
[Footnote 95: well-known epigram: from Goethe's Venetianische Epigramme. The following is a translation of the passage: Why do the people push each other and shout? They want to work for their living, bring forth children; and feed them as well as they possibly can. . . . No man can attain to more, however much he may pretend to the contrary.]
[Footnote 96: Maelstroms: a celebrated whirlpool or violent current in the Arctic Ocean, near the western coast of Norway, between the islands of Moskenaso and Mosken, formerly supposed to suck in and destroy everything that approached it at any time, but now known not to be dangerous except under certain conditions. Century Dictionary. Cf. also Poe's Descent into the Maelstrom.]
[Footnote 97: Milne-Edwards (1800-1885): a French naturalist. His Elements de Zoologie won him a great reputation.]
[Footnote 98: with such qualifications as arises: a typographical error.]
[Footnote 99: De Bary (1831-1888): a German botanist noted especially for his researches in cryptogamic botany.]
[Footnote 100: No Man's Land: Huxley probably intends no specific geographical reference. The expression is common as a designation of some remote and unfrequented locality.]
[Footnote 101: Kuhne (1837-1900): a German physiologist and professor of science at Amsterdam and Heidelberg.]
[Footnote 102: Debemur morti nos nostraque: Horace—Ars Poetica, line 63.
As forests change their foliage year by year, Leaves, that come first, first tall and disappear; So antique words die out, and in their room, Others spring up, of vigorous growth and bloom; Ourselves and all that's ours, to death are due, And why should words not be mortal too?
Martin's translation.]
[Footnote 103: peau de chagrin: skin of a wild ass.]
[Footnote 104: Balzac (1799-1850): a celebrated French novelist of the realistic school of fiction.]
[Footnote 105: Barmecide feast: the allusion is to a story in the Arabian Nights in which a member of the Barmecide family places a succession of empty dishes before a beggar, pretending that they contain a rich repast.]
[Footnote 106: modus operandi: method of working.]
[Footnote 107: Martinus Scriblerus: a reference to Memoirs of Martinus Scriblerus written principally by John Arbuthnot, and published in 1741. The purpose of the papers is given by Warburton and Spence in the following extracts quoted from the Preface to the Memoirs of the Extraordinary Life, Works and Discoveries of Martinus Scriblerus in Elwin and Courthope's edition of Pope's works, vol. x, p. 273:— "Mr. Pope, Dr. Arbuthnot, and Dr. Swift, in conjunction, formed the project of a satire on the abuses of human learning; and to make it better received, proposed to execute it in the manner of Cervantes (the original author of this species of satire) under a continued narrative of feigned adventures. They had observed that those abuses still kept their ground against all that the ablest and gravest authors could say to discredit them; they concluded, therefore, the force of ridicule was wanting to quicken their disgrace; and ridicule was here in its place, when the abuses had been already detected by sober reasoning; and truth in no danger to suffer by the premature use of so powerful an instrument."]
"The design of this work, as stated by Pope himself, is to ridicule all the false tastes in learning under the character of a man of capacity enough, that had dipped into every art and science, but injudiciously in each. It was begun by a club of some of the greatest wits of the age—Lord Oxford, the Bishop of Rochester, Pope, Congreve, Swift, Arbuthnot, and others. Gay often held the pen; and Addison liked it very well, and was not disinclined to come into it."]
[Footnote 108: accounted for the operation of the meat-jack: from the paper "To the learned inquisitor into nature, Martinus Scriblerus: the society of free thinkers greeting." Elwin and Courthope, Pope's works, vol. ?, p. 332.]
[Footnote 109: The remainder of the essay endeavors to meet the charge of materialism. The following is the conclusion:—"In itself it is of little moment whether we express the phaenomena of matter in terms of spirit; or the phaenomena of spirit in terms of matter: matter may be regarded as a form of thought, thought may be regarded as a property of matter—each statement has a certain relative truth. But with a view to the progress of science, the materialistic terminology is in every way to be preferred. For it connects thought with the other phaenomena of the universe, and suggests inquiry into the nature of those physical conditions, or concomitants of thought, which are more or less accessible to us, and a knowledge of which may, in future, help us to exercise the same kind of control over the world of thought, as we already possess in respect of the material world; whereas, the alternative, or spiritualistic, terminology is utterly barren, and leads to nothing but obscurity and confusion of ideas.
"Thus there can be little doubt, that the further science advances, the more extensively and consistently will all the phaenomena of Nature be represented by materialistic formulae and symbols. But the man of science, who, forgetting the limits of philosophical inquiry, slides from these formulae and symbols into what is commonly understood by materialism, seems to me to place himself on a level with the mathematician, who should mistake the x's and y's with which he works his problems, for real entities—and with this further disadvantage, as compared with the mathematician, that the blunders of the latter are of no practical consequence, while the errors of systematic materialism may paralyze the energies and destroy the beauty of a life."]
ON CORAL AND CORAL REEFS (1870)
[Footnote 110: On Coral and Coral Reefs: from Critiques and Addresses. The essay was published in 1870.]
[Footnote 111: Sic et curalium: Thus also the coral, as soon as it touches the air turns hard. It was a soft plant under the water.]
[Footnote 112: Boccone (1633-1704): a noted Sicilian naturalist.]
[Footnote 113: Marsigli (1658-1730): an Italian soldier and naturalist. He wrote A Physical History of the Sea.]
[Footnote 114: "Traite du Corail": "I made the coral bloom in vases full of sea-water, and I noticed that what we believe to be the flower of this so-called plant was in reality only an insect similar to a little nettle or polype. I had the pleasure to see the paws or feet of this nettle move, and having placed the vase full of water in which the coral was, near the fire, at a moderate heat, all the little insects expanded, the nettle stretched out its feet and formed what M. de Marsigli and I had taken for the petals of the flower. The calyx of this so-called flower is the very body of the animal issued from its cell."]
[Footnote 115: Reaumur (1683-1757): a French physiologist and naturalist, best known as the inventor of the Reaumur thermometer. He was a member of the French Academy of Science.]
[Footnote 116: Bishop Wilson: Thomas Wilson (1663-1755), bishop of the Isle of Man. Details of his life are given in the folio edition of his works (1782). An appreciation of his religious writings is given by Matthew Arnold in Culture and Anarchy. Bishop Wilson's words, "To make reason and the will of God prevail," are the theme of Arnold's essay, Sweetness and Light.]
[Footnote 117: An eminent modern writer: Matthew Arnold (1822-1888), eldest son of Thomas Arnold, headmaster of Rugby; a distinguished critic and poet, and professor of poetry at Oxford. The allusion is to Arnold's essay, Sweetness and Light. The phrase, "sweetness and light," is one which Aesop uses in Swift's Battle of the Books to sum up the superiority of the ancients over the moderns. "As for us, the ancients, we are content, with the bee, to pretend to nothing of our own beyond our wings and our voice, that is to say, our flights and our language; for the rest, whatever we have got has been by infinite labor and search, and ranging through every corner of nature; the difference is, that instead of dirt and poison we have rather chose to fill our hives with honey and wax, thus furnishing mankind with the two noblest things, which are sweetness and light." Arnold's purpose in the essay is to define the cultured man as one who endeavors to make beauty and intelligence prevail everywhere.]
[Footnote 118: Abbe Trembley (1700-1784): a Swiss naturalist. He wrote "Memoires pour servir a l'histoire d'un genre de polypes d'eau douce, a bras en forme de cornes."]
[Footnote 119: Bernard de Jussieu (1699-1776): a French botanist; founder of the natural classification of plants. He was superintendent of the Trianon Gardens.]
[Footnote 120: Guettard (1715-1786): a French naturalist.]
[Footnote 121: Monte Nuovo within the old crater of Somma: Monte Nuovo, a mountain west of Naples; Somma, a mountain north of Vesuvius which with its lofty, semicircular cliff encircles the active cone of Vesuvius.]
[Footnote 122: Mauritius: an island in the Indian Ocean; Huxley visited the island when on the voyage with the Rattlesnake. He wrote to his mother of his visit: "This island is, you know, the scene of Saint Pierre's beautiful story of Paul and Virginia, over which I suppose most people have sentimentalized at one time or another of their lives. Until we reached here I did not know that the tale was like the lady's improver—a fiction founded on fact, and that Paul and Virginia were at one time flesh and blood, and that their veritable dust was buried at Pamplemousses in a spot considered as one of the lions of the place, and visited as classic ground."]
[Footnote 123: Mr. Darwin's coral reefs: The Structure and Distribution of Coral Reefs, published in 1848.]
[Footnote 124: Professor Jukes (1811-1869): an English geologist.]
[Footnote 125: Mr. Dana (1813-1895): a well-known American geologist and mineralogist; a professor at Yale from 1845. He wrote a number of books among which is Coral and Coral Reefs.]
[Footnote 126: Jurassic period: that part of the geological series which is older than the Cretaceous and newer than the Triassic; so called from the predominance of rocks of this age in the Jura Mountains. The three great divisions of fossiliferous rocks are called the Triassic, the Jurassic, and the Cretaceous.]
REFERENCE BOOKS
The following reference books are suggested for a more complete treatment of various points in the text:—Andrews' History of England. Green's Short History of the English People. Traill's Social England. Roger's A Student's History of Philosophy. Royce's The Spirit of Modern Philosophy. Huxley's Life and Letters. Smalley's Mr. Huxley, in Scribner's Magazine for October, 1905. Darwin's Life and Letters.
THE END |
|