|
The flame-arcs afford a means of obtaining a variety of illuminants differing in spectral character or color. By impregnating the carbons with various chemical compounds the color of the flame can be widely altered. The white flame-arc obtained by the use of rare-earth compounds in the carbons provides an illuminant closely approximating average daylight. By using various substances besides carbon for the electrodes, illuminants differing in spectral character can be obtained. These are usually rich in ultra-violet rays and therefore have their best applications in processes demanding this kind of radiant energy. The arc-lamp is limited in its application by its unsteadiness, its bulkiness, and the impracticability of subdividing it into light-sources of a great range of luminous intensities.
The most extensive applications of artificial daylight have been made by means of the electric incandescent filament lamp, equipped with a colored glass which alters the light to the same quality as daylight. The light from the electric filament lamp is richer in yellow, orange, and red rays than daylight, and by knowing the spectral character of the two illuminants and the spectral characteristics of colored glasses in which various chemicals have been incorporated, it is possible to develop a colored glass which will filter out of the excess of yellow, orange, and red rays so that the transmitted light is of the same spectral character as daylight. Thousands of such artificial daylight units are now in use in the industries, in stores, in laboratories, in dye-works, in print-shops, and in many other places. Currency and Liberty Bonds have been made under artificial daylight and such units are in use in banks for the detection of counterfeit currency. The diamond expert detects the color of jewels and the microscopist is certain of the colors of his stains under artificial daylight. The dyer mixes his dyes for the coloring of tons of valuable silk and the artist paints under this artificial light. These are only a few of a vast number of applications of artificial daylight, but they illustrate that mankind is independent of natural light in another respect.
There are various kinds of daylight, two of which are fairly constant in spectral character. These are noon sunlight and north skylight. The former may be said to be white light and its spectrum indicates the presence of visible radiant energy of all wave-lengths in approximately equal proportions. North skylight contains an excess of violet, blue, and blue-green rays and as a consequence is a bluish white. Noon sunlight on a clear day is fairly constant in spectral character, but north skylight varies somewhat depending upon the absence or presence of clouds and upon the character of the clouds. If large areas of sunlit clouds are present, the light is largely reflected sunlight. If the sky is overcast, the north skylight is a result of a mixture of sunlight and blue skylight filtered through the clouds and is slightly bluish. If the sky is clear, the light varies from light blue to deep blue.
The daylight which enters buildings is often considerably altered in color by reflection from other buildings and from vegetation, and after it enters a room it is sometimes modified by reflection from colored surroundings. It may be commonly noted that the light reflected from green grass through a window to the upper part of a room is very much tinted with green and the light reflected from a yellow brick building is tinted yellow. Besides these alterations, sunlight varies in color from the yellow or red of dawn through white at noon to orange or red at sunset. Throughout the day the amount of light from the sky does not change nearly as much as the amount of sunlight, so there is a continual variation in the proportion of direct sunlight and skylight reaching the earth. This is further varied by the changing position of the sun. For example, at a north window in which the direct sunlight may not enter throughout the day, the amount of sunlight which enters by reflection from adjacent buildings and other objects may vary greatly. Thus it is seen that daylight not only varies in quantity but also in quality, and an artificial daylight, which is based upon an extensive analysis, has the advantage of being constant in quantity and quality as well as correct in quality. Modern artificial-daylight units which have been scientifically developed not only make mankind independent of daylight in the discrimination of colors but they are superior to daylight.
Although there are many expert colorists who require an accurate artificial daylight, there are vast fields of lighting where a less accurate daylight quality is necessary. The average eyes are not sufficiently skilled for the finest discrimination of colors and therefore the Mazda "daylight" lamp supplies the less exacting requirements of color matching. It is a compromise between quality and efficiency of light and serves the purpose so well that millions of these lamps have found applications in stores, offices, and industries. In order to make an accurate artificial north skylight for color-work by means of colored glass, from 75 to 85 per cent. of the light from a tungsten lamp must be filtered out. This absorption in a broad sense increases the efficiency of the light, for the fraction that remains is now satisfactory, whereas the original light is virtually useless for accurate color-discrimination. About one third of the original light is absorbed by the bulb of the tungsten "daylight" lamp, with a resultant light which is an approximation to average daylight.
Old illuminants such as that emitted by the candle and oil-lamp were used for centuries in interiors. All these illuminants were of a warm yellow color. Even the earlier modern illuminants were not very different in color, so it is not surprising that there is a deeply rooted desire for artificial light in the home and in similar interiors of a warm yellow color simulating that of old illuminants. The psychological effect of warmth and cheerfulness due to such illuminants or colors is well established. Artificial light in the home symbolizes independence of nature and protection from the elements and there is a firm desire to counteract the increasing whiteness of modern illuminants by means of shades of a warm tint. The white light is excellent for the kitchen, laundry, and bath-room, and for reading-lamps, but the warm yellow light is best suited for making cozy and cheerful the environment of the interiors in which mankind relaxes. An illuminant of this character can be obtained efficiently by using a properly tinted bulb on tungsten filament lamps. By absorbing about one fourth to one third of the light (depending upon the temperature of the filament) the color of the candle flame may be simulated by means of a tungsten filament lamp. Some persons are still using the carbon-filament lamp despite its low efficiency, because they desire to retain the warmth of tint of the older illuminants. However, light from a tungsten lamp may be filtered to obtain the same quality of light as is emitted by the carbon filament lamp by absorbing from one fifth to one fourth of the light. The luminous efficiency of the tungsten lamp equipped with such a tinted bulb is still about twice as great as that of the carbon-filament lamp. Thus the high efficiency of the modern illuminants is utilized to advantage even though their color is maintained the same as the old illuminants.
All modern illuminants emit radiant energy, which does not affect the ordinary photographic plate. This superfluous visible energy merely contributes toward glare or a superabundance of light in photographic studios. A glass has been developed which transmits virtually all the rays that affect the ordinary photographic plate and greatly reduces the accompanying inactive rays. Such a glass is naturally blue in color, because it must transmit the blue, violet, and near ultra-violet rays. Its density has been so determined for use in bulbs for the high-efficiency tungsten lamps that the resultant light appears approximately the color of skylight without sacrificing an appreciable amount of the value of the radiant energy for ordinary photography. This glass, it is seen, transmits the so-called chemical rays and is useful in other activities where these rays alone are desired. It is used in light-therapy and in some other activities in which the chemical effects of these rays are utilized.
In the photographic dark-room a deep red light is safe for all emulsions excepting the panchromatic, and lamps of this character are standard products. An orange light is safe for many printing papers. Panchromatic plates and films are usually developed in the dark where extreme safety is desired, but a very weak deep red light is not unsafe if used cautiously. However, many photographic emulsions of this character are not very sensitive to green rays, so a green light has been used for this purpose.
A variety of colored lights are in demand for theatrical effects, displays, spectacular lighting, signaling, etc., and there are many superficial colorings available for this purpose. Few of these show any appreciable degree of permanency. Permanent superficial colorings have recently been developed, but these are secret processes unavailable for the market. For this reason colored glass is the only medium generally available where permanency is desired. For permanent lighting effects, signal glasses, colored caps, and sheets of colored glass may be used. Tints may be obtained by means of colored reflectors. Other colored media are dyes in lacquers and in varnishes, colored inks, colored textiles, and colored pigments.
Inasmuch as colored glass enters into the development of permanent devices, it may be of interest to discuss briefly the effects of various metallic compounds which are used in glass. The exact color produced by these compounds, which are often oxides, varies slightly with the composition of the glass and method of manufacture, but this phase is only of technical interest. The coloring substances in glass may be divided into two groups. The first and largest group consists of those in which the coloring matter is in true solution; that is, the coloring is produced in the same manner as the coloring of water in which a chemical salt is dissolved. In the second group the coloring substances are present in a finely divided or colloidal state; that is, the coloring is due to the presence of particles in mechanical suspension. In general, the lighter elements do not tend to produce colored glasses, but the heavier elements in so far as they can be incorporated into glass tend to produce intense colors. Of course, there are exceptions to this general statement.
The alkali metals, such as sodium, potassium, and lithium, do not color glass appreciably, but they have indirect effects upon the colors produced by manganese, nickel, selenium, and some other elements. Gold in sufficient amounts produces a red in glass and in low concentration a beautiful rose. It is present in the colloidal state. In the manufacture of "gold" red glass, the glass when first cooled shows no color, but on reheating the rich ruby color develops. The glass is then cooled slowly. The gold is left in a colloidal state. Copper when added to a glass produces two colors, blue-green and red. The blue-green color, which varies in different kinds of glasses, results when the copper is fully oxidized, and the red by preventing oxidation by the presence of a reducing agent. This red may be developed by reheating as in the case of making gold ruby glass. Selenium produces orange and red colors in glass.
Silver when applied to the surface of glass produces a beautiful yellow color and it has been widely used in this manner. It has little coloring effect in glass, because it is so readily reduced, resulting in a metallic black. Uranium produces a canary yellow in soda and potash-lime glasses, which fluoresce, and these glasses may be used in the detection of ultra-violet rays. The color is topaz in lead glass. Both sulphur and carbon are used in the manufacture of pale yellow glasses. Antimony has a weak effect, but in the presence of much lead it is used for making opaque or translucent yellow glasses. Chromium produces a green color, which is reddish in lead glass, and yellowish in soda, and potash-lime glasses.
Iron imparts a green or bluish green color to glass. It is usually present as an impurity in the ingredients of glass and its color is neutralized by adding some manganese, which produces a purple color complementary to the bluish green. This accounts for the manganese purple which develops from colorless glass exposed to ultra-violet rays. Iron is used in "bottle green" glass. Its color is greenish blue in potash-lime glass, bluish green in soda-lime glass, and yellowish green in lead glass.
Cobalt is widely used in the production of blue glasses. It produces a violet-blue in potash-lime and soda-lime glasses and a blue in lead glasses. It appears blue, but it transmits deep red rays. For this reason when used in conjunction with a deep red glass, a filter for only the deepest red rays is obtained. Nickel produces an amethyst color in potash-lime glass, a reddish brown in soda-lime glass, and a purple in lead glass. Manganese is used largely as a "decolorizing" agent in counteracting the blue-green of iron. It produces an amethyst color in potash-lime glass and reddish violet in soda-lime and lead glasses.
These are the principal coloring ingredients used in the manufacture of colored glass. The staining of glass is done under lower temperatures, so that a greater variety of chemical compounds may be used. The resulting colors of metals and metallic oxides dissolved in glass depend not only upon the nature of the metal used, but also partly upon the stage of oxidation, the composition of the glass and even upon the temperature of the fusion.
In developing a glass filter the effects of the various coloring elements are determined spectrally and the various elements are varied in proper proportions until the glass of desired spectral transmission is obtained. It is seen that the coloring elements are limited and the combination of these is further limited by chemical considerations. In combining various colored glasses or various coloring elements in the same glass the "subtractive" method of color-mixture is utilized. For example, if a green glass is desired, yellowish green chromium glass may be used as a basis. By the addition of some blue-green due to copper, the yellow rays may be further subdued so that the resulting color is green.
The primary colors for this method of color-mixture are the same as those of the painter in mixing pigments—namely, purple, yellow, and blue-green. Various colors may be obtained by superposing or intimately mixing the colors. The resulting transmission (reflection in the case of reflecting media such as pigments) are those colors commonly transmitted by all the components of a mixture. Thus,
Purple and yellow = red Yellow and blue-green = green Blue-green and purple = blue
The colors produced by adding lights are based not on the "subtractive" method but on the actual addition of colors. These primaries are red, green, and blue and it will be noted that they are the complementaries of the "subtractive" primaries. By the use of red, green, and blue lights in various proportions, all colors may be obtained in varying degrees of purity. The chief mixtures of two of the "additive" primaries produce the "subtractive" primaries. Thus,
Red and blue = purple Red and green = yellow Green and blue = blue-green
Although the coloring media which are permanent under the action of light, heat, and moisture are relatively few, by a knowledge of their spectral characteristics and other principles of color the expert is able to produce many permanent colors for lighting effects. The additive and subtractive methods are chiefly involved, but there is another method which is an "averaging" additive one. For example, if a warm tint of yellow is desired and only a dense yellow glass is available, the yellow glass may be cut into small pieces and arranged upon a colorless glass in checker-board fashion. Thus a great deal of uncolored light which is transmitted by the filter is slightly tinted by the yellow light passing through the pieces of yellow glass. If this light is properly mixed by a diffusing glass the effect is satisfactory. These are the principal means of obtaining colored light by means of filters and by mixing colored lights. By using these in conjunction with the array of light-sources available it is possible to meet most of the growing demands. Of course, the ideal solution is to make the colored light directly at the light-source, and doubtless future developments which now appear remote or even impossible will supply such colored illuminants. In the meantime, much is being accomplished with the means available.
XXII
SPECTACULAR LIGHTING
Artificial light is a natural agency for producing spectacular effects. It is readily controlled and altered in color and the brightness which it lends to displays outdoors at night renders them extremely conspicuous against the darkness of the sky. It surpasses other decorative media by the extreme range of values which may be obtained. The decorator and painter are limited by a range of values from black to white pigments, which ordinarily represents an extreme contrast of about one to thirty. The brightnesses due to light may vary from darkness to those of the light-sources themselves. The decorator deals with secondary light—that is, light reflected by more or less diffusely reflecting objects. The lighting expert has at his command not only this secondary light but the primary light of the sources. Lighting effects everywhere attract attention and even the modern merchant testifies that adequate lighting in his store is of advertising value. In all the field of spectacular lighting the superiority of artificial light over natural light is demonstrated.
Light is a universal medium with which to attract attention and to enthrall mankind. The civilizations of all ages have realized this natural power of light. It has played a part in the festivals and triumphal processions from time immemorial and is still the most important feature of many celebrations. In the early festivals fires, candles, and oil-lamps were used and fireworks were invented for the purpose. Even to-day the pyrotechnical displays against the dark depths of the night sky hold mankind spellbound. But these evanescent notes of light have been improved upon by more permanent displays on a huge scale. Thirty years before the first practical installation of gas-lighting an exhibition of "Philosophical Fireworks" produced by the combustion of inflammable gases was given in several cities of England.
It is a long step from the array of flickering gas-flames with which the fronts of the buildings of the Soho works were illuminated a century ago to the wonderful lighting effects a century later at the Panama-Pacific Exposition. Some who saw that original display of gas-jets totaling a few hundred candle-power described it as an "occasion of extraordinary splendour." What would they have said of the modern spectacular lighting at the Exposition where Ryan used in a single effect forty-eight large search-lights aggregating 2,600,000,000 beam candle-power! No other comparison exemplifies more strikingly the progress of artificial lighting in the hundred years which have elapsed since it began to be developed.
The nature of the light-sources in the first half of the nineteenth century did not encourage spectacular or display lighting. In fact, this phase of lighting chiefly developed along with electric lamps. Of course, occasionally some temporary effect was attempted as in the case of illuminating the dome of St. Paul's Cathedral in London in 1872, but continued operation of the display was not entertained. In the case of lighting this dome a large number of ship's lanterns were used, but the result was unsatisfactory. After this unsuccessful attempt at lighting St. Paul's, a suggestion was made of "flooding it with electric light projected from various quarters." Spectacular lighting outdoors really began in earnest in the dawn of the twentieth century.
Although some of the first attempts at spectacular lighting outdoors were made with search-lights, spectacular lighting did not become generally popular until the appearance of incandescent filament lamps of reasonable efficiency and cost. The effects were obtained primarily by the use of small electric filament lamps draped in festoons or installed along the outlines and other principal lines of buildings and monuments. The effect was almost wholly that of light, for the glare from the visible lamps obscured the buildings or other objects. The method is still used because it is simple and the effects may be permanently installed without requiring any attention excepting to replace burned-out lamps. However, the method has limitations from an artistic point of view because the artistic effects of painting, sculpture, and architecture cannot be combined with it very effectively. For example, the details of a monument or of a building cannot be seen distinctly enough to be appreciated. The effect is merely that of outlines or lines and patterns of points of light and is usually glaring.
The next step was to conceal these lamps behind the cornices or other projections or in nooks constructed the purpose. Light now began to mold and to paint the objects. The structures began to be visible; at least the important cornices and other details were no longer mere outlines. The introduction of the drawn-wire tungsten lamp is responsible for an innovation in spectacular lighting of this sort, for now it became possible to make concentrated light-sources so essential to projectors. Furthermore, these lighting units require very little attention after once being located. With the introduction of electric-filament lamps of this character small projectors came into use, and by means of concentrated beams of light whole buildings and monuments could be flooded with light from remote positions. The effects obtained by concealing lamps behind cornices had demonstrated that the lighting of the surfaces was the object to be realized in most cases, and when small projectors not requiring constant attention became available, a great impetus was given to flood-lighting.
When France gave to this country the Bartholdi Statue of Liberty there was no thought of having this emblem visible at night excepting for the torch held the hand of Liberty. This torch was modified at the time of the erection of the statue to accommodate the lamps available, with the result that it was merely a lantern containing a number of electric lamps. At night it was a speck of light more feeble than many surrounding shore lights. The statue had been lighted during festivals with festoons and outlines of lamps, but in 1915, when the freedom of the generous donor of the statue appeared to be at stake, a movement was begun which culminated in a fund for flood-lighting Liberty. The broad foundation of the statue made the lighting comparatively easy by means of banks of incandescent filament search-lights. About 225 of these units were used with a total beam candle-power of about 20,000,000. The original idea of an imitation flame for the torch was restored by building this from pieces of yellow cathedral glass of three densities. About six hundred pieces of glass were used, the upper ones being generally of the lighter tints and the lower ones of the darker tints. A lighthouse lens was placed in this lantern so that an intense beam of light would radiate from it. The flood-lighted Statue of Liberty is now visible by night as well as by day and it has a double significance at night, for light also symbolizes independence.
Just as the Statue of Liberty stands alone in the New York Harbor so does the Woolworth Building reign supreme on lower Manhattan. Liberty proclaims independence from the bondage of man and the Woolworth Tower stands majestically in defiance of the elements as a symbol of man's growing independence of nature. This building with its cream terra-cotta surface and intricate architectural details touched here and there with buff, blue, green, red, and gold, rises 792 feet or sixty stories above the street and typifies the American spirit of conceiving and of executing great undertakings. In it are blended art, utility, and majesty. Viewed by multitudes during the day, it is a valuable advertisement for the name which stands for a national institution. But by day it shares attention with its surroundings. If lighted at night it would stand virtually alone against the dark sky and the investment would not be wholly idle during the evening hours.
Mr. H. H. Magdsick, who designed the lighting for Liberty, planned the lighting for the Woolworth Tower, which rises 407 feet or thirty-one stories above the main building. Five hundred and fifty projectors containing tungsten filament lamps were distributed about the base of the tower and among some of the architectural details. The main architectural features of the mansard roof extending from the fifty-third to the fifty-seventh floor, the observation balcony at the fifty-eighth and the lantern structures at the fifty-ninth and sixtieth floors are covered with gold-leaf. By proper placing of the projectors a glittering effect is obtained from these gold surfaces. The crowning features of the lighting effect are the lanterns in the crest of the spire. Twenty-four 1000-watt tungsten lamps were placed behind crystal diffusing glass, which transmits the light predominantly in a horizontal direction. Thus at long distances, from which the architectural details cannot be distinguished, the brilliant crowning light is visible. An automatic dimmer was devised so that the effect of a huge varying flame was obtained. At close range, owing to the nature of the glass panels, this portion is not much brighter than the remainder of the surfaces. When the artificial lighting is in operation the tower becomes a majestic spire of light and this magnificent Gothic structure projecting defiantly into the depths of darkness is in more than one sense a torch of modern civilization.
Many prominent buildings and monuments have burst forth in a flood of light, and their beauty and symbolism have been appreciated at night by many persons who do not notice them by day. Not only are the beautiful structures of man lighted permanently but many temporary effects are devised. Artificial lighting effects have become a prominent part in outdoor festivals, pageants, and theatricals. Candles have been associated with Christmas trees ever since the latter came into use and naturally artificial light has been a feature in the community Christmas trees which have come into vogue in recent years. The Municipal Christmas Tree in Chicago in 1916 was ninety feet high and was lighted with projectors. Thousands of gems taken from the Tower of Jewels at the San Francisco Exposition added life and sparkle to that of the other decorations.
After the close of the recent war artificial light played a prominent part throughout the country in the joyful festivals. A jeweled arch erected in New York in honor of the returning soldiers rivaled some of the spectacles of the Panama-Pacific Exposition. The arch hung like a gigantic curtain of jewels between two obelisks, which rose to a height of eighty feet and were surmounted by jeweled forms in the shape of sunbursts. Approximately thirty thousand jewels glittered in the beams of batteries of arc-projectors. Many of the signs and devices which played a part in the "Welcome Home" movement were of striking nature and of a character to indicate permanency. The equipment of a large building consisted of more than five thousand 10-watt lamps, the entire building being outlined with stars consisting of eleven lamps each. The "Brighten Up" campaign spread throughout the country. The lighting and installation of signs and special patriotic displays, the flooding of streets and shop-windows with light without stint, produced an inspiring and uplifting effect which did much to restore cheerfulness and optimism. A glowing example was set in Washington, where the flood-lighting of the Capitol, discontinued shortly after our entrance into the war, was resumed.
In Chicago a "Victory Way" was established, with street-lighting posts on both sides of the street equipped with red, white, and blue globes surmounted by a golden goddess of Victory. One hundred and seventy-five projectors were installed along the way on the roofs and in the windows of office buildings. A brilliant, scintillating "Altar of Victory" was erected at the center of the Way. It was composed of two enormous candelabra erected one on each side of a platform ninety feet high. These were studded with jewels and supported a curtain of jewels suspended from the altar. In the center of the curtain was a huge jeweled eagle bearing the Allied flags. This was illuminated by arc-projectors which delivered 200,000,000 beam candle-power. In addition to these there were many smaller projectors. In the top of each candelabra six large red-and-orange lamps were installed in reflectors. These illuminated live steam which issued from the top. Surmounting the whole was a huge luminous fan formed by beams from large arc search-lights. These are only a few of the many lighting effects which welcomed the returning soldiers, but they illustrate how much modern civilization depends upon artificial light for expressing its feelings and emotions. Throughout all these festivals light silently symbolized happiness, freedom, and advancement.
Projectors were used on a large scale in several cases before the advent of the concentrated filament lamp. W. D'A. Ryan, the leader in spectacular lighting, lighted the Niagara Falls in 1907 with batteries of arc-projectors aggregating 1,115,000,000-beam candle-power. In 1908 he used thirty arc-projectors to flood the Singer Tower in New York with light and projected light to the flag on top by means of a search-light thirty inches in diameter. Many flags waved throughout the war in the beams of search-lights, symbolizing a patriotism fully aroused. The search-light beam as it bores through the atmosphere at night is usually faintly bright, owing to the small amount of fog, dust, and smoke in the air. By providing more "substance" in the atmosphere, the beams are made to appear brighter. Following this reasoning, Ryan developed his scintillator consisting of a battery of search-light beams projected upward through clouds of steam which provided an artificial fog. This was first displayed at the Hudson-Fulton celebration with a battery of arc search-lights totaling 1,000,000,000-candle-power.
All these effects despite their magnitude were dwarfed by those at the Panama-Pacific Exposition, and inasmuch as this up to the present time represents the crowning achievement in spectacular lighting, some of the details worked out by Ryan may be of interest. In general, the lighting effects departed from the bizarre outline lighting in which glaring light-sources studded the structures. The radiant grandeur and beauty of flood-lighting from concealed light-sources was the key-note of the lighting. In this manner wonderful effects were obtained, which not only appealed to the eye and to the artistic sensibility but which were free from glare. By means of flood-lighting and relief-lighting from concealed light-sources the third dimension or depth was obtained and the architectural details and colorings were preserved. A great many different kinds of devices and lamps were used to make the night effects superior in grandeur to those of daytime. The Zone or amusement section was lighted with bare lamps in the older manner and the glaring bizarre effects contrasted the spectacular lighting of the past with the illumination of the future.
In another section the visitor was greeted with a gorgeous display of carnival spirit. Beautifully colored heraldic shields on which were written the early history of the Pacific coast were illuminated by groups of luminous arc-lamps on standards varying from twenty-five to fifty-five feet in height. The Tower of Jewels with more than a hundred thousand dangling gems was flood-lighted, and the myriads of minute reflected images of light-sources glittering against the dark sky produced an effect surpassing the dreams of imagination. Shadows and high-lights of striking contrasts or of elusive colors greeted the visitor on every hand. Individual isolated effects of light were to be found here and there. Fire hissed from the mouths of serpents and cast the spell of mobile light over the composite Spanish-Gothic-Oriental setting. A colored beam of a search-light played here and there. Mysterious vapors rising from caldrons were in reality illuminated steam. Symbolic fountain groups did not escape the magic touch of the lighting wizard.
In the Court of the Universe great areas were illuminated by two fountains rising about a hundred feet above the sunken gardens. One of these symbolized the setting sun, the other the rising sun. The shaft and ball at the crest of each fountain were glazed with heavy opal glass imitating travertine marble and in these were installed incandescent lamps of a total candle-power of 500,000. The balustrade seventy feet above the sunken gardens was surmounted by nearly two hundred incandescent filament search-lights. Light was everywhere, either varying in color into a harmonious scene or changing in light and shadow to mold the architecture and sculpture. The enormous glass dome of the Palace of Horticulture was converted into an astronomical sphere by projecting images upon it in such a manner that spots of light revolved; rings and comets which appeared at the horizon passed on their way through the heavens, changing in color and disappearing again at the horizon. All these effects and many more were mirrored in the waters of the lagoons and the whole was a Wonderland indeed.
The scintillator consisted of 48 arc search-lights three feet in diameter totaling 2,600,000,000 beam candle-power. The lighting units were equipped with colored screens and the beams which radiated upward were supplied with an artificial fog by means of steam generated by a modern express locomotive. The latter was so arranged that the wheels could be driven at a speed of sixty miles per hour under brake, thereby emitting great volumes of steam and smoke, which when illuminated with various colors produced a magnificent spectacle. Over three hundred scintillator effects were worked out and this feature of fireless fireworks was widely varied. The aurora borealis and other effects created by this battery of search-lights extended for many miles. The many effects regularly available were augmented on special occasions and it is safe to state that this apparatus built upon a huge scale provided a flexibility of fireless fireworks never attained even with small-scale devices.
The lighting of the exposition can barely be touched upon in a few paragraphs and it would be difficult to describe in words even if space were unlimited. It represented the power of light to beautify and to awe. It showed the feebleness of the decorator's media in comparison with light pulsating with life. It consisted of a great variety of direct, masked, concealed, and projected effects, but these were blended harmoniously with one another and with the decorative and architectural details of the structures. It was a crowning achievement of a century of public lighting which began with Murdock's initial display of a hundred flickering gas-jets. It demonstrated the powers of science in the production of light and of genius and imagination in the utilization of light. It was a silent but pulsating display of grandeur dwarfing into insignificance the aurora borealis in its most resplendent moments.
XXIII
THE EXPRESSIVENESS OF LIGHT
From an esthetic or, more broadly, a psychological point of view no medium rivals light in expressiveness. Not only is light allied with man's most important sense but throughout long ages of associations and uses mankind has bestowed upon it many attributes. In fact, it is possible that light, color, and darkness possess certain fundamentally innate powers; at least, they have acquired expressive and impressive powers through the many associations in mythology, religion, nature, and common usage. Besides these attributes, light possesses a great advantage over the media of decoration in obtaining brightness and color effects. For example, the landscape artist cannot reproduce the range of values or brightnesses in most of nature's scenes, for if black is used to represent a deep shadow, white is not bright enough to represent the value of the sky. In fact, the range of brightnesses represented by the deep shadow and the sky extends far beyond the range represented by black and white pigments. The extreme contrast ordinarily available by means of artist's colors is about thirty to one, but the sky is a thousand times brighter than a shadow, a sunlit cloud is thousands of times brighter than the deep shadows of woods, and the sun is millions of times brighter than the shadows in a landscape.
The range of brightnesses obtainable by means of light extends from darkness or black throughout the range represented by pigments under equal illumination and beyond these through the enormous range obtainable by unequal illumination of surfaces to the brightnesses of the light-sources themselves. In the matter of purity of colors, light surpasses reflecting media, for it is easy to obtain approximately pure hues by means of light and to obtain pure spectral hues by resorting to the spectrum of light. It is impossible to obtain pure hues by means of pigments or of other reflecting media. These advantages of light are very evident on turning to spectacular lighting effects, and even the lighting of interiors illustrates a potentiality in light superior to other media. For example, in a modern interior in which concealed lighting produces brilliantly illuminated areas above a cornice and dark shadows on the under side, the range in values is often much greater than that represented by black and white, and still there remains the possibility of employing the light-sources themselves in extending the scale of brightness. Superposing color upon the whole it is obvious that the combination of "primary" light with reflected light possesses much greater potentiality than the latter alone. This potentiality of light is best realized if lighting is regarded as "painting with light" in a manner analogous to the decorator's painting with pigments, etc.
The expressive possibilities of lighting find extensive applications in relation to painting, sculpture, and architecture. A painting is an expression of light and the sculptor's product finally depends upon lighting for its effectiveness. Lighting is the master painter and sculptor. It may affect the values of a painting to some extent and it is a great influence upon the colors. It molds the model from which the sculptor works and it molds the completed work. The direction, distribution, and quality of light influence the appearance of all objects and groups of them. Aside from the modeling of ornament, the light and shade effects of relatively large areas in an interior such as walls and ceiling, the contrasts in the brightnesses of alcoves with that of the main interior, and the shadows under cornices, beams, and arches are expressions of light.
The decorator is able to produce a certain mood in a given interior by varying the distribution of values and the choice of colors and the lighting artist is able to do likewise, but the latter is even able to alter the mood produced by the decorator. For example, a large interior flooded with light from concealed sources has the airiness and extensiveness of outdoors. If lighted solely by means of sources concealed in an upper cornice, the ceiling may be bright and the walls may be relatively dark by contrast. Such a lighting effect may produce a feeling of being hemmed in by the walls without a roof. If the room is lighted by means of chandeliers hung low and equipped with shades in such a manner that the lower portions of the walls may be light while the upper portions of the interior may be ill defined, the feeling produced may be that of being hemmed in by crowding darkness. Thus lighting is productive of moods and illusions ranging from the mystery of crowding darkness to the extensiveness of outdoors.
Future lighting of interiors doubtless will provide an adequacy of lighting effects which will meet the respective requirements of various occasions. A decorative scheme in which light and medium grays are employed produces an interior which is very sensitive to lighting effects. To these light-and-shade effects colored light may add its charming effectiveness. Not only are colored lighting effects able to add much to the beauty of the setting but they possess certain other powers. Blue tints produce a "cold" effect and the yellow and orange tints a "warm" effect. For example, a room will appear cooler in the summer when illuminated by means of bluish light and a practical application of this effect is in the theater which must attract audiences in the summer. How tinted illuminants fit the spirit of an occasion or the mood of a room may be fully appreciated only through experiments, but these are so effective that the future of lighting will witness the application of the idea of "painting with light" to its fullest extent. Color is demanded in other fields, and, considering its effectiveness and superiority in lighting, it will certainly be demanded in lighting when its potentiality becomes appreciated and readily utilized.
The expressiveness of light is always evident in a landscape. On a sunny day the mood of a scene varies throughout the day and it grows more enticing and agreeable as the shadows lengthen toward evening. The artist in painting a desert scene employs short harsh shadows if he desires to suggest the excessive heat. These shadows suggest the relentless noonday sun. The overcast sky is universally depressing and it has been found that on a sunny day most persons experience a slight depression when a cloud obscures the sun. Nature's lighting varies from moment to moment, from day to day, and from season to season. It presents the extremes of variation in distributions of light from overcast to sunny days and in the latter cases the shadows are continually shifting with the sun's altitude. They are harshest at noon and gradually fade as they lengthen, until at sunset they disappear. The colors of sunlit surfaces and of shadows vary from sunrise to sunset. These are the fundamental variations in the lighting, but in the various scenes the lighting effects are further modified by clouds and by local conditions or environment. The vast outdoors provides a fruitful field for the study of the expressiveness of light.
Having become convinced of this power of light, the lighting expert may turn to artificial light, which is so easily controlled in direction, distribution, and color, and draw upon its potentiality. Not only is it easy to provide a lighting suitable to the mood or to the function of an interior but it is possible to obtain some variety in effect so that the lighting may always suit the occasion. A study of nature's lighting reveals one great principle, namely, variety. Mankind demands variety in most of his activities. Work is varied and alternated with recreation. Meals are not always the same. Clothing, decorations, and furnishings are relieved of monotony. One of the most potent features of artificial light is the ease with which variety may be obtained. In obtaining relief from the monotony of decorations and furnishings, considerable expense and inconvenience are inevitably encountered. With an adequate supply of outlets, circuits, and controls a wide variety of lighting effects may be obtained with perhaps an insignificant increase in the initial investment. Variety is the spice of lighting as well as of life.
These various principles of lighting are readily exemplified in the lighting of the home, which is discussed in another chapter. The church is even a better example of the expressive possibilities of lighting. The architectural features are generally of a certain period and first of all it is essential to harmonize the lighting effect with that of the architectural and decorative scheme. Obviously, the dark-stained ceiling of a certain type of church would not be flooded with light. The fact that it is made dark by staining precludes such a procedure in lighting. The characteristics of creeds are distinctly different and these are to some extent exemplified by the lines of the architecture of their churches. In the same way the lighting effect may be harmonized with the creed and the spirit of the interior. The lighting may always be dignified, impressive, and congruous. Few churches are properly lighted with a high intensity of illumination; moderate lighting is more appropriate, for it is conducive to the spirit of worship. In some creeds a dominant note is extreme penitence and severity. The architecture may possess harsh outlines, and this severity or extreme solemnity may be expressed in lighting by harsher contrasts, although this does not mean that the lighting must be glaring. On the other hand, in a certain modern creed the dominant note appears to be cheerfulness. The spacious interiors of the churches of this creed are lacking in severe lines and the walls and ceilings are highly reflecting. Adequate illumination by means of diffused light without the production of severe contrasts expresses the creed, modernity, and enlightenment. On the altar of certain churches the expressiveness of light is utilized in the ceremonial uses which vary with the creed. Even the symbolism of color may be appropriately woven into the lighting of the church.
The expressiveness of light and color originated through the contact of primitive man with nature. Sunlight meant warmth and a bountiful vegetation, but darkness restricted his activities and harbored manifold dangers. Many associations thus originated and they were extended through ignorance and superstition. Yellow is naturally emblematical of the sun and it became the symbol of warmth. Brown as the predominant color of the autumn foliage became tinctured with sadness because the decay of the vegetation presaged the death of the year and the cold dreary months of winter. The first signs of green vegetation in the spring were welcomed as an end of winter and a beginning of another bountiful summer; hence green symbolized youth and hope. It became associated with the springtime of life and thus signified inexperience, but as the color of vegetation it also meant life itself and became a symbol of immortality. Blue acquired certain divine attributes because, as the color of the sky, it was associated with the abode of the gods or heaven. Also a blue sky is the acme of serenity and this color acquired certain appropriate attributes.
Associations of this character became woven into mythology and thus became firmly established. Poets have felt these influences of light and color in nature and have given expression to them in words. They also have entwined much of the mythology of past civilizations and these repetitions have helped to establish the expressiveness of light and color. Early ecclesiasts employed these symbolisms in religious ceremonies and dictated the garbs of saints and other religious personages in the paintings which decorated their edifices. Thus there were many influences at work during the early centuries when intellects were particularly susceptible through superstition and lack of knowledge. The result has been an extensive symbolism of light, color, and darkness.
At the present time it is difficult to separate the innate appeal of light, color, and darkness from those attributes which have been acquired through associations. Possibly light and color have no innate powers but merely appear to have because the acquired attributes have been so thoroughly established through usage and common consent. Space does not permit a discussion of this point, but the chief aim is consummated if the existence of an expressiveness and impressiveness of light is established. There are many other symbolisms of color and light which have arisen in various ways but it is far beyond the scope of this book to discuss them.
Psychological investigations reveal many interesting facts pertaining to the influence of light and color upon mankind. When choosing color for color's sake alone, that is, divorced from any associations of usage, mankind prefers the pure colors to the tints and shades. It is interesting to note that this is in accord with the preference exhibited by uncivilized beings in their use of colors for decorating themselves and their surroundings. Civilized mankind chooses tints and shades predominantly to live with, that is, for the decoration of his surroundings. However, civilized man and the savage appear to have the same fundamental preference for pure colors and apparently culture and refinement are responsible for their difference in choice of colors to live with. This is an interesting discovery and it has its applications in lighting, especially in spectacular and stage-lighting.
It appears to be further established that when civilized man chooses color for color's sake alone he not only prefers the pure colors but among these he prefers those near the ends of the spectrum, such as red and blue. Red is favored by women, with blue a close second, but the reverse is true for men. It is also thoroughly established that red, orange, and yellow exert an exciting influence; yellow-green, green, and blue-green, a tranquilizing influence, and blue and violet a subduing influence upon mankind. All these results were obtained with colors divorced from surroundings and actual usage. In the use of light and color the laws of harmony and esthetics must be obeyed, but the sensibility of the lighting artist is a satisfactory guide. Harmonies are of many varieties, but they may be generally grouped into two classes, those of analogy and those of contrast. The former includes colors closely associated in hue and the latter includes complementary colors. No rules in simplified form can be presented for the production of harmonies in light and color. These simplifications are made only by those who have not looked deeply enough into the subject through observation and experiment to see its complexity.
The expressiveness of light finds applications throughout the vast field of lighting, but the stage offers great opportunities which have been barely drawn upon. When one has awakened to the vast possibilities of light, shade, and color as a means of expression it is difficult to suppress a critical attitude toward the crudity of lighting effects on the present stage, the lack of knowledge pertaining to the latent possibilities of light, and the superficial use of this potential medium. The crude realism and the almost total absence of deep insight into the attributes of light and color are the chief defects of stage-lighting to-day. One turns hopefully toward the gallant though small band of stage artists who are striving to realize a harmony of lighting, setting, and drama in the so-called modern theater. Unappreciated by a public which flocks to the melodramatic movie, whose scenarios produced upon the legitimate stage would be jeered by the same public, the modern stage artist is striving to utilize the potentiality of light. But even among these there are impostors who have never achieved anything worth while and have not the perseverance to learn to extract some of the power of light and to apply it effectively. Lighting suffers in the hands of the artist owing to the absence of scientific knowledge and it is misused by the engineer who does not possess an esthetic sensibility. Science and art must be linked in lighting.
The worthy efforts of stage artists in some of the modern theaters lack the support of the producers, who cater to the taste of the public which pays the admission fees. Apparently the modern theater must first pass through a period in which financial support must be obtained from those who are able to give it, just as the symphony orchestra has been supported for the sake of art. Certainly the time is at hand for philanthropy to come to the aid of worthy and capable stage artists who hope to rescue theatrical production from the mire of commercialism.
Those who have not viewed stage-lighting from behind the scenes would often be surprised at the crudity of the equipment, and especially at the superficial intellects which are responsible for some of the realistic effects obtained. But these are the result usually of experiment, not of directed knowledge. Furthermore, little thought is given to the emotional value of light, shade, and color. The flood of light and the spot of light are varied with gaudy color-effects, but how seldom is it possible to distinguish a deep relation between the lighting and the dramatic incidents!
In much of the foregoing discussion the present predominating theatrical productions are not considered, for the lighting effects are good enough for them. Many ingenious tricks and devices are resorted to in these productions, and as a whole lighting is serving effectively enough. But in considering the expressiveness of light the deeper play is the medium necessary for utilizing the potentiality of light. These are rare and unfortunately the stage artist appreciative of the significations and emotional value of light and color is still rarer.
The equipment of the present stage consists of footlights, side-lights, border-lights, flood-lights, spot-lights, and much special apparatus. One of the severest criticisms of stage-lighting from an artistic point of view may be directed against the use of footlights for obtaining the dominant light. This is directed upward and the effect is an unnatural and even a grotesque modeling of the actors' features. The shadows produced are incongruous, for they are opposed to the other real and painted effects of light and shade. The only excuse for such lighting is that it is easily done and that proper lighting is difficult to obtain, owing to the fact that it involves a change in construction. By no means should the footlights be abandoned, for they would still be invaluable in obtaining diffused light even when the dominant light is directed from above the horizontal. In the present stage-lighting, in which the footlights generally predominate, the expressiveness of light is not satisfactory. Perhaps they are a necessary compromise, but inasmuch as their effect is unnatural they should not be accepted until it is thoroughly proved that ingenuity cannot eliminate the present defects.
The stage as a whole is a mobile picture in light, shade, and color with the addition of words and music. Excepting the latter, it is an expression of light worthy of the same care and consideration that the painting, which is also an expression of light, receives from the artist. The scenery and costumes should be considered in terms of the lighting effects because they are affected by changes in the color of the light. In fact, the author showed a number of years ago that by carefully relating the colors of the light with the colors used in painting the scenery, a complete change of scene can be obtained by merely changing the color of the light. Rather wonderful dissolving effects can be produced in this manner without shifting scenery. For example, a warm summer scene with trees in full foliage under a yellow light may be changed under a bluish light to a winter scene with ground covered with snow and trees barren of leaves. But before such accomplishments can be realized upon the stage, scientific knowledge must be available behind the scenes.
The art museum affords a multitude of opportunities for utilizing the expressiveness of light. This is more generally true of sculptured objects than of paintings because the latter may be treated as a whole. The artist almost invariably paints a picture by daylight and unless it is illuminated by daylight it is altered in appearance, that is, it becomes another picture. The great difference in the appearance of a painting under daylight and ordinary artificial light is quite startling, when demonstrated by means of apparatus in which the two effects may be rapidly alternated. Art museums are supposed to exhibit the works of artists and, therefore, no changes in these works should be tolerated if they can be avoided. The modern artificial-daylight lamps make it possible to illuminate galleries with light at night which approximates daylight. A further advantage of artificial light is that it may be easily controlled and a more satisfactory lighting may be obtained than with natural light. Considering the cost of daylight in museums and its disadvantages it appears possible that artificial daylight with its advantages may replace it eventually in the large galleries. If the works of artists are really prized for their appearance, the lighting of them is very important.
Sculpture is modeled by light and although it is impossible to ascertain the lighting under which the sculptor viewed his completed work with pride and satisfaction, it is possible to give the best consideration to its lighting in its final place of exhibition. The appearance of a sculpture depends upon the dominant direction of the light, the solid-angle subtended by the light-source (skylight, area of sky, etc.) and the amount of scattered light. The direction of dominant light determines the general direction of the shadows; the solid-angle of the light-source affects the character of the edges of the shadows; and the scattered light accounts for the brightness of the shadows. It should be obvious that variations of these factors affect the appearance or expression of three-dimensional objects. Therefore the position of a sculptured object with respect to the window or other skylight and the amount of light reflected from the surroundings are important. Visits to art museums with these factors in mind reveal a gross neglect in the lighting of objects of art which are supposed to appeal by virtue of their appearances, for they can arouse the emotions only through the doorway of vision.
A century ago mankind gave no thought to utilizing the expressive and impressive powers of light except in religious ceremonies. It was not practicable to utilize light from the feeble flames of those days in the elaborate manner necessary to draw upon these powers. Man was concerned with the more pressing needs. He wanted enough light to make the winter evenings endurable and the streets reasonably safe. The artists of those days saw the wonderful expressions of light exhibited by Nature, but they dared not dream of rivaling these with artificial light. To-day Nature surpasses man in the production of lighting effects only in magnitude. Man surpasses her artistically. In fact, the artist becomes a master only when he can improve upon her settings; when he is able by rare judgment in choosing and in eliminating and by skill and ingenuity to substitute a complete harmony for her incomplete and unsatisfactory reality. But everywhere Nature is the great teacher, for her world is full of an everchanging infinitude of expressions of light. Mankind needs only to study these with an attuned sensibility to be able eventually to play the music of light for those who are blessed with an esthetic sense.
XXIV
LIGHTING THE HOME
In the home artificial light exerts its influence upon every one. Without artificial lighting the family circle may not have become the important civilizing influence that it is to-day. Certainly civilized man now shudders at the thought of spending his evenings in the light of the fire upon the hearth or of a burning splinter.
The importance of artificial light is emphatically impressed upon the householder when he is forced temporarily to depend upon the primitive candle through the failure of the modern system of lighting. He flees from his home to that of his more fortunate neighbor, or he retires in his helplessness to awaken in the morning with a blessing for daylight. He cannot conceive of happiness and recreation in the homes of a century or two ago, when a few candles or an oil-lamp or two were the sole sources of light. But when the electric or gas service is again restored he relapses shortly into his former placid indifference toward the wonderfully efficient and adequate artificial light of the present age.
Until recently artificial light was costly and the householder in common with other users of light did not concern himself with the question of adequate and artistic lighting. His chief aim was to utilize as little as possible, for cost was always foremost in his mind. The development of the science of light-production has been so rapid during the past generation that adequate, efficient, and cheap artificial light finds mankind unconsciously viewing lighting with the same attitude as he displays toward his food and fuel bills. Another consequence of this rapid development is that mankind does not know how to extract the joy from modern artificial light. This is readily demonstrated by analyzing the lighting of middle-class homes.
The cost of light has been discussed in another chapter and it has been shown that it has decreased enormously in a century. It is now the most potential agency in the home when viewed from the standpoint of cost. The average householder pays less than twenty dollars per year for ever-ready light throughout his home. For about five cents per day the average family enjoys all the blessings of modern lighting, which is sufficient proof that cost is an insignificant item.
In order to simplify the discussion of lighting the home the terminology of electric-lighting will be used. The principles expounded apply as well to gas as to electricity, and owing to the ingenuity of the gas-lighting experts, the possibilities of gas-lighting are extensive despite its handicaps. There are some places in the home, such as the kitchen and basement, where lighting is purely utilitarian in the narrow sense, but in most of the rooms the esthetic or, more broadly, the psychological aspects of lighting should dominate. Pure utility is always a by-product of artistic lighting and furthermore, the lighting effects will be without glare when they satisfy all the demands of esthetics.
In dealing with lighting in the home the householder should concentrate his attention upon lighting effects. Unfortunately, he is not taught to do so, for everywhere he turns for help he finds the discussion directed toward fixtures and lamps instead of toward lighting effects. However, these are merely links in the chain from the meter to the eye. Lamps are of interest from the standpoint of quantity and quality of light, and fixtures are of importance chiefly as distributers of light. These details are merely means to an end and the end is the lighting effect. Of course, the fixtures are more important as objects than the wires because they are visible and should harmonize with the general decorative and architectural scheme.
The home is the theater of life full of various moods and occasions; hence the lighting of a home should be flexible. A degree of variety should be possible. Controls, wiring, outlets, and fixtures should conspire to provide this variety. At the present time the average householder does not give much attention to lighting until he purchases fixtures. It is probable that he thought of it when he laid out or approved the wiring, but usually he does not consider it seriously until he visits the fixture-dealer to purchase fixtures. And then unfortunately the fixture-dealer does not light his home; he does not sell the householder lighting-effects designed to meet the requirements of the particular home; he sells merely fixtures.
Unfortunately there are few fixtures available which have definite aims in lighting as demanded by the home. Of the great variety of fixtures available there are many artistic objects, but it is obvious that little attention is given to their design from the standpoint of lighting. That the fixture-dealer usually thinks of fixtures as objects and gives little or no thought to lighting effects is apparent from his conversation and from his display. He exhibits fixtures usually en masse and seldom attempts to illustrate the lighting effects produced in the room.
The foregoing criticisms are presented to emphasize the fact that throughout the field of lighting the great possibilities which have been opened by modern light-sources are not fully appreciated. The point at which to begin to design the lighting for a home is the wiring. Unfortunately this is too often done by a contractor who has given no special thought to the possibilities of lighting and to the requirements in wiring and switches necessary in order to realize them. At this point the householder should attempt to form an opinion as to the relative values. Is artificial lighting important enough to warrant an expenditure of two per cent. of the total investment in the home and its furnishings? The answer will depend upon the extent to which artificial light is appreciated. It appears that four or five per cent. is not too much if it is admitted that the artificial lighting system ranks next to the heating plant in importance and that these two are the most important features of an interior of a residence. A switch or a baseboard outlet costs an insignificant sum but either may pay for itself many times in the course of a few years through its utility or convenience.
It appears best to take up this subject room by room because the requirements vary considerably, but in order to be specific in the discussions, a middle-class home will be chosen. The more important rooms will be treated first and various simple details will be touched upon because, after all, the proper lighting of a home is realized by attention to small details.
The living-room is the scene of many functions. It serves at times for the quiet gathering of the family, each member devoted to reading. At another time it may contain a happy company engaged at cards or in conversation. The lighting requirements vary from a spot or two of light to a flood of light. Excepting in the small living-rooms there does not appear to be a single good reason for a ceiling fixture. It is nearly always in the field of vision when occupants are engaged in conversation, and for reading purposes the portable lamp of satisfactory design has no rival. Wall brackets cannot supply general lighting without being too bright for comfort. If they are heavily shaded they may still emit plenty of light upward, but the adjacent spots on the walls or ceiling will generally be too bright. Wall brackets may be beautiful ornaments and decorative spots of light and have a right to exist as such, but they cannot be safely depended upon for adequate general lighting on those occasions which demand such lighting.
As a general principle, it is well to visualize the furniture in the room when looking at the architect's drawings and it is advantageous even to cut out pieces of paper representing the furniture in scale. By placing these on the drawings the furnished room is readily visualized and the locations of baseboard outlets become evident. It appears that the best method of lighting a living-room is by means of decorative portable lamps. Such lamps are really lighting-furniture, for they aid in decorating and in furnishing the room at all times. A number of these lamps in the living-room insures great flexibility in the lighting, and the light may be kept localized if desired so that the room is restful. A room whose ceiling and walls are brilliantly illuminated is not so comfortable for long periods as one in which these areas are dimly lighted. Furthermore, the latter is more conducive to reading and to other efforts at concentration. The furniture may be readily shifted as desired and the portable lamps may be rearranged.
Such lighting serves all the purposes of the living-room excepting those requiring a flood of light, but it is easy to conceal elaborate lighting mechanisms underneath the shades of portable lamps. Several types of portable lamps are available which supply an indirect component as well as direct light. The former illuminates the ceiling with a flood of light without any discomforting glare. Such a lighting-unit is one of the most satisfactory for the home, for two distinct effects and a combination of these introduce a desirable element of variety into the lighting. Not less than four and preferably six baseboard outlets should be provided in a living-room of moderate size. One outlet on the mantel is also to be desired for connecting decorative candlesticks, and brackets above the fireplace are of ornamental value. Although the absence of ceiling fixtures improves the appearance of the room, wiring may be provided for ceiling outlets in new houses as a matter of insurance against the possible needs of the future. When ceiling fixtures are not used, switches may be provided for the mantel brackets or certain baseboard outlets in order that light may be had upon entering the room.
The merits of a portable lamp may be ascertained before purchasing by actual demonstration. Some of them are not satisfactory for reading-lamps, owing to the shape of the shade or to the position of the lamps. The utility of a table lamp may be determined by placing it upon a table and noting the spread of light while seated in a chair beside it. A floor lamp may also be tested very easily. A miniature floor lamp about four feet in height with an appropriate shade provides an excellent lamp for reading purposes because it may be placed by the side of a chair or moved about independent of other furniture. A tall floor lamp often serves for lighting the piano, but small piano lamps may be found which are decorative as well as serviceable in illuminating the music without glare.
The dining-room presents an entirely different problem for the setting is very definite. The dining-table is the most important area in the room and it should be the most brilliantly illuminated area in the room. A demonstration of this point is thoroughly convincing. The decorator who designs wall brackets for the dining-room is interested in beautiful objects of art and not in a proper lighting effect. The fixture-dealer, having fixtures to sell and not recognizing that he could fill a crying need as a lighting specialist, is as likely to sell a semi-indirect or an indirect lighting fixture as he is to provide a properly balanced lighting effect with the table brightly illuminated. The indirect and semi-indirect units illuminate the ceiling predominantly with the result that this bright area distracts attention from the table. A brightly illuminated table holds the attention of the diners. Light attracts and a semi-darkness over the remainder of the room crowds in with a result that is far more satisfactory than that of a dining-room flooded with light.
The old-fashioned dome which hung over the dining-table has served well, for it illuminated the table and left the remainder of the room dimly lighted. But its wide aperture made it necessary to suspend it rather low in order that the lamps within should not be visible. It is an obtrusive fixture and despite its excellent lighting effect, it went out of style. But satisfactory lighting principles never become antiquated, and as taste in fixtures changes the principles may be retained in new fixtures. Modern domes are available which are excellent for the dining-room if the lamps are well concealed. The so-called showers are satisfactory if the shades are dense and of such shape as to conceal the lamps from the eyes. Various modifications readily suggest themselves to the alert fixture-designer. Even the housewife can do much with silk shades when the principle of lighting the dining-table is understood. The so-called candelabra have been sold extensively for dining-rooms and they are fairly satisfactory if equipped with shades which reflect much of the light downward. Semi-indirect and indirect fixtures have many applications in lighting, but they do not provide the proper effect for a dining-room.
It is easy to make a special fixture which will send a component of light downward to the table and will permit a small amount of diffused light to the ceiling and walls. If a daylight lamp is used for the direct component, the table will appear very beautiful. Under this light the linen and china are white, flowers and decorations on the china appear in their full colors, the silver is attractive, and the various color-harmonies such as butter, paprika, and baked potato are enticing. This is an excellent place for a daylight lamp if diffused light illuminating the remainder of the room and the faces of the diners is of a warm tone obtained by warm yellow lamps or by filtering these components of the light through orange shades. The ceiling fixture should be provided with two circuits and switches. In some cases it is easy to provide a dangling plug for connecting such electric equipment as a toaster, percolator, or candlesticks. Two candlesticks are effective on the buffet, but usually the smallest normal-voltage lamps available give too much light. Miniature lamps may be used with a small transformer, or two regular lamps may be connected in series. At least two baseboard outlets are convenient.
The foregoing deals with the more or less essential lighting of a dining-room, but there are various practicable additional lighting effects which add much charm to certain occasions. Colored light of low intensity obtained from a cove or from "flower-boxes" fastened upon the wall is very pleasing. If a cove is provided around the room, two circuits containing orange and blue lamps respectively will supply two colors widely differing in effect. By mixing the two a beautiful rose tint may be obtained. This equipment has been installed with much satisfaction. A simpler method of obtaining a similar effect is to use imitation flower-boxes plugged into wall outlets. Artificial foliage adds to the charm of these boxes. The colored light is merely to add another effect on special occasions and its intensity should never be high. In the dining-room such unusual effects are not out of place and they need not be garish.
The sun-room partakes of the characteristics of the living-room to some extent, but, it being smaller, a semi-indirect fixture may be satisfactory for general illumination. However, a portable lamp which supplies an indirect component of light besides the direct light serves admirably for reading as well as for flooding the room with light when necessary. Two or three baseboard outlets are desirable for attaching decorative or even purely utilitarian lamps. The sun-room is an excellent place for utilizing "flower-box" fixtures decorated with artificial foliage. In fact, a central fixture may assume the appearance of a "hanging basket" of foliage. The library and den offer no problems differing from those already discussed in the living-room. A careful consideration of the disposition of the furniture will reveal the best positions for the outlets. In a small library wall brackets may serve as decorative spots of light and if the shades are pendent they may serve as lamps for reading purposes. In both these rooms an excellent reading-lamp is desired, but it may be decorative as well. Wall outlets may be desired for decorative portable lamps upon the bookcases.
The sleeping-room, which commonly is also a dressing-room, often exhibits the errors of a lack of foresight in lighting. In most rooms of this character there is one best arrangement of furniture and if this is determined it is easy to ascertain where the windows and outlets should be located. The windows may usually be arranged for twin beds as well as for a single one with obvious advantages of flexibility in arrangement. With the position of the bureau determined it is easy to locate outlets for two wall brackets, one on each side, about sixty-six inches above the floor and about five feet apart. When the brackets are equipped with dense upright shades, the figure before the mirror is well illuminated without glare and sufficient light reaches the ceiling to illuminate the whole room.
A baseboard outlet should be available for small portable lamps which may be used upon the bureau or for electric heating devices. The same is true for the dressing-table; indeed, two small decorative lamps on the table serve better than high wall brackets owing to the fact that the user is seated. A baseboard outlet near the head of the bed or between the beds is convenient for a reading-lamp and for other purposes. An outlet in the center of the ceiling controlled by a convenient switch may be installed on building, as insurance against future needs or desires. But a single lighting-unit in the center of the ceiling does not serve adequately the needs at the bureau and dressing-table. In fact, two wall brackets properly located with respect to the bureau afford a lighting much superior for all purposes in the bedroom to that produced by a ceiling fixture.
In the bath-room the principal problem is to illuminate the person, especially the face, before the mirror. Many mistakes are made at this point, despite the simplicity of the solution. In order to see the image of an object in a mirror, the object must be illuminated. It is best to do this in a straightforward manner by means of a small lighting-unit on each side of the mirror at a height of five feet. Both sides of the face will be well illuminated and the light-sources are low enough to eliminate objectionable shadows. The units may be merely pull-chain sockets containing frosted or opal lamps. A center bracket or a single unit suspended from the ceiling is not as satisfactory as the two brackets. These afford enough light for the entire bath-room. A baseboard or wall outlet is convenient for connecting a heater, curling-iron, and other electrically heated devices.
The sewing-room, which in the middle-class home is usually a small room, is sometimes used as a bedroom. A ceiling fixture will supply adequate general lighting, but a baseboard outlet should be available for a short floor lamp or a table lamp for sewing purposes. An intense local light is necessary for this occupation, which severely taxes the eyes. A so-called daylight lamp serves very well in this case.
In the kitchen the wall brackets are easily located after the positions of the range, work-table, sink, etc., are determined. A bracket for each is advisable unless they are so located that one will serve two purposes. It is customary to have a combination fixture for gas and electricity. This is often suspended from the center of the ceiling, but inasmuch as the gas-light cannot be close to the ceiling, the fixture extends so far downward as to become a nuisance. Furthermore, a light-source hung low from the center of the ceiling is in such a position that the worker in the kitchen usually works in his shadow. If a ceiling outlet is used it should be an electrical socket at the ceiling. The combination fixture is best placed on the wall as a bracket. The so-called daylight lamps are valuable in the kitchen.
In the basement a generous supply of ceiling outlets adds much to the satisfaction of a basement. One in each locker, one before the furnace, and a large daylight lamp above but to one side of the laundry trays are worth many times their cost. Furthermore, a wall socket for the electric iron and washing-machine is a convenience very much appreciated.
In the stairways convenient three-way switches for each of the ceiling fixtures represents the best practice. A baseboard outlet in the upper hall affords a connection for a decorative lamp and pays for itself many times as a place to attach the vacuum-cleaner from which all the rooms on that floor may be served. In vestibules and on porches ceiling fixtures controlled by means of convenient switches are satisfactory. The entrance hall may be made to express hospitality by means of lighting which should be adequate and artistic.
An adequate supply of outlets and wall switches is not costly and they pay generous dividends. With a scanty supply of these, the possibilities of lighting are very much curtailed. There is nothing intricate about locating switches and outlets, so the householder may do this himself, or he may view critically the plans as submitted. The chief difficulties are to throw aside his indifference and to readjust his ideas and values. It may be confidently stated that the possibilities of lighting far outrank most of the features which contribute to the cost of a house and of its furnishings.
After considering the requirements and decorative schemes of the various rooms the householder should be competent to judge the appropriateness of the lighting effects obtained from fixtures which the dealer displays, but he should insist upon a demonstration. If the dealer is not equipped with a room for this purpose, he should be asked to demonstrate in the rooms to be lighted. If the fixture-dealer does not realize that he should be selling lighting effects, the householder should make him understand that lighting effects are of primary importance and the fixtures themselves are of secondary interest in most cases. The unused outlets that have been installed for possible future needs may be sealed in plastering if the positions are marked so that they may be found when desired.
An advantage of portable lamps is that they may be taken away on moving. In fact, when lighting is eventually considered a powerful decorative medium, as it should be, it is probable that fixtures will be personal property attached to ceiling, wall, and floor outlets by means of plugs.
A variety of incandescent lamps are available. For the home, opal, frosted, or bowl-frosted lamps are usually more satisfactory than clear lamps. Bare filaments should not be visible, for they not only cause discomfort and eye-strain but they spoil what might otherwise be an artistic effect. Lamps with diffusing bulbs do much toward eliminating harsh shadows cast by the edges of the shades, by the chains of the fixtures, etc. These lamps are available in many shapes and sizes and the householder should make a record of voltage, wattage, and shape of the lamps which he finds satisfactory in the various fixtures. The Mazda daylight lamp has several places in the home and the Mazda white-glass and other high-efficiency lamps supply many needs better than the vacuum lamps. In brackets and other purely decorative lighting-units small frosted lamps are usually the most satisfactory. There is a general desire for the warm yellowish light of the candle-flame, and this may be obtained by a tinted shade but usually more satisfactorily by means of a tinted lamp.
The householder will find it interesting to become intimate with lighting, for it can serve him well. The housewife will often find much interest in making shades of textiles and of parchment. Charming glassware in appropriate tints and painted designs is available for all rooms. In the bedchamber and the nursery some of these painted designs are exceedingly effective. Fixtures should shield the lamps from the eyes, and the diffusing media whether glass or textile should be dense enough to prevent glare. No fixture can be beautiful and no lighting effect can be artistic if glare is present. If the architect and the householder will realize that light is a medium comparable with the decorator's media, better lighting will result. Light has the great advantage of being mobile and with adequate outlets and controls supplemented by fixtures from which different effects are available, the householder will find in lighting one of the most fruitful sources of interest and pleasure. It can do much toward expressing the taste of the householder or if neglected it can undo much of the effect of excellent decoration and furnishing. Artificial lighting, softly diffused and properly localized, is one of the most important factors in making a house a home.
XXV
LIGHTING—A FINE ART?
In the preceding chapters the progress of light has been sketched from its obscure infancy to its vigorous youth of the present time. It has been seen that progress was slow until the beginning of the nineteenth century, after which it began to gain momentum until the present century has witnessed tremendous advances. Until the latter part of the nineteenth century artificial light was considered an expensive utility, but as modern lamps appeared which supplied adequate light at reasonable cost attention began to be centered upon utilization, and the lighting engineer was born. Gradually it is being realized that artificial light is no longer a luxury, that it may be used in great quantity, and that it may be directed, diffused, and altered in color as desired. Although the potentiality of light has been barely drawn upon, the present usages surpass the most extravagant dreams of civilized beings a half-century ago. Mere light of that time was changed into more light as gas-lighting developed, and more light has increased to adequate light of the present time through the work of scientists.
It is apparent that a sudden enforced reversion to the primitive flames of fifty years ago would paralyze many activities. Much of interest and beauty would be blotted out of this brilliant, pulsating, productive age. It is startling to note that almost the entire progress in artificial lighting has taken place during the past hundred years and that most of it has been crowded into the latter part of this period. In fact, its development since it began in earnest has gone forward with ever-increasing momentum. On viewing the wonders of modern artificial lighting on every hand it is not difficult to muster the courage necessary to venture into its future.
The lighting engineer has been a natural evolution of the present age, for the economic aspects of lighting have demanded attention. He is increasing the safety, efficiency, and happiness of mankind and civilization is beginning to feel his influence economically. However, with the advent of adequate, efficient, and controllable light, the potentiality of light as an artistic medium may be drawn upon and the lighting artist with a deep insight into the possibilities of artificial light now has his opportunity. But the artist who believes that a new art may be evolved to perfection in a few years is doomed to disappointment, for it is necessary only to view retrospectively such arts as painting and music to be convinced that understanding and appreciation develop slowly through centuries of experiment and contact.
Will lighting ever become a fine art? Will it ever be able alone to arouse emotional man as do the fine arts? Are the powers of light sufficiently great to enthrall mankind without the aid of form, music, action, or spoken words? It is safer to answer "yes" than "no" to these questions. Painting has reached a high place as an art and this art is the expressiveness of secondary or reflected light reinforced by imitation forms, which by a combination of light and drawing comprise the "subjects." A painting is a momentary expression of light, a cross-section of something mobile, such as nature, thought, or action. Light has the essential qualifications of painting with the advantages of a greater range of brightness, of greater purity of colors, and the great potentiality of mobility. If lighting becomes a fine art it will doubtless be related to painting somewhat in the same manner that architecture is akin to sculpture. With the introduction of mobility it will borrow something from the arts of succession and especially from music.
The art of lighting in its present infancy is leaning upon established arts, just as the infant learns to walk alone by first depending upon support. The use of color in painting developed slowly, being supported for centuries by the strength of drawing or subject. The landscapes of a century ago were dull, for color was employed hesitatingly and sparingly. The colors in the portraits of the past merely represented the gorgeous dress of bygone days. But the painter of the present shows that color is beginning to be used for itself and that the painter is no longer hesitant concerning its power to go hand in hand with drawing. Drafting and coloring are now in partnership, the former having given up guardianship when the latter reached maturity.
Lighting is now an accompaniment of the drama, of the dance, of architecture, of decoration, and of music. It has been a background or a part of the "atmosphere" excepting occasionally when some one with imagination and daring has given it the leading role. Even in its infancy it has on occasions performed admirably almost without any aid. The bursting rocket, the marvelous effects at the Panama-Pacific Exposition, and some of the exhibitions on the theatrical stage are glimpses of the potentiality of light. To fall back upon the terminology of music, these may be glimmerings of light-symphonies.
Harmony is simultaneity and a painting in this respect is a chord—a momentary expression fixed in material media. A melody of light requires succession just as the melody in music. The restless colors of the opal comprise a light melody like the songs of birds. The gorgeous splendor of the sunset compares in magnitude and in its various moods with the symphony orchestra and its powers. Throughout nature are to be found gentle chords, beautiful melodies and powerful symphonies of light and this music of light exhibits the complexity and structure analogous to music. There is no physical relation between music, poetry, and light, but it is easy to lean upon the established terminology for purposes of discussion. Those who would build color-music identical to sound music are making the mistake of starting with a physical foundation instead of basing the art of light-expression upon psychological effects of light. In other words, a relation between light and music can exist only in the psychological realm.
These melodies and symphonies of light in nature are admittedly pleasing or impressive as the case may be, but are they as appealing as music, poetry, painting, or sculpture? The consensus of opinion of a large group of average persons might indicate a negative reply, but the combined opinion of this group is not so valuable as the opinion of a colorist or of an artist who has sensed the wonders of light. The unprejudiced opinion of artists is that light is a powerfully expressive and impressive medium. The psychologist will likely state that the emotive value of light or color is not comparable to the appeal of an excellent dinner or of many other commonplace things. But he has experimented only with single colors or with simple patterns and his subjects are selected more or less at random from the multitude. What would be his conclusion if he examined painters and others who have developed their sensibilities to a deep appreciation of light and color? It is certain that the painter who picks up a purple petal fallen from a rose and places it upon a green leaf is as thrilled by the powerful vibrant color-chord as the musician who hears an exquisite harmony of sounds.
Music has been presented to civilized mankind in an organized manner for ages and the fundamental physical basis of modern music is a thousand years old. Would the primitive savage appreciate the modern symphony orchestra? Even the majority of civilized beings prefer the modern ragtime or jazz to the exquisite art of the symphony. An appreciation of the opera and the symphony is reached by educational methods extending over long periods. An appreciation of the expressiveness of light cannot be expected to be realized by any short-cut. Most persons to-day enjoy the melodramatic "movie" more than the drama and relatively few experience the deep appeal of the fine arts. Surely the symphony of light cannot be justly condemned because of a lack of appreciation and understanding of it, for it has not been introduced to the public. Furthermore, the expressiveness of music is still indefinite at best despite the many centuries of experimenting on the part of musicians.
If poetry is to be believed, the symphonies of light as rendered by nature in the sunsets, in the aurora borealis, and in other sky-effects of great magnitude have deeply impressed the poet. If his descriptions are to be accepted at their face-value, the melodies of light rendered in the precious stone, in the ice-crystal, and in the iridescence of bird-plumage please his finer sensibilities. If he is sincere, mobile light is a seductive agency.
The painter has contributed little of direct value in developing the music of light. He is concerned with an instantaneous expression. He waits for it patiently and, while waiting, learns to appreciate the fickleness of mood in nature, but when he fixes one of these moods he has contributed very little to the art of mobile light. Unfortunately the art schools teach the student little or nothing pertaining to color for color's sake. When the student is capable of drawing fairly well and is acquainted with a few stereotyped principles of color-harmony he is sent forth to follow in the footsteps of past masters. He may be seen at the art museum faithfully copying a famous painting or out in the fields stalking a tree with the hopes of an embryo Corot. The world moves and has only a position in the rank and file for imitators. Occasionally an artist goes to work with a vim and indulges in research, thereby demonstrating originality in two respects. Painting is just as much a field for research as light-production.
Recently experiments are being made in the production of color-harmonies devoid of form. Surely there is a field for pure color-composition and this the field of the painter which leads toward the art of mobile light. Many of the formless paintings of the present day which pass under the banner of this ism or that are merely experiments in the expressiveness of light. Being formless, they are devoid of subject in the ordinary sense and cannot be more or less than a fixed expression of light. Naturally they have received much criticism and have been ridiculed, but they can expect nothing else until they are understood. They cannot be understood until mankind learns their language and then they must be understandable. In other words, there are impostors gathered around the sincere research-artist because the former have neither the ability to paint for a living nor the inclination to forsake the comparative safety of the mystery of art for the practical world where their measure would be quickly taken. This army of camp-followers will not advance the art of mobile light, but the sincere seekers after the principles of light-expression who form the foundation of the various isms may contribute much.
The painter will always be available with his finer sensibility to appreciate and to aid in developing the art of mobile light, but his direct contribution appears most likely to come from the present chaos of experiments in pure color-composition, in the psychology of light, or, more broadly, in the expressiveness of light. The decorator and the designer of gowns and costumes do not arrogate to themselves the name "artist," but they are daily creating something which is leading toward a fuller appreciation of the expressiveness of light. If they do not contribute directly to the development of the art of mobile light, they are at least aiding in developing what may eventually be an appreciative public.
The artist paints a "still-life," the decorator creates a color-harmony of abstract or conventional forms, and the costumer produces a color-composition in textiles. The decorator and costumer approach closer to pure color-composition than the artist in his still-life. The latter is a grouping of objects primarily for their color-notes. Why bother with a banana when a yellow-note is desired? Why utilize the abstract or conventional forms of the decorator? Why not follow this lead further to the less definite forms employed by the costumer? Why not eliminate form even more completely? This is an important point and an interesting lead, for to become rid of form has been one of the perplexing problems encountered by those who have dreamed of an art of mobile light.
The painter who uses line and color imitatively has perhaps acquired skill in depicting objects and more or less appreciation of the beautiful. But if he is to be creative and to produce a higher art he must be able to use line and color without reference to objects. He thus may aid in the development of an abstract art which is the higher art and at the same time aid in educating the public to appreciate pure color-harmonies. From these momentary expressions of light and from the experience gained, the mobile colorist would receive material aid and his productions would be viewed by a more receptive audience or rather "optience" as it may be called. The development of taste for abstract art is needed in order that the art of mobile light may develop and, incidentally, an appreciation of the abstract in art is needed in all arts.
Science has contributed much by way of clearing the decks. It has produced the light-sources and the apparatus for controlling light. It has analyzed the physical aspects of color-mixture and has accumulated extensive data pertaining to color-vision. It has pointed out pitfalls and during recent years has been delving further by investigating the psychology of light and color. The latter field is looked to for valuable information, but, after all, there is one way of making progress in the absence of data and that is to make attempts at the production of impressive effects of mobile light. Some of these have been made, but unfortunately they have been heralded as finished products. |
|