p-books.com
Artificial Light - Its Influence upon Civilization
by M. Luckiesh
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

Lenses appear to have been introduced in the latter part of the nineteenth century. They were at first ground from a solid piece of glass, in concentric zones, in order to reduce the thickness. They were similar in principle to some of the tail-light lenses used at present on automobiles. Later the lenses were built up by means of separate annular rings. The name of Fresnel is permanently associated with lighthouse lenses because in 1822 he developed an elaborate built-up lens of annular rings. The centers of curvature of the different rings receded from the axis as their distance from the center increased, in such a manner as to overcome a serious optical defect known as spherical aberration. Fresnel devised many improvements in which he used refracting and reflecting prisms for the outer elements.

The optical apparatus of lighthouses usually aims (1) to concentrate the rays of light into a pencil of light, (2) to concentrate them into a belt of light, or (3) to concentrate the rays over a limited azimuth. In the first case a single lens or a parabolic reflector suffices, but in the second case a cylindrical lens which condenses the light vertically into a horizontal sheet of light is essential. The third case is a combination of the first two. The modern lighthouse lenses are very elaborate in construction, being built up by means of many elements into several sections. For example, the central section may consist of a spherical lens ground with annular rings. In the next section refracting prisms may be used and in the outer section reflecting glass prisms are employed. The various elements are carefully designed according to the laws of geometrical optics.

The flashing light has such advantages over the fixed that it is generally used for important beacons. A variety of methods of obtaining intermittent light have been employed, but they are not of particular interest. Sometimes the lens or reflector is revolved and in other types an opaque screen containing slits is revolved. In the larger lighthouses the optical apparatus and its structure sometimes weigh several tons. When it is necessary to revolve apparatus of this weight, the whole mechanism is floated upon mercury contained in a cast-iron vessel of suitable size, and by an ingenious arrangement only a small portion of mercury is required.

The characteristics of navigation lights are varied considerably in order to enable the mariner to distinguish them and thereby to learn exactly where he is. The fixed light is liable to be confused with others, so it has now become a minor light. Flashes of short duration followed by longer periods of darkness are extensively used. The mariner by timing the intervals is able to recognize the light. This method is extended to groups of short flashes followed by longer intervals of darkness. In fact, short flashes have been employed to indicate a certain number so that a mariner could recognize the light by a number rather than by means of his watch. However, a time element is generally used. A combination of fixed light upon which is superposed a flash or a group of flashes of white or of colored light has been used, but it is in disrepute as being unreliable. A type known as "occulating lights" consists of a fixed light which is momentarily eclipsed, but the duration of the eclipse is usually less than that of the light. Obviously, groups of eclipses may be used. Sometimes lights of different colors are alternated without any dark intervals. The colored ones used are generally red and green, but these are short-range lights at best. Colored sectors are sometimes used over portions of the field, in order to indicate dangers, and white light shows in the fairway. These are usually fixed lights for marking the channel.

The distance at which a light may be seen at sea depends upon its luminous intensity, upon its color or spectral composition, upon its height and that of the observer's eyes above the sea-level, and upon the atmospheric conditions. Assuming a perfectly clear atmosphere, the visibility of a light-source apparently depends directly upon its candle-power. The atmosphere ordinarily absorbs the red, orange, and yellow rays less than the green, blue, and violet rays. This is demonstrated by the setting sun, which as it approaches closer to the horizon changes from yellow to orange and finally to red as the amount of atmosphere between it and the eye increases. For this reason a red light would have a greater range than a blue light of the same luminous intensity.

Under ordinary atmospheric conditions the range of the more powerful light-sources used in lighthouses is greater than the range as limited by the curvature of the earth. For the uncolored illuminants the range in nautical miles appears to be at least equal to the square root of the candle-power. A real practical limitation which still exists is the curvature of the earth, and the distance an object may be seen by the eye at sea-level depends upon the height of the object. The relation is approximately expressed thus,—

Range in nautical miles = 8/7 square root of Height of object in feet. For example, the top of a tower 100 feet high is visible to an eye at sea-level a distance of 8/7 square root of 100 = 80/7 = 11.43 miles. Now if the eye is 49 feet above sea-level, a similar computation will show how far away it may be seen by the original eye at sea-level. This is 8/7 square root of 49 = 8 miles. Hence an eye 49 feet above sea-level will be able to see the top of the 100-foot tower at a distance of 11.43 + 8 or 19.43 nautical miles. Under these conditions an imaginary line drawn from the top of the tower to the eye will be just tangent to the spherical surface of the sea at a distance of 8 miles from the eye and 11.43 miles from the tower.

The luminous intensity of a light-source or of the beam of light is directly responsible for the range. The luminous intensity of the early beacon-fires and oil-lamps was equivalent to a few candles. The improvements in light-sources and also in reflecting and refracting optical systems have steadily increased the candle-power of the beams, until to-day the beams from gas-lamps have intensities as high as several hundred thousand candle-power. The beams sent forth by modern lighthouses equipped with electric lamps and enormous light-gathering devices are rated in millions of candle-power. In fact, Navesink Light at the entrance of New York Bay is rated as high as 60,000,000 candle-power.

Of course, light-production has increased enormously in efficiency in the past century, but without optical devices for gathering the light, the enormous beam intensity would not be obtained. For example, consider a small source of light possessing a luminous intensity of one candle in all directions. If all this light which is emitted in all directions is gathered and sent forth in a beam of small angle, say one thousandth of the total angle surrounding a point, the intensity of this beam would be 1000 candles. It is in this manner that the enormous beam intensities are built up.

There is an interesting point pertaining to short flashes of light. To the dark-adapted eye a brief flash is registered as of considerably higher intensity than if the light remained constant. In other words, the lookout on a vessel is adapted to darkness and a flash from a beam of light is much brighter than if the same beam were shining steadily. This is a physiological phenomenon which operates in favor of the flashing light.



Doubtless, the reader has noted that reliability, simplicity, and low cost of operation are the primary considerations for light-sources used as aids to navigation. This accounts for the continued use of oil and gas. From an optical standpoint the electric arc-lamps and concentrated-filament lamps are usually superior to the earlier sources of light, but the complexity of a plant for generating electricity is usually a disadvantage in isolated places. The larger light-ships are now using electricity generated by apparatus installed in the vessels. There seems to be a tendency toward the use of more buoys and fewer lighthouses, but the beam-intensities of the latter are increasing.

In the hundred years since the Boston Light was built the same great changes wrought by the development of artificial light in other activities of civilization have appeared in the beacons of the mariner. The development of these aids to navigation has been wonderful, but it must go on and on. The surface of the earth comprises 51,886,000 square statute miles of land and 145,054,000 square miles of water. Three fourths of the earth's surface is water and the oceans will always be highways of world commerce. All the dangers cannot be overcome, but human ingenuity is capable of great achievements. Wreckage will appear along the shore-lines despite the lights, but the harvest of the shoals has been much reduced since the time described by Robert Louis Stevenson, when the coast people in the Orkneys looked upon wrecks as a source of gain. He states:

It had become proverbial with some of the inhabitants to observe that "if wrecks were to happen, they might as well be sent to the poor island of Sanday as anywhere else." On this and the neighboring island, the inhabitants have certainly had their share of wrecked goods. On complaining to one of the pilots of the badness of his boat's sails, he replied with some degree of pleasantry, "Had it been His [God's] will that you come na here wi these lights, we might a' had better sails to our boats and more o' other things."

In the leasing of farms, a location with a greater probability of shipwreck on the shore brought a much higher rent.



XIV

ARTIFICIAL LIGHT IN WARFARE

When the recent war broke out science responded to the call and under the stress of feverish necessity compressed the normal development of a half-century into a few years. The airplane, in 1914 a doubtful plaything of daredevils, emerged from the war a perfected thing of the air. Lighting did not have the glamor of flying or the novelty of chemical warfare, but it progressed greatly in certain directions and served well. While artificial lighting conducted its unheralded offensive by increasing production in the supporting industries and helped to maintain liaison with the front-line trenches by lending eyes to transportation, it was also doing its part at the battle front. Huge search-lights revealed the submarine and the aerial bomber; flares exposed the manoeuvers of the enemy; rockets brought aid to beleaguered vessels and troops; pistol lights fired by the aerial observer directed artillery fire; and many other devices of artificial light were in the fray. Many improvements were made in search-lights and in signaling devices and the elements of the festive fireworks of past ages were improved and developed for the needs of modern warfare.

Night after night along the battle front flares were sent up to reveal patrols and any other enemy activity. On the slightest suspicion great swarms of these brilliant lights would burst forth as though flocks of huge fireflies had been disturbed. They were even used as light barrages, for movements could be executed in comparative safety when a large number of these lights lay before the enemy's trenches sputtering their brilliant light. The airman dropped flares to illuminate his target or his landing field. The torches of past parades aided the soldier in his night operations and rockets sent skyward radiated their messages to headquarters in the rear. The star-shell had the same missions as other flares, but it was projected by a charge of powder from a gun. These and many modifications represent the useful applications of what formerly were mere "fireworks." Those which are primarily signaling devices are discussed in another chapter, but the others will be described sufficiently to indicate the place which artificial light played in certain phases of warfare.

The illuminating compounds used in these devices are not particularly new, consisting essentially of a combustible powder and chemical salts which make the flame luminous and give it color when desired. Among the ingredients are barium nitrate, potassium perchlorate, powdered aluminum, powdered magnesium, potassium nitrate, and sulphur. One of the simplest mixtures used by the English is,

Barium nitrate 37 per cent. Powdered magnesium 34 per cent. Potassium nitrate 29 per cent.

The magnesium is coated with hot wax or paraffin, which not only acts as a binder for the mixture when it is pressed into its container but also serves to prevent oxidation of the magnesium when the shells are stored. The barium and potassium nitrates supply the oxygen to the magnesium, which burns with a brilliant white flame. The potassium nitrate takes fire more readily than the barium nitrate, but it is more expensive than the latter.

Owing to the cost of magnesium, powdered aluminum has been used to some extent as a substitute. Aluminum does not have the illuminating value of magnesium and it is more difficult to ignite, but it is a good substitute in case of necessity. An English mixture containing these elements is,

Barium nitrate 58 per cent. Magnesium 29 per cent. Aluminum 13 per cent.

Mixtures which are slow to ignite must be supplemented by a primary mixture which is readily ignited. For obtaining colored lights it is only necessary to add chemicals which will give the desired color. The mixtures can be proportioned by means of purely theoretical considerations; that is, just enough oxygen can be present to burn the fuel completely. However, usually more oxygen is supplied than called for by theory.

The illuminating shell is perhaps the most useful of these devices to the soldier. It has been constructed with and without parachutes, the former providing an intense light for a brief period because it falls rapidly. These shells of the larger calibers are equipped with time-fuses and are generally rather elaborate in construction. The shell is of steel, and has a time-fuse at the tip. This fuse ignites a charge of black powder in the nose of the shell and this explosion ejects the star-shell out of the rear of the steel casing. At the same time the black powder ignites the priming mixture next to it, which in turn ignites the slow-burning illuminating compound. The star-shell has a large parachute of strong material folded in the rear of the casing and the cardboard tube containing the illuminating mixture is attached to it. The time of burning varies, but is ordinarily less than a minute. Certain structural details must be such as to endure the stresses of a high muzzle velocity. Furthermore, a velocity of perhaps 1000 feet per second still obtains when the star-shell with its parachute is ejected at the desired point in the air.

The non-parachute illuminating shell is designed to give an intense light for a brief interval and is especially applicable to defense against air raids. Such a light aims to reveal the aircraft in order that the gunners may fire at it effectively. These shells are fitted with time-fuses which fire the charge of black powder at the desired interval after the discharge of the shell from the gun. The contents of the shell are thereby ejected and ignited. The container for the illuminating material is so designed that there is rapid combustion and consequently a brilliant light for about ten seconds. The enemy airman in this short time is unable to obtain any valuable knowledge pertaining to the earth below and furthermore he is likely to be temporarily blinded by the brilliant light if it is near him.

The rifle-light which resembles an ordinary rocket, is fired from a rifle and is designed for short-range use. It consists of a steel cylindrical shell a few inches long fastened to a steel rod. A parachute is attached to the cardboard container in which the illuminating mixture is packed and the whole is stowed away in the steel shell. Shore delay-fuses are used for starting the usual cycle of events after the rifle-light has been fired from the gun. The steel rod is injected into the barrel of a rifle and a blank cartridge is used for ejecting this rocket-like apparatus. Owing to inertia the firing-pin in the shell operates and the short delay-fuse is thus fired automatically an instant after the trigger of the rifle is pulled.

Illuminating "bombs" of the same general principles are used by airmen in search of a landing for himself or for a destructive bomb; in signaling to a gunner, and in many other ways. They are simple in construction because they need not withstand the stresses of being fired from a gun; they are merely dropped from the aircraft. The mechanism of ignition and the cycle of events which follow are similar to those of other illuminating shells.

The value of such artificial-lighting devices depends both upon luminous intensity and time of burning. Although long-burning is not generally required in warfare, it is obvious that more than a momentary light is usually needed. In general, high candle-power and long-burning are opposed to each other, so that the most intense lights of this character usually are of short duration. Typical performances of two flares of the same composition are as follows:

Flare No. 1 Flare No. 2 Average candle-power 270,000 95,000 Seconds of burning 10 35 Candle-seconds 2,700,000 3,325,000 Cubic inches of compound 6 7 Candle-seconds per cubic inch 450,000 475,000 Candle-hours per cubic inch 125 132

The illuminating compound was the same in these two flares, which differed only in the time allowed for burning. Of course, the measurements of the luminous intensity of such flares is difficult because of the fluctuations, but within the errors of the measurements it is seen that the illuminating power of the compound is about the same regardless of the time of burning. The light-source in the case of burning powders is really a flame, and inasmuch as the burning end hangs downward, more light is emitted in the lower hemisphere than in the upper. The candle-power of the largest flares equals the combined luminous intensities of 200 street arc-lamps or of 10,000 ordinary 40-watt tungsten lamps such as are used in residence lighting.

It is interesting to note the candle-hours obtained per cubic inch of compound and to find that the cost of this light is less than that of candles at the present time and only five or ten times greater than that of modern electric lighting.

Illuminating shells in use during the recent war were designed for muzzle velocities as high as 2700 feet per second and were gaged to ignite at any distance from a quarter of a mile to several miles. The maximum range of illuminating shells fired from rifles was about 200 yards; for trench mortars about one mile; and from field and naval guns about four miles.

The search-light has long been a valuable aid in warfare and during the recent conflict considerable attention was given to its development and application. It is used chiefly for detecting and illuminating distant targets, but this covers a wide range of conditions and requirements. In order that a search-light may be effective at a great distance, as much as possible of the light emitted by a source is directed into a beam of light of as nearly parallel rays as can be obtained. Reflectors are usually employed in military search-lights, and in order that the beam may be as nearly parallel (minimum divergence) as possible, the light must be emitted by the smallest source compatible with high intensity. This source is placed at the proper point in respect to a large parabolic reflecter which renders the rays parallel or nearly so.

Ever since its advent the electric arc has been employed in large search-lights, with which the army and the navy were supplied; however, the greatest improvements have been made under the stress of war. The science of aeronautics advanced so rapidly during the recent war that the necessity for powerful search-lights was greatly augmented and as the conflict progressed the enemy airmen came to look upon the newly developed ones with considerable concern. The rapidly moving aircraft and its high altitude brought new factors into the design of these lights. It now became necessary to have the most intense beam and to be able to sweep the heavens with it by means of delicate controlling apparatus, for the targets were sometimes minute specks moving at high speed at altitudes as high as five miles. Furthermore, owing to the shifting battle areas, mobile apparatus was necessary.

The control of light by means of reflectors has been studied for centuries, but until the advent of the electric arc the light-sources were of such large areas that effective control was impossible. Optical devices generally are considered in connection with "point sources," but inasmuch as no light can be obtained from a point, a source of small dimensions and of high brightness is the most effective compromise. Parabolic mirrors were in use in the eighteenth century and their properties were known long before the first search-light worthy of the name was made in 1825 by Drummond, who used as a source of light a piece of lime heated to incandescence in a blast flame. He finally developed the "lime-light" by directing an oxyhydrogen flame upon a piece of lime and this device was adapted to search-lights and to indoor projection. It is said that the first search-light to be used in warfare was a Drummond lime-light which played a part in the attack on Fort Wagner at Charleston in 1863.

In 1848 the first electric arc lamp used for general lighting was installed in Paris. It was supplied with current by a large voltaic cell, but the success of the electric arc was obliged to await the development of a more satisfactory source of electricity. A score of years was destined to elapse, after the public was amazed by the first demonstration, before a suitable electric dynamo was invented. With the advent of the dynamo, the electric arc was rapidly developed and thus there became available a concentrated light-source of high intensity and great brilliancy. Gradually the size was increased, until at the present time mirrors as large as seven feet in diameter and electric currents as great as several hundred amperes are employed. The beam intensities of the most powerful search-lights are now as great as several hundred million candles.

The most notable advance in the design of arc search-lights was achieved in recent years by Beck, who developed an intensive flame carbon-arc. His chief object was to send a much greater current through the arc than had been done previously without increasing the size of the carbons and the unsteadiness of the arc. In the ordinary arc excessive current causes the carbons to disintegrate rapidly unless they are of large diameter. Beck directed a stream of alcohol vapor at the arc and they were kept from oxidizing. He thus achieved a high current-density and much greater beam intensities. He also used cored carbons containing certain metallic salts which added to the luminous intensity, and by rotation of the positive carbon so that the crater was kept in a constant position, greater steadiness and uniformity were obtained. Tests show that, in addition to its higher luminous efficiency, an arc of this character directs a greater percentage of the light into the effective angle of the mirror. The small source results in a beam of small divergence; in other words, the beam differs from a cylinder by only one or two degrees. If the beam consisted entirely of parallel rays and if there were no loss of light in the atmosphere by scattering or by absorption, the beam intensity would be the same throughout its entire length. However, both divergence and atmospheric losses tend to reduce the intensity of the beam as the distance from the search-light increases.

Inasmuch as the intensity of the beam depends upon the actual brightness of the light-source, the brightness of a few modern light-sources are of interest. These are expressed in candles per square inch of projected area; that is, if a small hole in a sheet of metal is placed next to the light-source and the intensity of the light passing through this hole is measured, the brightness of the hole is easily determined in candles per square inch.

BRIGHTNESS OF LIGHT-SOURCES IN CANDLES PER SQUARE INCH

Kerosene flame 5 to 10 Acetylene 30 to 60 Gas-mantle 30 to 500 Tungsten filament (vacuum) lamp 750 to 1,200 Tungsten filament (gas-filled) lamp 3,500 to 18,000 Magnetite arc 4,000 to 6,000 Carbon arc for search-lights 80,000 to 90,000 Flame arc for search-lights 250,000 to 350,000 Sun (computed mean) about 1,000,000

As the reflector of a search-light is an exceedingly important factor in obtaining high beam-intensities, considerable attention has been given to it since the practicable electric arc appeared. The parabolic mirror has the property of rendering parallel, or nearly so, the rays from a light-source placed at its focus. If the mirror subtends a large angle at the light-source, a greater amount of light is intercepted and rendered parallel than in the case of smaller subtended angles; hence, mirrors are large and of as short focus as practicable. Search-light projectors direct from 30 to 60 per cent. of the available light into the beam, but with lens systems the effective angle is so small that a much smaller percentage is delivered in the beam. Mangin in 1874 made a reflector of glass in which both outer and inner surfaces were spherical but of different radii of curvature, so that the reflector was thicker in the middle. This device was "silvered" on the outside and the refraction in the glass, as the light passed through it to the mirror and back again, corrected the spherical aberration of the mirrored surface. These have been extensively used. Many combinations of curved surfaces have been developed for special projection purposes, but the parabolic mirror is still in favor for powerful search-lights. The tip of the positive carbon is placed at its focus and the effective angle in which light is intercepted by the mirror is generally about 125 degrees. Within this angle is included a large portion of the light emitted by the light-source in the case of direct-current arcs. If this angle is increased for a mirror of a given diameter by decreasing its focal length, the divergence of the beam is increased and the beam-intensity is diminished. This is due to the fact that the light-source now becomes apparently larger; that is, being of a given size it now subtends a larger angle at the reflector and departs more from the theoretical point.

When the recent war began the search-lights available were intended generally for fixed installations. These were "barrel" lights with reflectors several feet in diameter, the whole output sometimes weighing as much as several tons. Shortly after the entrance of this country into the war, a mobile "barrel" search-light five feet in diameter was produced, which, complete with carriage, weighed only 1800 pounds. Later there were further improvements. An example of the impetus which the stress of war gives to technical accomplishments is found in the development of a particular mobile searchlight. Two months after the War Department submitted the problems of design to certain large industrial establishments a new 60-inch search-light was placed in production. It weighed one fifth as much as the previous standard; it had one twentieth the bulk; it was much simpler; it could be built in one fourth the time; and it cost half as much. Remote control of the apparatus has been highly developed in order that the operator may be at a distance from the scattered light near the unit. If he is near the search-light, this veil of diffused light very seriously interferes with his vision.

Mobile power-units were necessary and the types developed used the automobile engine as the prime mover. In one the generator is located in front of the engine and supported beyond the automobile chassis. In another type the generator is located between the automobile transmission and the differential. A standard clutch and gear-shift lever is employed to connect the engine either with the generator or with the propeller shaft of the truck. The first type included a 115-volt, 15-kilowatt generator, a 36-inch wheel barrel search-light, and 500 feet of wire cable. The second type included a 105-volt, 20-kilowatt generator, a 60-inch open searchlight, and 600 feet of cable. This type has been extended in magnitude to include a 50-kilowatt generator. When these units are moved, the search-light and its carriage are loaded upon the rear of the mobile generating equipment. An idea of the intensities obtainable with the largest apparatus is gained from illumination produced at a given distance. For example, the 15-kilowatt search-light with highly concentrated beam, produced an illumination at 930 feet of 280 foot-candles. At this point this is the equivalent of the illumination produced by a source having a luminous intensity of nearly 250,000,000 candles.

Of course, the range at which search-lights are effective is the factor of most importance, but this depends upon a number of conditions such as the illumination produced by the beam at various distances, the atmospheric conditions, the position of the observer, the size, pattern, color, and reflection-factor of the object, and the color, pattern, and reflection-factor of the background. These are too involved to be discussed here, but it may be stated that under ordinary conditions these powerful lights are effective at distances of several miles. According to recent work, it appears that the range of a search-light in revealing a given object under fixed conditions varies about as the fourth root of its intensity.

Although the metallic parabolic reflector is used in the most powerful search-lights, there have been many other developments adapted to warfare. Fresnel lenses have been used above the arc for search-lights whose beams are directed upward in search of aircraft, thus replacing the mirror below the arc, which, owing to its position, is always in danger of deterioration by the hot carbon particles dropping upon it. For short ranges incandescent filament lamps have been used with success. Oxyacetylene equipment has found application, owing to its portability. The oxyacetylene flame is concentrated upon a small pellet of ceria, which provides a brilliant source of small dimensions. A tank containing about 1000 liters of dissolved acetylene and another containing about 1100 liters of oxygen supply the fuel. A beam having an intensity of about 1,500,000 candles is obtained with a consumption of 40 liters of each of the gases per hour. At this rate the search-light may be operated twenty hours without replenishing.

Although the beacon-light for nocturnal airmen is a development which will assume much importance in peaceful activities, it was developed chiefly to meet the requirements of warfare. These do not differ materially from those which guide the mariner, except that the traveler in the aerial ocean is far above the plane on which the beacon rests. For this reason the lenses are designed to send light generally upward. In foreign countries several types of beacons for aerial navigation have been in use. In one the light from the source is freely emitted in all upward directions, but the light normally emitted into the lower hemisphere is turned upward by means of prisms. In a more elaborate type, belts of lenses are arranged so as to send light in all directions above the horizontal plane. A flashing apparatus is used to designate the locality by the number or character of the flashes. Electric filaments and acetylene flames have been used as the light-sources for this purpose. In another type the light is concentrated in one azimuth and the whole beacon is revolved. Portable beacons employing gas were used during the war on some of the flying-fields near the battle front.

All kinds of lighting and lighting-devices were used depending upon the needs and material available. Even self-luminous paint was used for various purposes at the front, as well as for illuminating watch-dials and the scales of instruments. Wooden buttons two or three inches in diameter covered with self-luminous paint could be fixed wherever desired and thus serve as landmarks. They are visible only at short distances and the feebleness of their light made them particularly valuable for various purposes at the battle front. They could be used in the hand for giving optical signals at a short distance where silence was essential. Self-luminous arrows and signs directed troops and trucks at night and even stretcher-bearers have borne self-luminous marks on their backs in order to identify them to their friends.

Somewhat analogous to this application of luminous paint is the use of blue light at night on battle-ships and other vessels in action or near the enemy. Several years ago a Brazilian battle-ship built in this country was equipped with a dual lighting-system. The extra one used deep-blue light, which is very effective for eyes adapted to darkness or to very low intensities of illumination and is a short-range light. Owing to the low luminous intensity of the blue lights they do not carry far; and furthermore, it is well established that blue light does not penetrate as far through ordinary atmosphere as lights of other colors of the same intensity.

The war has been responsible for great strides in certain directions in the development and use of artificial light and the era of peace will inherit these developments and will adapt them to more constructive purposes.



XV

SIGNALING

From earliest times the beacon-fire has sent forth messages from hilltops or across inaccessible places. In this country, when the Indian was monarch of the vast areas of forest and prairie, he spread news broadcast to roving tribesmen by means of the signal-fire, and he flashed his code by covering and uncovering it. Castaways, whether in fiction or in reality, instinctively turn to the beacon-fire as a mode of attracting a passing ship. On every hand throughout the ages this simple means of communication has been employed; therefore, it is not surprising that mankind has applied his ingenuity to the perfection of signaling by means of light, which has its own peculiar fields and advantages. Of course, wireless telephony and telegraphy will replace light-signaling to some extent, but there are many fields in which the last-named is still supreme. In fact, during the recent war much use was made of light in this manner and devices were developed despite the many other available means of signaling. One of the chief advantages of light as a signal is that it is so easily controlled and directed in a straight line. Wireless waves, for example, are radiated broadcast to be intercepted by the enemy.

The beginning of light-signaling is hidden in the obscurity of the past. Of course, the most primitive light-signals were wood fires, but it is likely that man early utilized the mirror to reflect the sun's image and thus laid the foundation of the modern heliograph. The Book of Job, which is probably one of the oldest writings available, mentions molten mirrors. The Egyptians in the time of Moses used mirrors of polished brass. Euclid in the third century before the Christian era is said to have written a treatise in which he discussed the reflection of light by concave mirrors. John Peckham, Archbishop of Canterbury in the thirteenth century, described mirrors of polished steel and of glass backed with lead. Mirrors of glass coated with an alloy of tin and mercury were made by the Venetians in the sixteenth century. Huygens in the seventeenth century studied the laws of refraction and reflection and devised optical apparatus for various purposes. However, it was not until the eighteenth century that any noteworthy attempts were made to control artificial light for practical purposes. Dollond in 1757 was the first to make achromatic lenses by using combinations of different glasses. Lavoisier in 1774 made a lens about four feet in diameter by constructing a cell of two concave glasses and filling it with water and other liquids. It is said that he ignited wood and melted metals by concentrating the sun's image upon them by means of this lens. About that time Buffon made a built-up parabolic mirror by means of several hundred small plane mirrors set at the proper angles. With this he set fire to wood at a distance of more than two hundred feet by concentrating the sun's rays. He is said also to have made a lens from a solid piece of glass by grinding it in concentric steps similar to the designs worked out by Fresnel seventy years later. These are examples of the early work which laid the foundation for the highly perfected control of light of the present time.

While engaged in the survey of Ireland, Thomas Drummond in 1826 devised apparatus for signaling many miles, thus facilitating triangulation. Distances as great as eighty miles were encountered and it appeared desirable to have some method for seeing a point at these great distances. Gauss in 1822 used the reflection of the sun's image from a plane mirror and Drummond also tried this means. The latter was successful in signaling 45 miles to a station which because of haze could not be seen, or even the hill upon which it rested. Having demonstrated the feasibility of the plan, he set about making a device which would include a powerful artificial light in order to be independent of the sun. In earlier geodetic surveys Argand lamps had been employed with parabolic reflectors and with convex lenses, but apparently these did not have a sufficient range. Fresnel and Arago constructed a lens consisting of a series of concentric rings which were cemented together, and on placing this before an Argand lamp possessing four concentric wicks, they obtained a light which was observed at forty-eight miles.

Despite these successes, Drummond believed the parabolic mirror and a more powerful light-source afforded the best combination for a signal-light. In searching for a brilliant light-source he experimented with phosphorus burning in oxygen and with various brilliant pyrotechnical preparations. However, flames were unsteady and generally unsuitable. He then turned in the direction which led to his development of the lime-light. In his first apparatus he used a small sphere of lime in an alcohol flame and directed a jet of oxygen through the flame upon the lime. He thereby obtained, according to his own description in 1826,

a light so intense that when placed in the focus of a reflector the eye could with difficulty support its splendor, even at a distance of forty feet, the contour being lost in the brilliancy of the radiation.

He then continued to experiment with various oxides, including zirconia, magnesia, and lime from chalk and marble. This was the advent of the lime-light, which should bear Drummond's name because it was one of the greatest steps in the evolution of artificial light.

By means of this apparatus in the survey, signals were rendered visible at distances as great as one hundred miles. Drummond proposed the use of this light-source in the important lighthouses at that time and foresaw many other applications. The lime-light eventually was extensively used as a light-signaling device. The heliograph, which utilizes the sun as a light-source, has been widely used as a light-signaling apparatus and Drummond perhaps was the first to utilize artificial light with it. The disadvantage of the heliograph is the undependability of the sun. With the adoption of artificial light, various optical devices have come into use.

Philip Colomb perhaps is deserving of the credit of initiating modern signaling by flashing a code. He began work on such a system in 1858 and as an officer in the British Navy worked hard to introduce it. Finally, in 1867, the British Navy adopted the flashing-system, in which a light-source is exposed and eclipsed in such a manner as to represent dots and dashes analogous to the Morse code. At first the rate of transmission of words was from seven to ten per minute. Recently much more sensitive apparatus is available, and with such devices the rate is limited only by the sluggishness of the visual process. This initial system was very successful in the British Navy and it was soon found that a fleet could be handled with ease and safety in darkness or in fog. Inasmuch as the "dot-and-dash" system requires only two elements, it may be transmitted by various means. A lantern may be swung in short and long arcs or dipped accordingly.

The blinker or pulsating light-signal consists of a single light-source mechanically occulted. It is controlled by means of a telegraph-key and the code may be rapidly transmitted. The search-light affords a means for signaling great distances, even in the daytime. The light is usually mechanically occulted by a quick-acting shutter, but recently another system has been devised. In the latter the light itself is controlled by means of an electrical shunt across the arc. In this manner the light is dimmed by shunting most of the current, thereby producing the same effect as actually eclipsing the light with a mechanical shutter. By means of the search-light signals are usually visible as far as the limitations of the earth's curvature will permit. By directing the beam against a cloud, signals have been observed at a distance of one hundred miles from the search-light despite intervening elevated land or the curvature of the ocean's surface. By means of small search-lights it is easy to send signals ten miles.

This kind of apparatus has the advantage of being selective; that is, the signals are not visible to persons a few degrees from the direction of the beam. One of the most recent developments has been a special tungsten filament in a gas-filled bulb placed at the focus of a small parabolic mirror. The beam is directed by means of sights and the flashes are obtained by interrupting the current by means of a trigger-switch. The filament is so sensitive that signals may be sent faster than the physiological process of vision will record. With the advent of wireless telegraphy light-signaling for long distances was temporarily eclipsed, but during the recent war it was revived and much development work was prosecuted.

The Ardois system consists of four lamps mounted in a vertical line as high as possible. Each lamp is double, containing a red and a white light, and these lights are controlled from a keyboard. A red light indicates a dot in the Morse code and a white light indicates a dash. The keys are numbered and lettered, so that the system may be operated by any one. Various other systems employing colored lights have been used, but they are necessarily short-range signals. Another example is the semaphore. When used at night, tungsten lamps in reflectors indicate the positions of the arms. The advantage of these signals over the flashing-system is that each signal is complete and easy to follow. The flashing-system is progressive and must be carefully followed in order to obtain the meaning of the dots and dashes.

Smaller signal-lamps using acetylene have been employed in the forestry service and in other activities where a portable device is necessary. In one type, a mixture-tank containing calcium carbide and water is of sufficient capacity for three hours of signaling. A small pilot-light is permitted to burn constantly and the flashes are obtained by operating a key which increases the gas-pressure. The light flares as long as the key is depressed. The range of this apparatus is from ten to twenty miles. An electric lamp supplied from a storage battery has been designed for geodetic operations in mountainous districts where it is desired to send signals as far as one hundred miles. Tests show that this device is a hundred and fifty times more powerful than the ordinary acetylene signal-lamp, and it is thought that with this new electric lamp haze and smoke will seldom prevent observations.

Certain fixed lights are required by law on a vessel at night. When it is under way there must be a white light at the masthead, a starboard green light, a port red light, a white range-light, and a white light at the stern. The masthead light is designed to emit light through a horizontal arc of twenty points of the compass, ten on each side of dead ahead. This light must be visible at a distance of five miles. The port and starboard lights operate through a horizontal arc of twenty points of the compass, the middle of which is dead ahead. They are screened so as not to be visible across the bow and they must be intense enough to be visible two miles ahead. The masthead light is carried on the foremast and the range-light on the mainmast, at an elevation fifteen feet higher than the former. The range-light emits light toward all points of the compass and must be intense enough to be seen at a distance of three miles. The stern light is similar to the masthead, but its light must not be visible forward of the beam. When a vessel is towing another it must display two or three lights in a vertical line with the masthead light and similar to it. The lights are spaced about six feet apart, and two extra ones indicate a short tow and three a long one. A vessel over a hundred and fifty feet long when at anchor is required to display a white light forward and aft, each visible around the entire horizon. These and many other specifications indicate how artificial light informs the mariner and makes for order in shipping. Without artificial light the waterways would be trackless and chaos would reign.

The distress signals of a vessel are rockets, but any burning flame also serves if rockets are unavailable. Fireworks were known many centuries ago and doubtless the possibilities of signaling by means of rockets have long been recognized. An early instance of scientific interest in rockets and their usefulness is that of Benjamin Robins in 1749. While he was witnessing a display of fireworks in London it occurred to him that it would be of interest to measure the height to which the rockets ascended and to determine the ranges at which they were visible. His measurements indicated that the rockets ascended usually to a height of 440 yards, but some of them attained altitudes as high as 615 yards. He then had some special ones made and despatched letters to friends in three different localities, at distances as great as 50 miles, asking them to observe at a certain time, when the rockets were to be sent up in the outskirts of London. Some of these rockets rose to altitudes as great as 600 yards and were distinctly seen by observers 38 miles away. Later he made rockets which ascended as high as 1200 yards and concluded that this was a practical means of signaling. Since that time and especially during the recent war, rockets have served well in signaling messages.

The self-propelled rockets have not been altered in essential features since the remote centuries when the Chinese first used them in celebrations. A cylindrical shell is mounted on a wooden stick and when the powder in the shell burns the hot gases are ejected so violently downward that the reaction drives the shell upward. At a certain point in the air, various signals burst forth, which vary in character and color. One of the advantages of the rocket is that it contains within itself the force of propulsion; that is, no gun is necessary to project it. The illuminating compounds and various details are similar to those of the illuminating shells described in another chapter.

At present the rocket is not scientifically designed to obtain the greatest efficiency of propulsion, but its simplicity in this respect is one of its chief advantages. If the self-propelled rocket becomes the projectile of the future, as some have ventured to predict, much consideration must be given to the design of the orifice through which the gases violently escape in order that the best efficiency of propulsion may be attained. There are other details in which improvements may be made. The combustion products of the black powder which are not gaseous equal about one third the weight of the powder. This represents inefficient propulsion. Furthermore, during recent years much information has been gained pertaining to the air-resistance which can be applied to advantage in designing the form of rockets.

Besides the various rockets, signal-lights have been constructed to be fired from guns and pistols. During the recent war the airman in the dark heights used the pistol signal-light effectively for communication. These devices emitted stars either singly or in succession, and the color of these stars as well as their number and sequence gave significance to the signal. Some of these light-signals were provided with parachutes and were long-burning; that is, light was emitted for a minute or two. There are many variations possible and a great many different kinds of light-signals of this character were used. In the front-line trenches and in advances they were used when telephone service was unavailable. The airman directed artillery fire by means of his pistol-light. Rockets brought aid to the foundered ship or to the life-boats. The signal-tube which burned red, green, or white was held in the hand or laid on the ground and it often told its story. For many years such a device dropped from the rear of the railroad train has kept the following train at a safe distance. A device was tried out in the trenches, during the war, which emitted a flame. This could be varied in color to serve as a signal and the apparatus had sufficient capacity for thirty hours' burning. This could also be used as a weapon, or when reduced in intensity it served as a flash-light.

For many years experiments have been made upon the use of the invisible rays which accompany visible rays. The practicability of signaling with invisible rays depends upon producing them efficiently in sufficient quantity and upon separating them from the visible rays which accompany them. Some successful results were obtained with a 6-volt electric lamp possessing a coiled filament at the focus of a lens three inches in diameter and twelve inches in focal length. This gave a very narrow beam visible only in the neighborhood of the observation post to which the signals were directed. The beam was directed by telescopic sights. During the day a deep red filter was placed over the lamp and the light was invisible to an observer unless he was equipped with a similar red screen to eliminate the daylight. It is said that signals were distinguished at a distance of six miles. By night a screen was used which transmitted only the ultraviolet rays, and the observer's telescope was provided with a fluorescent screen in its focal plane. The ultraviolet rays falling upon this screen were transformed into visible rays by the phenomenon of fluorescence. The range of this device was about six miles. For naval convoys lamps are required to radiate toward all points of the compass. For this purpose a quartz mercury-arc which is rich in ultraviolet rays was surrounded with a chimney which transmitted the ultraviolet rays efficiently and absorbed all visible rays excepting violet light. The lamp appeared a deep violet color at close range, but the faintly visible light which it transmitted was not seen at a distance. A distant observer picks up the invisible ultraviolet "light" by means of a special optical device having a fluorescent screen of barium-platino-cyanide. This device had a range of about four miles.

Light-signals are essential for the operation of railways at night and they have been in use for many years. In this field the significance of light-signals is based almost universally on color. The setting of a switch is indicated by the color of the light that it shows. With the introduction of the semaphore system, in which during the day the position of the arm is significant, colored glasses were placed on the opposite end of the arm in such a manner that a certain colored glass would appear before the light-source for a certain position of the arm. A kerosene flame behind a glass lens was the lamp used, and, for example, red meant "Stop," green counseled "Caution," and clear or white indicated "All clear." For many years the kerosene lamp has been used, but recently the electric filament lamp is being installed to some extent for this purpose. In fact, on one railroad at least, tungsten lamps are used for light-signals by day as well as by night. Three signals—red, green, and white—are placed in a vertical line and behind each lens are two lamps, one operating at high efficiency and one at low efficiency to insure against the failure of the signal. The normal daylight range is about three thousand feet and under the worst conditions when opposed to direct sunlight, the range is not less than two thousand feet. It is said that these lights are seen more easily than semaphore arms under all circumstances and that they show two or three times as far as the latter during a snow-storm.

The standard colors for light-signals as adopted by the Railway Signal Association are red, yellow, green, blue, purple, and lunar white. These are specified as to the amount of the various spectral colors which they transmit when the light-source is the kerosene flame. Obviously, the colors generally appear different when another illuminant is used. The blue and purple are short-range signals, but the effective range of the best railway signal employing a kerosene flame is only about four miles.

It has been shown that the visibility of point sources of white light in clear atmosphere, for distances up to a mile at least, is proportional to their candle-power and inversely proportional to the square of the distance. Apparently the luminous intensities of signal-lamps required in clear weather in order that they may be visible must be 0.43 candles for one nautical mile, 1.75 candles for two nautical miles, and 11 candles for five nautical miles. From the data available it appears that a red or a white signal-light will be easily visible at a distance in nautical miles equal to the square root of its candle-power in that direction. The range in nautical miles of a green light apparently is proportional to the cube root of the candle-power. Whether or not these relations between the range in miles and the luminous intensity in candles hold for greater distances than those ordinarily encountered has not been determined, but it is interesting to note that the square root of the luminous intensity of the Navesink Light at the entrance to New York Harbor is about 7000. Could this light be seen at a distance of seven thousand miles through ordinary atmosphere?

The most distinctive colored lights are red, yellow, green, and blue. To these white (clear) and purple have been added for signaling-purposes. Yellow is intense, but it may be confused with "white" or clear. Blue and purple as obtained from the present practicable light-sources are of low intensity. This leaves red, green, and clear as the most generally satisfactory signal-lights.

There are numerous other applications, especially indoors. Some of these have been devised for special needs, but there are many others which are general, such as for elevators, telephones, various call systems, and traffic signals. Light has the advantages of being silent and controllable as to position and direction, and of being a visible signal at night. Thus, in another field artificial light has responded to the demands of civilization.



XVI

THE COST OF LIGHT

Artificial light is so superior to natural light in many respects that mankind has acquired the habit of retiring many hours after darkness has fallen, a result of which has brought forth the issue known as "daylight saving." Doubtless, daylight should be used whenever possible, but there are two sides to the question. In the first place, it costs something to bring daylight indoors. The architectural construction of windows and skylights increases the cost of daylight. Light-courts, by sacrificing valuable floor-area, add to the expense. The maintenance of windows and sky lights is an appreciable item. Considering these and other factors, it can be seen that daylight indoors is expensive; and as it is also undependable, a supplementary system of artificial lighting is generally necessary. In fact, it is easy to show in some cases that artificial lighting is cheaper than natural lighting.

The average middle-class home is now lighted artificially for about $15.00 to $25.00 per year, with convenient light-sources which are available at all times. There is no item in the household budget which returns as much satisfaction, comfort, and happiness in proportion to its cost as artificial light. It is an artistic medium of great potentiality, and light in a narrow utilitarian sense is always a by-product of artistic lighting. The insignificant cost of modern lighting may be emphasized in many ways. The interest on the investment in a picture or a vase which cost $25.00 will usually cover the cost of operating any decorative lamp in the home. A great proportion of the investment in personal property in a home is chargeable to an attempt to beautify the surroundings. The interest on only a small portion of this investment will pay for artistic and utilitarian artificial lighting in the home. The cost of washing the windows of the average house may be as great as the cost of artificial lighting and is usually at least a large fraction of the latter. It would become monotonous to cite the various examples of the insignificant cost of artificial light and its high return to the user. The example of the home has been chosen because the reader may easily carry the analysis further. The industries where costs are analyzed are now looking upon adequate and proper lighting as an asset which brings in profits by increasing production, by decreasing spoilage, and by decreasing the liability of accidents.

Inasmuch as daylight saving became an issue during the recent war and is likely to remain a matter of concern, its history is interesting. One of the outstanding differences between primitive and civilized beings is their hours of activities. The former automatically adjusted themselves to daylight, but as civilization advanced, the span of activities began to extend more and more beyond the coming of darkness. Finally in many activities the work-day was extended to twenty-four hours. There can be no insurmountable objection to working at night with a proper arrangement of the periods of work; in fact, the cost of living would be greatly increased if the overhead charges represented by such items as machinery and buildings were allowed to be carried by the decreased products of a shortened period of production. There cannot be any basic objection to artificial lighting, because most factories, for example, may be better illuminated by artificial than by natural light.

Of course, the lag of comfortable temperature behind daylight is responsible to some extent for a natural shifting of the ordinary working-day somewhat behind the sun. The chill of dawn tends to keep mankind in bed and the cheer of artificial light and the period of recreation in the evening tends to keep the civilized races out of bed. There are powerful influences always at work and despite the desirable features of daylight-saving, mankind will always tend to lag. As years go by, doubtless it will be necessary to make the shift again and again. It seems certain that throughout the centuries thoughtful persons have seen the difficulty of rousing man from his warm bed in the early morning and have recognized a simple solution in turning the hands of the clock ahead. Among the earliest advocates of daylight saving during modern times, when it became important enough to be considered as an economic issue, was Benjamin Franklin. In 1784 he wrote a masterful serio-comic essay entitled "An Economical Project" which was published in the Journal of Paris. The article, which appeared in the form of a letter, began thus:

MESSIEURS: You often entertain us with accounts of new discoveries. Permit me to communicate to the public through your paper one that has lately been made by myself and which I conceive may be of great utility.

I was the other evening in a grand company where the new lamp of Messrs. Quinquet and Lange was introduced and much admired for its splendor; but a general inquiry was made whether the oil it consumed was not in exact proportion to the light it afforded, in which case there would be no saving in the use of it. No one present could satisfy us on that point, which all agreed ought to be known, it being a very desirable thing to lessen, if possible, the expense of lighting our apartments, when every other article of family expense was so much augmented. I was pleased to see this general concern for economy, for I love economy exceedingly.

I went home, and to bed, three or four hours after midnight, with my head full of the subject. An accidental sudden noise waked me about 6 in the morning, when I was surprised to find my room filled with light, and I imagined at first that a number of those lamps had been brought into it; but, rubbing my eyes, I perceived the light came in at the windows. I got up and looked out to see what might be the occasion of it, when I saw the sun just rising above the horizon, from whence he poured his rays plentifully into my chamber, my domestic having negligently omitted the preceding evening to close the shutters.

I looked at my watch, which goes very well, and found that it was but 6 o'clock; and, still thinking it something extraordinary that the sun should rise so early, I looked into the almanac, where I found it to be the hour given for his rising on that day. I looked forward, too, and found he was to rise still earlier every day till toward the end of June, and that at no time in the year he retarded his rising so long as till 8 o'clock.

Your readers who, with me, have never seen any signs of sunshine before noon, and seldom regard the astronomical part of the almanac, will be as much astonished as I was when they hear of his rising so early, and especially when I assure them that he gives light as soon as he rises. I am convinced of this. I am certain of my fact. One cannot be more certain of any fact. I saw it with my own eyes. And, having repeated this observation the three following mornings, I found always precisely the same result.

He then continues in the same vein to show that learned persons did not believe him and to point out the difficulties which the pioneer encounters. He brought out the vital point by showing that if he had not been awakened so early he would have slept six hours longer by the light of the sun and in exchange he would have lived six hours the following night by candle-light. He then mustered "the little arithmetic" he was master of and made some serious computations. He assumed as the basis of his computations that a hundred thousand families lived in Paris and each used a half-pound of candles nightly. He showed that between March 20th and September 20th, 64,000,000 pounds of wax and tallow could be saved, which was equivalent to $18,000,000.

After these serious computations he amusingly proposed the means for enforcing the daylight saving. Obviously, it was necessary to arouse the sluggards and his proposals included the use of cannons and bells. Besides, he proposed that each family be restricted to one pound of candles per week, that coaches would not be allowed to pass after sunset except those of physicians, etc., and that a tax be placed upon every window which had shutters. His closing paragraph was as follows:

For the great benefit of this discovery, thus freely communicated and bestowed by me on the public, I demand neither place, pension, exclusive privilege, nor any other regard whatever. I expect only to have the honor of it. And yet I know there are little, envious minds who will, as usual, deny me this and say that my invention was known to the ancients, and perhaps they may bring passages out of the old books in proof of it. I will not dispute with these people that the ancients knew not the sun would rise at certain hours; they possibly had, as we have, almanacs that predicted it; but it does not follow thence that they knew he gave light as soon as he rose. That is what I claim as my discovery. If the ancients knew it, it might have been long since forgotten; for it certainly was unknown to the moderns, at least to the Parisians, which to prove I need use but one plain simple argument. They are as well instructed, judicious and prudent a people as exist anywhere in the world, all professing, like myself, to be lovers of economy, and, for the many heavy taxes required from them by the necessities of the State have surely an abundant reason to be economical. I say it is impossible that so sensible a people, under such circumstances, should have lived so long by the smoky, unwholesome and enormously expensive light of candles, if they had really known that they might have had as much pure light of the sun for nothing.

Franklin's amusing letter had a serious aim, for in 1784 family expenses were much augmented and adequate lighting by means of candles was very costly in those days. However, conditions have changed enormously in the past hundred and thirty-five years. A great proportion of the population lives in the darker cities. The wheels of progress must be kept going continuously in order to curb the cost of living, which is constantly mounting higher owing to the addition of conveniences and luxuries. Furthermore, the cost of light has so diminished that it is not only a minor factor at present but in many cases is actually paying dividends in commerce and industry. It is paying dividends of another kind in the social and educational aspects of the home, library, church, and art museum. Daylight saving has much to commend it, but the cost of daylight and the value of artificial light are important considerations.

The cost of fuels for lighting purposes cannot be thoroughly compared throughout a span of years without regard to the fluctuating purchasing power of money, which would be too involved for consideration here. However, it is interesting to make a brief survey throughout the past century. From 1800 until 1845 whale-oil sold for about $.80 per gallon, but after this period it increased in value, owing apparently to its growing scarcity, until it reached a price of $1.75 per gallon in 1855. Fortunately, petroleum was discovered about this time, so that the oil-lamp did not become a luxury. From 1800 to 1850 tallow-candles sold at approximately 20 cents a pound. There being six candles to the pound, and inasmuch as each candle burned about seven hours, the light from a candle cost about 1/2 cent per hour. From 1850 to 1875 tallow-candles sold at an average price of approximately 25 cents a pound. It may be interesting to know that a large match emits about as much light as a burning candle and a so-called safety match about one third as much.

A candle-hour is the total amount of light emitted by a standard candle in one hour, and candle-hours in any case are obtained by multiplying the candle-power of the source by the hours of burning. In a similar manner, lumens output multiplied by hours of operation give the lumen-hours. A standard candle may be considered to emit an amount of light approximately equal to 10 lumens. A wax-candle will emit about as much light as a sperm candle but will consume about 10 per cent. less weight of material. A tallow candle will emit about the same amount of light with a consumption about 50 per cent. greater. The tallow-candle has disappeared from use.

With the appearance of kerosene distilled from petroleum the camphene lamp came into use. The kerosene cost about 80 cents per gallon during the first few years of its introduction. The price of kerosene averaged about 55 cents a gallon between 1865 and 1875. During the next decade it dropped to about 22 cents a gallon and between 1885 and 1895 it sold as low as 13 cents.

Artificial gas in 1865 sold approximately at $2.50 per thousand cubic feet; between 1875 and 1885 at $2.00; between 1885 and 1895 at $1.50.

The combined effect of decreasing cost of fuel or electrical energy for light-sources and of the great improvements in light-production gave to the householder, for example, a constantly increasing amount of light for the same expenditure. For example, the family which a century ago spent two or three hours in the light of a single candle now enjoys many times more light in the same room for the same price. It is interesting to trace the influence of this greatly diminishing cost of light in the home. For the sake of simplicity the light of a candle will be retained as the unit and the cost of light for the home will be considered to remain approximately the same throughout the period to be considered. In fact, the amount of money that an average householder spends for lighting has remained fairly constant throughout the past century, but he has enjoyed a longer period of artificial light and a greater amount of light as the years advanced. The following is a table of approximate values which shows the lighting obtainable for $20.00 per year throughout the past century exclusive of electricity:

Hours Equivalent of Candle-hours Year per night light in candles per night per year 1800 3 5 15 5,500 1850 3 8 24 8,700 1860 3 11 33 12,000 1870 3 22 66 24,000 1880 3.5 36 126 46,000 1890 4 50 200 73,000 1900 5 154 770 280,000

It is seen from the foregoing that in a century the candle-equivalent obtainable for the same cost to the householder increased at least thirty times, while the hours during which this light is used have nearly doubled. In other words, in the nineteenth century the candle-hours obtainable for $20.00 per year increased about fifty times. Stated in another manner, the cost of light at the end of the century was about one fiftieth that of candle light at the beginning of the century. One authority in computing the expense of lighting to the householder in a large city of this country has stated that

coincident with an increase of 1700 per cent. in the amount of night lighting of an American family, in average circumstances, using gas for light, there has come a reduction in the cost of the year's lighting of 34 per cent. or approximately $7.50 per year; and that the cost of lighting per unit of light—the candle-hour—is now but 2.8 per cent. of what it was in the first half of the nineteenth century. No other necessity of household use has been so cheapened and improved during the last century.

In general, the light-user has taken advantage of the decrease by increasing the amount of light used and the period during which it is used. In this manner the greatly diminished cost of light has been a marked sociological and economic influence.

After Murdock made his first installation of gas-lighting in an industrial plant early in the nineteenth century, he published a comparison of the expense of operation with that of candle-lighting. He arrived at the costs of light equivalent to 1000 candle-hours as follows:

1000 candle-hours Gas-lighting at a rate of two hours per day $1.95 " " " " " three " " " 1.40 Candle-lighting 6.50

It is seen that the longer hours of burning reduce the cost of gas-lighting by reducing the percentage of overhead charges. There are no such factors in lighting by candles because the whole "installation" is consumed. This is an early example of which an authentic record is available. At the present time a certain amount of light obtained for $1.00 with efficient tungsten filament lamps, costs $2.00 if obtained from kerosene flames and about $50.00 if obtained by burning candles.

In order to obtain the cost of an equivalent amount of light throughout the past century a great many factors must be considered. Obviously, the results obtained by various persons will differ owing to the unavoidable factor of judgment; however, the following list of approximate values will at least indicate the trend of the price of light throughout the century or more of rapid developments in light-production. A fair average of the retail values of fuels and of electrical energy and an average luminous efficiency of the light-sources involved have been used in making the computations. The figures apply particularly to this country.

TABLE SHOWING THE APPROXIMATE TOTAL COST OF 1000 CANDLE-HOURS FOR VARIOUS PERIODS

Per 1000 candle-hours 1800 to 1850, sperm-oil $2.40 tallow candle 5.00 1850 to 1865, kerosene 1.65 tallow candle 6.85 1865 to 1875, kerosene .75 tallow candle 6.25 gas, open-flame .90 1875 to 1885, kerosene .25 gas, open-flame .60 1885 to 1895, kerosene .15 gas, open-flame .40 1895 to 1915, gas mantle .07 carbon filament .38 metallized filament .28 tungsten filament (vacuum) .12 tungsten filament (gas-filled) .07

In these days the cost of living has claimed considerable attention and it is interesting to compare that of lighting. In the following table the price of food and of electric lighting are compared for twenty years preceding the recent war. The great disturbance due to the war is thereby eliminated from consideration, but it should be noted that since 1914 the price of food has greatly increased but that of electric lighting has not changed materially. The cost of each commodity is taken as one hundred units for the year 1894 but, of course, the actual cost of living for the householder is perhaps a hundred times greater than the cost of electric lighting.

Year Food Electric lighting 1894 100 100 1896 80 92 1898 92 90 1900 100 85 1902 113 77 1904 110 77 1906 115 57 1908 128 30 1910 138 28 1912 144 23 1914 145 17

One feature of electric lighting which puzzles the consumer and which gives the politicians an opportunity for crying "discrimination" and "injustice" at the public-service company is the great variation in rates. There is no discrimination or injustice when the householder, for example, must pay more for his lighting than a factory pays. The rates are not only affected by "demand" but by the period in which the demand comes. Residence lighting is chiefly confined to certain hours from 5 to 9 P. M. and there is a great "peak" of demand at this time. The central-stations must have equipment available for this short-time demand and much of the capacity of the equipment is unused during the remainder of the day. The factory which uses electricity throughout the day or night or both is helping to keep the central-station operating efficiently. The equipment necessary to supply electricity to the factory is operating long hours. Not only is this overhead charge much less for factories and many other consumers than for the householder, but the expense of accounting, of reading meters, etc., is about the same for all classes of consumers. Therefore, this is an appreciable item on the bill of the small consumer.

Doubtless, the public does not realize that the enormous decrease in the cost of lighting during the past century is due largely to the fact that the lighting industry has grown large. Increased production is responsible for some of this decrease and science for much of it. The latter, having been called to the aid of the manufacturers, who are better able by virtue of their magnitude to spend time and resources upon scientific developments, has responded with many improvements which have increased the efficiency of light-production. Some figures of the Census Bureau may be of interest. These are given for 1914 in order that the abnormal conditions due to the recent war may be avoided. The figures pertaining to the manufacture of gas for sale which do not include private plants are as follows for the year 1914 for this country:

Number of establishments 1,284 Capital $1,252,421,584 Value of products (gas, coke, tar, etc.) $220,237,790 Cost of materials $76,779,288 Value added by manufacture $143,458,502 Value of gas $175,065,920 Coal used (tons) 6,116,672 Coke used (tons) 964,851 Oil used (gallons) 715,418,623 Length of gas mains (miles) 58,727 Manufactured products sold Total gas (cubic feet) 203,639,260,000 Straight coal gas (cubic feet) 10,509,946,000 Carbureted water gas (cubic feet) 90,017,725,000 Mixed coal- and water-gas (cubic feet) 86,281,339,000 Oil gas (cubic feet) 16,512,274,000 Acetylene (cubic feet) 136,564,000 Other gas, chiefly gasolene (cubic feet) 181,412,000 Coke (bushels) 114,091,753 Tar (gallons) 125,938,607 Ammonia liquors (gallons) 50,737,762 Ammonia, sulphate (pounds) 6,216,618

Of course, only a small fraction of the total gas manufactured is used for lighting.

According to the U. S. Geological Survey, the quantities of gas sold in this country in the year 1917 were as follows:

Coal-gas 42,927,728,000 cubic feet Water-gas 153,457,318,000 " " Oil-gas 14,739,508,000 " " Byproduct gas 131,026,575,000 " " Natural gas 795,110,376,000 " "

In 1914 there were 38,705,496 barrels (each fifty gallons) of illuminating oils refined in this country and the value was $96,806,452. About half of this quantity was exported. In 1914 the value of all candles manufactured in this country was about $2,000,000, which was about half that of the candles manufactured in 1909 and in 1904. In 1914 the value of the matches manufactured in this country was $12,556,000. This has increased steadily from $429,000 in 1849. In 1914 the glass industries in this country made 7,000,000 lamps, 70,000,000 chimneys, 16,300,000 lantern globes, 24,000,000 shades, globes, and other gas goods. Many millions of other lighting accessories were made, but unfortunately they are not classified.

Some figures pertaining to public electric light and power stations of the United States for the years 1907 and 1917 are as follows:

1917 1907 Number of establishments 6,541 4,714 Commercial 4,224 3,462 Municipal 2,317 1,562 Income $526,886,408 $175,642,338 Total horse-power of plants 12,857,998 4,098,188 Steam engines 8,389,389 2,693,273 Internal combustion engines 217,186 55,828 Water-wheels 4,251,423 1,349,087 Kilowatt capacity of generators 9,001,872 2,709,225 Output in millions of kilowatt-hours 25,438 5,863 Motors served (horse-power) 9,216,323 1,649,026 Electric-arc street-lamps served 256,838 .... Electric-filament street-lamps served 1,389,382 ....

In general, there is a large increase in the various items during the decade represented. The output of the central stations doubled in the five years from 1907 to 1912, and doubled again in the next five years from 1912 to 1917. Street lamps were not reported in 1907, but in 1912 there were 348,643 arc-lamps served by the public companies. The number of arc-lamps decreased to 256,838 in 1917. On the other hand, there were 681,957 electric filament street lamps served in 1912, which doubled in number to 1,389,382 in 1917. The cost of construction and equipment of these central stations totaled more than $3,000,000,000 in 1917.

Although there is no immediate prospect of the failure of the coal and oil supplies, exhaustion is surely approaching. And as the supplies of fuel for the production of gas and electricity diminish, the cost of lighting may advance. The total amount of oil available in the known oil-fields of this country at the present time has been estimated by various experts between 5,000,000,000 and 20,000,000,000 barrels, the best estimate being about 7,000,000,000. The annual consumption is now about 400,000,000 barrels. These figures do not take into account the oil which may be distilled from the rich shale deposits. Apparently this source will yield a hundred billion barrels of oil. In a similar manner the coal-supply is diminishing and the consumption is increasing. In 1918 more than a half-billion tons of coal were shipped from the mines. The production of natural gas perhaps has reached its peak, and, owing to its relation to the coal and oil deposits, its supply is limited.

Although only a fraction of the total production of gas, oil, and coal is used in lighting, the limited supply of these products emphasizes the desirability of developing the enormous water-power resources of this country. The present generation will not be hard pressed by the diminution of the supply of gas, oil, and coal, but it can profit by encouraging and even demanding the development of water-power. Furthermore, it is an obligation to succeeding generations to harness the rivers and even the tides and waves in order that the other resources will be conserved as long as possible. Science will continue to produce more efficient light-sources, but the cost of light finally is dependent upon the cost of the energy supplied to these lamps. At the present time water-power is the anchor to the windward.



XVII

LIGHT AND SAFETY

It is established that outdoors life and property are at night safer under adequate lighting than they are under inadequate lighting. Police departments in the large cities will testify that street-lighting is a powerful ally and that crime is fostered by darkness. But in reckoning the cost of street-lighting to-day how many take into account the value of safety to life and property and the saving occasioned by the reduction in the police-force necessary to patrol the cities and towns? Owing to the necessity of darkening the streets in order to reduce the hazards of air-raids, London experienced a great increase in accidents on the streets, which demonstrated the practical value of street-lighting from the standpoint of accident prevention.

During the war, when dastardly traitors and agents of the enemy were striking at industry, the value of lighting was further recognized by the industries, with the result that flood-lighting was installed to protect them. By common consent this new phase was termed "protective lighting." Soon after the entrance of this country into the recent war, the U. S. Military Intelligence established a Section of Plant Protection which had thirty-three district offices during the war and gave attention to thirty-five thousand industrial plants engaged in production of war materials. Protective lighting was early recognized by this section as a very potential agency for defense, and extensive use was made of it. For example, Edmund Leigh, chief of the section, in discussing the value of outdoor lighting stated:

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse