p-books.com
An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes
by Henry P. Talbot
1  2  3  4  5     Next Part
Home - Random Browse

[Transcriber's notes: In the chemical equations, superscripts are indicated with a ^ and subscripts are indicated with a . The affected item is enclosed in curly brackets {}. Examples are H^{+} for hydrogen ion and H{2}O for water. Since the underscore is already being used in this project, italics are designated by an exclamation point before and after the italicized word or phrase.]



AN INTRODUCTORY COURSE

OF

QUANTITATIVE

CHEMICAL ANALYSIS

WITH

EXPLANATORY NOTES

BY

HENRY P. TALBOT

PROFESSOR OF INORGANIC CHEMISTRY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SIXTH EDITION, COMPLETELY REWRITTEN



PREFACE

This Introductory Course of Quantitative Analysis has been prepared to meet the needs of students who are just entering upon the subject, after a course of qualitative analysis. It is primarily intended to enable the student to work successfully and intelligently without the necessity for a larger measure of personal assistance and supervision than can reasonably be given to each member of a large class. To this end the directions are given in such detail that there is very little opportunity for the student to go astray; but the manual is not, the author believes, on this account less adapted for use with small classes, where the instructor, by greater personal influence, can stimulate independent thought on the part of the pupil.

The method of presentation of the subject is that suggested by Professor A.A. Noyes' excellent manual of Qualitative Analysis. For each analysis the procedure is given in considerable detail, and this is accompanied by explanatory notes, which are believed to be sufficiently expanded to enable the student to understand fully the underlying reason for each step prescribed. The use of the book should, nevertheless, be supplemented by classroom instruction, mainly of the character of recitations, and the student should be taught to consult larger works. The general directions are intended to emphasize those matters upon which the beginner in quantitative analysis must bestow special care, and to offer helpful suggestions. The student can hardly be expected to appreciate the force of all the statements contained in these directions, or, indeed, to retain them all in the memory after a single reading; but the instructor, by frequent reference to special paragraphs, as suitable occasion presents itself, can soon render them familiar to the student.

The analyses selected for practice are those comprised in the first course of quantitative analysis at the Massachusetts Institute of Technology, and have been chosen, after an experience of years, as affording the best preparation for more advanced work, and as satisfactory types of gravimetric and volumetric methods. From the latter point of view, they also seem to furnish the best insight into quantitative analysis for those students who can devote but a limited time to the subject, and who may never extend their study beyond the field covered by this manual. The author has had opportunity to test the efficiency of the course for use with such students, and has found the results satisfactory.

In place of the usual custom of selecting simple salts as material for preliminary practice, it has been found advantageous to substitute, in most instances, approximately pure samples of appropriate minerals or industrial products. The difficulties are not greatly enhanced, while the student gains in practical experience.

The analytical procedures described in the following pages have been selected chiefly with reference to their usefulness in teaching the subject, and with the purpose of affording as wide a variety of processes as is practicable within an introductory course of this character. The scope of the manual precludes any extended attempt to indicate alternative procedures, except through general references to larger works on analytical chemistry. The author is indebted to the standard works for many suggestions for which it is impracticable to make specific acknowledgment; no considerable credit is claimed by him for originality of procedure.

For many years, as a matter of convenience, the classes for which this text was originally prepared were divided, one part beginning with gravimetric processes and the other with volumetric analyses. After a careful review of the experience thus gained the conclusion has been reached that volumetric analysis offers the better approach to the subject. Accordingly the arrangement of the present (the sixth) edition of this manual has been changed to introduce volumetric procedures first. Teachers who are familiar with earlier editions will, however, find that the order of presentation of the material under the various divisions is nearly the same as that previously followed, and those who may still prefer to begin the course of instruction with gravimetric processes will, it is believed, be able to follow that order without difficulty.

Procedures for the determination of sulphur in insoluble sulphates, for the determination of copper in copper ores by iodometric methods, for the determination of iron by permanganate in hydrochloric acid solutions, and for the standardization of potassium permanganate solutions using sodium oxalate as a standard, and of thiosulphate solutions using copper as a standard, have been added. The determination of silica in silicates decomposable by acids, as a separate procedure, has been omitted.

The explanatory notes have been rearranged to bring them into closer association with the procedures to which they relate. The number of problems has been considerably increased.

The author wishes to renew his expressions of appreciation of the kindly reception accorded the earlier editions of this manual. He has received helpful suggestions from so many of his colleagues within the Institute, and friends elsewhere, that his sense of obligation must be expressed to them collectively. He is under special obligations to Professor L.F. Hamilton for assistance in the preparation of the present edition.

HENRY P. TALBOT

!Massachusetts Institute of Technology, September, 1921!.



CONTENTS

PART I. INTRODUCTION

SUBDIVISIONS OF ANALYTICAL CHEMISTRY

GENERAL DIRECTIONS Accuracy and Economy of Time; Notebooks; Reagents; Wash-bottles; Transfer of Liquids

PART II. VOLUMETRIC ANALYSIS

GENERAL DISCUSSION Subdivisions; The Analytical Balance; Weights; Burettes; Calibration of Measuring Devices GENERAL DIRECTIONS Standard and Normal Solutions

!I. Neutralization Methods!

ALKALIMETRY AND ACIDIMETRY Preparation and Standardization of Solutions; Indicators STANDARDIZATION OF HYDROCHLORIC ACID DETERMINATION OF TOTAL ALKALINE STRENGTH OF SODA ASH DETERMINATION OF ACID STRENGTH OF OXALIC ACID

!II. Oxidation Processes!

GENERAL DISCUSSION BICHROMATE PROCESS FOR THE DETERMINATION OF IRON DETERMINATION OF IRON IN LIMONITE BY THE BICHROMATE PROCESS DETERMINATION OF CHROMIUM IN CHROME IRON ORE PERMANGANATE PROCESS FOR THE DETERMINATION OF IRON DETERMINATION OF IRON IN LIMONITE BY THE PERMANGANATE PROCESS DETERMINATION OF IRON IN LIMONITE BY THE ZIMMERMANN-REINHARDT PROCESS DETERMINATION OF THE OXIDIZING POWER OF PYROLUSITE IODIMETRY DETERMINATION OF COPPER IN ORES DETERMINATION OF ANTIMONY IN STIBNITE CHLORIMETRY DETERMINATION OF AVAILABLE CHLORINE IN BLEACHING POWDER

!III. Precipitation Methods!

DETERMINATION OF SILVER BY THE THIOCYANATE PROCESS

PART III. GRAVIMETRIC ANALYSIS

GENERAL DIRECTIONS Precipitation; Funnels and Filters; Filtration and Washing of Precipitates; Desiccators; Crucibles and their Preparation for Use; Ignition of Precipitates DETERMINATION OF CHLORINE IN SODIUM CHLORIDE DETERMINATION OF IRON AND OF SULPHUR IN FERROUS AMMONIUM SULPHATE DETERMINATION OF SULPHUR IN BARIUM SULPHATE DETERMINATION OF PHOSPHORIC ANHYDRIDE IN APATITE ANALYSIS OF LIMESTONE Determination of Moisture; Insoluble Matter and Silica; Ferric Oxide and Alumina; Calcium; Magnesium; Carbon Dioxide ANALYSIS OF BRASS Electrolytic Separations; Determination of Lead, Copper, Iron and Zinc. DETERMINATION OF SILICA IN SILICATES

PART IV. STOICHIOMETRY

SOLUTIONS OF TYPICAL PROBLEMS PROBLEMS

APPENDIX

ELECTROLYTIC DISSOCIATION THEORY FOLDING OF A FILTER PAPER SAMPLE NOTEBOOK PAGES STRENGTH OF REAGENTS DENSITIES AND VOLUMES OF WATER CORRECTIONS FOR CHANGE OF TEMPERATURE OF STANDARD SOLUTIONS ATOMIC WEIGHTS LOGARITHM TABLES



QUANTITATIVE CHEMICAL ANALYSIS



PART I

INTRODUCTION

SUBDIVISIONS OF ANALYTICAL CHEMISTRY

A complete chemical analysis of a body of unknown composition involves the recognition of its component parts by the methods of !qualitative analysis!, and the determination of the proportions in which these components are present by the processes of !quantitative analysis!. A preliminary qualitative examination is generally indispensable, if intelligent and proper provisions are to be made for the separation of the various constituents under such conditions as will insure accurate quantitative estimations.

It is assumed that the operations of qualitative analysis are familiar to the student, who will find that the reactions made use of in quantitative processes are frequently the same as those employed in qualitative analyses with respect to both precipitation and systematic separation from interfering substances; but it should be noted that the conditions must now be regulated with greater care, and in such a manner as to insure the most complete separation possible. For example, in the qualitative detection of sulphates by precipitation as barium sulphate from acid solution it is not necessary, in most instances, to take into account the solubility of the sulphate in hydrochloric acid, while in the quantitative determination of sulphates by this reaction this solubility becomes an important consideration. The operations of qualitative analysis are, therefore, the more accurate the nearer they are made to conform to quantitative conditions.

The methods of quantitative analysis are subdivided, according to their nature, into those of !gravimetric analysis, volumetric analysis!, and !colorimetric analysis!. In !gravimetric! processes the constituent to be determined is sometimes isolated in elementary form, but more commonly in the form of some compound possessing a well-established and definite composition, which can be readily and completely separated, and weighed either directly or after ignition. From the weight of this substance and its known composition, the amount of the constituent in question is determined.

In !volumetric! analysis, instead of the final weighing of a definite body, a well-defined reaction is caused to take place, wherein the reagent is added from an apparatus so designed that the volume of the solution employed to complete the reaction can be accurately measured. The strength of this solution (and hence its value for the reaction in question) is accurately known, and the volume employed serves, therefore, as a measure of the substance acted upon. An example will make clear the distinction between these two types of analysis. The percentage of chlorine in a sample of sodium chloride may be determined by dissolving a weighed amount of the chloride in water and precipitating the chloride ions as silver chloride, which is then separated by filtration, ignited, and weighed (a !gravimetric! process); or the sodium chloride may be dissolved in water, and a solution of silver nitrate containing an accurately known amount of the silver salt in each cubic centimeter may be cautiously added from a measuring device called a burette until precipitation is complete, when the amount of chlorine may be calculated from the number of cubic centimeters of the silver nitrate solution involved in the reaction. This is a !volumetric! process, and is equivalent to weighing without the use of a balance.

Volumetric methods are generally more rapid, require less apparatus, and are frequently capable of greater accuracy than gravimetric methods. They are particularly useful when many determinations of the same sort are required.

In !colorimetric! analyses the substance to be determined is converted into some compound which imparts to its solutions a distinct color, the intensity of which must vary in direct proportion to the amount of the compound in the solution. Such solutions are compared with respect to depth of color with standard solutions containing known amounts of the colored compound, or of other similar color-producing substance which has been found acceptable as a color standard. Colorimetric methods are, in general, restricted to the determinations of very small quantities, since only in dilute solutions are accurate comparisons of color possible.



GENERAL DIRECTIONS

The following paragraphs should be read carefully and thoughtfully. A prime essential for success as an analyst is attention to details and the avoidance of all conditions which could destroy, or even lessen, confidence in the analyses when completed. The suggestions here given are the outcome of much experience, and their adoption will tend to insure permanently work of a high grade, while neglect of them will often lead to disappointment and loss of time.

ACCURACY AND ECONOMY OF TIME

The fundamental conception of quantitative analysis implies a necessity for all possible care in guarding against loss of material or the introduction of foreign matter. The laboratory desk, and all apparatus, should be scrupulously neat and clean at all times. A sponge should always be ready at hand, and desk and filter-stands should be kept dry and in good order. Funnels should never be allowed to drip upon the base of the stand. Glassware should always be wiped with a clean, lintless towel just before use. All filters and solutions should be covered to protect them from dust, just as far as is practicable, and every drop of solution or particle of precipitate must be regarded as invaluable for the success of the analysis.

An economical use of laboratory hours is best secured by acquiring a thorough knowledge of the character of the work to be done before undertaking it, and then by so arranging the work that no time shall be wasted during the evaporation of liquids and like time-consuming operations. To this end the student should read thoughtfully not only the !entire! procedure, but the explanatory notes as well, before any step is taken in the analysis. The explanatory notes furnish, in general, the reasons for particular steps or precautions, but they also occasionally contain details of manipulation not incorporated, for various reasons, in the procedure. These notes follow the procedures at frequent intervals, and the exact points to which they apply are indicated by references. The student should realize that a !failure to study the notes will inevitably lead to mistakes, loss of time, and an inadequate understanding of the subject!.

All analyses should be made in duplicate, and in general a close agreement of results should be expected. It should, however, be remembered that a close concordance of results in "check analyses" is not conclusive evidence of the accuracy of those results, although the probability of their accuracy is, of course, considerably enhanced. The satisfaction in obtaining "check results" in such analyses must never be allowed to interfere with the critical examination of the procedure employed, nor must they ever be regarded as in any measure a substitute for absolute truth and accuracy.

In this connection it must also be emphasized that only the operator himself can know the whole history of an analysis, and only he can know whether his work is worthy of full confidence. No work should be continued for a moment after such confidence is lost, but should be resolutely discarded as soon as a cause for distrust is fully established. The student should, however, determine to put forth his best efforts in each analysis; it is well not to be too ready to condone failures and to "begin again," as much time is lost in these fruitless attempts. Nothing less than !absolute integrity! is or can be demanded of a quantitative analyst, and any disregard of this principle, however slight, is as fatal to success as lack of chemical knowledge or inaptitude in manipulation can possibly be.

NOTEBOOKS

Notebooks should contain, beside the record of observations, descriptive notes. All records of weights should be placed upon the right-hand page, while that on the left is reserved for the notes, calculations of factors, or the amount of reagents required.

The neat and systematic arrangement of the records of analyses is of the first importance, and is an evidence of careful work and an excellent credential. Of two notebooks in which the results may be, in fact, of equal value as legal evidence, that one which is neatly arranged will carry with it greater weight.

All records should be dated, and all observations should be recorded at once in the notebook. The making of records upon loose paper is a practice to be deprecated, as is also that of copying original entries into a second notebook. The student should accustom himself to orderly entries at the time of observation. Several sample pages of systematic records are to be found in the Appendix. These are based upon experience; but other arrangements, if clear and orderly, may prove equally serviceable. The student is advised to follow the sample pages until he is in a position to plan out a system of his own.

REAGENTS

The habit of carefully testing reagents, including distilled water, cannot be too early acquired or too constantly practiced; for, in spite of all reasonable precautionary measures, inferior chemicals will occasionally find their way into the stock room, or errors will be made in filling reagent bottles. The student should remember that while there may be others who share the responsibility for the purity of materials in the laboratory of an institution, the responsibility will later be one which he must individually assume.

The stoppers of reagent bottles should never be laid upon the desk, unless upon a clean watch-glass or paper. The neck and mouth of all such bottles should be kept scrupulously clean, and care taken that no confusion of stoppers occurs.

WASH-BOTTLES

Wash-bottles for distilled water should be made from flasks of about 750 cc. capacity and be provided with gracefully bent tubes, which should not be too long. The jet should be connected with the tube entering the wash-bottle by a short piece of rubber tubing in such a way as to be flexible, and should deliver a stream about one millimeter in diameter. The neck of the flask may be wound with cord, or covered with wash-leather, for greater comfort when hot water is used. It is well to provide several small wash-bottles for liquids other than distilled water, which should invariably be clearly labeled.

TRANSFER OF LIQUIDS

Liquids should never be transferred from one vessel to another, nor to a filter, without the aid of a stirring rod held firmly against the side or lip of the vessel. When the vessel is provided with a lip it is not usually necessary to use other means to prevent the loss of liquid by running down the side; whenever loss seems imminent a !very thin! layer of vaseline, applied with the finger to the edge of the vessel, will prevent it. The stirring rod down which the liquid runs should never be drawn upward in such a way as to allow the solution to collect on the under side of the rim or lip of a vessel.

The number of transfers of liquids from one vessel to another during an analysis should be as small as possible to avoid the risk of slight losses. Each vessel must, of course, be completely washed to insure the transfer of all material; but it should be remembered that this can be accomplished better by the use of successive small portions of wash-water (perhaps 5-10 cc.), if each wash-water is allowed to drain away for a few seconds, than by the addition of large amounts which unnecessarily increase the volume of the solutions, causing loss of time in subsequent filtrations or evaporations.

All stirring rods employed in quantitative analyses should be rounded at the ends by holding them in the flame of a burner until they begin to soften. If this is not done, the rods will scratch the inner surface of beakers, causing them to crack on subsequent heating.

EVAPORATION OF LIQUIDS

The greatest care must be taken to prevent loss of solutions during processes of evaporation, either from too violent ebullition, from evaporation to dryness and spattering, or from the evolution of gas during the heating. In general, evaporation upon the steam bath is to be preferred to other methods on account of the impossibility of loss by spattering. If the steam baths are well protected from dust, solutions should be left without covers during evaporation; but solutions which are boiled upon the hot plate, or from which gases are escaping, should invariably be covered. In any case a watch-glass may be supported above the vessel by means of a glass triangle, or other similar device, and the danger of loss of material or contamination by dust thus be avoided. It is obvious that evaporation is promoted by the use of vessels which admit of the exposure of a broad surface to the air.

Liquids which contain suspended matter (precipitates) should always be cautiously heated, since the presence of the solid matter is frequently the occasion of violent "bumping," with consequent risk to apparatus and analysis.



PART II

VOLUMETRIC ANALYSIS

The processes of volumetric analysis are, in general, simpler than those of gravimetric analysis and accordingly serve best as an introduction to the practice of quantitative analysis. For their execution there are required, first, an accurate balance with which to weigh the material for analysis; second, graduated instruments in which to measure the volume of the solutions employed; third, standard solutions, that is, solutions the value of which is accurately known; and fourth, indicators, which will furnish accurate evidence of the point at which the desired reaction is completed. The nature of the indicators employed will be explained in connection with the different analyses.

The process whereby a !standard solution! is brought into reaction is called !titration!, and the point at which the reaction is exactly completed is called the !end-point!. The !indicator! should show the !end-point! of the !titration!. The volume of the standard solution used then furnishes the measure of the substance to be determined as truly as if that substance had been separated and weighed.

The processes of volumetric analysis are easily classified, according to their character, into:

I. NEUTRALIZATION METHODS; such, for example, as those of acidimetry and alkalimetry.

II. OXIDATION PROCESSES; as exemplified in the determination of ferrous iron by its oxidation with potassium bichromate.

III. PRECIPITATION METHODS; of which the titration for silver with potassium thiocyanate solution is an illustration.

From a somewhat different standpoint the methods in each case may be subdivided into (a) DIRECT METHODS, in which the substance to be measured is directly determined by titration to an end-point with a standard solution; and (b) INDIRECT METHODS, in which the substance itself is not measured, but a quantity of reagent is added which is known to be an excess with respect to a specific reaction, and the unused excess determined by titration. Examples of the latter class will be pointed out as they occur in the procedures.

MEASURING INSTRUMENTS

THE ANALYTICAL BALANCE

For a complete discussion of the physical principles underlying the construction and use of balances, and the various methods of weighing, the student is referred to larger manuals of Quantitative Analysis, such as those of Fresenius, or Treadwell-Hall, and particularly to the admirable discussion of this topic in Morse's !Exercises in Quantitative Chemistry!.

The statements and rules of procedure which follow are sufficient for the intelligent use of an analytical balance in connection with processes prescribed in this introductory manual. It is, however, imperative that the student should make himself familiar with these essential features of the balance, and its use. He should fully realize that the analytical balance is a delicate instrument which will render excellent service under careful treatment, but such treatment is an essential condition if its accuracy is to be depended upon. He should also understand that no set of rules, however complete, can do away with the necessity for a sense of personal responsibility, since by carelessness he can render inaccurate not only his own analyses, but those of all other students using the same balance.

Before making any weighings the student should seat himself before a balance and observe the following details of construction:

1. The balance case is mounted on three brass legs, which should preferably rest in glass cups, backed with rubber to prevent slipping. The front legs are adjustable as to height and are used to level the balance case; the rear leg is of permanent length.

2. The front of the case may be raised to give access to the balance. In some makes doors are provided also at the ends of the balance case.

3. The balance beam is mounted upon an upright in the center of the case on the top of which is an inlaid agate plate. To the center of the beam there is attached a steel or agate knife-edge on which the beam oscillates when it rests on the agate plate.

4. The balance beam, extending to the right and left, is graduated along its upper edge, usually on both sides, and has at its extremities two agate or steel knife-edges from which are suspended stirrups. Each of these stirrups has an agate plate which, when the balance is in action, rests upon the corresponding knife-edge of the beam. The balance pans are suspended from the stirrups.

5. A pointer is attached to the center of the beam, and as the beam oscillates this pointer moves in front of a scale near the base of the post.

6. At the base of the post, usually in the rear, is a spirit-level.

7. Within the upright is a mechanism, controlled by a knob at the front of the balance case, which is so arranged as to raise the entire beam slightly above the level at which the knife-edges are in contact with the agate plates. When the balance is not in use the beam must be supported by this device since, otherwise, the constant jarring to which a balance is inevitably subjected, will soon dull the knife-edges, and lessen the sensitiveness of the balance.

8. A small weight, or bob, is attached to the pointer (or sometimes to the beam) by which the center of gravity of the beam and its attachments may be regulated. The center of gravity must lie very slightly below the level of the agate plates to secure the desired sensitiveness of the balance. This is provided for when the balance is set up and very rarely requires alteration. The student should never attempt to change this adjustment.

9. Below the balance pans are two pan-arrests operated by a button from the front of the case. These arrests exert a very slight upward pressure upon the pans and minimize the displacement of the beam when objects or weights are being placed upon the pans.

10. A movable rod, operated from one end of the balance case, extends over the balance beam and carries a small wire weight, called a rider. By means of this rod the rider can be placed upon any desired division of the scale on the balance beam. Each numbered division on the beam corresponds to one milligram, and the use of the rider obviates the placing of very small fractional weights on the balance pan.

If a new rider is purchased, or an old one replaced, care must be taken that its weight corresponds to the graduations on the beam of the balance on which it is to be used. The weight of the rider in milligrams must be equal to the number of large divisions (5, 6, 10, or 12) between the central knife-edge and the knife-edge at the end of the beam. It should be noted that on some balances the last division bears no number. Each new rider should be tested against a 5 or 10-milligram weight.

In some of the most recent forms of the balance a chain device replaces the smaller weights and the use of the rider as just described.

Before using a balance, it is always best to test its adjustment. This is absolutely necessary if the balance is used by several workers; it is always a wise precaution under any conditions. For this purpose, brush off the balance pans with a soft camel's hair brush. Then note (1) whether the balance is level; (2) that the mechanism for raising and lowering the beams works smoothly; (3) that the pan-arrests touch the pans when the beam is lowered; and (4) that the needle swings equal distances on either side of the zero-point when set in motion without any load on the pans. If the latter condition is not fulfilled, the balance should be adjusted by means of the adjusting screw at the end of the beam unless the variation is not more than one division on the scale; it is often better to make a proper allowance for this small zero error than to disturb the balance by an attempt at correction. Unless a student thoroughly understands the construction of a balance he should never attempt to make adjustments, but should apply to the instructor in charge.

The object to be weighed should be placed on the left-hand balance pan and the weights upon the right-hand pan. Every substance which could attack the metal of the balance pan should be weighed upon a watch-glass, and all objects must be dry and cold. A warm body gives rise to air currents which vitiate the accuracy of the weighing.

The weights should be applied in the order in which they occur in the weight-box (not at haphazard), beginning with the largest weight which is apparently required. After a weight has been placed upon the pan the beam should be lowered upon its knife-edges, and, if necessary, the pan-arrests depressed. The movement of the pointer will then indicate whether the weight applied is too great or too small. When the weight has been ascertained, by the successive addition of small weights, to the nearest 5 or 10 milligrams, the weighing is completed by the use of the rider. The correct weight is that which causes the pointer to swing an equal number of divisions to the right and left of the zero-point, when the pointer traverses not less than five divisions on either side.

The balance case should always be closed during the final weighing, while the rider is being used, to protect the pans from the effect of air currents.

Before the final determination of an exact weight the beam should always be lifted from the knife-edges and again lowered into place, as it frequently happens that the scale pans are, in spite of the pan-arrests, slightly twisted by the impact of the weights, the beam being thereby virtually lengthened or shortened. Lifting the beam restores the proper alignment.

The beam should never be set in motion by lowering it forcibly upon the knife-edges, nor by touching the pans, but rather by lifting the rider (unless the balance be provided with some of the newer devices for the purpose), and the swing should be arrested only when the needle approaches zero on the scale, otherwise the knife-edges become dull. For the same reason the beam should never be left upon its knife-edges, nor should weights be removed from or placed on the pans without supporting the beam, except in the case of the small fractional weights.

When the process of weighing has been completed, the weight should be recorded in the notebook by first noting the vacant spaces in the weight-box, and then checking the weight by again noting the weights as they are removed from the pan. This practice will often detect and avoid errors. It is obvious that the weights should always be returned to their proper places in the box, and be handled only with pincers.

It should be borne in mind that if the mechanism of a balance is deranged or if any substance is spilled upon the pans or in the balance case, the damage should be reported at once. In many instances serious harm can be averted by prompt action when delay might ruin the balance.

Samples for analysis are commonly weighed in small tubes with cork stoppers. Since the stoppers are likely to change in weight from the varying amounts of moisture absorbed from the atmosphere, it is necessary to confirm the recorded weight of a tube which has been unused for some time before weighing out a new portion of substance from it.

WEIGHTS

The sets of weights commonly used in analytical chemistry range from 20 grams to 5 milligrams. The weights from 20 grams to 1 gram are usually of brass, lacquered or gold plated. The fractional weights are of German silver, gold, platinum or aluminium. The rider is of platinum or aluminium wire.

The sets of weights purchased from reputable dealers are usually sufficiently accurate for analytical work. It is not necessary that such a set should be strictly exact in comparison with the absolute standard of weight, provided they are relatively correct among themselves, and provided the same set of weights is used in all weighings made during a given analysis. The analyst should assure himself that the weights in a set previously unfamiliar to him are relatively correct by a few simple tests. For example, he should make sure that in his set two weights of the same denomination (i.e., two 10-gram weights, or the two 100-milligram weights) are actually equal and interchangeable, or that the 500-milligram weight is equal to the sum of the 200, 100, 100, 50, 20, 20 and 10-milligram weights combined, and so on. If discrepancies of more than a few tenths of a milligram (depending upon the total weight involved) are found, the weights should be returned for correction. The rider should also be compared with a 5 or 10-milligram weight.

In an instructional laboratory appreciable errors should be reported to the instructor in charge for his consideration.

When the highest accuracy is desired, the weights may be calibrated and corrections applied. A calibration procedure is described in a paper by T.W. Richards, !J. Am. Chem. Soc.!, 22, 144, and in many large text-books.

Weights are inevitably subject to corrosion if not properly protected at all times, and are liable to damage unless handled with great care. It is obvious that anything which alters the weight of a single piece in an analytical set will introduce an error in every weighing made in which that piece is used. This source of error is often extremely obscure and difficult to detect. The only safeguard against such errors is to be found in scrupulous care in handling and protection on the part of the analyst, and an equal insistence that if several analysts use the same set of weights, each shall realize his responsibility for the work of others as well as his own.

BURETTES

A burette is made from a glass tube which is as uniformly cylindrical as possible, and of such a bore that the divisions which are etched upon its surface shall correspond closely to actual contents.

The tube is contracted at one extremity, and terminates in either a glass stopcock and delivery-tube, or in such a manner that a piece of rubber tubing may be firmly attached, connecting a delivery-tube of glass. The rubber tubing is closed by means of a glass bead. Burettes of the latter type will be referred to as "plain burettes."

The graduations are usually numbered in cubic centimeters, and the latter are subdivided into tenths.

One burette of each type is desirable for the analytical procedures which follow.

PREPARATION OF A BURETTE FOR USE

The inner surface of a burette must be thoroughly cleaned in order that the liquid as drawn out may drain away completely, without leaving drops upon the sides. This is best accomplished by treating the inside of the burette with a warm solution of chromic acid in concentrated sulphuric acid, applied as follows: If the burette is of the "plain" type, first remove the rubber tip and force the lower end of the burette into a medium-sized cork stopper. Nearly fill the burette with the chromic acid solution, close the upper end with a cork stopper and tip the burette backward and forward in such a way as to bring the solution into contact with the entire inner surface. Remove the stopper and pour the solution into a stock bottle to be kept for further use, and rinse out the burette with water several times. Unless the water then runs freely from the burette without leaving drops adhering to the sides, the process must be repeated (Note 1).

If the burette has a glass stopcock, this should be removed after the cleaning and wiped, and also the inside of the ground joint. The surface of the stopcock should then be smeared with a thin coating of vaseline and replaced. It should be attached to the burette by means of a wire, or elastic band, to lessen the danger of breakage.

Fill the burettes with distilled water, and allow the water to run out through the stopcock or rubber tip until convinced that no air bubbles are inclosed (Note 2). Fill the burette to a point above the zero-point and draw off the water until the meniscus is just below that mark. It is then ready for calibration.

[Note 1: The inner surface of the burette must be absolutely clean if the liquid is to run off freely. Chromic acid in sulphuric acid is usually found to be the best cleansing agent, but the mixture must be warm and concentrated. The solution can be prepared by pouring over a few crystals of potassium bichromate a little water and then adding concentrated sulphuric acid.]

[Note 2: It is always necessary to insure the absence of air bubbles in the tips or stopcocks. The treatment described above will usually accomplish this, but, in the case of plain burettes it is sometimes better to allow a little of the liquid to flow out of the tip while it is bent upwards. Any air which may be entrapped then rises with the liquid and escapes.

If air bubbles escape during subsequent calibration or titration, an error is introduced which vitiates the results.]

READING OF A BURETTE

All liquids when placed in a burette form what is called a meniscus at their upper surfaces. In the case of liquids such as water or aqueous solutions this meniscus is concave, and when the liquids are transparent accurate readings are best obtained by observing the position on the graduated scales of the lowest point of the meniscus. This can best be done as follows: Wrap around the burette a piece of colored paper, the straight, smooth edges of which are held evenly together with the colored side next to the burette (Note 1). Hold the paper about two small divisions below the meniscus and raise or lower the level of the eyes until the edge of the paper at the back of the burette is just hidden from the eye by that in front (Note 2). Note the position of the lowest point of the curve of the meniscus, estimating the tenths of the small divisions, thus reading its position to hundredths of a cubic centimeter.

[Note 1: The ends of the colored paper used as an aid to accurate readings may be fastened together by means of a gummed label. The paper may then remain on the burette and be ready for immediate use by sliding it up or down, as required.]

[Note 2: To obtain an accurate reading the eye must be very nearly on a level with the meniscus. This is secured by the use of the paper as described. The student should observe by trial how a reading is affected when the meniscus is viewed from above or below.

The eye soon becomes accustomed to estimating the tenths of the divisions. If the paper is held as directed, two divisions below the meniscus, one whole division is visible to correct the judgment. It is not well to attempt to bring the meniscus exactly to a division mark on the burette. Such readings are usually less accurate than those in which the tenths of a division are estimated.]

CALIBRATION OF GLASS MEASURING DEVICES

If accuracy of results is to be attained, the correctness of all measuring instruments must be tested. None of the apparatus offered for sale can be implicitly relied upon except those more expensive instruments which are accompanied by a certificate from the !National Bureau of Standards! at Washington, or other equally authentic source.

The bore of burettes is subject to accidental variations, and since the graduations are applied by machine without regard to such variations of bore, local errors result.

The process of testing these instruments is called !calibration!. It is usually accomplished by comparing the actual weight of water contained in the instrument with its apparent volume.

There is, unfortunately, no uniform standard of volume which has been adopted for general use in all laboratories. It has been variously proposed to consider the volume of 1000 grams of water at 4 deg., 15.5 deg., 16 deg., 17.5 deg., and even 20 deg.C., as a liter for practical purposes, and to consider the cubic centimeter to be one one-thousandth of that volume. The true liter is the volume of 1000 grams of water at 4 deg.C.; but this is obviously a lower temperature than that commonly found in laboratories, and involves the constant use of corrections if taken as a laboratory standard. Many laboratories use 15.5 deg.C. (60 deg. F.) as the working standard. It is plain that any temperature which is deemed most convenient might be chosen for a particular laboratory, but it cannot be too strongly emphasized that all measuring instruments, including burettes, pipettes, and flasks, should be calibrated at that temperature in order that the contents of each burette, pipette, etc., shall be comparable with that of every other instrument, thus permitting general interchange and substitution. For example, it is obvious that if it is desired to remove exactly 50 cc. from a solution which has been diluted to 500 cc. in a graduated flask, the 50 cc. flask or pipette used to remove the fractional portion must give a correct reading at the same temperature as the 500 cc. flask. Similarly, a burette used for the titration of the 50 cc. of solution removed should be calibrated under the same conditions as the measuring flasks or pipettes employed with it.

The student should also keep constantly in mind the fact that all volumetric operations, to be exact, should be carried out as nearly at a constant temperature as is practicable. The spot selected for such work should therefore be subject to a minimum of temperature variations, and should have as nearly the average temperature of the laboratory as is possible. In all work, whether of calibration, standardization, or analysis, the temperature of the liquids employed must be taken into account, and if the temperature of these liquids varies more than 3 deg. or 4 deg. from the standard temperature chosen for the laboratory, corrections must be applied for errors due to expansion or contraction, since volumes of a liquid measured at different times are comparable only under like conditions as to temperature. Data to be used for this purpose are given in the Appendix. Neglect of this correction is frequently an avoidable source of error and annoyance in otherwise excellent work. The temperature of all solutions at the time of standardization should be recorded to facilitate the application of temperature corrections, if such are necessary at any later time.

CALIBRATION OF THE BURETTES

Two burettes, one at least of which should have a glass stopper, are required throughout the volumetric work. Both burettes should be calibrated by the student to whom they are assigned.

PROCEDURE.—Weigh a 50 cc., flat-bottomed flask (preferably a light-weight flask), which must be dry on the outside, to the nearest centigram. Record the weight in the notebook. (See Appendix for suggestions as to records.) Place the flask under the burette and draw out into it about 10 cc. of water, removing any drop on the tip by touching it against the inside of the neck of the flask. Do not attempt to stop exactly at the 10 cc. mark, but do not vary more than 0.1 cc. from it. Note the time, and at the expiration of three minutes (or longer) read the burette accurately, and record the reading in the notebook (Note 1). Meanwhile weigh the flask and water to centigrams and record its weight (Note 2). Draw off the liquid from 10 cc. to about 20 cc. into the same flask without emptying it; weigh, and at the expiration of three minutes take the reading, and so on throughout the length of the burette. When it is completed, refill the burette and check the first calibration.

The differences in readings represent the apparent volumes, the differences in weights the true volumes. For example, if an apparent volume of 10.05 cc. is found to weigh 10.03 grams, it may be assumed with sufficient accuracy that the error in that 10 cc. amounts to -0.02 cc., or -0.002 for each cubic centimeter (Note 3).

In the calculation of corrections the temperature of the water must be taken into account, if this varies more than 4 deg.C. from the laboratory standard temperature, consulting the table of densities of water in the Appendix.

From the final data, plot the corrections to be applied so that they may be easily read for each cubic centimeter throughout the burette. The total correction at each 10 cc. may also be written on the burette with a diamond, or etching ink, for permanence of record.

[Note 1: A small quantity of liquid at first adheres to the side of even a clean burette. This slowly unites with the main body of liquid, but requires an appreciable time. Three minutes is a sufficient interval, but not too long, and should be adopted in every instance throughout the whole volumetric practice before final readings are recorded.]

[Note 2: A comparatively rough balance, capable of weighing to centigrams, is sufficiently accurate for use in calibrations, for a moment's reflection will show that it would be useless to weigh the water with an accuracy greater than that of the readings taken on the burette. The latter cannot exceed 0.01 cc. in accuracy, which corresponds to 0.01 gram.

The student should clearly understand that !all other weighings!, except those for calibration, should be made accurately to 0.0001 gram, unless special directions are given to the contrary.

Corrections for temperature variations of less than 4 deg.C. are negligible, as they amount to less than 0.01 gram for each 10 grams of water withdrawn.]

[Note 3: Should the error discovered in any interval of 10 cc. on the burette exceed 0.10 cc., it is advisable to weigh small portions (even 1 cc.) to locate the position of the variation of bore in the tube rather than to distribute the correction uniformly over the corresponding 10 cc. The latter is the usual course for small corrections, and it is convenient to calculate the correction corresponding to each cubic centimeter and to record it in the form of a table or calibration card, or to plot a curve representing the values.

Burettes may also be calibrated by drawing off the liquid in successive portions through a 5 cc. pipette which has been accurately calibrated, as a substitute for weighing. If many burettes are to be tested, this is a more rapid method.]

PIPETTES

A !pipette! may consist of a narrow tube, in the middle of which is blown a bulb of a capacity a little less than that which it is desired to measure by the pipette; or it may be a miniature burette, without the stopcock or rubber tip at the lower extremity. In either case, the flow of liquid is regulated by the pressure of the finger on the top, which governs the admission of the air.

Pipettes are usually already graduated when purchased, but they require calibration for accurate work.

CALIBRATION OF PIPETTES

PROCEDURE.—Clean the pipette. Draw distilled water into it by sucking at the upper end until the water is well above the graduation mark. Quickly place the forefinger over the top of the tube, thus preventing the entrance of air and holding the water in the pipette. Cautiously admit a little air by releasing the pressure of the finger, and allow the level of the water to fall until the lowest point of the meniscus is level with the graduation. Hold the water at that point by pressure of the finger and then allow the water to run out from the pipette into a small tared, or weighed, beaker or flask. After a definite time interval, usually two to three minutes, touch the end of the pipette against the side of the beaker or flask to remove any liquid adhering to it (Note 1). The increase in weight of the flask in grams represents the volume of the water in cubic centimeters delivered by the pipette. Calculate the necessary correction.

[Note 1: A definite interval must be allowed for draining, and a definite practice adopted with respect to the removal of the liquid which collects at the end of the tube, if the pipette is designed to deliver a specific volume when emptied. This liquid may be removed at the end of a definite interval either by touching the side of the vessel or by gently blowing out the last drops. Either practice, when adopted, must be uniformly adhered to.]

FLASKS

!Graduated or measuring flasks! are similar to the ordinary flat-bottomed flasks, but are provided with long, narrow necks in order that slight variations in the position of the meniscus with respect to the graduation shall represent a minimum volume of liquid. The flasks must be of such a capacity that, when filled with the specified volume, the liquid rises well into the neck.

GRADUATION OF FLASKS

It is a general custom to purchase the flasks ungraduated and to graduate them for use under standard conditions selected for the laboratory in question. They may be graduated for "contents" or "delivery." When graduated for "contents" they contain a specified volume when filled to the graduation at a specified temperature, and require to be washed out in order to remove all of the solution from the flask. Flasks graduated for "delivery" will deliver the specified volume of a liquid without rinsing. A flask may, of course, be graduated for both contents and delivery by placing two graduation marks upon it.

PROCEDURE.—To calibrate a flask for !contents!, proceed as follows: Clean the flask, using a chromic acid solution, and dry it carefully outside and inside. Tare it accurately; pour water into the flask until the weight of the latter counterbalances weights on the opposite pan which equal in grams the number of cubic centimeters of water which the flask is to contain. Remove any excess of water with the aid of filter paper (Note 1). Take the flask from the balance, stopper it, place it in a bath at the desired temperature, usually 15.5 deg. or 17.5 deg.C., and after an hour mark on the neck with a diamond the location of the lowest point of the meniscus (Note 2). The mark may be etched upon the flask by hydrofluoric acid, or by the use of an etching ink now commonly sold on the market.

To graduate a flask which is designed to !deliver! a specified volume, proceed as follows: Clean the flask as usual and wipe all moisture from the outside. Fill it with distilled water. Pour out the water and allow the water to drain from the flask for three minutes. Counterbalance the flask with weights to the nearest centigram. Add weights corresponding in grams to the volume desired, and add distilled water to counterbalance these weights. An excess of water, or water adhering to the neck of the flask, may be removed by means of a strip of clean filter paper. Stopper the flask, place it in a bath at 15.5 deg.C. or 17.5 deg.C. and, after an hour, mark the location of the lowest point of the meniscus, as described above.

[Note 1: The allowable error in counterbalancing the water and weights varies with the volume of the flask. It should not exceed one ten-thousandth of the weight of water.]

[Note 2: Other methods are employed which involve the use of calibrated apparatus from which the desired volume of water may be run into the dry flask and the position of the meniscus marked directly upon it. For a description of a procedure which is most convenient when many flasks are to be calibrated, the student is referred to the !Am. Chem J.!, 16, 479.]



GENERAL DIRECTIONS FOR VOLUMETRIC ANALYSES

It cannot be too strongly emphasized that for the success of analyses uniformity of practice must prevail throughout all volumetric work with respect to those factors which can influence the accuracy of the measurement of liquids. For example, whatever conditions are imposed during the calibration of a burette, pipette, or flask (notably the time allowed for draining), must also prevail whenever the flask or burette is used.

The student should also be constantly watchful to insure parallel conditions during both standardization and analyst with respect to the final volume of liquid in which a titration takes place. The value of a standard solution is only accurate under the conditions which prevailed when it was standardized. It is plain that the standard solutions must be scrupulously protected from concentration or dilution, after their value has been established. Accordingly, great care must be taken to thoroughly rinse out all burettes, flasks, etc., with the solutions which they are to contain, in order to remove all traces of water or other liquid which could act as a diluent. It is best to wash out a burette at least three times with small portions of a solution, allowing each to run out through the tip before assuming that the burette is in a condition to be filled and used. It is, of course, possible to dry measuring instruments in a hot closet, but this is tedious and unnecessary.

To the same end, all solutions should be kept stoppered and away from direct sunlight or heat. The bottles should be shaken before use to collect any liquid which may have distilled from the solution and condensed on the sides.

The student is again reminded that variations in temperature of volumetric solutions must be carefully noted, and care should always be taken that no source of heat is sufficiently near the solutions to raise the temperature during use.

Much time may be saved by estimating the approximate volume of a standard solution which will be required for a titration (if the data are obtainable) before beginning the operation. It is then possible to run in rapidly approximately the required amount, after which it is only necessary to determine the end-point slowly and with accuracy. In such cases, however, the knowledge of the approximate amount to be required should never be allowed to influence the judgment regarding the actual end-point.

STANDARD SOLUTIONS

The strength or value of a solution for a specific reaction is determined by a procedure called !Standardization!, in which the solution is brought into reaction with a definite weight of a substance of known purity. For example, a definite weight of pure sodium carbonate may be dissolved in water, and the volume of a solution of hydrochloric acid necessary to exactly neutralize the carbonate accurately determined. From these data the strength or value of the acid is known. It is then a !standard solution!.

NORMAL SOLUTIONS

Standard solutions may be made of a purely empirical strength dictated solely by convenience of manipulation, or the concentration may be chosen with reference to a system which is applicable to all solutions, and based upon chemical equivalents. Such solutions are called !Normal Solutions! and contain such an amount of the reacting substance per liter as is equivalent in its chemical action to one gram of hydrogen, or eight grams of oxygen. Solutions containing one half, one tenth, or one one-hundredth of this quantity per liter are called, respectively, half-normal, tenth-normal, or hundredth-normal solutions.

Since normal solutions of various reagents are all referred to a common standard, they have an advantage not possessed by empirical solutions, namely, that they are exactly equivalent to each other. Thus, a liter of a normal solution of an acid will exactly neutralize a liter of a normal alkali solution, and a liter of a normal oxidizing solution will exactly react with a liter of a normal reducing solution, and so on.

Beside the advantage of uniformity, the use of normal solutions simplifies the calculations of the results of analyses. This is particularly true if, in connection with the normal solution, the weight of substance for analysis is chosen with reference to the atomic or molecular weight of the constituent to be determined. (See problem 26.)

The preparation of an !exactly! normal, half-normal, or tenth-normal solution requires considerable time and care. It is usually carried out only when a large number of analyses are to be made, or when the analyst has some other specific purpose in view. It is, however, a comparatively easy matter to prepare standard solutions which differ but slightly from the normal or half-normal solution, and these have the advantage of practical equality; that is, two approximately half-normal solutions are more convenient to work with than two which are widely different in strength. It is, however, true that some of the advantage which pertains to the use of normal solutions as regards simplicity of calculations is lost when using these approximate solutions.

The application of these general statements will be made clear in connection with the use of normal solutions in the various types of volumetric processes which follow.



I. NEUTRALIZATION METHODS

ALKALIMETRY AND ACIDIMETRY



GENERAL DISCUSSION

!Standard Acid Solutions! may be prepared from either hydrochloric, sulphuric, or oxalic acid. Hydrochloric acid has the advantage of forming soluble compounds with the alkaline earths, but its solutions cannot be boiled without danger of loss of strength; sulphuric acid solutions may be boiled without loss, but the acid forms insoluble sulphates with three of the alkaline earths; oxalic acid can be accurately weighed for the preparation of solutions, and its solutions may be boiled without loss, but it forms insoluble oxalates with three of the alkaline earths and cannot be used with certain of the indicators.

!Standard Alkali Solutions! may be prepared from sodium or potassium hydroxide, sodium carbonate, barium hydroxide, or ammonia. Of sodium and potassium hydroxide, it may be said that they can be used with all indicators, and their solutions may be boiled, but they absorb carbon dioxide readily and attack the glass of bottles, thereby losing strength; sodium carbonate may be weighed directly if its purity is assured, but the presence of carbonic acid from the carbonate is a disadvantage with many indicators; barium hydroxide solutions may be prepared which are entirely free from carbon dioxide, and such solutions immediately show by precipitation any contamination from absorption, but the hydroxide is not freely soluble in water; ammonia does not absorb carbon dioxide as readily as the caustic alkalies, but its solutions cannot be boiled nor can they be used with all indicators. The choice of a solution must depend upon the nature of the work in hand.

A !normal acid solution! should contain in one liter that quantity of the reagent which represents 1 gram of hydrogen replaceable by a base. For example, the normal solution of hydrochloric acid (HCl) should contain 36.46 grams of gaseous hydrogen chloride, since that amount furnishes the requisite 1 gram of replaceable hydrogen. On the other hand, the normal solution of sulphuric acid (H{2}SO{4}) should contain only 49.03 grams, i.e., one half of its molecular weight in grams.

A !normal alkali solution! should contain sufficient alkali in a liter to replace 1 gram of hydrogen in an acid. This quantity is represented by the molecular weight in grams (40.01) of sodium hydroxide (NaOH), while a sodium carbonate solution (Na{2}CO{3}) should contain but one half the molecular weight in grams (i.e., 53.0 grams) in a liter of normal solution.

Half-normal or tenth-normal solutions are employed in most analyses (except in the case of the less soluble barium hydroxide). Solutions of the latter strength yield more accurate results when small percentages of acid or alkali are to be determined.

INDICATORS

It has already been pointed out that the purpose of an indicator is to mark (usually by a change of color) the point at which just enough of the titrating solution has been added to complete the chemical change which it is intended to bring about. In the neutralization processes which are employed in the measurement of alkalies (!alkalimetry!) or acids (!acidimetry!) the end-point of the reaction should, in principle, be that of complete neutrality. Expressed in terms of ionic reactions, it should be the point at which the H^{+} ions from an acid[Note 1] unite with a corresponding number of OH^{-} ions from a base to form water molecules, as in the equation

H^{+}, Cl^{-} + Na^{+}, OH^{-} —> Na^{+}, Cl^{-} + (H_{2}O).

It is not usually possible to realize this condition of exact neutrality, but it is possible to approach it with sufficient exactness for analytical purposes, since substances are known which, in solution, undergo a sharp change of color as soon as even a minute excess of H^{} or OH^{-} ions are present. Some, as will be seen, react sharply in the presence of H^{} ions, and others with OH^{-} ions. These substances employed as indicators are usually organic compounds of complex structure and are closely allied to the dyestuffs in character.

[Note 1: A knowledge on the part of the student of the ionic theory as applied to aqueous solutions of electrolytes is assumed. A brief outline of the more important applications of the theory is given in the Appendix.]

BEHAVIOR OF ORGANIC INDICATORS

The indicators in most common use for acid and alkali titrations are methyl orange, litmus, and phenolphthalein.

In the following discussion of the principles underlying the behavior of the indicators as a class, methyl orange and phenolphthalein will be taken as types. It has just been pointed out that indicators are bodies of complicated structure. In the case of the two indicators named, the changes which they undergo have been carefully studied by Stieglitz (!J. Am. Chem. Soc.!, 25, 1112) and others, and it appears that the changes involved are of two sorts: First, a rearrangement of the atoms within the molecule, such as often occurs in organic compounds; and, second, ionic changes. The intermolecular changes cannot appropriately be discussed here, as they involve a somewhat detailed knowledge of the classification and general behavior of organic compounds; they will, therefore, be merely alluded to, and only the ionic changes followed.

Methyl orange is a representative of the group of indicators which, in aqueous solutions, behave as weak bases. The yellow color which it imparts to solutions is ascribed to the presence of the undissociated base. If an acid, such as HCl, is added to such a solution, the acid reacts with the indicator (neutralizes it) and a salt is formed, as indicated by the equation:

(M.o.)^{+}, OH^{-} + H^{+}, Cl^{-} —> (M.o.)^{+} Cl^{-} + (H_{2}O).

This salt ionizes into (M.o.)^{+} (using this abbreviation for the positive complex) and Cl^{-}; but simultaneously with this ionization there appears to be an internal rearrangement of the atoms which results in the production of a cation which may be designated as (M'.o'.)^{+}, and it is this which imparts a characteristic red color to the solution. As these changes occur in the presence of even a very small excess of acid (that is, of H^{+} ions), it serves as the desired index of their presence in the solution. If, now, an alkali, such as NaOH, is added to this reddened solution, the reverse series of changes takes place. As soon as the free acid present is neutralized, the slightest excess of sodium hydroxide, acting as a strong base, sets free the weak, little-dissociated base of the indicator, and at the moment of its formation it reverts, because of the rearrangement of the atoms, to the yellow form:

OH^{-} + (M'.o'.)^{+} —> [M'.o'.OH] —> [M.o.OH].

Phenolphthalein, on the other hand, is a very weak, little-dissociated acid, which is colorless in neutral aqueous solution or in the presence of free H^{} ions. When an alkali is added to such a solution, even in slight excess, the anion of the salt which has formed from the acid of the indicator undergoes a rearrangement of the atoms, and a new ion, (Ph')^{}, is formed, which imparts a pink color to the solution:

H^{}, (Ph)^{-} + Na^{}, OH^{-} —> (H_{2}O) + Na^{}, (Ph)^{-} —> Na^{}, (Ph')^{-}

The addition of the slightest excess of an acid to this solution, on the other hand, occasions first the reversion to the colorless ion and then the setting free of the undissociated acid of the indicator:

H^{}, (Ph')^{-} —> H^{}, (Ph)^{-} —> (HPh).

Of the common indicators methyl orange is the most sensitive toward alkalies and phenolphthalein toward acids; the others occupy intermediate positions. That methyl orange should be most sensitive toward alkalies is evident from the following considerations: Methyl orange is a weak base and, therefore, but little dissociated. It should, then, be formed in the undissociated condition as soon as even a slight excess of OH^{-} ions is present in the solution, and there should be a prompt change from red to yellow as outlined above. On the other hand, it should be an unsatisfactory indicator for use with weak acids (acetic acid, for example) because the salts which it forms with such acids are, like all salts of that type, hydrolyzed to a considerable extent. This hydrolytic change is illustrated by the equation:

(M.o.)^{+} C{2}H{3}O{2}^{-} + H^{+}, OH^{-} —> [M.o.OH] + H^{+}, C{2}H{3}O{2}^{-}.

Comparison of this equation with that on page 30 will make it plain that hydrolysis is just the reverse of neutralization and must, accordingly, interfere with it. Salts of methyl orange with weak acids are so far hydrolyzed that the end-point is uncertain, and methyl orange cannot be used in the titration of such acids, while with the very weak acids, such as carbonic acid or hydrogen sulphide (hydrosulphuric acid), the salts formed with methyl orange are, in effect, completely hydrolyzed (i.e., no neutralization occurs), and methyl orange is accordingly scarcely affected by these acids. This explains its usefulness, as referred to later, for the titration of strong acids, such as hydrochloric acid, even in the presence of carbonates or sulphides in solution.

Phenolphthalein, on the other hand, should be, as it is, the best of the common indicators for use with weak acids. For, since it is itself a weak acid, it is very little dissociated, and its nearly undissociated, colorless molecules are promptly formed as soon as there is any free acid (that is, free H^{+} ions) in the solution. This indicator cannot, however, be successfully used with weak bases, even ammonium hydroxide; for, since it is weak acid, the salts which it forms with weak alkalies are easily hydrolyzed, and as a consequence of this hydrolysis the change of color is not sharp. This indicator can, however, be successfully used with strong bases, because the salts which it forms with such bases are much less hydrolyzed and because the excess of OH^{-} ions from these bases also diminishes the hydrolytic action of water.

This indicator is affected by even so weak an acid as carbonic acid, which must be removed by boiling the solution before titration. It is the indicator most generally employed for the titration of organic acids.

In general, it may be stated that when a strong acid, such as hydrochloric, sulphuric or nitric acid, is titrated against a strong base, such as sodium hydroxide, potassium hydroxide, or barium hydroxide, any of these indicators may be used, since very little hydrolysis ensues. It has been noted above that the color change does not occur exactly at theoretical neutrality, from which it follows that no two indicators will show exactly the same end-point when acids and alkalis are brought together. It is plain, therefore, that the same indicator must be employed for both standardization and analysis, and that, if this is done, accurate results are obtainable.

The following table (Note 1) illustrates the variations in the volume of an alkali solution (tenth-normal sodium hydroxide) required to produce an alkaline end-point when run into 10 cc. of tenth-normal sulphuric acid, diluted with 50 cc. of water, using five drops of each of the different indicator solutions.

==================================================================== INDICATOR N/10 N/10 COLOR IN ACID COLOR IN ALKA- H_{2}SO_{4} NaOH SOLUTION LINE SOLUTION ___ __ __ ___ ___ cc. cc. cc. Methyl orange 10 9.90 Red Yellow Lacmoid 10 10.00 Red Blue Litmus 10 10.00 Red Blue Rosalic acid 10 10.07 Yellow Pink Phenolphthalein 10 10.10 Colorless Pink ====================================================================

It should also be stated that there are occasionally secondary changes, other than those outlined above, which depend upon the temperature and concentration of the solutions in which the indicators are used. These changes may influence the sensitiveness of an indicator. It is important, therefore, to take pains to use approximately the same volume of solution when standardizing that is likely to be employed in analysis; and when it is necessary, as is often the case, to titrate the solution at boiling temperature, the standardization should take place under the same conditions. It is also obvious that since some acid or alkali is required to react with the indicator itself, the amount of indicator used should be uniform and not excessive. Usually a few drops of solution will suffice.

The foregoing statements with respect to the behavior of indicators present the subject in its simplest terms. Many substances other than those named may be employed, and they have been carefully studied to determine the exact concentration of H^{+} ions at which the color change of each occurs. It is thus possible to select an indicator for a particular purpose with considerable accuracy. As data of this nature do not belong in an introductory manual, reference is made to the following papers or books in which a more extended treatment of the subject may be found:

Washburn, E.W., Principles of Physical Chemistry (McGraw-Hill Book Co.), (Second Edition, 1921), pp. 380-387.

Prideaux, E.B.R., The Theory and Use of Indicators (Constable & Co., Ltd.), (1917).

Salm, E., A Study of Indicators, !Z. physik. Chem.!, 57 (1906), 471-501.

Stieglitz, J., Theories of Indicators, !J. Am. Chem. Soc.!, 25 (1903), 1112-1127.

Noyes, A.A., Quantitative Applications of the Theory of Indicators to Volumetric Analysis, !J. Am. Chem. Soc.!, 32 (1911), 815-861.

Bjerrum, N., General Discussion, !Z. Anal. Chem.!, 66 (1917), 13-28 and 81-95.

Ostwald, W., Colloid Chemistry of Indicators, !Z. Chem. Ind. Kolloide!, 10 (1912), 132-146.

[Note 1: Glaser, !Indikatoren der Acidimetrie und Alkalimetrie!. Wiesbaden, 1901.]

PREPARATION OF INDICATOR SOLUTIONS

A !methyl orange solution! for use as an indicator is commonly made by dissolving 0.05-0.1 gram of the compound (also known as Orange III) in a few cubic centimeters of alcohol and diluting with water to 100 cc. A good grade of material should be secured. It can be successfully used for the titration of hydrochloric, nitric, sulphuric, phosphoric, and sulphurous acids, and is particularly useful in the determination of bases, such as sodium, potassium, barium, calcium, and ammonium hydroxides, and even many of the weak organic bases. It can also be used for the determination, by titration with a standard solution of a strong acid, of the salts of very weak acids, such as carbonates, sulphides, arsenites, borates, and silicates, because the weak acids which are liberated do not affect the indicator, and the reddening of the solution does not take place until an excess of the strong acid is added. It should be used in cold, not too dilute, solutions. Its sensitiveness is lessened in the presence of considerable quantities of the salts of the alkalies.

A !phenolphthalein solution! is prepared by dissolving 1 gram of the pure compound in 100 cc. of 95 per cent alcohol. This indicator is particularly valuable in the determination of weak acids, especially organic acids. It cannot be used with weak bases, even ammonia. It is affected by carbonic acid, which must, therefore, be removed by boiling when other acids are to be measured. It can be used in hot solutions. Some care is necessary to keep the volume of the solutions to be titrated approximately uniform in standardization and in analysis, and this volume should not in general exceed 125-150 cc. for the best results, since the compounds formed by the indicator undergo changes in very dilute solution which lessen its sensitiveness.

The preparation of a !solution of litmus! which is suitable for use as an indicator involves the separation from the commercial litmus of azolithmine, the true coloring principle. Soluble litmus tablets are often obtainable, but the litmus as commonly supplied to the market is mixed with calcium carbonate or sulphate and compressed into lumps. To prepare a solution, these are powdered and treated two or three times with alcohol, which dissolves out certain constituents which cause a troublesome intermediate color if not removed. The alcohol is decanted and drained off, after which the litmus is extracted with hot water until exhausted. The solution is allowed to settle for some time, the clear liquid siphoned off, concentrated to one-third its volume and acetic acid added in slight excess. It is then concentrated to a sirup, and a large excess of 95 per cent. alcohol added to it. This precipitates the blue coloring matter, which is filtered off, washed with alcohol, and finally dissolved in a small volume of water and diluted until about three drops of the solution added to 50 cc. of water just produce a distinct color. This solution must be kept in an unstoppered bottle. It should be protected from dust by a loose plug of absorbent cotton. If kept in a closed bottle it soon undergoes a reduction and loses its color, which, however, is often restored by exposure to the air.

Litmus can be employed successfully with the strong acids and bases, and also with ammonium hydroxide, although the salts of the latter influence the indicator unfavorably if present in considerable concentration. It may be employed with some of the stronger organic acids, but the use of phenolphthalein is to be preferred.

PREPARATION OF STANDARD SOLUTIONS

!Hydrochloric Acid and Sodium Hydroxide. Approximate Strength!, 0.5 N

PROCEDURE.—Measure out 40 cc. of concentrated, pure hydrochloric acid into a clean liter bottle, and dilute with distilled water to an approximate volume of 1000 cc. Shake the solution vigorously for a full minute to insure uniformity. Be sure that the bottle is not too full to permit of a thorough mixing, since lack of care at this point will be the cause of much wasted time (Note 1).

Weigh out, upon a rough balance, 23 grams of sodium hydroxide (Note 2). Dissolve the hydroxide in water in a beaker. Pour the solution into a liter bottle and dilute, as above, to approximately 1000 cc. This bottle should preferably have a rubber stopper, as the hydroxide solution attacks the glass of the ground joint of a glass stopper, and may cement the stopper to the bottle. Shake the solution as described above.

[Note 1: The original solutions are prepared of a strength greater than 0.5 N, as they are more readily diluted than strengthened if later adjustment is desired.

Too much care cannot be taken to insure perfect uniformity of solutions before standardization, and thoroughness in this respect will, as stated, often avoid much waste of time. A solution once thoroughly mixed remains uniform.]

[Note 2: Commercial sodium hydroxide is usually impure and always contains more or less carbonate; an allowance is therefore made for this impurity by placing the weight taken at 23 grams per liter. If the hydroxide is known to be pure, a lesser amount (say 21 grams) will suffice.]

COMPARISON OF ACID AND ALKALI SOLUTIONS

PROCEDURE.—Rinse a previously calibrated burette three times with the hydrochloric acid solution, using 10 cc. each time, and allowing the liquid to run out through the tip to displace all water and air from that part of the burette. Then fill the burette with the acid solution. Carry out the same procedure with a second burette, using the sodium hydroxide solution.

The acid solution may be placed in a plain or in a glass-stoppered burette as may be more convenient, but the alkaline solution should never be allowed to remain long in a glass-stoppered burette, as it tends to cement the stopper to the burette, rendering it useless. It is preferable to use a plain burette for this solution.

When the burettes are ready for use and all air bubbles displaced from the tip (see Note 2, page 17) note the exact position of the liquid in each, and record the readings in the notebook. (Consult page 188.) Run out from the burette into a beaker about 40 cc. of the acid and add two drops of a solution of methyl orange; dilute the acid to about 80 cc. and run out alkali solution from the other burette, stirring constantly, until the pink has given place to a yellow. Wash down the sides of the beaker with a little distilled water if the solution has spattered upon them, return the beaker to the acid burette, and add acid to restore the pink; continue these alternations until the point is accurately fixed at which a single drop of either solutions served to produce a distinct change of color. Select as the final end-point the appearance of the faintest pink tinge which can be recognized, or the disappearance of this tinge, leaving a pure yellow; but always titrate to the same point (Note 1). If the titration has occupied more than the three minutes required for draining the sides of the burette, the final reading may be taken immediately and recorded in the notebook.

Refill the burettes and repeat the titration. From the records of calibration already obtained, correct the burette readings and make corrections for temperature, if necessary. Obtain the ratio of the sodium hydroxide solution to that of hydrochloric acid by dividing the number of cubic centimeters of acid used by the number of cubic centimeters of alkali required for neutralization. The check results of the two titrations should not vary by more than two parts in one thousand (Note 2). If the variation in results is greater than this, refill the burettes and repeat the titration until satisfactory values are obtained. Use a new page in the notebook for each titration. Inaccurate values should not be erased or discarded. They should be retained and marked "correct" or "incorrect," as indicated by the final outcome of the titrations. This custom should be rigidly followed in all analytical work.

[Note 1: The end-point should be chosen exactly at the point of change; any darker tint is unsatisfactory, since it is impossible to carry shades of color in the memory and to duplicate them from day to day.]

[Note 2: While variation of two parts in one thousand in the values obtained by an inexperienced analyst is not excessive, the idea must be carefully avoided that this is a standard for accurate work to be !generally applied!. In many cases, after experience is gained, the allowable error is less than this proportion. In a few cases a larger variation is permissible, but these are rare and can only be recognized by an experienced analyst. It is essential that the beginner should acquire at least the degree of accuracy indicated if he is to become a successful analyst.]



STANDARDIZATION OF HYDROCHLORIC ACID

SELECTION AND PREPARATION OF STANDARD

The selection of the best substance to be used as a standard for acid solutions has been the subject of much controversy. The work of Lunge (!Ztschr. angew. Chem.! (1904), 8, 231), Ferguson (!J. Soc. Chem. Ind.! (1905), 24, 784), and others, seems to indicate that the best standard is sodium carbonate prepared from sodium bicarbonate by heating the latter at temperature between 270 deg. and 300 deg.C. The bicarbonate is easily prepared in a pure state, and at the temperatures named the decomposition takes place according to the equation

2HNaCO_{3} —> Na_{2}CO_{3} + H_{2}O + CO_{2}

and without loss of any carbon dioxide from the sodium carbonate, such as may occur at higher temperatures. The process is carried out as described below.

PROCEDURE.—Place in a porcelain crucible about 6 grams (roughly weighed) of the purest sodium bicarbonate obtainable. Rest the crucible upon a triangle of iron or copper wire so placed within a large crucible that there is an open air space of about three eighths of an inch between them. The larger crucible may be of iron, nickel or porcelain, as may be most convenient. Insert the bulb of a thermometer reading to 350 deg.C. in the bicarbonate, supporting it with a clamp so that the bulb does not rest on the bottom of the crucible. Heat the outside crucible, using a rather small flame, and raise the temperature of the bicarbonate fairly rapidly to 270 deg.C. Then regulate the heat in such a way that the temperature rises !slowly! to 300 deg.C. in the course of a half-hour. The bicarbonate should be frequently stirred with a clean, dry, glass rod, and after stirring, should be heaped up around the bulb of the thermometer in such a way as to cover it. This will require attention during most of the heating, as the temperature should not be permitted to rise above 310 deg.C. for any length of time. At the end of the half-hour remove the thermometer and transfer the porcelain crucible, which now contains sodium carbonate, to a desiccator. When it is cold, transfer the carbonate to a stoppered weighing tube or weighing-bottle.

STANDARDIZATION

PROCEDURE.—Clean carefully the outside of a weighing-tube, or weighing-bottle, containing the pure sodium carbonate, taking care to handle it as little as possible after wiping. Weigh the tube accurately to 0.0001 gram, and record the weight in the notebook. Hold the tube over the top of a beaker (200-300 cc.) and cautiously remove the stopper, making sure that no particles fall from it or from the tube elsewhere than in the beaker. Pour out from the tube a portion of the carbonate, replace the stopper and determine approximately how much has been removed. Continue this procedure until 1.00 to 1.10 grams has been taken from the tube. Then weigh the tube accurately and record the weight under the first weight in the notebook. The difference in the two weights is the weight of the carbonate transferred to the beaker. Proceed in the same way to transfer a second portion of the carbonate from the tube to another beaker of about the same size as the first. The beakers should be labeled and plainly marked to correspond with the entries in the notebook.

Pour over the carbonate in each beaker about 80 cc. of water, stir until solution is complete, and add two drops of methyl orange solution. Fill the burettes with the standard acid and alkali solutions, noting the initial readings of the burettes and temperature of the solutions. Run in acid from the burette, stirring and avoiding loss by effervescence, until the solution has become pink. Wash down the sides of the beaker with a !little! water from a wash-bottle, and then run in alkali from the other burette until the pink is replaced by yellow; then finish the titration as described on page 37. Note the readings of the burettes after the proper interval, and record them in the notebook. Repeat the procedure, using the second portion of sodium carbonate. Apply the necessary calibration corrections to the volumes of the solutions used, and correct for temperature if necessary.

From the data obtained, calculate the volume of the hydrochloric acid solution which is equivalent to the volume of sodium hydroxide solution used in this titration. Subtract this volume from the volume of hydrochloric acid. The difference represents the volume of acid used to react with the sodium carbonate. Divide the weight of sodium carbonate by this volume in cubic centimeters, thus obtaining the weight of sodium carbonate equivalent to each cubic centimeter of the acid.

From this weight it is possible to calculate the corresponding weight of HCl in each cubic centimeter of the acid, and in turn the relation of the acid to the normal.

If, however, it is recalled that normal solutions are equivalent to each other, it will be seen that the same result may be more readily reached by dividing the weight in grams of sodium carbonate per cubic centimeter just found by titration by the weight which would be contained in the same volume of a normal solution of sodium carbonate. A normal solution of sodium carbonate contains 53.0 grams per liter, or 0.0530 gram per cc. (see page 29). The relation of the acid solution to the normal is, therefore, calculated by dividing the weight of the carbonate to which each cubic centimeter of the acid is equivalent by 0.0530. The standardization must be repeated until the values obtained agree within, at most, two parts in one thousand.

When the standard of the acid solution has been determined, calculate, from the known ratio of the two solutions, the relation of the sodium hydroxide solution to a normal solution (Notes 1 and 2).

[Note 1: In the foregoing procedure the acid solution is standardized and the alkali solution referred to this standard by calculation. It is equally possible, if preferred, to standardize the alkali solution. The standards in a common use for this purpose are purified oxalic acid (H_{2}C_{2}O_{4}.2H_{2}O), potassium acid oxalate (KHC_{2}O_{4}.H_{2}O or KHC_{2}O_{4}), potassium tetroxalate (KHC_{2}O_{4}.H_{2}C_{2}O_{4}.2H_{2}O), or potassium acid tartrate (KHC_{4}O_{6}), with the use of a suitable indicator. The oxalic acid and the oxalates should be specially prepared to insure purity, the main difficulty lying in the preservation of the water of crystallization.

It should be noted that the acid oxalate and the acid tartrate each contain one hydrogen atom replaceable by a base, while the tetroxalate contains three such atoms and the oxalic acid two. Each of the two salts first named behave, therefore, as monobasic acids, and the tetroxalate as a tribasic acid.]

[Note 2: It is also possible to standardize a hydrochloric acid solution by precipitating the chloride ions as silver chloride and weighing the precipitate, as prescribed under the analysis of sodium chloride to be described later. Sulphuric acid solutions may be standardized by precipitation of the sulphate ions as barium sulphate and weighing the ignited precipitate, but the results are not above criticism on account of the difficulty in obtaining large precipitates of barium sulphate which are uncontaminated by inclosures or are not reduced on ignition.]



DETERMINATION OF THE TOTAL ALKALINE STRENGTH OF SODA ASH

Soda ash is crude sodium carbonate. If made by the ammonia process it may contain also sodium chloride, sulphate, and hydroxide; when made by the Le Blanc process it may contain sodium sulphide, silicate, and aluminate, and other impurities. Some of these, notably the hydroxide, combine with acids and contribute to the total alkaline strength, but it is customary to calculate this strength in terms of sodium carbonate; i.e., as though no other alkali were present.

PROCEDURE.—In order to secure a sample which shall represent the average value of the ash, it is well to take at least 5 grams. As this is too large a quantity for convenient titration, an aliquot portion of the solution is measured off, representing one fifth of the entire quantity. This is accomplished as follows: Weigh out on an analytical balance two samples of soda ash of about 5 grams each into beakers of about 500 cc. capacity. (The weighings need be made to centigrams only.) Dissolve the ash in 75 cc. of water, warming gently, and filter off the insoluble residue; wash the filter by filling it at least three times with distilled water, and allowing it to drain, adding the washings to the main filtrate. Cool the filtrate to approximately the standard temperature of the laboratory, and transfer it to a 250 cc. measuring flask, washing out the beaker thoroughly. Add distilled water of laboratory temperature until the lowest point of the meniscus is level with the graduation on the neck of the flask and remove any drops of water that may be on the neck above the graduation by means of a strip of filter paper; make the solution thoroughly uniform by pouring it out into a dry beaker and back into the flask several times. Measure off 50 cc. of the solution in a measuring flask, or pipette, either of which before use should, unless they are dry on the inside, be rinsed out with at least two small portions of the soda ash solution to displace any water.

If a flask is used, fill it to the graduation with the soda ash solution and remove any liquid from the neck above the graduation with filter paper. Empty it into a beaker, and wash out the small flask, unless it is graduated for !delivery!, using small quantities of water, which are added to the liquid in the beaker. A second 50 cc. portion from the main solution should be measured off into a second beaker. Dilute the solutions in each beaker to 100 cc., add two drops of a solution of methyl orange (Note 1) and titrate for the alkali with the standard hydrochloric acid solution, using the alkali solution to complete the titration as already prescribed.

From the volumes of acid and alkali employed, corrected for burette errors and temperature changes, and the data derived from the standardization, calculate the percentage of alkali present, assuming it all to be present as sodium carbonate (Note 2).

[Note 1: The hydrochloric acid sets free carbonic acid which is unstable and breaks down into water and carbon dioxide, most of which escapes from the solution. Carbonic acid is a weak acid and, as such, does not yield a sufficient concentration of H^{+} ions to cause the indicator to change to a pink (see page 32).

1  2  3  4  5     Next Part
Home - Random Browse