|
Also, if there did exist an infinite number of stars, one would expect to find evidence in some direction of an overpoweringly great force,—the centre of gravity of all these bodies.
It is noticed, too, that although the stars increase in number with decrease in magnitude, so that as we descend in the scale we find three times as many stars in each magnitude as in the one immediately above it, yet this progression does not go on after a while. There is, in fact, a rapid falling off in numbers below the twelfth magnitude; which looks as if, at a certain distance from us, the stellar universe were beginning to thin out.
Again, it is estimated, by Mr. Gore and others, that only about 100 millions of stars are to be seen in the whole of the sky with the best optical aids. This shows well the limited extent of the stellar system, for the number is not really great. For instance, there are from fifteen to sixteen times as many persons alive upon the earth at this moment!
Last of all, there appears to be strong photographic evidence that our sidereal system is limited in extent. Two photographs taken by the late Dr. Isaac Roberts of a region rich in stellar objects in the constellation of Cygnus, clearly show what has been so eloquently called the "darkness behind the stars." One of these photographs was taken in 1895, and the other in 1898. On both occasions the state of the atmosphere was practically the same, and the sensitiveness of the films was of the same degree. The exposure in the first case was only one hour; in the second it was about two hours and a half. And yet both photographs show exactly the same stars, even down to the faintest. From this one would gather that the region in question, which is one of the most thickly star-strewn in the Milky Way, is penetrable right through with the means at our command. Dr. Roberts himself in commenting upon the matter drew attention to the fact, that many astronomers seemed to have tacitly adopted the assumption that the stars extend indefinitely through space.
From considerations such as these the foremost astronomical authorities of our time consider themselves justified in believing that the collection of stars around us is finite; and that although our best telescopes may not yet be powerful enough to penetrate to the final stars, still the rapid decrease in numbers as space is sounded with increasing telescopic power, points strongly to the conclusion that the boundaries of the stellar system may not lie very far beyond the uttermost to which we can at present see.
Is it possible then to make an estimate of the extent of this stellar system?
Whatever estimates we may attempt to form cannot however be regarded as at all exact, for we know the actual distances of such a very few only of the nearest of the stars. But our knowledge of the distances even of these few, permits us to assume that the stars close around us may be situated, on an average, at about eight light-years from each other; and that this holds good of the stellar spaces, with the exception of the encircling girdle of the Milky Way, where the stars seem actually to be more closely packed together. This girdle further appears to contain the greater number of the stars. Arguing along these lines, Professor Newcomb reaches the conclusion that the farthest stellar bodies which we see are situated at about between 3000 and 4000 light-years from us.
Starting our inquiry from another direction, we can try to form an estimate by considering the question of proper motions.
It will be noticed that such motions do not depend entirely upon the actual speed of the stars themselves, but that some of the apparent movement arises indirectly from the speed of our own sun. The part in a proper motion which can be ascribed to the movement of our solar system through space is clearly a displacement in the nature of a parallax—Sir William Herschel called it "Systematic Parallax"; so that knowing the distance which we move over in a certain lapse of time, we are able to hazard a guess at the distances of a good many of the stars. An inquiry upon such lines must needs be very rough, and is plainly based upon the assumption that the stars whose distances we attempt to estimate are moving at an average speed much like that of our own sun, and that they are not "runaway stars" of the 1830 Groombridge order. Be that as it may, the results arrived at by Professor Newcomb from this method of reasoning are curiously enough very much on a par with those founded on the few parallaxes which we are really certain about; with the exception that they point to somewhat closer intervals between the individual stars, and so tend to narrow down our previous estimate of the extent of the stellar system.
Thus far we get, and no farther. Our solar system appears to lie somewhere near the centre of a great collection of stars, separated each one from the other, on an average, by some 40 billions of miles; the whole being arranged in the form of a mighty globular cluster. Light from the nearest of these stars takes some four years to come to us. It takes about 1000 times as long to reach us from the confines of the system. This globe of stars is wrapt around closely by a stellar girdle, the individual stars in which are set together more densely than those in the globe itself. The entire arrangement appears to be constructed upon a very regular plan. Here and there, as Professor Newcomb points out, the aspect of the heavens differs in small detail; but generally it may be laid down that the opposite portions of the sky, whether in the Milky Way itself, or in those regions distant from it, show a marked degree of symmetry. The proper motions of stars in corresponding portions of the sky reveal the same kind of harmony, a harmony which may even be extended to the various colours of the stars. The stellar system, which we see disposed all around us, appears in fine to bear all the marks of an organised whole.
The older astronomers, to take Sir William Herschel as an example, supposed some of the nebulae to be distant "universes." Sir William was led to this conclusion by the idea he had formed that, when his telescopes failed to show the separate stars of which he imagined these objects to be composed, he must put down the failure to their stupendous distance from us. For instance, he thought the Orion Nebula, which is now known to be made up of glowing gas, to be an external stellar system. Later on, however, he changed his mind upon this point, and came to the conclusion that "shining fluid" would better account both for this nebula, and for others which his telescopes had failed to separate into component stars.
The old ideas with regard to external systems and distant universes have been shelved as a consequence of recent research. All known clusters and nebulae are now firmly believed to lie within our stellar system.
This view of the universe of stars as a sort of island in the immensities, does not, however, give us the least idea about the actual extent of space itself. Whether what is called space is really infinite, that is to say, stretches out unendingly in every direction, or whether it has eventually a boundary somewhere, are alike questions which the human mind seems utterly unable to picture to itself.
[35] The Ptolemaic idea dies hard!
[36] Even the Milky Way itself is far from being a blaze of light, which shows that the stars composing it do not extend outwards indefinitely.
[37] Mr. Gore has recently made some remarkable deductions, with regard to the amount of light which we get from the stars. He considers that most of this light comes from stars below the sixth magnitude; and consequently, if all the stars visible to the naked eye were to be blotted out, the glow of the night sky would remain practically the same as it is at present. Going to the other end of the scale, he thinks also that the combined light which we get from all the stars below the seventeenth magnitude is so very small, that it may be neglected in such an estimation. He finds, indeed, that if there are stars so low as the twentieth magnitude, one hundred millions of them would only be equal in brightness to a single first-magnitude star like Vega. On the other hand, it is possible that the light of the sky at night is not entirely due to starlight, but that some of it may be caused by phosphorescent glow.
CHAPTER XXVI
THE STELLAR UNIVERSE—continued
It is very interesting to consider the proper motions of stars with reference to such an isolated stellar system as has been pictured in the previous chapter. These proper motions are so minute as a rule, that we are quite unable to determine whether the stars which show them are moving along in straight lines, or in orbits of immense extent. It would, in fact, take thousands of years of careful observation to determine whether the paths in question showed any degree of curving. In the case of the more distant stars, the accurate observations which have been conducted during the last hundred years have not so far revealed any proper motions with regard to them; but one cannot escape the conclusion that these stars move as the others do.
If space outside our stellar system is infinite in extent, and if all the stars within that system are moving unchecked in every conceivable direction, the result must happen that after immense ages these stars will have drawn apart to such a distance from each other, that the system will have entirely disintegrated, and will cease to exist as a connected whole. Eventually, indeed, as Professor Newcomb points out, the stars will have separated so far from each other that each will be left by itself in the midst of a black and starless sky. If, however, a certain proportion of stars have a speed sufficiently slow, they will tend under mutual attraction to be brought to rest by collisions, or forced to move in orbits around each other. But those stars which move at excessive speeds, such, for instance, as 1830 Groombridge, or the star in the southern constellation of Pictor, seem utterly incapable of being held back in their courses by even the entire gravitative force of our stellar system acting as a whole. These stars must, therefore, move eventually right through the system and pass out again into the empty spaces beyond. Add to this; certain investigations, made into the speed of 1830 Groombridge, furnish a remarkable result. It is calculated, indeed, that had this star been falling through infinite space for ever, pulled towards us by the combined gravitative force of our entire system of stars, it could not have gathered up anything like the speed with which it is at present moving. No force, therefore, which we can conjure out of our visible universe, seems powerful enough either to have impressed upon this runaway star the motion which it now has, or to stay it in its wild course. What an astounding condition of things!
Speculations like this call up a suspicion that there may yet exist other universes, other centres of force, notwithstanding the apparent solitude of our stellar system in space. It will be recollected that the idea of this isolation is founded upon such facts as, that the heavens do not blaze with light, and that the stars gradually appear to thin out as we penetrate the system with increasing telescopic power. But perchance there is something which hinders us from seeing out into space beyond our cluster of stars; which prevents light, in fact, from reaching us from other possible systems scattered through the depths beyond. It has, indeed, been suggested by Mr. Gore[38] that the light-transmitting ether may be after all merely a kind of "atmosphere" of the stars; and that it may, therefore, thin off and cease a little beyond the confines of our stellar system, just as the air thins off and practically ceases at a comparatively short distance from the earth. A clashing together of solid bodies outside our atmosphere could plainly send us no sound, for there is no air extending the whole way to bear to our ears the vibrations thus set up; so light emitted from any body lying beyond our system of stars, would not be able to come to us if the ether, whose function it is to convey the rays of light, ceased at or near the confines of that system.
Perchance we have in this suggestion the key to the mystery of how our sun and the other stellar bodies maintain their functions of temperature and illumination. The radiations of heat and light arriving at the limits of this ether, and unable to pass any further, may be thrown back again into the system in some altered form of energy.
But these, at best, are mere airy and fascinating speculations. We have, indeed, no evidence whatever that the luminiferous ether ceases at the boundary of the stellar system. If, therefore, it extends outwards infinitely in every direction, and if it has no absorbing or weakening effect on the vibrations which it transmits, we cannot escape from the conclusion that practically all the rays of light ever emitted by all the stars must chase one another eternally through the never-ending abysses of space.
[38] Planetary and Stellar Studies, by John Ellard Gore, F.R.A.S., M.R.I.A., London, 1888.
CHAPTER XXVII
THE BEGINNING OF THINGS
LAPLACE'S NEBULAR HYPOTHESIS
Dwelling upon the fact that all the motions of revolution and rotation in the solar system, as known in his day, took place in the same direction and nearly in the same plane, the great French astronomer, Laplace, about the year 1796, put forward a theory to account for the origin and evolution of that system. He conceived that it had come into being as a result of the gradual contraction, through cooling, of an intensely heated gaseous lens-shaped mass, which had originally occupied its place, and had extended outwards beyond the orbit of the furthest planet. He did not, however, attempt to explain how such a mass might have originated! He went on to suppose that this mass, in some manner, perhaps by mutual gravitation among its parts, had acquired a motion of rotation in the same direction as the planets now revolve. As this nebulous mass parted with its heat by radiation, it contracted towards the centre. Becoming smaller and smaller, it was obliged to rotate faster and faster in order to preserve its equilibrium. Meanwhile, in the course of contraction, rings of matter became separated from the nucleus of the mass, and were left behind at various intervals. These rings were swept up into subordinate masses similar to the original nebula. These subordinate masses also contracted in the same manner, leaving rings behind them which, in turn, were swept up to form satellites. Saturn's ring was considered, by Laplace, as the only portion of the system left which still showed traces of this evolutionary process. It is even probable that it may have suggested the whole of the idea to him.
Laplace was, however, not the first philosopher who had speculated along these lines concerning the origin of the world.
Nearly fifty years before, in 1750 to be exact, Thomas Wright, of Durham, had put forward a theory to account for the origin of the whole sidereal universe. In his theory, however, the birth of our solar system was treated merely as an incident. Shortly afterwards the subject was taken up by the famous German philosopher, Kant, who dealt with the question in a still more ambitious manner, and endeavoured to account in detail for the origin of the solar system as well as of the sidereal universe. Something of the trend of such theories may be gathered from the remarkable lines in Tennyson's Princess:—
"This world was once a fluid haze of light, Till toward the centre set the starry tides, And eddied into suns, that wheeling cast The planets."
The theory, as worked out by Kant, was, however, at the best merely a tour de force of philosophy. Laplace's conception was much less ambitious, for it did not attempt to explain the origin of the entire universe, but only of the solar system. Being thus reasonably limited in its scope, it more easily obtained credence. The arguments of Laplace were further founded upon a mathematical basis. The great place which he occupied among the astronomers of that time caused his theory to exert a preponderating influence on scientific thought during the century which followed.
A modification of Laplace's theory is the Meteoritic Hypothesis of Sir Norman Lockyer. According to the views of that astronomer, the material of which the original nebula was composed is presumed to have been in the meteoric, rather than in the gaseous, state. Sir Norman Lockyer holds, indeed, that nebulae are, in reality, vast swarms of meteors, and the light they emit results from continual collisions between the constituent particles. The French astronomer, Faye, also proposed to modify Laplace's theory by assuming that the nebula broke up into rings all at once, and not in detail, as Laplace had wished to suppose.
The hypothesis of Laplace fits in remarkably well with the theory put forward in later times by Helmholtz, that the heat of the sun is kept up by the continual contraction of its mass. It could thus have only contracted to its present size from one very much larger.
Plausible, however, as Laplace's great hypothesis appears on the surface, closer examination shows several vital objections, a few of those set forth by Professor Moulton being here enumerated—
Although Laplace held that the orbits of the planets were sufficiently near to being in the one plane to support his views, yet later investigators consider that their very deviations from this plane are a strong argument against the hypothesis.
Again, it is thought that if the theory were the correct explanation, the various orbits of the planets would be much more nearly circular than they are.
It is also thought that such interlaced paths, as those in which the asteroids and the little planet Eros move, are most unlikely to have been produced as a result of Laplace's nebula.
Further, while each of the rings was sweeping up its matter into a body of respectable dimensions, its gravitative power would have been for the time being so weak, through being thus spread out, that any lighter elements, as, for instance, those of the gaseous order, would have escaped into space in accordance with the principles of the kinetic theory.
The idea that rings would at all be left behind at certain intervals during the contraction of the nebula is, perhaps, one of the weakest points in Laplace's hypothesis.
Mathematical investigation does not go to show that the rings, presuming they could be left behind during the contraction of the mass, would have aggregated into planetary bodies. Indeed, it rather points to the reverse.
Lastly, such a discovery as that the ninth satellite of Saturn revolves in a retrograde direction—that is to say, in a direction contrary to the other revolutions and rotations in our solar system—appears directly to contradict the hypothesis.
Although Laplace's hypothesis seems to break down under the keen criticism to which it has been subjected, yet astronomers have not relinquished the idea that our solar system has probably had its origin from a nebulous mass. But the apparent failure of the Laplacian theory is emphasised by the fact, that not a single example of a nebula, in the course of breaking up into concentric rings, is known to exist in the entire heaven. Indeed, as we saw in Chapter XXIV., there seems to be no reliable example of even a "ring" nebula at all. Mr. Gore has pointed this out very succinctly in his recently published work, Astronomical Essays, where he says:—"To any one who still persists in maintaining the hypothesis of ring formation in nebulae, it may be said that the whole heavens are against him."
The conclusions of Keeler already alluded to, that the spiral is the normal type of nebula, has led during the past few years to a new theory by the American astronomers, Professors Chamberlin and Moulton. In the detailed account of it which they have set forth, they show that those anomalies which were stumbling-blocks to Laplace's theory do not contradict theirs. To deal at length with this theory, to which the name of "Planetesimal Hypothesis" has been given, would not be possible in a book of this kind. But it may be of interest to mention that the authors of the theory in question remount the stream of time still further than did Laplace, and seek to explain the origin of the spiral nebulae themselves in the following manner:—
Having begun by assuming that the stars are moving apparently in every direction with great velocities, they proceed to point out that sooner or later, although the lapse of time may be extraordinarily long, collisions or near approaches between stars are bound to occur. In the case of collisions the chances are against the bodies striking together centrally, it being very much more likely that they will hit each other rather towards the side. The nebulous mass formed as a result of the disintegration of the bodies through their furious impact would thus come into being with a spinning movement, and a spiral would ensue. Again, the stars may not actually collide, but merely approach near to each other. If very close, the interaction of gravitation will give rise to intense strains, or tides, which will entirely disintegrate the bodies, and a spiral nebula will similarly result. As happens upon our earth, two such tides would rise opposite to each other; and, consequently, it is a noticeable fact that spiral nebulae have almost invariably two opposite branches (see Plate XXII., p 314). Even if not so close, the gravitational strains set up would produce tremendous eruptions of matter; and in this case, a spiral movement would also be generated. On such an assumption the various bodies of the solar system may be regarded as having been ejected from parent masses.
The acceptance of the Planetesimal Hypothesis in the place of the Hypothesis of Laplace will not, as we have seen, by any means do away with the probability that our solar system, and similar systems, have originated from a nebulous mass. On the contrary it puts that idea on a firmer footing than before. The spiral nebulae which we see in the heavens are on a vast scale, and may represent the formation of stellar systems and globular clusters. Our solar system may have arisen from a small spiral.
We will close these speculations concerning the origin of things with a short sketch of certain investigations made in recent years by Sir George H. Darwin, of Cambridge University, into the question of the probable birth of our moon. He comes to the conclusion that at least fifty-four millions of years ago the earth and moon formed one body, which had a diameter of a little over 8000 miles. This body rotated on an axis in about five hours, namely, about five times as fast as it does at present. The rapidity of the rotation caused such a tremendous strain that the mass was in a condition of, what is called, unstable equilibrium; very little more, in fact, being required to rend it asunder. The gravitational pull of the sun, which, as we have already seen, is in part the cause of our ordinary tides, supplied this extra strain, and a portion of the mass consequently broke off, which receded gradually from the rest and became what we now know as the moon. Sir George Darwin holds that the gravitational action of the sun will in time succeed in also disturbing the present apparent harmony of the earth-moon system, and will eventually bring the moon back towards the earth, so that after the lapse of great ages they will re-unite once again.
In support of this theory of the terrestrial origin of the moon, Professor W.H. Pickering has put forward a bold hypothesis that our satellite had its origin in the great basin of the Pacific. This ocean is roughly circular, and contains no large land masses, except the Australian Continent. He supposes that, prior to the moon's birth, our globe was already covered with a slight crust. In the tearing away of that portion which was afterwards destined to become the moon the remaining area of the crust was rent in twain by the shock; and thus were formed the two great continental masses of the Old and New Worlds. These masses floated apart across the fiery ocean, and at last settled in the positions which they now occupy. In this way Professor Pickering explains the remarkable parallelism which exists between the opposite shores of the Atlantic. The fact of this parallelism had, however, been noticed before; as, for example, by the late Rev. S.J. Johnson, in his book Eclipses, Past and Future, where we find the following passage:—
"If we look at our maps we shall see the parts of one Continent that jut out agree with the indented portions of another. The prominent coast of Africa would fit in the opposite opening between North and South America, and so in numerous other instances. A general rending asunder of the World would seem to have taken place when the foundations of the great deep were broken up."
Although Professor Pickering's theory is to a certain degree anticipated in the above words, still he has worked out the idea much more fully, and given it an additional fascination by connecting it with the birth of the moon. He points out, in fact, that there is a remarkable similarity between the lunar volcanoes and those in the immediate neighbourhood of the Pacific Ocean. He goes even further to suggest that Australia is another portion of the primal crust which was detached out of the region now occupied by the Indian Ocean, where it was originally connected with the south of India or the east of Africa.
Certain objections to the theory have been put forward, one of which is that the parallelism noticed between the opposite shores of the Atlantic is almost too perfect to have remained through some sixty millions of years down to our own day, in the face of all those geological movements of upheaval and submergence, which are perpetually at work upon our globe. Professor Pickering, however, replies to this objection by stating that many geologists believe that the main divisions of land and water on the earth are permanent, and that the geological alterations which have taken place since these were formed have been merely of a temporary and superficial nature.
CHAPTER XXVIII
THE END OF THINGS
We have been trying to picture the beginning of things. We will now try to picture the end.
In attempting this, we find that our theories must of necessity be limited to the earth, or at most to the solar system. The time-honoured expression "End of the World" really applies to very little beyond the end of our own earth. To the people of past ages it, of course, meant very much more. For them, as we have seen, the earth was the centre of everything; and the heavens and all around were merely a kind of minor accompaniment, created, as they no doubt thought, for their especial benefit. In the ancient view, therefore, the beginning of the earth meant the beginning of the universe, and the end of the earth the extinction of all things. The belief, too, was general that this end would be accomplished through fire. In the modern view, however, the birth and death of the earth, or indeed of the solar system, might pass as incidents almost unnoticed in space. They would be but mere links in the chain of cosmic happenings.
A number of theories have been forward from time to time prognosticating the end of the earth, and consequently of human life. We will conclude with a recital of a few of them, though which, if any, is the true one, the Last Men alone can know.
Just as a living creature may at any moment die in the fulness of strength through sudden malady or accident, or, on the other hand, may meet with death as a mere consequence of old age, so may our globe be destroyed by some sudden cataclysm, or end in slow processes of decay. Barring accidents, therefore, it would seem probable that the growing cold of the earth, or the gradual extinction of the sun, should after many millions of years close the chapter of life, as we know it. On the former of these suppositions, the decrease of temperature on our globe might perhaps be accelerated by the thinning of the atmosphere, through the slow escape into space of its constituent gases, or their gradual chemical combination with the materials of the earth. The subterranean heat entirely radiated away, there would no longer remain any of those volcanic elevating forces which so far have counteracted the slow wearing down of the land surface of our planet, and thus what water remained would in time wash over all. If this preceded the growing cold of the sun, certain strange evolutions of marine forms of life would be the last to endure, but these, too, would have to go in the end.
Should, however, the actual process be the reverse of this, and the sun cool down the quicker, then man would, as a consequence of his scientific knowledge, tend in all probability to outlive the other forms of terrestrial life. In such a vista we can picture the regions of the earth towards the north and south becoming gradually more and more uninhabitable through cold, and human beings withdrawing before the slow march of the icy boundary, until the only regions capable of habitation would lie within the tropics. In such a struggle between man and destiny science would be pressed to the uttermost, in the devising of means to counteract the slow diminution of the solar heat and the gradual disappearance of air and water. By that time the axial rotation of our globe might possibly have been slowed down to such an extent that one side alone of its surface would be turned ever towards the fast dying sun. And the mind's eye can picture the last survivors of the human race, huddled together for warmth in a glass-house somewhere on the equator, waiting for the end to come.
The mere idea of the decay and death of the solar system almost brings to one a cold shudder. All that sun's light and heat, which means so much to us, entirely a thing of the past. A dark, cold ball rushing along in space, accompanied by several dark, cold balls circling ceaselessly around it. One of these a mere cemetery, in which there would be no longer any recollection of the mighty empires, the loves and hates, and all that teeming play of life which we call History. Tombstones of men and of deeds, whirling along forgotten in the darkness and silence. Sic transit gloria mundi.
In that brilliant flight of scientific fancy, the Time Machine, Mr. H.G. Wells has pictured the closing years of the earth in some such long-drawn agony as this. He has given us a vision of a desolate beach by a salt and almost motionless sea. Foul monsters of crab-like form crawl slowly about, beneath a huge hull of sun, red and fixed in the sky. The rocks around are partly coated with an intensely green vegetation, like the lichen in caves, or the plants which grow in a perpetual twilight. And the air is now of an exceeding thinness.
He dips still further into the future, and thus predicts the final form of life:—
"I saw again the moving thing upon the shoal—there was no mistake now that it was a moving thing—against the red water of the sea. It was a round thing, the size of a football perhaps, or it may be bigger, and tentacles trailed down from it; it seemed black against the weltering blood-red water, and it was hopping fitfully about."
What a description of the "Heir of all the Ages!"
To picture the end of our world as the result of a cataclysm of some kind, is, on the other hand, a form of speculation as intensely dramatic as that with which we have just been dealing is unutterably sad.
It is not so many years ago, for instance, that men feared a sudden catastrophe from the possible collision of a comet with our earth. The unreasoning terror with which the ancients were wont to regard these mysterious visitants to our skies had, indeed, been replaced by an apprehension of quite another kind. For instance, as we have seen, the announcement in 1832 that Biela's Comet, then visible, would cut through the orbit of the earth on a certain date threw many persons into a veritable panic. They did not stop to find out the real facts of the case, namely, that, at the time mentioned, the earth would be nearly a month's journey from the point indicated!
It is, indeed, very difficult to say what form of damage the earth would suffer from such a collision. In 1861 it passed, as we have seen, through the tail of the comet without any noticeable result. But the head of a comet, on the other hand, may, for aught we know, contain within it elements of peril for us. A collision with this part might, for instance, result in a violent bombardment of meteors. But these meteors could not be bodies of any great size, for the masses of comets are so very minute that one can hardly suppose them to contain any large or dense constituent portions.
The danger, however, from a comet's head might after all be a danger to our atmosphere. It might precipitate, into the air, gases which would asphyxiate us or cause a general conflagration. It is scarcely necessary to point out that dire results would follow upon any interference with the balance of our atmosphere. For instance, the well-known French astronomer, M. Camille Flammarion,[39] has imagined the absorption of the nitrogen of the air in this way; and has gone on to picture men and animals reduced to breathing only oxygen, first becoming excited, then mad, and finally ending in a perfect saturnalia of delirium.
Lastly, though we have no proof that stars eventually become dark and cold, for human time has so far been all too short to give us even the smallest evidence as to whether heat and light are diminishing in our own sun, yet it seems natural to suppose that such bodies must at last cease their functions, like everything else which we know of. We may, therefore, reasonably presume that there are dark bodies scattered in the depths of space. We have, indeed, a suspicion of at least one, though perhaps it partakes rather of a planetary nature, namely, that "dark" body which continually eclipses Algol, and so causes the temporary diminution of its light. As the sun rushes towards the constellation of Lyra such an extinguished sun may chance to find itself in his path; just as a derelict hulk may loom up out of the darkness right beneath the bows of a vessel sailing the great ocean.
Unfortunately a collision between the sun and a body of this kind could not occur with such merciful suddenness. A tedious warning of its approach would be given from that region of the heavens whither our system is known to be tending. As the dark object would become visible only when sufficiently near our sun to be in some degree illuminated by his rays, it might run the chance at first of being mistaken for a new planet. If such a body were as large, for instance, as our own sun, it should, according to Mr. Gore's calculations, reveal itself to the telescope some fifteen years before the great catastrophe. Steadily its disc would appear to enlarge, so that, about nine years after its discovery, it would become visible to the naked eye. At length the doomed inhabitants of the earth, paralysed with terror, would see their relentless enemy shining like a second moon in the northern skies. Rapidly increasing in apparent size, as the gravitational attractions of the solar orb and of itself interacted more powerfully with diminishing distance, it would at last draw quickly in towards the sun and disappear in the glare.
It is impossible for us to conceive anything more terrible than these closing days, for no menace of catastrophe which we can picture could bear within it such a certainty of fulfilment. It appears, therefore, useless to speculate on the probable actions of men in their now terrestrial prison. Hope, which so far had buoyed them up in the direst calamities, would here have no place. Humanity, in the fulness of its strength, would await a wholesale execution from which there could be no chance at all of a reprieve. Observations of the approaching body would have enabled astronomers to calculate its path with great exactness, and to predict the instant and character of the impact. Eight minutes after the moment allotted for the collision the resulting tide of flame would surge across the earth's orbit, and our globe would quickly pass away in vapour.
And what then?
A nebula, no doubt; and after untold ages the formation possibly from it of a new system, rising phoenix-like from the vast crematorium and filling the place of the old one. A new central sun, perhaps, with its attendant retinue of planets and satellites. And teeming life, perchance, appearing once more in the fulness of time, when temperature in one or other of these bodies had fallen within certain limits, and other predisposing conditions had supervened.
"The world's great age begins anew, The golden years return, The earth doth like a snake renew Her winter weeds outworn: Heaven smiles, and faiths and empires gleam Like wrecks of a dissolving dream.
A brighter Hellas rears its mountains From waves serener far; A new Peneus rolls his fountains Against the morning star; Where fairer Tempes bloom, there sleep Young Cyclads on a sunnier deep.
A loftier Argo cleaves the main, Fraught with a later prize; Another Orpheus sings again, And loves, and weeps, and dies; A new Ulysses leaves once more Calypso for his native shore.
* * * * *
Oh cease! must hate and death return? Cease! must men kill and die? Cease! drain not to its dregs the urn Of bitter prophecy! The world is weary of the past,— Oh might it die or rest at last!"
[39] See his work, La Fin du Monde, wherein the various ways by which our world may come to an end are dealt with at length, and in a profoundly interesting manner.
INDEX
Achromatic telescope, 115, 116
Adams, 24, 236, 243
Aerial telescopes, 110, 111
Agathocles, Eclipse of, 85
Agrippa, Camillus, 44
Ahaz, dial of, 85
Air, 166
Airy, Sir G.B., 92
Al gul, 307
Al Sufi, 284, 290, 296, 315
Alcor, 294
Alcyone, 284
Aldebaran, 103, 288, 290, 297
Algol, 307, 309-310, 312, 323, 347
Alpha, Centauri, 52-53, 280, 298-299, 304, 320
Alpha Crucis, 298
Alps, Lunar, 200
Altair, 295
Altitude of objects in sky, 196
Aluminium, 145
Amos viii. 9, 85
Anderson, T.D., 311-312
Andromeda (constellation), 279, 314; Great Nebula in, 314, 316
Andromedid meteors, 272
Anglo-Saxon Chronicle, 87-88
Anighito meteorite, 277
Annular eclipse, 65-68, 80, 92, 99
Annular Nebula in Lyra, 315-316
Annulus, 68
Ansae, 242-243
Anticipation in discovery, 236-237
Apennines, Lunar, 200
Aphelion, 274
Apparent enlargement of celestial objects, 192-196
Apparent size of celestial objects deceptive, 196, 294
Apparent sizes of sun and moon, variations in, 67, 80, 178
Aquila (constellation), 295
Arabian astronomers, 107, 307
Arago, 92, 257
Arc, degrees minutes and seconds of, 60
Arcturus, 280, 282, 290, 295
Argelander, 290
Argo (constellation), 298
Aristarchus of Samos, 171
Aristarchus (lunar crater), 205
Aristophanes, 101
Aristotle, 161, 173, 185
Arrhenius 222, 253-254
Assyrian tablet, 84
Asteroidal zone, analogy of, to Saturn's rings, 238
Asteroids (or minor planets), 30-31, 225-228, 336; discovery of the, 23, 244; Wolf's method of discovering, 226-227
Astrology, 56
Astronomical Essays, 63, 337
Astronomical Society, Royal, 144
Astronomy, Manual of, 166
Atlantic Ocean, parallelism of opposite shores, 340-341
Atlas, the Titan, 18
Atmosphere, absorption by earth's, 129-130; ascertainment of, by spectroscope, 124-125, 212; height of earth's, 167, 267; of asteroids, 226; of earth, 129, 130, 166-169, 218, 222, 267, 346; of Mars, 156, 212, 216; of Mercury, 156; of moon, 70-71, 156, 201-203; of Jupiter, 231; of planets, 125; of Saturn's rings, 239
"Atmosphere" of the stars, 331
Atmospheric layer and "glass-house" compared, 167, 203
August Meteors (Perseids), 270
Auriga (constellation), 294-296, 306, 311; New Star in, 311
Aurigae, [b] (Beta), 294, 297, 304
Aurora Borealis, 141, 143, 259
Australia, suggested origin of, 340
Axis, 29-30; of earth, 163, 180; small movement of earth's, 180-181
Babylonian tablet, 84
Babylonian idea of the moon, 185
Bacon, Roger, 108
Bacubirito meteorite, 277
Bagdad, 107
Baily, Francis, 92
"Baily's Beads," 69, 70, 91-92, 154
Bailly (lunar crater), 199
Ball, Sir Robert, 271
Barnard, E.E., 31, 224, 232-234, 237, 258
"Bay of Rainbows," 197
Bayer's classification of stars, 289, 291-292
Bayeux Tapestry, 263
Bear, Great (constellation). See Ursa Major; Little, see Ursa Minor
Beehive (Praesepe), 307
Beer, 206
Belopolsky, 304
"Belt" of Orion, 297
Belt theory of Milky Way, 321
Belts of Jupiter, 230
Bergstrand, 314
Berlin star chart, 244
Bessel, 173, 280, 305
Beta ([b]) Lyrae, 307
Beta ([b]) Persei. See Algol
Betelgeux, 297
Bible, eclipses in, 85
Biela's Comet, 256-257, 272-273, 345
Bielids, 270, 272-273
Billion, 51-52
Binary stars, spectroscopic, 301-306, 309; visual, 300, 303-306
"Black Drop," 152-154
"Black Hour," 89
"Black Saturday," 89
Blood, moon in eclipse like, 102
Blue (rays of light), 121, 130
Bode's Law, 22-23, 244-245
Bolometer, 127
Bond, G.P., 236, 257
Bonpland, 270
Booetes (constellation), 295, 314
Bradley, 111
Brahe, Tycho, 290, 311
Bredikhine's theory of comets' tails, 253-254, 256
Bright eclipses of moon, 65, 102
British Association for the Advancement of Science, 318
British Astronomical Association, Journal of, 194
British Museum, 84
Bull (constellation). See Taurus; "Eye" of the, 297; "Head" of the, 297
Burgos, 98
Busch, 93
Caesar, Julius, 85, 110, 180, 259, 262, 291, 293
Calcium, 138, 145
Callisto, 233-234
Cambridge, 24, 91, 119, 243
Campbell, 305
Canali, 214
"Canals" of Mars, 214-222, 224-225
Cancer (constellation), 307
Canes Venatici (constellation), 306, 314
Canis Major (constellation), 289, 296-297; Minor, 296-297
Canopus, 285, 298-299, 320
Capella, 280, 282, 290, 294, 297, 303, 313
Carbon, 145
Carbon dioxide. See Carbonic acid gas
Carbonic acid gas, 166, 213, 221-222
Carnegie Institution, Solar Observatory of, 118
Cassegrainian telescope, 114, 118
Cassini, J.D., 236, 240
"Cassini's Division" in Saturn's ring, 236, 238
Cassiopeia (constellation), 279, 294, 311, 314
Cassiopeiae, [e] (Eta), 303
Cassiopeia's Chair, 294
Cassius, Dion, 86
Castor, 282, 297, 304
Catalogues of stars, 106, 290-291, 311
Centaur. See Centaurus
Centaurus (constellation), 298, 306
Centre of gravity, 42, 283-284, 324
Ceres, diameter of, 30, 225
Ceti, Omicron (or Mira), 307-308
Cetus, or the Whale (constellation), 307
Chaldean astronomers, 74, 76
Challis, 243-244
Chamberlin, 337
"Chambers of the South," 299
Chandler, 308
Charles V., 261
"Charles' Wain," 291
Chemical rays, 127
Chinese and eclipses, 83
Chloride of sodium, 122
Chlorine, 122, 145
Christ, Birth of, 102
Christian Era, first recorded solar eclipse in, 85
Chromatic aberration, 110
Chromosphere, 71-72, 93-94, 130-132, 138-139
Circle, 171-173
Clark, Alvan, & Sons, 117-118, 303
Claudius, Emperor, 86
Clavius (lunar crater), 199
Clerk Maxwell, 237
"Clouds" (of Aristophanes), 101
Clustering power, 325
Clusters of stars, 300, 306, 314, 328
Coal Sacks. See Holes in Milky Way
Coelostat, 119
Coggia's Comet, 254
Colour, production of, in telescopes, 109-111, 115, 121
Collision of comet with earth, 345-346; of dark star with sun, 346-348; of stars, 285, 312
Columbus, 103
Coma Berenices (constellation), 307, 316
Comet, first discovery of by photography, 258; first orbit calculated, 255; first photograph of, 257-258; furthest distance seen, 258; passage of among satellites of Jupiter, 250; passage of earth and moon through tail of, 257, 346
Comet of 1000 A.D., 262; 1066, 262-264; 1680, 255, 265; 1811, 254-255; 1861, 254, 257, 346; 1881, 257-258; 1882, 251, 258, 291; 1889, 258; 1907, 258
Comets, 27-28, 58, Chaps. XIX. and XX., 345-346; ancient view of, 259-261; captured, 251-253; Chinese records of, 83-84; composition of, 252; contrasted with planets, 247; families of, 251-252, 256; meteor swarms and, 274; revealed by solar eclipses, 95-96; tails of, 141, 182, 248, 252-254
Common, telescopes of Dr. A.A., 118
Conjunction, 209
Constellations, 105, 278-279, 285, 289
Contraction theory of sun's heat, 128-129, 335
Cook, Captain, 154
Cooke, 118
Copernican system, 20, 107, 149, 170-173, 279, 280
Copernicus, 20, 108, 149, 158, 170-172, 236
Copernicus (lunar crater), 200, 204
Copper, 145
Corder, H., 144
Corona, 70-72, 90, 92-97, 132, 140-141, 270; earliest drawing of, 91; earliest employment of term, 90; earliest mention of, 86; earliest photograph of, 93; illumination given by, 71; possible change in shape of during eclipse, 96-98; structure of, 142-143; variations in shape of, 141
Corona Borealis (constellation), 295
Coronal matter, 142; streamers, 95-96, 141-143
Coronium, 133, 142, 317
Cotes, 91
Coude, equatorial, 119
Cowell, P.H., 255, 264
Crabtree, 152
Crape ring of Saturn, 236-237
Craterlets on Mars, 220
Craters (ring-mountains) on moon, 197-205, 214, 340; suggested origin of, 203-204, 214
Crawford, Earl of, 94
Crecy, supposed eclipse at battle of, 88-89
Crescent moon, 183, 185
Crommelin, A.C.D., 255, 264
Crossley Reflector, 118, 315-316
Crown glass, 115
Crucifixion, darkness of, 86
Crucis, [a] (Alpha), 298
Crux, or "Southern Cross" (constellation), 298-299, 323
Cycle, sunspot, 136-137, 141, 143-144
Cygni, 61, 173, 280
Cygnus, or the Swan (constellation), 295, 325
Daniel's Comet of 1897, 258
Danzig, 111
Dark Ages, 102, 107, 260
Dark eclipses of moon, 65, 102-103
Dark matter in space, 323
Dark meteors, 275-276
Dark stars, 309-310, 312, 323, 346-347
"Darkness behind the stars," 325
Darwin, Sir G.H., 339
Davis, 94
Dawes, 236
Dearborn Observatory, 303
Death from fright at eclipse, 73
Debonnaire, Louis le, 88, 261
Deimos, 223
Deity, symbol of the, 87
"Demon star." See Algol
Denebola, 296
Denning, W.F., 269
Densities of sun and planets, 39
Density, 38
Deslandres, 140
Diameters of sun and planets, 31
Disappearance of moon in lunar eclipse, 65, 102-103
Disc, 60
"Disc" theory. See "Grindstone" theory
Discoveries, independent, 236
Discovery, anticipation in, 236-237; indirect methods of, 120
"Dipper," the, 291; the "Little," 294
Distance of a celestial body, how ascertained, 56-58; of sun from earth, how determined, 151, 211
Distances of planets from sun, 47
Distances of sun and moon, relative, 68
Dog, the Greater. See Canis Major; the Lesser, see Canis Minor
"Dog Star," 289, 297
Dollond, John, 115-116
Donati's Comet, 254, 257
Doppler's method, 125, 136, 282, 301-302
Dorpat, 117
Double canals of Mars, 214-215, 218-220
Double planet, earth and moon a, 189
Double stars, 300
Douglass, 233
"Dreams, Lake of," 197
Dumb-bell Nebula, 316
Earth, 20, 22, 31, 39, 48, 64, Chap. XV., 267; cooling of, 343; diameter of, 31; interior of, 166; mean distance of from sun, 47; rigidity of, 181; rotation of, 30, 33, 161-165, 170; shape of, 165; "tail" to, 182
"Earthlight," or "Earthshine," 186
Earth's axis, Precessional movement of, 175-177, 295, 298-299
Earth's shadow, circular shape of, 64, 160
Eclipse, 61
Eclipse knowledge, delay of, 74
Eclipse party, work of, 73
Eclipse of sun, advance of shadow in total, 69; animal and plant life during, 71; earliest record of total, 84; description of total, 69-73; duration of total, 69, 72; importance of total, 68
Eclipses, ascertainment of dates of past, 74; experience a necessity in solar, 73-74; of moon, 63-65, Chap. IX., 203; photography in, 93; prediction of future, 74; recurrence of, 74-80
Eclipses of sun, 25, 65-74, Chap. VIII., 201-202, 234; 1612 A.D., 90; 1715, 88, 91; 1724, 88, 91; 1836, 92; 1842, 92-93; 1851, 81, 93; 1868, 93; 1870, 94; 1871, 94; 1878, 95; 1882, 95; 1883, 95-96; 1893, 95-96; 1896, 96, 99; 1898, 96, 98; 1900, 97; 1905, 75-76, 80-81, 97-98; 1907, 98; 1908, 98; 1914, 99; 1927, 92, 99-100
Eclipses, Past and Future, 340
Egenitis, 272
Electric furnace, 128
Electric light, spectrum of, 122
Elements composing sun, 144-145
Ellipses, 32, 66, 172-173, 177-178
Elliptic orbit, 66, 177
Ellipticity, 32
Elongation, Eastern, 147, 149; Western, 147, 149
Encke's Comet, 253, 256
"End of the World," 342
England, solar eclipses visible in, 87-88, 91-92
Epsilon, ([e]) Lyrae, 302
Equator, 48
Equatorial telescope, 226
Equinoxes. See Precession of
Eros, 210-211, 223, 226-227; discovery of, 24, 210, 227; importance of, 211; orbit of, 32, 37, 210, 336
Eruptive prominences, 139
Esclistre, 89
Ether, 322-323, 331-332
Europa, 233, 235
Evans, J.E., 219
Evening star, 149-150, 241
Everest, Mount, 200
Evershed, 182
Eye-piece, 110
Fabricius, 307
Faculae, 136, 143
Fauth, 205
Faye, 335
Fin du Monde, 346
First quarter, 183
"Fixed stars," 280
Flagstaff, 215-216, 220
Flammarion, Camille, 346
Flamsteed, 90
"Flash spectrum," 137
"Flat," 112
Flint glass, 115
Focus, 66, 177
"Forty-foot Telescope," 115
Foster, 102
Fraunhofer, 117
French Academy of Sciences, 115
Froissart, 89
"Full moon" of Laplace, 190
Galaxy. See Milky Way.
Galilean telescope, 109
Galileo, 55, 109, 172, 197, 206, 232-235, 242
Galle, 24, 211, 244
Ganymede, 233-234
Gas light, spectrum of, 122
Gegenschein, 181-182
"Gem" of meteor ring, 271
Gemini, or the Twins (constellation), 22, 296-297
Geminorum, [z] (Zeta), 304
Geometrical groupings of stars, 292
"Giant" planet, 230, 238-239
Gibbous, 183, 185
Gill, Sir David, 211, 258, 291, 317-318
Gold, 145
Goodricke, 307
Gore, J.E., 63, 285, 303, 307-308, 310, 323-324, 331, 337, 347
Granulated structure of photosphere, 134
Gravitation (or gravity), 39, 41-45, 128, 306
Greek ideas, 18, 158, 161-162, 171, 186, 197
Green (rays of light), 121
Greenwich Observatory, 143-144, 232, 255, 303
Gregorian telescope, 113-114
Grimaldi (lunar crater), 199
"Grindstone" theory, 319-322
"Groombridge, 1830," 281-282, 326, 330
Groups of stars, 306-307
Grubb, Sir Howard, 118
Gulliver's Travels, 224
Hale, G.E., 119, 140
Half moon, 183, 185
Hall, Asaph, 223
Hall, Chester Moor, 115
Halley, Edmund, 91, 255, 264-265, 306
Halley's Comet, 255, 264-265
Haraden Hill, 91
Harvard, 118, 302
Harvest moon, 190-192
Hawaii, 221
Heat rays, 127
Heidelberg, 226, 232
Height of lunar mountains, how determined, 201
Height of objects in sky, estimation of, 196
Helium, 138, 145, 182
Helmholtz, 128, 335
Hercules (constellation), 295
Herod the Great, 101-102
Herodotus, 84
Herschel, A.S., 269
Herschel, Sir John, 92, 322
Herschel, Sir William, 22, 36, 114-115, 204, 213, 235, 283, 292, 308, 319-320, 326-328
Herschelian telescope, 114, 119
Hesper, 109
Hesperus, 150
Hevelius, 111
Hezekiah, 85
Hi, 83
Hindoos, 18
Hipparchus, 106, 177, 290, 311
Ho, 83
Holes in Milky Way, 321-323
Holmes, Oliver Wendell, 213
Homer, 223
Horace, Odes of, 106
Horizon, 159
Horizontal eclipse, 169
Horrox, 44, 151-152
Hour Glass Sea, 212
Huggins, Sir William, 94, 125, 317
Humboldt, 270
"Hunter's moon," 192
Huyghens, 111-112, 240, 242-243
Hyades, 296-297, 307
Hydrocarbon gas, 254
Hydrogen, 94, 131, 138, 140, 144, 156, 182, 254
Ibrahim ben Ahmed, 270
Ice-layer theory: Mars, 219; moon, 205, 219
Illusion theory of Martian canals, 219
Imbrium, Mare, 197
Inclination of orbits, 36-37
Indigo (rays of light), 121
Inferior conjunction, 147, 149
Inferior planets, 20, 22, Chap. XIV., 229
Instruments, pre-telescopic, 106-107, 172
International photographic survey of sky, 290-291
Intra-Mercurial planet, 25-26
Introduction to Astronomy, 31
Inverted view in astronomical telescope, 116-117
Io, 233-234
Iridum, Sinus, 197
Iron, 145, 254
Is Mars Habitable? 221
Jansen, 108
Janssen, 94, 236, 258
Japetus, 240
Jessenius, 89
Job, Book of, 299
Johnson, S.J., 103, 340
Josephus, 101, 262
Juno, 225
Jupiter, 20, 22-23, 31, 34, 37, 42, 227-228, 230-236, 241, 272, 311; comet family of, 251-253, 256; discovery of eighth satellite, 26, 232; eclipse of, by satellite, 234; without satellites, 234-235
Jupiter, satellites of, 26, 62, 108, 189, 232-235; their eclipses, 234-235; their occultations, 62, 234; their transits, 62, 234
Kant, 334
Kapteyn, 284, 313
Keeler, 315, 337
Kelvin, Lord, 129
Kepler, 44, 152, 172, 237, 242, 245, 253, 311
Kinetic theory, 156, 202, 212, 226, 231, 239, 336
King, L.W., 84
Knowledge, 87
Labrador, 97
Lacus Somniorum, 197
"Lake of Dreams," 197
Lalande, 244, 283
Lampland, 215, 219
Langley, 95, 127
Laplace, 190, 333
Laputa, 224
Le Maire, 115
Le Verrier, 24, 236, 243-244, 275
Lead, 145
Leibnitz Mountains (lunar), 200
Leo (constellation), 270, 295-296
Leonids, 270-272, 274-275
Lescarbault, 25
Lewis, T., 303
Lexell's Comet, 250
Lick Observatory, 31, 98, 117-118, 215, 232, 303, 305, 315; Great Telescope of, 117, 215, 237
"Life" of an eclipse of the moon, 80; of the sun, 77-78
Life on Mars, Lowell's views, 217-218; Pickering's, 221; Wallace's, 221-223
Light, no extinction of, 322-324; rays of, 127; velocity of, 52, 235-236; white, 121
"Light year," 53, 280
Lindsay, Lord, 94
Linne (lunar crater), 205
Liouville, 190
Lippershey, 108
Liquid-filled lenses, 116
Locksley Hall, 296; Sixty Years After, 109
Lockyer, Sir Norman, 73, 94, 236, 335
Loewy, 119, 206
London, eclipses visible at, 87-88, 91-92
Longfellow, 88
Lowell Observatory, 215, 219, 233-234
Lowell, Percival, 155, 212-213, 215-221
Lucifer, 150
Lynn, W.T., 219, 263
Lyra (constellation), 177, 283, 294-295, 307, 315, 347
Maedler, 206, 284
Magellanic Clouds, 317
Magnetism, disturbances of terrestrial, 143, 283
Magnitudes of stars, 287-289
Major planets, 229-230
"Man in the Moon," 197
Manual of Astronomy, 166
Maps of the moon, 206
Mare Imbrium, 197
Mare Serenitatis, 205
Mars, 20, 22-23, 31-32, 34, 37, 109, 155, 210-225, 234; compared with earth and moon, 221, 225; polar caps of, 212-214, 216; satellites of, 26, 223-224; temperature of, 213, 216, 221-222
Mass, 38; of a star, how determined, 305
Masses of celestial bodies, how ascertained, 42; of earth and moon compared, 42; of sun and planets compared, 39
Maunder, E.W., 87, 143, 219
Maunder, Mrs., E.W., 96, 144
Maxwell, Clerk, 237
Mayer, Tobias, 206, 283
McClean, F.K., 98
Mean distance, 46
"Medicean Stars," 232
Mediterranean, eclipse tracks across, 94, 97
Melbourne telescope, 118
Melotte, P., 232
Mercator's Projection, 80-81
Mercury (the metal), 145
Mercury (the planet), 20, 22, 25-26, 31-32, 34, 37, Chap. XIV.; markings on, 156; possible planets within orbit of, 25-26; transit of, 62, 151, 154
Metals in sun, 145
Meteor swarms, 268-269, 271, 274-275
Meteors, 28, 56, 167, 259, Chap. XXI.
Meteors beyond earth's atmosphere, 275-276
Meteorites, 276-277
Meteoritic Hypothesis, 335
Metius, Jacob, 108
Michell, 283, 305
Middle Ages, 102, 260, 264
Middleburgh, 108
Milky Way (or Galaxy), 285, 299, 311, 317, 319-327; penetration of, by photography, 325
Million, 47, 51-52
Minor planets. See Asteroids.
Mira Ceti, 307-308
"Mirk Monday," 89
Mirror (speculum), 111, 116
Mizar, 294, 302
Monck, W.H.S., 275
Mongol Emperors of India, 107
Moon, 26, Chap. XVI.; appearance of, in lunar eclipse, 65, 102-103; diameter of, 189; distance of, how ascertained, 58; distance of, from earth, 48; full, 63, 86, 149, 184, 189, 190, 206; mass of, 200, 202; mountains on, 197-205; how their height is determined, 201; movement of, 40-42; new, 86, 149, 183, 185; origin of, 339-341; plane of orbit of, 63; possible changes on, 204-205, 221; "seas" of, 197, 206; smallest detail visible on, 207; volume of, 200
Morning star, 149-150, 241
Moulton, F.R., 31, 118, 128, 302, 335, 337
Moye, 154
Multiple stars, 300
Musa-ben-Shakir, 44
Mythology, 105
Neap-tides, 179
Nebulae, 314-318, 328, 335, 345; evolution of stars from, 317-318
Nebular Hypothesis of Laplace, 333-338
Nebular hypotheses, Chap. XXVII.
Nebulium, 317
Neison, 206
Neptune, 20, 25, 31, 34, 37, 243-246, 249, 252, 274, 304; discovery of, 23-24, 94, 210, 236, 243-244; Lalande and, 244; possible planets beyond, 25, 252; satellite of, 26, 245; "year" in, 35-36
"New" (or temporary), stars, 310-314
Newcomb, Simon, 181, 267, 281, 324, 326-327, 329
Newton, Sir Isaac, 40, 44, 91, 111-113, 115, 165, 172, 237, 255
Newtonian telescope, 112, 114, 116, 119
Nineveh Eclipse, 84-85
Nitrogen, 145, 156, 166, 346
Northern Crown, 295
Nova Aurigae, 311
Nova Persei, 312-314
Novae. See New (or temporary) stars
Nubeculae, 317
"Oases" of Mars, 216, 220
Object-glass, 109
Oblate spheroid, 165
Occultation, 61-62, 202, 296
Olaf, Saga of King, 88
Olbers, 227, 253, 256, 271
"Old moon in new moon's arms," 185
Olmsted, 271
Omicron (or "Mira") Ceti, 307-308
Opposition, 209
"Optick tube," 108-109, 232
Orange (rays of light), 121
Orbit of moon, plane of, 63
Orbits, 32, 36-37, 66, 150, 157
Oriental astronomy, 107
Orion (constellation), 195, 279, 296-297, 316; Great Nebula in, 316, 328
Oxford, 139
Oxygen, 145, 156, 166, 346
Pacific Ocean, origin of moon in, 339
Palitzch, 255
Pallas, 225, 227
Parallax, 57, 173, 280, 305, 320, 326
Pare, Ambrose, 264-265
Peal, S.E., 205
Peary, 277
Pegasus (constellation), 306
Penumbra of sunspot, 135
Perennial full moon of Laplace, 190
Pericles, 84
Perrine, C.D., 232-233, 315
Perseids, 270, 273-275
Perseus (constellation), 273, 279, 307, 312
Phases of an inferior planet, 149, 160; of the moon, 149, 160, 183-185
Phlegon, Eclipse of, 85-86
Phobos, 223
Phoebe, retrograde motion of, 240, 250, 336
Phosphorescent glow in sky, 323
Phosphorus (Venus), 150
Photographic survey of sky, international, 290-291
Photosphere, 130-131, 134
Piazzi, 23
Pickering, E.C., 302
Pickering, W.H., 199, 205-206, 220-221, 240, 339-341
Pictor, "runaway star" in constellation of, 281-282, 320, 330
Plane of orbit, 36, 150
Planetary nebulae, 245, 315
Planetary and Stellar Studies, 331
Planetesimal hypothesis, 337-338
Planetoids. See Asteroids
Planets, classification of, 229; contrasted with comets, 247; in Ptolemaic scheme, 171; relative distances of, from sun, 31-32
Plato (lunar crater), 198
Pleiades, 284, 296-297, 307
Pliny, 169, 260
Plough, 284, 291-296, 302
Plutarch, 86, 89, 169, 181
"Pointers," 292
Polaris. See Pole Star
Pole of earth, Precessional movement of, 176-177, 295, 298-299
Pole Star, 33, 163, 177, 292-296, 300-301
Poles, 30, 163-164; of earth, speed of point at, 164
Pollux, 282, 297
Posidonius, 186
Powell, Sir George Baden, 96
Praesepe (the Beehive), 307
Precession of the Equinoxes, 177, 295, 298-299
Pre-telescopic notions, 55
Primaries, 26
Princess, The (Tennyson), 334
Princeton Observatory, 258
Prism, 121
Prismatic colours, 111, 121
Procyon, 284, 290, 297, 303
Prominences, Solar, 72, 93, 131, 139-140, 143; first observation of, with spectroscope, 94, 140, 236
Proper motions of stars, 126, 281-285, 326, 329-330
Ptolemaeus (lunar crater), 198-199, 204
Ptolemaic idea, 319; system, 18, 19, 158, 171-172
Ptolemy, 18, 101, 171, 290, 296
Puiseux, P., 206
Pulkowa telescope, 117
Puppis, V., 310
Quiescent prominences, 139
Radcliffe Observer, 139
"Radiant," or radiant point, 269
Radiation from sun, 130, 134
Radium, 129, 138
Rainbow, 121
"Rainbows, Bay of," 197
Rambaut, A., 139
Ramsay, Sir William, 138
Rays (on moon), 204
Recurrence of eclipses, 74-80
Red (rays of light), 121, 125, 127, 130
Red Spot, the Great, 230
Reflecting telescope, 111-116; future of, 119
Reflector. See Reflecting telescope
Refracting and reflecting telescopes contrasted, 118
Refracting telescope, 109-111, 115-117; limits to size of, 119-120
Refraction, 121, 168-169
Refractor, See Refracting telescope
Regulus, 290, 296
Retrograde motion of Phoebe, 240, 250, 336
"Reversing Layer," 94, 130, 132, 137-138
Revival of learning, 107
Revolution, 30; of earth around sun, 170-173; periods of sun and planets, 35
Riccioli, 198
Rice-grain structure of photosphere, 134
Rigel, 285, 297
Rills (on moon), 204
Ring-mountains of moon. See Craters
"Ring" nebulae, 315, 337
"Ring with wings," 87
Rings of Saturn, 108, 236-239, 241-243, 334
Ritchey, G.W., 118
Roberts, A.W., 308, 310
Roberts, Isaac, 325
"Roche's limit," 238
Roemer, 235
Roman history, eclipses in, 85-86
Romulus, 85
Roentgen, 120
Rosse, great telescope of Lord, 117, 314
Rotation, 30; of earth, 33, 161-165, 170; of sun, 34, 125, 135-136, 231; periods of sun and planets, 35
Royal Society of London, 90-91, 111
Rubicon, Passage of the, 85
"Runaway" stars, 281, 326, 330
Sagittarius (constellation), 316
Salt, spectrum of table, 122
Samarcand, 107
"Saros," Chaldean, 76-78, 84
Satellites, 26-27, 37
Saturn, 20, 22, 34, 37, 108, 236-243, 258; comet family of, 252; a puzzle to the early telescope observers, 241-243; retrograde motion of satellite Phoebe, 240, 250, 336; ring system of, 241; satellites of, 36, 239-240; shadows of planet on rings and of rings on planet, 237
Schaeberle, 95-96, 303, 316
Schiaparelli, 155, 214, 223
Schickhard (lunar crater), 199
Schmidt, 206
Schoenfeld, 290
Schuster, 95
Schwabe, 136
Scotland, solar eclipses visible in, 89-90, 92
Sea of Serenity, 205
"Sea of Showers," 197
"Seas" of moon, 197, 206
Seasons on earth, 174-175; on Mars, 211
Secondary bodies, 26
Seneca, 95, 260
Septentriones, 291
Serenitatis, Mare, 205
"Seven Stars," 291
"Shadow Bands," 69
Shadow of earth, circular shape of, 62-64
Shadows on moon, inky blackness of, 202
Shakespeare, 259, 293
Sheepshanks Telescope, 119
"Shining fluid" of Sir W. Herschel, 328
"Shooting Stars." See Meteors
Short (of Edinburgh), 114
"Showers, Sea of," 197
Sickle of Leo, 270-271, 296
Siderostat, 118
Silver, 145
Silvered mirrors for reflecting telescopes, 116
Sinus Iridum, 197
Sirius, 280, 282, 284-285, 288-290, 297, 303-304, 320; companion of, 303; stellar magnitude of, 289
Size of celestial bodies, how ascertained, 59
Skeleton telescopes, 110
Sky, international photographic survey of, 290-291; light of the, 323
Slipher, E.C., 213, 222
Smithsonian Institution of Washington, 98
Snow on Mars, 213
Sodium, 122, 124, 254
Sohag, 95
Solar system, 20-21, 29-31; centre of gravity of, 42; decay and death of, 344
Somniorum, Lacus, 197
Sound, 125, 166, 331
South pole of heavens, 163, 285, 298-299
Southern constellations, 298-299
Southern Cross. See Crux
Space, 328
Spain, early astronomy in, 107; eclipse tracks across 93, 97-98
Spectroheliograph, 140
Spectroscope, 120, 122, 124-125, 144-145, 212, 231; prominences first observed with, 94, 140, 236
Spectrum of chromosphere, 132-133; of corona, 133; of photosphere, 132; of reversing layer, 132, 137; solar, 122-123, 127, 132
Speculum, 111, 116; metal, 112
Spherical bodies, 29
Spherical shape of earth, proofs of, 158-161
Spherical shapes of sun, planets, and satellites, 160
Spiral nebulae, 314-316, 337-338
Spring balance, 166
Spring tides, 192
Spy-glass, 108
"Square of the distance," 43-44
Stannyan, Captain, 90
Star, mass of, how determined, 305; parallax of, first ascertained, 173, 280
Stars, the, 20, 124, 126, 278 et seq.; brightness of, 287, 320; distances between, 326-327; distances of some, 173, 280, 320; diminution of, below twelfth magnitude, 324; evolution of, from nebulae, 317-318; faintest magnitude of, 288; number of those visible altogether, 324; number of those visible to naked eye, 288
"Steam cracks," 221
Steinheil, 118
Stellar system, estimated extent of, 325-327; an organised whole, 327; limited extent of, 322-328, 330; possible disintegration of, 329
Stiklastad, eclipse of, 88
Stone Age, 285
Stoney, G.J., 202, 222
Stonyhurst Observatory, 100
Story of the Heavens, 271
Streams of stars, Kapteyn's two, 284
Stroobant, 196
Stukeley, 91
Sulphur, 145
Summer, 175, 178
Sun, Chaps XII. and XIII.; as a star, 124, 278, 289; as seen from Neptune, 246, 304; chemical composition of, 144-145; distance of, how ascertained, 151, 211; equator of, 135-136, 139; gravitation at surface of, 129, 138-139; growing cold of, 343-344; mean distance of, from earth, 47, 211; motion of, through space, 282-286, 326; not a solid body, 136; poles of, 136; radiations from, 130; revolution of earth around, 170-173; stellar magnitude of, 288-289; variation in distance of, 66, 178
Sunspots, 34, 125, 134-137, 140-141, 143-144, 308; influence of earth on, 144
Suns and possible systems, 50, 286
Superior conjunction, 147-149
Superior planets, 22, 146, 209-210, 229
Swan (constellation). See Cygnus
Swift, Dean, 224
"Sword" of Orion, 297, 316
Syrtis Major. See Hour Glass Sea
"Systematic Parallax," 326
Systems, other possible, 50, 286
Tails of comets, 182
Tamerlane, 107
Taurus (constellation), 103, 296-297, 307
"Tears of St. Lawrence," 273
Tebbutt's Comet, 257-258
Telescope, 33, 55, 107-108, 149; first eclipse of moon seen through, 104; of sun, 90
Telescopes, direct view reflecting, 114; gigantic, 111; great constructors of, 117-118; great modern, 117-118
Tempel's Comet, 274
Temperature on moon, 203; of sun, 128
Temporary (or new) stars, 310-314
Tennyson, Lord, 109, 296, 334
Terrestrial planets, 229-230
Terrestrial telescope, 117
Thales, Eclipse of, 84
Themis, 240
"Tidal drag," 180, 188, 208, 344
Tide areas, 179-180
Tides, 178-180, 338-339
Time Machine, 344
Tin, 145
Titan, 240
Titius, 245
Total phase, 71-72
Totality, 72; track of, 66
Trail of a minor planet, 226-227
Transit, 62, 150-154; of Mercury, 62, 151, 154; of Venus, 62, 151-152, 154, 211
Trifid Nebula, 316
Triple stars, 300
Tubeless telescopes, 110-111, 243
Tubes used by ancients, 110
Tuttle's Comet, 274
Twilight, 167, 202
Twinkling of stars, 168
Twins (constellation). See Gemini
Tycho Brahe, 290, 311
Tycho (lunar crater), 204
Ulugh Beigh, 107
Umbra of sunspot, 134-135
Universe, early ideas concerning, 17-18, 158, 177, 342
Universes, possibility of other, 330-331
Uranus, 22-24, 31, 210, 243, 245, 275; comet family of, 252; discovery of, 22, 210, 243; rotation period of 34, 245; satellites of, 26, 245; "year" in, 35-36
Ursa Major (constellation), 279, 281, 291, 295, 314; minor, 177, 279, 293-294
Ursae Majoris, ([z]) Zeta. See Mizar
Variable stars, 307-310
Variations in apparent sizes of sun and moon, 67, 80, 178
Vault, shape of the celestial, 194-196
Vega, 177, 278, 280, 282-283, 285, 290, 294, 302, 307, 323
Vegetation on Mars, 221, 217-218; on moon, 205
Venus, 20, 22, 31, 71, 90, 108-109, 111, Chap. XIV., 246, 311; rotation period of, 34, 155
Very, F.W., 314
Vesta, 225, 227
Violet (rays of light), 121-122, 125
Virgil, 19
Volcanic theory of lunar craters, 203-204, 214
Volume, 38
Volumes of sun and planets compared, 38-39
"Vulcan," 25
Wallace, A.R., on Mars, 220-223
Water, lack of, on moon, 201-202
Water vapour, 202, 213, 222
Wargentin, 103
Warner and Swasey Co., 117
Weather, moon and, 206-207
Weathering, 202
Webb, Rev. T.W., 204
Weight, 43, 165-166
Wells, H.G., 344
Whale (constellation). See Cetus
Whewell, 190
Willamette meteorite, 277
Wilson, Mount, 118
Wilson, W.E., 313
"Winged circle" (or "disc"), 87
Winter, 175, 178
Witt, 227
Wolf, Max, 226-227, 232
Wright, Thomas, 319, 334
Wybord, 89
Xenophon, 101
Year, 35
"Year" in Uranus and Neptune, 35-36
Year, number of eclipses in a, 68
"Year of the Stars," 270
Yellow (rays of light), 121-122, 124
Yerkes Telescope Great, 117, 303
Young, 94, 137, 166
Zenith, 174
Zinc, 145
Zodiacal light, 181
Zone of asteroids, 30-31, 227
THE END
Printed by BALLANTYNE, HANSON & CO.
Edinburgh & London
THE SCIENCE OF TO-DAY SERIES
With many illustrations. Extra Crown 8vo. 5s. net.
BOTANY OF TO-DAY. A Popular Account of the Evolution of Modern Botany. By Prof. G.F. SCOTT ELLIOT, M.A., B.Sc., Author of "The Romance of Plant Life," &c. &c.
"One of the books that turn botany from a dryasdust into a fascinating study."—Evening Standard.
AERIAL NAVIGATION OF TO-DAY. A Popular Account of the Evolution of Aeronautics. By CHARLES C. TURNER.
"Mr. Turner is well qualified to write with authority on the subject. The book sets forth the principles of flight in plain non-technical language. One is impressed by the complete thoroughness with which the subject is treated."—Daily Graphic.
SCIENTIFIC IDEAS OF TO-DAY. A Popular Account, in Non-technical Language, of the Nature of Matter, Electricity, Light, Heat, Electrons, &c. &c. By CHARLES R. GIBSON, A.I.E.E., Author of "Electricity of To-Day," &c.
"Supplies a real need.... Mr. Gibson has a fine gift of exposition."—Birmingham Post.
ASTRONOMY OF TO-DAY. A Popular Introduction in Non-technical Language. By CECIL G. DOLMAGE, LL.D., F.R.A.S. With frontispiece in colours, & 45 other illustrations.
"Dr. Dolmage has absolutely kept to his promise to introduce the reader to an acquaintance with the astronomy of to-day in non-technical language."—Saturday Review.
ELECTRICITY OF TO-DAY. Its Work and Mysteries Explained. By CHARLES R. GIBSON, A.I.E.E.
"Mr. Gibson has given us one of the best examples of popular scientific exposition that we remember seeing. His book may be strongly commended to all who wish to realise what electricity means and does in our daily life."—The Tribune.
SEELEY & CO., LIMITED
THE SCIENCE OF TO-DAY SERIES
With many Illustrations. Extra Crown 8vo. 5s. net.
AERIAL NAVIGATION OF TO-DAY. A Popular Account of the Evolution of Aeronautics. By CHARLES C. TURNER.
"If ever the publication of a book was well timed, surely it is the case with this book on aviation.... Of the technical chapters we need only say that they are so simply written as to present no grave difficulties to the beginner who is equipped with an average education."—Globe.
BOTANY OF TO-DAY. A Popular Account of the Evolution of Modern Botany. By Prof. G.F. SCOTT-ELLIOT, M.A., B.Sc., Author of "The Romance of Plant Life," &c. &c.
"This most entertaining and instructive book. It is the fruit of wide reading and much patient industry."—Globe.
SCIENTIFIC IDEAS OF TO-DAY. A Popular Account, in Non-technical Language, of the Nature of Matter, Electricity, Light, Heat, Electrons, &c. &c. By CHARLES R. GIBSON, A.I.E.E., Author of "Electricity of To-Day," &c.
"As a knowledgeable writer, gifted with the power of imparting what he knows in a manner intelligible to all, Mr. C.R. Gibson has established a well-deserved reputation."—Field.
ASTRONOMY OF TO-DAY. A Popular Introduction in Non-technical Language. By CECIL G. DOLMAGE, LL.D., F.R.A.S. With frontispiece in colours, & 45 other illustrations.
"A lucid exposition much helped by abundant illustrations."—The Times.
"From cover to cover the book is readable, and every word is intelligible to the layman. Dr. Dolmage displays literary powers of a very high order. Those who read it without any previous knowledge of astronomy will find that a new interest has been added to their lives, and that in a matter of 350 pages they have gained a true conception of the meaning of astronomy."—The Standard.
ELECTRICITY OF TO-DAY. Its Work and Mysteries Explained. By CHARLES R. GIBSON, A.I.E.E.
"Mr. Gibson has given us one of the best examples of popular scientific exposition that we remember seeing. His aim has been to produce an account of the chief modern applications of electricity without using technical language or making any statements which are beyond the comprehension of any reader of ordinary intelligence. In this he has succeeded to admiration, and his book may be strongly commended to all who wish to realise what electricity means and does in our daily life."—The Tribune.
SEELEY & CO., LTD., 38 GREAT RUSSELL STREET.
THE ROMANCE OF MODERN ELECTRICITY
DESCRIBING IN NON-TECHNICAL LANGUAGE WHAT IS KNOWN ABOUT ELECTRICITY & MANY OF ITS INTERESTING APPLICATIONS
BY CHARLES R. GIBSON, A.I.E.E.
AUTHOR or "ELECTRICITY of TO-DAY," ETC.
Extra Crown 8vo. With 34 Illustrations and 11 Diagrams. 5s.
"Everywhere Mr. Charles R. Gibson makes admirable use of simple analogies which bespeak the practised lecturer, and bring the matter home without technical detail. The attention is further sustained by a series of surprises. The description of electric units, the volt, the ohm, and especially the ampere, is better than we have found in more pretentious works."—Academy.
"Mr. Gibson's style is very unlike the ordinary text-book. It is fresh, and is non-technical. Its facts are strictly scientific, however, and thoroughly up to date. If we wish to gain a thorough knowledge of electricity pleasantly and without too much trouble on our own part, we will read Mr. Gibson's 'Romance.'"—Expository Times.
"A book which the merest tyro totally unacquainted with elementary electrical principles can understand, and should therefore especially appeal to the lay reader. Especial interest attaches to the chapter on wireless telegraphy, a subject which is apt to 'floor' the uninitiated. The author reduces the subject to its simplest aspect, and describes the fundamental principles underlying the action of the coherer in language so simple that anyone can grasp them."—Electricity.
"Contains a clear and concise account of the various forms in which electricity is used at the present day, and the working of the telephone, wireless telegraphy, tramcars, and dynamos is explained with the greatest possible lucidity, while the marvels of the X-rays and of radium receive their due notice. Now that electricity plays such an all-important part in our daily life, such a book as this should be in the hands of every boy. Indeed, older people would learn much from its pages. For instance, how few people could explain the principles of wireless telegraphy in a few words if suddenly questioned on the subject. The book is well and appropriately illustrated."—Graphic.
"Mr. Gibson sets out to describe in non-technical language the marvellous discoveries and adaptation of this pervasive and powerful essence, and being a most thorough master of the subject, he leads the reader through its mazes with a sure hand. Throughout he preserves a clear and authoritative style of exposition which will be understood by any intelligent reader."—Yorkshire Observer.
"A popular and eminently readable manual for those interested in electrical appliances. It describes in simple and non-technical language what is known about electricity and many of its interesting applications. There are a number of capital illustrations and diagrams which will help the reader greatly in the study of the book."—Record.
SEELEY & CO., LTD., 38 GREAT RUSSELL STREET.
THE ROMANCE OF SAVAGE LIFE
DESCRIBING THE HABITS, CUSTOMS, EVERYDAY LIFE, &c., OF PRIMITIVE MAN
BY PROF. G.F. SCOTT ELLIOT, M.A., B.SC., &C.
With Thirty Illustrations. Extra Crown 8vo. 5s.
"Mr. Scott Elliot has hit upon a good idea in this attempt to set forth the life of the primitive savage. On the whole, too, he has carried it out well and faithfully.... We can recommend the book as filling a gap."—Athenaeum.
"A readable contribution to the excellent series of which it forms a part. Mr. Scott Elliot writes pleasantly ... he possesses a sufficiently vivid imagination to grasp the relation of a savage to his environment."—Nature.
"There are things of remarkable interest in this volume, and it makes excellent reading and represents much research."—Spectator.
THE ROMANCE OF PLANT LIFE
DESCRIBING THE CURIOUS AND INTERESTING IN THE PLANT WORLD
BY PROF. G.F. SCOTT ELLIOT, M.A., B.SC., &C.
With Thirty-four Illustrations. Extra Crown 8vo. 5s.
"The author has worked skilfully into his book details of the facts and inferences which form the groundwork of modern Botany. The illustrations are striking, and cover a wide field of interest, and the style is lively."—Athenaeum.
"In twenty-nine fascinating, well-printed, and well-illustrated chapters, Prof. Scott Elliot describes a few of the wonders of plant life. A very charming and interesting volume."—Daily Telegraph.
"Mr. Scott Elliot is of course a well-known authority on all that concerns plants, and the number of facts he has brought together will not only surprise but fascinate all his readers."—Westminster Gazette.
SEELEY & CO., LTD., 38 GREAT RUSSELL STREET.
THE ROMANCE OF INSECT LIFE
DESCRIBING THE CURIOUS & INTERESTING IN THE INSECT WORLD
BY EDMUND SELOUS
AUTHOR OF "THE ROMANCE OF THE ANIMAL WORLD," ETC.
With Sixteen Illustrations. Extra Crown 8vo. 5s.
"An entertaining volume, one more of a series which seeks with much success to describe the wonders of nature and science in simple, attractive form."—Graphic.
"Offers most interesting descriptions of the strange and curious inhabitants of the insect world, sure to excite inquiry and to foster observation. There are ants white and yellow, locusts and cicadas, bees and butterflies, spiders and beetles, scorpions and cockroaches—and especially ants—with a really scientific investigation of their wonderful habits not in dry detail, but in free and charming exposition and narrative. An admirable book to put in the hands of a boy or girl with a turn for natural science—and whether or not."—Educational Times.
"Both interesting and instructive. Such a work as this is genuinely educative. There are numerous illustrations."—Liverpool Courier.
"With beautiful original drawings by Carton Moore Park and Lancelot Speed, and effectively bound in dark blue cloth, blazoned with scarlet and gold."—Lady.
"Admirably written and handsomely produced. Mr. Selous's volume shows careful research, and the illustrations of insects and the results of their powers are well done."—World.
THE ROMANCE OF MODERN MECHANISM
INTERESTING DESCRIPTIONS IN NON-TECHNICAL LANGUAGE OF WONDERFUL MACHINERY, MECHANICAL. DEVICES, & MARVELLOUSLY DELICATE SCIENTIFIC INSTRUMENTS
BY ARCHIBALD WILLIAMS, B.A., F.R.G.S.
AUTHOR OF "THE ROMANCE OF MODERN EXPLORATION," ETC.
With Twenty-six Illustrations. Extra Crown 8vo. 5s.
"No boy will be able to resist the delights of this book, full to the brim of instructive and wonderful matter."—British Weekly.
"This book has kept your reviewer awake when he reasonably expected to be otherwise engaged. We do not remember coming across a more fascinating volume, even to a somewhat blase reader whose business it is to read all that comes in his way. The marvels miracles they should be called, of the modern workshop are here exploited by Mr. Williams for the benefit of readers who have not the opportunity of seeing these wonders or the necessary mathematical knowledge to understand a scientific treatise on their working. Only the simplest language is used and every effort is made, by illustration or by analogy, to make sufficiently clear to the non-scientific reader how the particular bit of machinery works and what its work really is. Delicate instruments, calculating machines, workshop machinery, portable tools, the pedrail, motors ashore and afloat, fire engines, automatic machines, sculpturing machines—these are a few of the chapters which crowd this splendid volume."—Educational News.
"It is difficult to make descriptions of machinery and mechanism interesting, but Mr. Williams has the enviable knack of doing so, and it is hardly possible to open this book at any page without turning up something which you feel you must read; and then you cannot stop till you come to the end of the chapter."—Electricity.
"This book is full of interest and instruction, and is a welcome addition to Messrs. Seeley and Company's Romance Series."—Leeds Mercury.
"A book of absorbing interest for the boy with a mechanical turn, and indeed for the general reader."—Educational Times.
"An instructive and well-written volume."—Hobbies.
SEELEY & CO., LTD., 88 GREAT RUSSELL STREET.
A Catalogue of Books on Art, History, and General Literature Published by Seeley, Service & Co Ltd. 38 Great Russell St. London
Some of the Contents
Crown Library, The 4
Elzevir Library, The 5
Events of Our Own Times Series 6
Illuminated Series, The 8
Miniature Library of Devotion, The 9
Miniature Portfolio Monographs, The 9
Missions, The Library of 10
New Art Library, The 11
Portfolio Monographs 11
Science of To-Day Series, The 14
Seeley's Illustrated Pocket Library 14
Seeley's Standard Library 15
Story Series, The 15
"Things Seen" Series, The 16
The Publishers will be pleased to post their complete Catalogue or their Illustrated Miniature Catalogue on receipt of a post-card
CATALOGUE OF BOOKS
Arranged alphabetically under the names of Authors and Series
ABBOTT, Rev. E.A., D.D.
How to Parse. An English Grammar. Fcap. 8vo, 3s. 6d.
How to Tell the Parts of Speech. An Introduction to English Grammar. Fcap. 8vo, 2s.
How to Write Clearly. Rules and Exercises on English Composition. 1s. 6d.
Latin Gate, The. A First Latin Translation Book. Crown 8vo, 3s. 6d.
Via Latina. A First Latin Grammar. Crown 8vo, 3s. 6d.
ABBOTT, Rev. E.A., and Sir J.R. SEELEY.
English Lessons for English People. Crown 8vo, 4s. 6d.
ADY, Mrs. See CARTWRIGHT, JULIA.
A KEMPIS, THOMAS.
Of the Imitation of Christ. With Illuminated Frontispiece and Title Page, and Illuminated Sub-Titles to each book. In white or blue cloth, with inset miniatures. Gilt top; crown 8vo, 6s. nett; also bound in same manner in real classic vellum. Each copy in a box, 10s. 6d. nett; Antique leather with clasps, 10s. 6d. nett.
"It may well be questioned whether the great work of Thomas a Kempis has ever been presented to better advantage."—The Guardian.
ANDERSON, Prof. W.
Japanese Wood Engravings. Coloured Illustrations. Super-royal 8vo, sewed, 2s. 6d. nett; half-linen, 3s. 6d. nett; also small 4to, cloth, 2s. nett; lambskin, 3s. nett.
ARMSTRONG, Sir WALTER.
The Art of Velazquez. Illustrated. Super-royal 8vo, 3s. 6d. nett.
The Life of Velazquez. Illustrated. Super-royal 8vo, 3s. 6d. nett.
Velazquez. A Study of his Life and Art. With Eight Copper Plates and many minor Illustrations. Super-royal 8vo, cloth, 9s. nett.
Thomas Gainsborough. Illustrated. Super-royal 8vo, half-linen, 3s. 6d. nett. Also new edition small 4to, cloth, 2s. nett; leather, 3s. nett and 5s. nett.
The Peel Collection and the Dutch School of Painting. With Illustrations in Photogravure and Half-tone. Super-royal 8vo, sewed, 5s. nett; cloth, 7s. nett. |
|