p-books.com
Aircraft and Submarines - The Story of the Invention, Development, and Present-Day - Uses of War's Newest Weapons
by Willis J. Abbot
Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse

The Holland No. 9 was built at Lewis Nixon's shipyards at Elizabethport, New Jersey, and was launched early in 1898, just previous to the outbreak of the Spanish-American War. Although numerous requests were made to the United States Government by her inventor and builder, John P. Holland, for permission to take her into Santiago harbour in an attempt to torpedo Cervera's fleet, the navy authorities at Washington refused this permission. Why? Presumably through navy hostility to the submarine idea. When the Monitor whipped the Merrimac in 1862 the former ship belonged to her inventor, not to the United States Government. It would have been interesting had Holland at his own expense destroyed the Spanish ships.

John P. Holland at the time when he achieved his success was fifty-eight years old, Irish by birth and an early immigrant to the United States. He had been deeply interested for many years in mechanical problems and especially in those connected with navigation. The change from the old wooden battleships to the new ironclads and the rapidly increasing development of steam-engines acted as a strong stimulus to the young Irishman's experiments. It is claimed that his interest in submarine navigation was due primarily to his desire to find a weapon strong enough to destroy or at least dominate the British navy; for at that time Holland was strongly anti-British, because he, like many other educated Irishmen of that period, desired before everything else to free Ireland. His plans for doing this by supplying to the proposed Irish Republic a means for overcoming the British navy found little support and a great deal of ridicule on the part of his Irish friends. In spite of this he kept on with his work and in 1875 he built and launched his first submarine boat at Paterson. This boat was far from being very revolutionary. She was only sixteen feet long and two feet in diameter, shaped like a cigar but with both ends sharply pointed. In many respects except in appearance she was similar to Bushnell's Turtle. Room for only one operator was provided and the latter was to turn the propeller by means of pedals to be worked by his feet. She accomplished little beyond giving an opportunity to her inventor and builder to gather experience in actual underwater navigation.

Two years later in 1877 the Holland No. 2 was built. In spite of the number of improvements represented by her she was not particularly successful. Her double hull, it is true, provided space for carrying water ballast. But the leaks from this ballast tank continuously threatened to drown the navigator sitting inside of the second hull. A small oil engine of four horse-power was soon discarded on account of its inefficiency.

The experience gathered by Holland in building and navigating these two boats strengthened his determination to build a thoroughly successful submarine and increased his faith in his ability to do so. He opened negotiations with the Fenian Brotherhood. This was a secret society founded for the purpose of freeing Ireland from British rule and creating an Irish Republic. Holland finally succeeded in persuading his Fenian friends to order from him two submarine boats and to supply him with the necessary means to build them. Both of these boats were built. The lack of success of the first one was due primarily to the inefficiency of her engine. The second boat which was really the Holland No. 4 was built in 1881. It is usually known as the Fenian Ram, and is still in existence at New Haven, Connecticut, where a series of financial and political complications finally landed her.

These two boats added vastly to Holland's knowledge concerning submarine navigation. A few others which he built with his own means increased this fund of knowledge and step by step he came nearer to his goal. By 1888 his reputation as a submarine engineer and navigator had grown to such an extent that Holland was asked by the famous Philadelphia shipbuilders, the Cramps, to submit to them designs for a submarine boat to be built by the United States Government. Only one other design was submitted and this was by the Scandinavian, Nordenfeldt.

William C. Whitney, then Secretary of the United States Navy, accepted Holland's design. Month after month passed by wasted by the usual governmental red tape, and when all preliminary arrangements had been made and the contract for the actual building of an experimental boat was to be drawn up, a sudden change in the administration resulted in the dropping of the entire plan.

Holland's faith in the future submarine and in his own ability was still unshaken, but this was not the case with his financial condition. None of the boats he had built so far had brought him any profits and on some he had lost everything that he had put into them. His financial support, for which he relied entirely upon relatives and friends, was practically exhausted. But fortunately on March 3, 1893, Congress appropriated a sum of money to defray the expenses of constructing an experimental submarine. Invitations to inventors were extended. So precarious was Holland's financial condition at that time that he found it necessary to borrow the small sum of money involved in making plans which he had to submit. It is claimed that he succeeded in doing this in a manner highly typical of his thoroughness.

He needed only about $350.00 but even this comparatively small sum was more than he had. However, he happened to be lunching with a young lawyer just about this time and began to tell him about his financial difficulties. Holland told him that if he only had $347.19 he could prepare the plans and pay the necessary fees. And that done, he was sure of being able to win the competition. His lawyer friend, of course, had been approached before by other people for loans. Invariably they had asked him for some round sum and Holland's request for $347.19 when he might just as well have asked for $350.00 aroused his interest. He asked the inventor what the nineteen cents were to be used for. Quick as a flash he was told that they were needed to pay for a particular type of ruler necessary to draw the required plans. So impressed was the lawyer with Holland's accuracy and honesty in asking not a cent more than he actually needed that he at once advanced the money. And a good investment it turned out to be. For in exchange he received a good-sized block of stock in the Holland Torpedo Boat Company which in later years made him a multi-millionaire.

Holland's plans did win the competition just as he asserted that they would; but, of course, winning a prize, offered by a government, and getting that government to do something about it, are two different matters. So two years went by before the Holland Torpedo Boat Company at last was able to start with the construction of the new submarine which was to be called the Plunger.

The principal feature of this new boat was that it was to have a steam engine for surface navigation and an electric motor for underwater navigation. This arrangement was not so much a new invention of Holland's as an adaptation of ideas which had been promulgated by others. Especially indebted was he in this respect to Commander Hovgaard of the Danish navy who, in 1887, had published an important book on the subject of double propulsion in submarines. Though Holland had made many improvements on these earlier theories, he soon found out that even at that there was going to be serious trouble with the Plunger's engines. The boat had been launched in 1897; but instead of finishing it, he persuaded the government to permit his company to build a new boat, and to return to the government all the money so far expended on the Plunger.

The new boat, Holland No. 8, was started immediately and completed in record time but she, too, was unsatisfactory to the inventor. So without loss of time he went ahead and built another boat, the Holland No. 9, which, as we have said, became the first United States submarine.

Two other men submitted plans for submarine boats in the competition which was won by the Holland boat, George C. Baker and Simon Lake. Neither of these was accepted. Mr. Baker made no further efforts to find out if his plans would result in a practicable submarine boat. But Simon Lake was not so easily discouraged.

It is very interesting that the United States Navy Department at that time demanded that plans submitted for this competition should meet the following specifications:

1. Safety. 2. Facility and certainty of action when submerged. 3. Speed when running on the surface. 4. Speed when submerged. 5. Endurance, both submerged and on the surface. 6. Stability. 7. Visibility of object to be attacked.

In spite of the many years that have passed since this competition and in spite of the tremendous progress that has been made in submarine construction these are still the essential requirements necessary to make a successful submarine boat.

The designs submitted by Mr. Lake provided for a twin-screw vessel, 80 feet long, 10 feet beam, and 115 tons displacement, with 400 horse-power steam engines for surface propulsion and 70 horse-power motors for submerged work. The boat was to have a double hull, the spaces between the inner and the outer hulls forming water ballast tanks. There were to be four torpedo tubes, two forward and two aft.

In an article published in 1915 in International Marine Engineering, Mr. Lake says about his 1893 design:

The new and novel feature which attracted the most attention and skepticism regarding this design was (the author was later informed by a member of the board) the claim made that the vessel could readily navigate over the waterbed itself, and that while navigating on the waterbed a door could be opened in the bottom of a compartment and the water kept from entering the vessel by means of compressed air, and that the crew could, by donning diving suits, readily leave and enter the vessel while submerged. Another novel feature was in the method of controlling the depth of submergence when navigating between the surface and waterbed. The vessel was designed to always submerge and navigate on a level keel rather than to be inclined down or up by the back, to "dive" or "rise." This maintenance of a level keel while submerged was provided for by the installation of four depth regulating vanes which I later termed "hydroplanes" to distinguish them from the forward and aft levelling vanes or horizontal rudders. These hydroplanes were located at equal distances forward and aft of the center of gravity and buoyancy of the vessel when in the submerged condition, so as not to disturb the vessel when the planes were inclined down or up to cause the vessel to submerge or rise when under way.

I also used, in conjunction with the hydroplanes, horizontal rudders which I then called "levelling vanes," as their purpose was just the opposite from that of the horizontal rudder used in the diving type of vessel. They were operated by a pendulum controlling device to be inclined so as to always maintain the vessel on a level keel rather than to cause her to depart therefrom. When I came to try this combination out in practice, I found hand control of the horizontal rudders was sufficient. If vessels with this system of control have a sufficient amount of stability, you will run for hours and automatically maintain both a constant depth and a level keel, without the depth control man touching either the hydroplane or horizontal rudder control gear. This automatic maintenance of depth without manipulating the hydroplanes or rudders was a performance not anticipated, nor claimed in my original patent on the above-mentioned combination, and what caused these vessels to function in this manner remained a mystery, which was unsolved until I built a model tank in 1905 in Berlin, Germany, and conducted a series of experiments on models of submarines. I then learned that a down pull of a hydroplane at a given degree of inclination varied according to its depth of submergence and that the deeper the submergence, the less the down pull. This works out to give automatic trim on a substantially level keel, and I have known of vessels running for a period of two hours without variation of depth of one foot and without once changing the inclination of either the hydroplanes or the horizontal rudder.

A great deal of skepticism was displayed for many years towards this new system of controlling the depth of submergence. But in recent years all the latest submarine boats have been built on this plan.

Who, then, was this mechanical genius who was responsible for these far-going changes in submarine construction? Simon Lake was born at Pleasantville, New Jersey, September 4, 1866. He was educated at Clinton Liberal Institute, Fort Plain, New York, and Franklin Institute, Philadelphia. Early in life he displayed a marked interest in and genius for mechanical problems. His lack of success in the 1893 competition only spurred him on to further efforts. As long as the United States Government was unwilling to assist him in building his submarine boat, there was nothing left for him except to build it from his own means. In 1894, therefore, he set to work on an experimental boat, called the Argonaut, Jr. According to Mr. Lake's description as published in International Marine Engineering in a series of articles from his pen the Argonaut, Jr., was

provided with three wheels, two on either side forward and one aft, the latter acting as a steering wheel. When on the bottom the wheels were rotated by hand by one or two men inside the boat. Her displacement was about seven tons, yet she could be propelled at a moderate walking gait when on the bottom. She was also fitted with an air lock and diver's compartment, so arranged that by putting an air pressure on the diver's compartment equal to the water pressure outside, a bottom door could be opened and no water would come into the vessel. Then by putting on a pair of rubber boots the operator could walk around on the sea bottom and push the boat along with him and pick up objects, such as clams, oysters, etc. from the sea bottom.

So much interest was aroused by this little wooden boat that Mr. Lake was enabled to finance the building of a larger boat, called the Argonaut. It was designed in 1895 and built in 1897 at Baltimore.

Concerning the Argonaut Mr. Lake says in the same article:

The Argonaut as originally built was 36 feet long and 9 feet in diameter. She was the first submarine to be fitted with an internal-combustion engine. She was propelled with a thirty horse-power gasoline (petrol) engine driving a screw propeller. She was fitted with two toothed driving wheels forward which were revolved by suitable gearing when navigating on the waterbed, or they could be disconnected from this gearing and permitted to revolve freely, propulsion being secured by the screw propeller. A wheel in the rudder enabled her to be steered in any direction when on the bottom. She also had a diving compartment to enable divers to leave or enter the vessel when submerged, to operate on wrecks or to permit inspection of the bottom or to recover shellfish. She also had a lookout compartment in the extreme bow, with a powerful searchlight to light up a pathway in front of her as she moved along over the waterbed. This searchlight I later found of little value except for night work in clear water. In clear water the sunlight would permit of as good vision without the use of the light as with it, while if the water was not clear, no amount of light would permit of vision through it for any considerable distance.

In January, 1898 [says Mr. Lake], while the Argonaut was submerged, telephone conversation was held from submerged stations with Baltimore, Washington, and New York.

In 1898, also, the Argonaut made the trip from Norfolk to New York under her own power and unescorted. In her original form she was a cigar-shaped craft with only a small percentage of reserve buoyancy in her surface cruising condition. We were caught out in the severe November northeast storm of 1898 in which over 200 vessels were lost and we did not succeed in reaching a harbour in the "horseshoe" back of Sandy Hook until, of course, in the morning. The seas were so rough they would break over her conning tower in such masses I was obliged to lash myself fast to prevent being swept overboard. It was freezing weather and I was soaked and covered with ice on reaching harbour.

This experience caused me to apply to the Argonaut a further improvement for which I had already applied for a patent. This was, doubled around the usual pressure resisting body of a submarine, a ship-shape form of light plating which would give greater seaworthiness, better surface speed, and make the vessel more habitable for surface navigation. It would, in other words, make a "sea-going submarine," which the usual form of cigar-shaped vessel was not, as it would not have sufficient surface buoyancy to enable it to rise with the seas and the seas would sweep over it as they would sweep over a partly submerged rock.

The Argonaut was, therefore, taken to Brooklyn, twenty feet added to her length, and a light water-tight buoyancy superstructure of ship-shape form added. This superstructure was opened to the sea when it was desired to submerge the vessel, and water was permitted to enter the space between the light plating of the ship-shaped form and the heavy plating of the pressure resisting hull. This equalized pressure on the light plates and prevented their becoming deformed due to pressure. The superstructure increased her reserve of buoyancy in the surface cruising condition from about 10 per cent. to over 40 per cent. and lifted right up to the seas like any ordinary type of surface vessel, instead of being buried by them in rough weather.

This feature of construction has been adopted by the Germans, Italians, Russians, and in all the latest types of French boats. It is the principal feature which distinguishes them in their surface appearance from the earlier cigar-shaped boats of the diving type. This ship-shaped form of hull is only suited to the level keel submergence.

In those days submarine boats were a much more unusual sight than they are to-day and simple fishermen who had never read or heard about submarines undoubtedly experienced disturbing sensations when they ran across their first underwater boat. Mr. Lake, a short time ago, while addressing a meeting of electrical engineers in Brooklyn, told the following experience which he had on one of his trips in the Argonaut:

On the first trip down the Chesapeake Bay, we had been running along in forty feet of water and had been down about four hours. Night was coming on, so we decided to come up to find out where we were. I noticed one of those Chesapeake "Bug Eyes" lighting just to leeward of us, and, as I opened the conning tower hatch, called to the men aboard to find out where we were. As soon as I did so, he turned his boat around and made straight for the beach. I thought he was rather discourteous. He ran his boat up on that beach and never stopped; the last I saw of him was when he jumped ashore and started to run inland as hard as he and his helper could go. Finally I learned we were just above the mouth of the York or Rappahannock River and I found a sort of inland harbour back of it. I decided to put up there for the night. Then learning that there was a store nearby, we called after dark for more provisions and I noticed a large crowd there. We got what we wanted, and stepped outside the door. He asked us where we were from. "We are down here in the submarine boat, Argonaut, making an experimental trip down the bay." He then commenced to laugh. "That explains it," he said; "just before nightfall, Captain So-and-So and his mate came running up here to the store just as hard as they could, and both dropped down exhausted, and when we were able to get anything out of them, they told a very strange story. That's why all these people are here." This is the story the storekeeper told me: "The men were out dredging and all at once they noticed a buoy with a red flag on it, and that buoy was going against the tide, and they could not understand it. It came up alongside, and they heard a 'puff, puff,' something like a locomotive puffing, and then they smelt sulphur." (The "puff, puff" was the exhaust of our engine and those fumes were what they thought was sulphur.) "Just then the thing rose up out of the water, then the smokestack appeared, and then the devil came right out of that smokestack."

In the January, 1899, issue of McClure's Magazine there appeared a profusely illustrated article entitled "Voyaging under the Sea." The first part of it, "The Submarine Boat Argonaut and her Achievements," was written by Simon Lake himself. In it he quotes as follows from the log book of the Argonaut under date of July 28, 1898.

Submerged at 8.20 A. M. in about thirty feet of water. Temperature in living compartment, eighty-three degrees Fahrenheit. Compass bearing west-north-west, one quarter west. Quite a lively sea running on the surface, also strong current. At 10.45 A. M. shut down engine; temperature, eighty-eight degrees Fahrenheit.

After engine was shut down, we could hear the wind blowing past our pipes extending above the surface; we could also tell by the sound when any steamers were in the vicinity. We first allowed the boat to settle gradually to the bottom, with the tide running ebb; after a time the tide changed, and she would work slightly sideways; we admitted about four hundred pounds of water additional, but she still would move occasionally, so that a pendulum nine inches long would sway one eighth of an inch (thwartship). At 12 o'clock (noon) temperature was eighty-seven degrees Fahrenheit; at 2.45 P. M. the temperature was still eighty-seven degrees Fahrenheit. There were no signs of carbonic acid gas at 2.45, although the engine had been closed down for three hours and no fresh air had been admitted during the time. Could hear the whistle of boats on the surface, and also their propellers when running close, to the boat. At 3.30 the temperature had dropped to eighty-five degrees. At 3.45 found a little sign of carbonic acid gas, very slight, however, as a candle would burn fairly bright in the pits. Thought we could detect a smell of gasoline by comparing the fresh air which came down the pipe (when hand blower was turned). Storage lamps were burning during the five hours of submergence, while engine was not running.

At 3.50 engine was again started, and went off nicely. Went into diving compartment and opened door; came out through air-lock, and left pressure there; found the wheels had buried about ten inches or one foot, as the bottom had several inches of mud. We had 500 pounds of air in the tanks, and it ran the pressure down to 250 pounds to open the door in about thirty feet.

The temperature fell in the diving compartment to eighty-two degrees after the compressed air was let in.

Cooked clam fritters and coffee for supper. The spirits of the crew appeared to improve the longer we remained below; the time was spent in catching clams, singing, trying to waltz, playing cards, and writing letters to wives and sweethearts.

Our only visitors during the day were a couple of black bass that came and looked in at the windows with a great deal of apparent interest.

In future boats, it will be well to provide a smoking compartment, as most of the crew had their smoking apparatus all ready as soon as we came up.

Started pumps at 6.20, and arrived at the surface at 6.30. Down altogether ten hours and fifteen minutes. People on pilot boat Calvert thought we were all hands drowned.

The second part of this article was called "A Voyage on the Bottom of the Sea." It was written by Ray Stannard Baker, who had been fortunate enough to receive an invitation from Mr. Lake to accompany him on one of the trips of the Argonaut. Any one who has read Jules Verne's fascinating story Twenty Thousand Leagues under the Sea must be struck immediately with the similarity between Mr. Baker's experiences and those of Captain Nemo's guests. It is not at all surprising, therefore, to have Mr. Baker tell us that during this trip Mr. Lake told him:

"When I was ten years old, I read Jules Verne's Twenty Thousand Leagues under the Sea, and I have been working on submarine boats ever since."

Mr. Baker's record of what he saw and how he felt is not only a credit to his keen powers of observation, but also a proof of the fact that, in many ways, there was little difference between the Argonaut of 1898 and the most up-to-date submarine of to-day. In part he says:

Simon Lake planned an excursion on the bottom of the sea for October 12, 1898. His strange amphibian craft, the Argonaut, about which we had been hearing so many marvels, lay off the pier at Atlantic Highlands. Before we were near enough to make out her hulk, we saw a great black letter A, framed of heavy gas-pipe, rising forty feet above the water. A flag rippled from its summit. As we drew nearer, we discovered that there really wasn't any hulk to make out—only a small oblong deck shouldering deep in the water and supporting a slightly higher platform, from which rose what seemed to be a squatty funnel. A moment later we saw that the funnel was provided with a cap somewhat resembling a tall silk hat, the crown of which was represented by a brass binnacle. This cap was tilted back, and as we ran alongside, a man stuck his head up over the rim and sang out, "Ahoy there!"

A considerable sea was running, but I observed that the Argonaut was planted as firmly in the water as a stone pillar, the big waves splitting over her without imparting any perceptible motion.

We scrambled up on the little platform, and peered down through the open conning-tower, which we had taken for a funnel, into the depths of the ship below. Wilson had started his gasoline engine.

Mr. Lake had taken his place at the wheel, and we were going ahead slowly, steering straight across the bay toward Sandy Hook and deeper water. The Argonaut makes about five knots an hour on the surface, but when she gets deep down on the sea bottom, where she belongs, she can spin along more rapidly.

The Argonaut was slowly sinking under the water. We became momentarily more impressed with the extreme smallness of the craft to which we were trusting our lives. The little platform around the conning-tower on which we stood—in reality the top of the gasoline tank—was scarcely a half dozen feet across, and the Argonaut herself was only thirty-six feet long. Her sides had already faded out of sight, but not before we had seen how solidly they were built—all of steel, riveted and reinforced, so that the wonder grew how such a tremendous weight, when submerged, could ever again be raised.

I think we made some inquiries about the safety of submarine boats in general. Other water compartments had been flooded, and we had settled so far down that the waves dashed repeatedly over the platform on which we stood—and the conning-tower was still wide open, inviting a sudden engulfing rush of water. "You mustn't confuse the Argonaut with ordinary submarine boats," said Mr. Lake. "She is quite different and much safer."



He explained that the Argonaut was not only a submarine boat, but much besides. She not only swims either on the surface or beneath it, but she adds to this accomplishment the extraordinary power of diving deep and rolling along the bottom of the sea on wheels. No machine ever before did that. Indeed, the Argonaut is more properly a "sea motorcycle" than a "boat." In its invention Mr. Lake elaborated an idea which the United States Patent Office has decided to be absolutely original.



We found ourselves in a long, narrow compartment, dimly illuminated by yellowish-green light from the little round, glass windows. The stern was filled with Wilson's gasoline engine and the electric motor, and in front of us toward the bow we could see through the heavy steel doorways of the diver's compartment into the lookout room, where there was a single round eye of light.

I climbed up the ladder of the conning-tower and looked out through one of the glass ports. My eyes were just even with the surface of the water. A wave came driving and foaming entirely over the top of the vessel, and I could see the curiously beautiful sheen of the bright summit of the water above us. It was a most impressive sight. Mr. Lake told me that in very clear water it was difficult to tell just where the air left off and the water began; but in the muddy bay where we were going down the surface looked like a peculiarly clear, greenish pane of glass moving straight up and down, not forward, as the waves appear to move when looked at from above.

Now we were entirely under water. The rippling noises that the waves had made in beating against the upper structure of the boat had ceased. As I looked through the thick glass port, the water was only three inches from my eyes, and I could see thousands of dainty, semi-translucent jellyfish floating about as lightly as thistledown. They gathered in the eddy behind the conning-tower in great numbers, bumping up sociably against one another and darting up and down with each gentle movement of the water. And I realized that we were in the domain of the fishes.

Jim brought the government chart, and Mr. Lake announced that we were heading directly for Sandy Hook and the open ocean. But we had not yet reached the bottom, and John was busily opening valves and letting in more water. I went forward to the little steel cuddy-hole in the extreme prow of the boat, and looked out through the watch-port. The water had grown denser and yellower, and I could not see much beyond the dim outlines of the ship's spar reaching out forward. Jim said that he had often seen fishes come swimming up wonderingly to gaze into the port. They would remain quite motionless until he stirred his head, and then they vanished instantly. Mr. Lake has a remarkable photograph which he took of a visiting fish, and Wilson tells of nurturing a queer flat crab for days in the crevice of one of the view-holes.

At that moment, I felt a faint jolt, and Mr. Lake said that we were on the bottom of the sea.

Here we were running as comfortably along the bottom of Sandy Hook Bay as we would ride in a Broadway car, and with quite as much safety. Wilson, who was of a musical turn, was whistling Down Went McGinty, and Mr. Lake, with his hands on the pilot-wheel, put in an occasional word about his marvellous invention. On the wall opposite there was a row of dials which told automatically every fact about our condition that the most nervous of men could wish to know. One of them shows the pressure of air in the main compartment of the boat, another registers vacuum, and when both are at zero, Mr. Lake knows that the pressure of the air is normal, the same as it is on the surface, and he tries to maintain it in this condition. There are also a cyclometer, not unlike those used on bicycles, to show how far the boat travels on the wheels; a depth gauge, which keeps us accurately informed as to the depth of the boat in the water, and a declension indicator. By the long finger of the declension dial we could tell whether we were going up hill or down. Once while we were out, there was a sudden, sharp shock, the pointer leaped back, and then quivered steady again. Mr. Lake said that we had probably struck a bit of wreckage or an embankment, but the Argonaut was running so lightly that she had leaped up jauntily and slid over the obstruction.

We had been keeping our eyes on the depth dial, the most fascinating and interesting of any of the number. It showed that we were going down, down, down, literally down to the sea in a ship. When we had been submerged far more than an hour, and there was thirty feet of yellowish green ocean over our heads, Mr. Lake suddenly ordered the machinery stopped. The clacking noises of the dynamo ceased, and the electric lights blinked out, leaving us at once in almost absolute darkness and silence. Before this, we had found it hard to realize that we were on the bottom of the ocean; now it came upon us suddenly and not without a touch of awe. This absence of sound and light, this unchanging motionlessness and coolness, this absolute negation—that was the bottom of the sea. It lasted only a moment, but in that moment we realized acutely the meaning and joy of sunshine and moving winds, trees, and the world of men.

A minute light twinkled out like a star, and then another and another, until the boat was bright again, and we knew that among the other wonders of this most astonishing of inventions there was storage electricity which would keep the boat illuminated for hours, without so much as a single turn of the dynamo. With the stopping of the engine, the air supply from above had ceased; but Mr. Lake laid his hand on the steel wall above us, where he said there was enough air compressed to last us all for two days, should anything happen. The possibility of "something happening" had been lurking in our minds ever since we started. "What if your engine should break down, so that you couldn't pump the water out of the water compartments?" I asked. "Here we have hand-pumps," said Mr. Lake promptly; "and if those failed, a single touch of this lever would release our iron keel, which weighs 4000 pounds, and up we would go like a rocket."

I questioned further, only to find that every imaginable contingency, and some that were not at all imaginable to the uninitiated, had been absolutely provided against by the genius of the inventor. And everything from the gasoline engine to the hand-pump was as compact and ingenious as the mechanism of a watch. Moreover, the boat was not crowded; we had plenty of room to move around and to sleep, if we wished, to say nothing of eating. As for eating, John had brought out the kerosene stove and was making coffee, while Jim cut the pumpkin pie. "This isn't Delmonico's," said Jim, "but we're serving a lunch that Delmonico's couldn't serve—a submarine lunch."

By this time the novelty was wearing off and we sat there, at the bottom of the sea, drinking our coffee with as much unconcern as though we were in an up-town restaurant. For the first time since we started, Mr. Lake sat down, and we had an opportunity of talking with him at leisure. He is a stout-shouldered, powerfully built man, in the prime of life—a man of cool common sense, a practical man, who is also an inventor. And he talks frankly and convincingly, and yet modestly, of his accomplishment.

Having finished our lunch, Mr. Lake prepared to show us something about the practical operations of the Argonaut. It has been a good deal of a mystery to us how workmen penned up in a submarine boat could expect to recover gold from wrecks in the water outside, or to place torpedoes, or to pick up cables. "We simply open the door, and the diver steps out on the bottom of the sea," Mr. Lake said, quite as if he was conveying the most ordinary information.

At first it seemed incredible, but Mr. Lake showed us the heavy, riveted door in the bottom of the diver's compartment. Then he invited us inside with Wilson, who, besides being an engineer, is also an expert diver. The massive steel doors of the little room were closed and barred, and then Mr. Lake turned a cock and the air rushed in under high pressure. At once our ears began to throb, and it seemed as if the drums would burst inward.

"Keep swallowing," said Wilson, the diver.

As soon as we applied this remedy, the pain was relieved, but the general sensation of increased air pressure, while exhilarating, was still most uncomfortable. The finger on the pressure dial kept creeping up and up, until it showed that the air pressure inside of the compartment was nearly equal to the water pressure without. Then Wilson opened a cock in the door. Instantly the water gushed in, and for a single instant we expected to be drowned there like rats in a trap. "This is really very simple," Mr. Lake was saying calmly. "When the pressure within is the same as that without, no water can enter."

With that, Wilson dropped the iron door, and there was the water and the muddy bottom of the sea within touch of a man's hand. It was all easy enough to understand, and yet it seemed impossible, even as we saw it with our own eyes. Mr. Lake stooped down, and picked up a wooden rod having a sharp hook at the end. This he pulled along the bottom....

We were now rising again to the surface, after being submerged for more than three hours. I climbed into the conning-tower and watched for the first glimpse of the sunlight. There was a sudden fluff of foam, the ragged edge of a wave, and then I saw, not more than a hundred feet away, a smack bound toward New York under full sail. Her rigging was full of men, gazing curiously in our direction, no doubt wondering what strange monster of the sea was coming forth for a breath of air.



CHAPTER XIV

THE MODERN SUBMARINE

Holland and Lake must be considered the fathers of the modern submarine. This claim is not made in a spirit of patriotic boastfulness, though, of course it is true that the latter was an American by birth, and the former by choice, and that, therefore, we, as a nation, have a right to be proud of the accomplishments of these two fellow-citizens of ours. Without wishing to detract anything from the value of the work done by many men in many countries towards the development of the submarine after and contemporaneously with Holland and Lake, it still remains true that the work which these two did formed the foundation on which all others built. To-day, no submarine worthy of the name, no matter where it has been built and no matter where and how it is used, is without some features which are typical of either the Holland or Lake type. In many instances, and this is true especially of submarines of the highest type and the greatest development, the most significant characteristics of the Holland and Lake boats have been combined.

During the years that followed the small beginnings of Holland and Lake, vast and highly efficient organizations have been built up to continue and elaborate their work. Death claimed Mr. Holland shortly after the outbreak of the great war, on August 12, 1914. Mr. Lake in 1917 was still personally connected with and the guiding spirit of the extensive industrial establishments which have been created at Bridgeport, Conn., as a result of his inventions. He, too, surrounded himself with a corps of experts who in co-operation with him have brought the Lake submarines to a point of perfection which at the time of the Argonaut's first trip would have appeared all but impossible.

Roughly speaking, the beginning of the twentieth century may be called the turning point in the history of submarine invention and the beginning of the modern submarine. Although, as we have heard, various governments, especially those of France and the United States, interested themselves in the submarine question and appropriated small sums of money towards its solution previous to 1900, it was only after that year that governmental interest and influence were set to work with determination and purpose on behalf of submarine inventors. Quite naturally this resulted in increased popular interest. Experimental work on and with submarines no longer had to rely exclusively on private capital, frequently inconveniently timid and limited, but could count now on the vast financial resources of all the great nations of the world. This also made available the unlimited intellectual resources of serious scientists in every part of the universe. Mechanical and electrical engineers, naval designers and constructors, active men of finance and business, and quiet thinkers and investigators in laboratories began to interest themselves in the further development of the submarine.

The United States for a number of years after its adoption of the Holland type remained true to its first choice. Between 1900, when the first Holland boat was bought by the United States Government, and 1911 all the United States submarine, boats were of the Holland type. In the latter year, however, it was decided to give the Lake boat a trial and since that time a number of boats of this type have been built. In all essential features both the Holland and Lake boats of later days were very similar to the original boats of these two types. In all the details, however, immense progress was made. Each new boat thus became greatly superior to its predecessors. This was especially true in regard to size and speed and the improvements made in these two respects naturally resulted in a corresponding increase in radius of activity. The passing years also brought a wonderful refinement of all the technical details of the submarine boats. Practically every feature was developed to a remarkable degree. There is, indeed, a great difference between the submarine boats of the early twentieth century which had to rely on their conning-tower for steering, and more recent boats with their wonderful periscopes and gyro compasses. Similar progress was made in the development of the means of propulsion. The engines used for surface travelling became more powerful and efficient. This was also true of the electric motors, batteries, and accumulators employed in the submerged state. The problem of ventilation likewise has been worked out to such an extent that in the most modern submarines most of the inconveniences experienced by the crews of earlier boats have been removed. This perfection of technical details which was thus gradually approached also permitted a very considerable increase in the fighting power of submarine boats. The number of torpedo tubes was increased and it became possible to carry a larger reserve stock of torpedoes. Submarines of to-day furthermore carry guns varying in calibre, attaining in some instances four inches, and when in later years it became evident that one of the most dangerous enemies of the submarine was the airplane, some of the boats were equipped even with anti-aircraft guns.



In the United States Navy the submarine has never been popular. Indeed it is by no means certain that in comparison with other navies of the world the United States was not better off in underwater boats in 1911 than she was three years later when the warcloud broke. The bulk of our naval opinion has always been for the dreadnoughts. A change of political administration at Washington in 1912 gave a temporary setback to naval development, and the submarines, being still a matter of controversy, languished. Few were built and of those few many showed such structural weakness that the reports of their manoeuvres were either suppressed, or issued in terms of such broad generality that the public could by no possibility suspect, what all the Navy knew to be the fact, that the submarine flotilla of the United States was weak to the point of impotence.

Happily we had nearly three years in which to observe the progress of the war before becoming ourselves embroiled in it. During this period our submarine fleet was somewhat increased, and upon our actual entrance upon the struggle a feverish race was begun to put us on an equality with other nations in underwater boats. It would have been too late had any emergency arisen. But Germany had no ships afloat to be attacked by our submarines had we possessed them. Her own warfare upon our merchant shipping could not be met in kind, for submarines cannot fight submarines. We have, therefore, up to the present time, not suffered from the perilous neglect with which we long treated this form of naval weapon.

Indeed the submarine fleet of the United States Navy at the beginning of the war was so inconsiderable that foreign writers on the subject ignored it. In 1900 we had purchased nine of the type of submarines then put out by the Holland Company. One of these, the first in actual service, known as the "Baby" Holland was kept in commission ten years and upon becoming obsolete was honoured by being taken in state to the Naval Academy at Annapolis and there mounted on a pedestal for the admiration of all comers. She was 59 feet long and would make a striking exhibit placed next to one of the new German submersible cruisers which exceed 300 feet and have a displacement of 5000 tons. These first Holland ships which long constituted the entire underwater force of the United States were but trivial affairs compared with the modern vessel. Their displacement was but 122 tons, their engines for surface navigation were of 160 horse-power, gasoline, and for underwater navigation 70 horse-power, electric. They carried but one torpedo tube and two extra torpedoes and had a radius of action of but 300 miles. At that time in fact the naval theory was that submarines were coast defence vessels altogether. After this war they are likely to form part of the first battle line of every navy. Yet these pioneer vessels established their seaworthiness well in 1911, when four of them accompanied by a parent ship to supply them with fresh stocks of fuel and to render assistance in case of need, crossed the Pacific Ocean under their own power to the Philippines. This exploit tended to popularize these craft in the Navy Department, and soon after larger vessels known as the "Viper" class were ordered. One of these was called the Octopus, the first submarine to be fitted with twin screws. In many ways she represented a distinct advance in the art of submarine construction. She was in fact the first vessel built with the distinct idea of being a cruising, as well as a harbour defence ship. Her type proved successful in this respect. The Octopus further established a record for deep sea submergence in 1907 when she descended to a depth of 205 feet off Boston, returning to the surface in entire safety.

The ability to withstand the pressure of the water at great depths is a vital quality of a successful submarine. One American submarine narrowly escaped destruction because of structural weakness in this respect. She had by accident descended a few feet below the normal depth at which such boats navigate. The water pressure affected the valves which refused to work and the vessel slowly sank deeper and deeper. At a recorded depth of 123 feet the sinking of the vessel became so much more rapid that the crew with frantic endeavours sought at once to stop the leaks and pump out the water which had entered. At that depth there was a pressure of 153-1/2 pounds upon every square inch of the surface of the submarine. This the workers at the one hand pump had to overcome. It was a savage and a desperate struggle but the men finally won and the vessel regained the surface. As a result of this experience every navy prescribed submergence tests for its submarines before putting them into commission. How to make these tests was perplexing at first. A government did not want to send men down in a steel casket to see just how far they could go before it collapsed. But if no observer accompanied the ship it would be impossible to tell at what depth leakage and other signs of weakness became apparent. An Italian naval architect, Major Laurenti, whose submarines are now found in every navy of the world, invented a dock in which these tests can be made up to any desired pressure while the observers inside the submarine are in communication with those without and the pressure can be instantly removed if signs of danger appear. In the United States Navy boats to be accepted must stand a pressure equivalent to that encountered at 200 feet. In the German navy the depth prescribed is 170 feet. Under normal conditions submarines seldom travel at a depth of more than 100 feet although the "F-1" of the United States Navy accomplished the remarkable feat of making a six-hour cruise in San Francisco Bay at a depth of 283 feet. At this depth the skin of the ship has to withstand a pressure of no less than 123 pounds per square inch.

Specific information as to the nature of submarine construction in the United States since the beginning of the war in 1914 is jealously guarded by the Navy Department. In broad general terms the number of ships under construction is revealed to the public, but all information as to the size of individual vessels, their armour or the qualities of novelty with which every one hopes and believes American inventive genius has invested them, are kept secret. The Navy Year Book of 1916 summarized our submarine strength at that time as follows:

Displacement

Submarines fit for action 42 15,722 Tons " under construction 33 21,093 " " authorized and appropriated for 30 22,590 " —- ——— Total 105 59,405 "

In addition thirty-seven more had been authorized by Congress without the appropriation of money for them. By this time however these appropriations have been made together with further heavy ones. While figures are refused at the Navy Department, it is declared that while the United States in 1914 was the last of the great powers in respect to submarine strength provided for, it is now well up to the foremost, even to Germany.

Great Britain like the United States continued for many years to build submarines of the Holland type. Naturally all the recent improvements were incorporated in the British boats. Very little, however, is known concerning the details of the more recent additions to the British submarine flotilla because of the secrecy maintained by the British authorities in war time.

At the beginning of the present war, the British navy possessed 82 active submarines of 5 different classes. They were all of the Holland type, but in each class there were incorporated vast improvements over the preceding class. Displacement, size, motive power, speed, radius of action, and armament were gradually increased until the "E" class contained boats possessing the following features: Submerged displacement, 800 tons; length 176 feet; beam 22-1/2 feet; heavy oil engines of 2000 H.-P.; electric engines of 800 H.-P.; surface speed 16 knots; submerged speed 10 knots; cruising range 5000 miles; armament: 4 torpedo tubes, space for 6 torpedoes, and two 3-inch quick-firing, high-angle, disappearing guns; armoured conning-towers and decks; wireless equipment; 3 panoramic periscopes.

At the same time 22 other submarines were said to be in course of construction. Some of these were of the "F" class (Holland type), similar to the "E" class except that every single characteristic had been greatly increased, in many instances even doubled. In addition to the "F" class Holland-type boats, there were also under construction a number of boats of different types designated respectively as "V," "W," and "S" class. The "V" class were of the Lake type, the "W" of the French "Laubeuf" type, and the "S" class of the Italian "F. I. A. T." or Laurenti type; both of the last named were adaptations of the Lake type.

France, which was for many years the prodigal of the nations when it came to submarine building has continued this tendency. In a way this liberal expenditure of money did not pay particularly well. For, although it resulted in the creation of a comparatively large submarine fleet, this fleet contained boats of every kind and description. Quite a number of the boats were little more than experiments and possessed not a great deal of practical value. The manning and efficient handling of a fleet having so little homogeneity naturally was a difficult matter and seriously restricted its fighting efficiency.

At the outbreak of the war France had 92 submarines in active service, belonging to 12 different classes. In addition there had also been built at various times 5 experimental boats which had been named: Argonaute, Amiral Bourgeoise, Archimede, Mariotte, and Charles Brun. The majority of the boats belonging to the various classes were of the Laubeuf type, an adaptation of the Lake type made for the French navy by M. Laubeuf, a marine engineer. In their various details these boats vary considerably. Their displacement ranges from 67 tons to 1000 tons, their length from 100 feet to 240 feet, their beam from 12 feet to 20 feet, their surface speed from 8-1/2 knots to 17 1/2 knots, their submerged speed from 5 knots to 12 knots, the horse-power of their heavy oil engines from 1300 to 2000 and that of their electric motors from 350 to 900. Some of the boats, however, have steam engines, others gasoline motors, and still others steam turbines. The cruising range of the biggest and newest boats is 4000 miles. Armament varies with size, of course, the latest boats carrying 4 torpedo tubes for eight 18-inch torpedoes and two 14-pdr. quick-firing, high angle, disappearing guns.

Nine more submarines were in course of construction at the outbreak of war, most of which were of the improved "Gustave Zede" class. During the war French shipyards were chiefly occupied with capital navy ships and it is not thought the submarine strength has been much increased.

Of the great naval powers, Germany was, strangely enough, the last to become interested in the building of a submarine fleet. This, however, was not due to any neglect on the part of the German naval authorities. It is quite evident from the few official records which are available that they watched and studied very carefully the development of the submarine and growth of the various submarine fleets. During the early years of the twentieth century, however, the Germans seemed to think that most of the boats that were being built then had not yet passed through the experimental stage and they also apparently decided that it would be just as well to wait until other nations had spent their money and efforts on these quasi experimental boats. Not until submarines had been built in the United States, England, and France which had proved beyond all doubt that they were practicable vessels of definite accomplishments, did the Germans seriously concern themselves with the creation of a German submarine fleet. When this period had been reached they went ahead with full power, and with the usual German thoroughness they adopted the best points from each of the various types developed by that time. The result of this attitude was a submarine boat built at first exclusively by Krupp and known as the "Germania" type. It was this type which formed the basis of the German submarine which has become known so extensively and disastrously during recent years. In most respects this type is perhaps more similar to the Lake type than to any other, although some features of the Holland type have been incorporated as well.

At the beginning of the war Germany was credited with only thirty submarines. Six more were then rapidly approaching completion and the German naval law passed some time before provided for the building of seventy-two submarines by the end of 1917. It is believed in fact that by that time the Germans had not less than two hundred Unterseeboots.

From the very beginning the Germans have designated their submarines by the letter "U" (standing for Unterseeboot) followed by numbers. The first boat was built in 1905 and was named "U-1." It was a comparatively small boat of 236 tons displacement. The motive power on the surface was a heavy-oil engine of 250 H.-P. Under water the boat was driven by electric motors of a little more than 100 H.-P. Submerged the "U-1" was capable of a speed of 7 knots only, which on the surface of the water could be increased to 10. Her radius of action was about 750 miles. Only one torpedo tube had been provided.



From this boat to the modern German submarine was indeed a long step taken in a comparatively short time. Not very much is known regarding modern German submarines, but the latest boats completed before the war were vessels of 900 tons displacement with heavy-oil engines of 2000 H.-P. and electric motors of 900 H.-P., possessing a surface and submerged speed of 18 and 10 knots respectively and a cruising radius of 4000 miles. They had four torpedo tubes for eight torpedoes, two 14-pdr. quick-firing guns, and two 1-pdr. high-angle anti-aircraft guns. Naturally they were also equipped with all the latest improvements, such as wireless apparatus, panoramic periscopes, armoured conning-towers, and decks. Since the outbreak of the war the Germans have built even more powerful submarine boats whose perfections in regard to speed, radius of action and armament became known through their accomplishments. Of these we will hear more in a later chapter.

At just what period of the war the Germans woke up to the vital importance to them of an enormous submarine fleet is not known. It may have been immediately upon the amazing exploit of Captain Weddigen in the North Sea. At any rate the war had not long progressed before the destruction caused by German submarine attacks began to awaken the apprehension of the Allies and neutral nations. Retaliation in kind was impossible. The Germans had neither merchant nor naval ships at sea to be sunk. The rapidity with which the volume of the loss inflicted upon merchant shipping grew indicated an equally rapid increase in the size of the German underwater fleet. Neutrals were enraged by the extension by the Germans of the areas of sea in which they claimed the right to sink neutral ships, and their growing disregard for the restraining principles of international law. How greatly they developed the submarine idea was shown by their construction in 1916 of vessels with a displacement of 2400 tons; a length of 279 feet, and a beam of 26 feet; a surface speed of 22 knots, cruising radius of 6500 miles, mounting 4 to 8 guns and carrying a crew of from 40 to 60. But it was reported that two vessels designed primarily for surface cruising, but nevertheless submersible at will, had been laid down of 5000 tons, a length of 414 feet, and a radius of 18,000 to 20,000 miles. These "submersible cruisers" as they were called, mounted 6 to 8 guns, 30 torpedo tubes, and carried 90 torpedoes. What part vessels of this type shall play in war is still to be determined.

Of the smaller naval powers, Italy comparatively early had become interested in the building of submarines. Most of her boats are of the Laurenti type—which is a very close adaptation of the Lake type. Russia and Japan, especially the latter, built up fairly efficient underwater fleets. The lesser countries, like Austria, Holland, Sweden, Denmark, Norway, and Spain have concerned themselves seriously with the creation of submarine fleets. The submarine boats of all of these countries in most instances were either of the Lake or Holland type though frequently they were built from plans of English, French or German adaptations rather than in accordance with the original American plans.

The exact number of submarines possessed now by the various navies of the world is a matter of rather indefinite knowledge. Great secrecy has been maintained by every country in this respect. From a variety of sources, however, it has been possible to compile the following list which at least gives an approximate idea of the respective strength of the various submarine fleets at the beginning of the war. The numbers assigned to each country are only approximate, however, and include both boats then in existence or ordered built: United States 57; Great Britain 104; France 92; Germany 36; Italy 28; Russia 40; Japan 15; Austria 12; Holland 13; Denmark 15; Sweden 13; Norway 4; Greece 2; Turkey 2; Brazil 3; Peru 2.

Having traced the development of the submarine from its earliest beginnings to recent times we are naturally now confronted with the question "What are the principal requirements and characteristics of the modern submarine?"

The submarine boat of to-day, in order to do its work promptly and efficiently, must first of all possess seaworthiness. This means that no matter whether the sea is quiet or rough the submarine must be able to execute its operations with a fair degree of accuracy and promptness and must also be capable of making continuous headway. Surface and underwater navigation must be possible with equal facility and it is necessary that a state of submergence can be reached without loss of time and without any degree of danger to the boat's safety. At all times, travelling above water or below, the submarine must possess mechanical means which will make it possible to control its evolutions under all conditions. Furthermore, the ability of the submarine to find and to observe objects in its vicinity must not be greatly reduced when it is in a submerged position. In the latter it also becomes of extreme importance that the provisions for ventilation are such that the crew of the submarine should lose as little as possible in its efficiency and comfort. A fair amount of speed both on and below the surface of the water is essential and the maintenance of the speed for a fairly long period of time must be assured.

In regard to their general outward appearance, submarines of various types to-day vary comparatively little. In many respects they resemble closely in shape, torpedo boats—the earlier submarines particularly. In size, of course, they differ in accordance with the purposes for which they have been designed. As compared with earlier submarines the most notable difference is that modern submarines possess more of a superstructure. Almost all of them are built now with double hulls. The space between the outer and the inner hull is utilized primarily for ballast tanks by means of which submergence is accomplished and stability maintained and regulated. Some of these tanks, however, are not used to carry water ballast, but serve as reservoirs for the fuel needed by the engines. The stability of the submarine and the facility with which it can submerge also depend greatly on the distribution of weight of its various parts. This problem has been worked out in such a way that to-day there is little room for improvement. Its details, however, are of too technical a nature to permit discussion in this place.

Hydroplanes both fore and aft are now generally used to assist in regulating and controlling stability in the submerged state. The motive power of the modern submarine is invariably of a two-fold type. For travelling on the surface internal combustion engines are used. The gasoline engine of former years has been displaced by Diesel motors or adaptations of them. Although these represent a wonderful advance over the engines used in the past there is still a great deal of room for improvement. The opinions of engineers in this respect vary greatly, American opinion being generally unfavourable to the Diesel type, and whether the final solution of this problem will lie in the direction of a more highly developed motor of Diesel type, of an improved gasoline engine, or of some other engine not yet developed, only the future can tell. Simplicity of construction and reliability of operation are the two essential features which must be possessed by every part of the power plant of a submarine. For underwater travel electric motors and storage batteries are employed exclusively. These vary, of course, in detail. In principle, however, they are very much alike. Although this combination of electric and oil power is largely responsible for having made the submarine what it is to-day, it is far from perfect. Mechanical complications of many kinds and difficulties of varying degrees result from it. Up to comparatively recently these were considered insurmountable obstacles. But engineers all over the world are giving their most serious attention to the problem of devising a way to remove these obstacles and continuous progress is made by them.

As an immediate result of the development of motive power in the submarine its speed both on and below the surface of the water as well as its radius of action has been materially increased. To-day submarines travel on the water with a speed which even a few years ago would have been thought quite respectable for the most powerful battleships or the swiftest passenger liners. And even under water, submarines attain a velocity which is far superior to that of which earlier submarines were capable on the surface of the water. How immensely extended the radius of action of the submarine has become in recent years, has impressed itself on the world especially in the last few years. Both English and French submarines have travelled without making any stops from their home ports to the Dardanelles and back again. And used to, and satiated as we are with mechanical wonders of all kinds the whole world was amazed when in 1916 German submarines made successful trips from their home ports to ports in the United States and returned with equal success. This meant a minimum radius of action of 3500 miles. In the case of the German U-boat which in 1916 appeared at Newport for a few hours, then attacked and sank some merchantmen off the United States coast and later was reported as having arrived safely in a German port, it has never been established whether the boat renewed its supplies of food and fuel on the way or carried enough to make the trip of some 7000 miles.

One other important feature without which submarines would have found it impossible to score such accomplishments is the periscope. In the beginning periscopes were rather crude appliances. They were very weak and sprung leaks frequently. Moisture, formed by condensation, made them practically useless. In certain positions the image of the object picked up by the periscope became inverted. Their radius of vision was limited, and in every way they proved unreliable and unsatisfactory. But, just as almost every feature of submarine construction was gradually developed and most every technical obstacle overcome, experts gradually concentrated their efforts on the improvement of periscopes. Modern periscopes are complicated optical instruments which have been developed to a very high point of efficiency. A combination of prisms and lenses makes it possible now to see true images clearly. Appliances have been developed to make the rotation of the periscope safe, prompt, and easy so that the horizon can be swept readily in every direction. Magnification can be established at will by special devices easily connected or disconnected with the regular instrument. The range of vision of the modern periscope is as remarkable as its other characteristics. It differs, of course, in proportion to the height to which the periscope is elevated above the surface of the water. In clear weather a submarine, having elevated its periscope to a height of 20 feet can pick up a large battleship at as great a distance as 6 miles, while observers on the latter, even if equipped with the most powerful optical instruments, are absolutely unable to detect the submarine. This great distance is reduced to about 4000 yards if the periscope is only 3 feet above the surface of the water and to about 2200 yards if the elevation of the periscope is 1 foot. But even the highly developed periscope of to-day, usually called "panoramic periscope," has its limitations. The strain on the observer's eyes is very severe and can be borne only for short periods. In dirty weather the objectives become cloudy and the images are rendered obscure and indefinite, although this trouble has been corrected, at least in part, by forcing a strong blast through the rim surrounding the observation glass. At night, of course, the periscope is practically useless. Formerly a shot which cut off the periscope near the water's edge might sink the boat. This has been guarded against by cutting off the tube with a heavy plate of transparent glass which does not obstruct vision but shuts off the entrance of water.

Important as the periscope is both as a means of observing the surroundings of the submarine and as a guide in steering it, it is not the only means of accomplishing the latter purpose. To-day every submarine possesses the most reliable type of compass available. At night when the periscope is practically useless or in very rough weather, or in case the periscope has been damaged or destroyed, steering is done exclusively by means of the compass. The latest type in use now on submarines is called the gyroscope compass which is a highly efficient and reliable instrument.



In the matter of ventilation the modern submarine also has reached a high state of perfection. The fresh air supply is provided and regulated in such a manner that most of the discomforts suffered by submarine crews in times past have been eliminated. The grave danger which formerly existed as a result of the poisonous fumes, emanating from the storage batteries and accumulators, has been reduced to a minimum. In every respect, except that of space, conditions of life in a submarine have been brought to a point where they can be favourably compared with those of boats navigated on the surface of the water. Of course, even at the best, living quarters in a submarine will always be cramped. However, it is so important that submarine crews should be continuously kept on a high plane of efficiency that they are supplied with every conceivable comfort permitted by the natural limitations of submarine construction.



Submarine boats so far have been used almost exclusively as instruments of warfare. One of their most important features, therefore, naturally is their armament. We have already heard something about the use of torpedoes by submarines. The early submarines had as a rule only one torpedo tube and were incapable of carrying more than two or three torpedoes. Gradually, however, both the number of torpedo tubes and of torpedoes was increased. The latest types have as many as eight or ten tubes and carry enough torpedoes to permit them to stay away from their base for several weeks. In recent years submarines have also been armed with guns. Naturally these have to be of light weight and small calibre. They are usually mounted so that they can be used at a high angle. This is done in order to make it possible for submarines to defend themselves against attacks from airships. The mountings of these guns are constructed in such a way that the guns themselves disappear immediately after discharge and are not visible while not in use. Though mounted on deck they are aimed and fired from below. As part of the armament of the submarine we must also consider the additional protection which they receive from having certain essential parts protected by armour plate.

All these features have increased the safety of submarine navigation to a great extent. In spite of the popular impression that submarine navigation entailed a greater number of danger factors than navigation on the surface of the water, this is not altogether so. If we stop to consider this subject we can readily see why rather the opposite should be true. Navigation under the surface of the water greatly reduces the possibility of collision and also the dangers arising from rough weather. For the results of the latter are felt to a much lesser degree below than on the surface of the water. Many other factors are responsible for the comparatively high degree of safety inherent in submarines. Up to the outbreak of the present war only about two hundred and fifty lives had been lost as a result to accidents to modern submarines. Considering that up to 1910 a great deal of submarine navigation was more or less experimental this is a record which can bear favourable comparison with similar records established by overwater navigation or by navigation in the air.

To the average man the thought of imprisonment in a steel tube beneath the surface of the sea, and being suddenly deprived of all means of bringing it up to air and light is a terrifying and nerve shattering thing. It is probably the first consideration which suggests itself to one asked to make a submarine trip. Always the newspaper headlines dealing with a submarine disaster speak of those lost as "drowned like rats in a trap." Men will admit that the progress of invention has greatly lessened the danger of accident to submarines, but nevertheless sturdily insist that when the accident does happen the men inside have no chance of escape.

As a matter of fact many devices have been applied to the modern submarine to meet exactly this contingency. Perhaps nothing is more effective than the so-called telephone buoy installed in our Navy and in some of those of Europe. This is a buoy lightly attached to the outer surface of the boat, containing a telephone transmitter and receiver connected by wire with a telephone within. In the event of an accident this buoy is released and rises at once to the surface. A flag attached attracts the attention of any craft that may be in the neighbourhood and makes immediate communication with those below possible. Arrangements can then be made for raising the boat or towing her to some point at which salvage is possible. An instance of the value of this device was given by the disaster to the German submarine "U-3" which was sunk at Kiel in 1910. Through the telephone the imprisoned crew notified those at the other end that they had oxygen enough for forty-eight hours but that the work of rescue must be completed in that time. A powerful floating derrick grappled the sunken submarine and lifted its bow above water. Twenty-seven of the imprisoned crew crept out through the torpedo tubes. The captain and two lieutenants conceived it their duty to stay with the ship until she was actually saved. In the course of the operations one of the ventilators was broken, the water rushed in and all three were drowned.

In some of the Holland ships of late construction there is an ingenious, indeed an almost incredible device by which the ship takes charge of herself if the operators or crew are incapacitated. It has happened that the shock of a collision has so stunned the men cooped up in the narrow quarters of a submarine that they are for quite an appreciable time unable to attend to their duties. Such a collision would naturally cause the boat to leak and to sink. In these newer Holland ships an automatic device causes the ship, when she has sunk to a certain depth, registered of course by automatic machinery, to start certain apparatus which empties the ballast tanks and starts the pumps which will empty the interior of the ship if it has become flooded. The result is that after a few minutes of this automatic work, whether the crew has sufficiently recovered to take part in it or not, the boat will rise to the surface.

This extraordinary invention is curiously reminiscent of the fact chronicled in earlier chapters of this book that the most modern airplanes are so built that should the aviator become insensible or incapacitated for his work, if he will but drop the controls, the machine will adjust itself and make its own landing in safety. Unaided the airplane drops lightly to earth; unaided the submarine rises buoyantly to the air.

In recent years there have been developed special ships for the salvage of damaged or sunk submarines. At the same time the navies of the world have also produced special submarine tenders or mother ships. The purpose of these is to supply a base which can keep on the move with the same degree of facility which the submarine itself possesses. These tenders are equipped with air compressors by means of which the air tanks of submarines can be refilled. Electric generators make it possible to replenish the submarine storage batteries. Mechanical equipment permits the execution of repairs to the submarine's machinery and equipment. Extra fuel, substitute parts for the machinery, spare torpedoes are carried by these tenders. The most modern of them are even supplied with dry dock facilities, powerful cranes, and sufficiently strong armament to repel attacks from boats of the type most frequently encountered by submarines.

There are, of course, many other special appliances which make up the sum total of a modern submarine's equipment. Electricity is used for illuminating all parts of the boat. Heat is supplied in the same manner; this is a very essential feature because the temperature of a submarine, after a certain period of submergence, becomes uncomfortably low. Electricity is also used for cooking purposes.

Every submarine boat built to-day is equipped with wireless apparatus. Naturally it is only of limited range varying from one hundred and twenty to one hundred and eighty miles, but even at that it is possible for a submarine to send messages to its base or some other given point from a considerable distance by relay. If the submarine is running on the surface of the water the usual means of naval communication-flag signals, wig-wagging or the semaphore, can be employed. The submarine bell is another means for signalling. It is really a wireless telephone, operating through the water instead of the air. Up to the present, however, it has not been sufficiently developed to permit its use for any great distance. It is so constructed that it can also be used as a sound detector.

Some submarines, besides being equipped with torpedo tubes, carry other tubes for laying mines. In most instances this is only a secondary function of the submarine. There are, however, special mine-laying submarines. Others, especially of the Lake type, have diving compartments which permit the employment of divers for the purpose of planting or taking up mines.

Disappearing anchors, operated by electricity from within the boat, are carried. They are used for steadying the boat if it is desired to keep it for any length of time on the bottom of the sea in a current.

From this necessarily brief description it can be seen readily that the modern submarine boat is a highly developed, but very complicated mechanism. Naturally it requires a highly trained, extremely efficient crew. The commanding officers must be men of strong personality, keen intellect, high mechanical efficiency, and quick judgment. The gradual increase in size has brought a corresponding increase in the number of a submarine's crew. A decade ago from 8 to 10 officers and men were sufficient but to-day we hear of submarine crews that number anywhere from 25 to 40.

In spite of the marvellous advances which have been made in the construction, equipment, and handling of the submarine during the last ten years, perfection in many directions is still a long way off. How soon it will be reached, if ever, and by what means, are, of course, questions which only the future can answer.



CHAPTER XV

ABOARD A SUBMARINE

Submarines have been compared to all kinds of things, from a fish to a cigar. Life on them has been described in terms of the highest elation as well as of the deepest depression. Their operation and navigation, according to some claims, require a veritable combination of mechanical, electrical, and naval genius—not only on the part of the officers, but even on that of the simplest oiler—while others make it appear as if a submarine was at least as simple to handle as a small motor boat. The truth concerning all these matters lies somewhere between these various extremes.

It is quite true that except on the very latest "submerged cruisers" built by the Germans, the space for the men operating a submarine is painfully straitened. They must hold to their positions almost like a row of peas in a pod. From this results the gravest strain upon the nerves so that it has been found in Germany that after a cruise a period of rest of equal duration is needed to restore the men to their normal condition. Before assignment to submarine duty, too, a special course of training is requisite. Submarine crews are not created in a day.

What the interior of the new German submarines with a length of 280 feet, and a beam of 26 feet may be, no man of the Anglo-Saxon race may know or tell. The few who have descended into those mysterious depths will have no chance to tell of them until the war is over. Nor is it possible during wartimes to secure descriptions even of our own underwater boats. But the interior of the typical submarine may be imagined as in size and shape something like an unusually long street car. Along the sides, where seats would normally be, are packed wheels, cylinders, motors, pumps, machinery of all imaginable kinds and some of it utterly unimaginable to the lay observer. The whole interior is painted white and bathed in electric light. The casual visitor from "above seas" is dazed by the array of machinery and shrinks as he walks the narrow aisle lest he become entangled in it.

Running on the surface the submarine chamber is filled with a roar and clatter like a boiler shop in full operation. The Diesel engines are compact and powerful, but the racket they make more nearly corresponds to their power than to their size. On the surface too the boat rolls and pitches and the stranger passenger, unequipped with sea legs grabs for support as the subway rider reaches for a strap on the curves. But let the order come to submerge. The Diesels are stopped. The electric motors take up the task, spinning noiselessly in their jackets. In a moment or two all rolling ceases. One can hardly tell whether the ship is moving at all—it might for all its motion tells be resting quietly on the bottom. If you could disabuse your mind for a moment of the recollection that you were in a great steel cigar heavy laden with explosives, and deep under the surface of the sea you would find the experience no more exciting than a trip through the Pennsylvania tubes. But there is something uncanny about the silence.



Go forward to the conical compartment at the very bow. There you will find the torpedo chamber for the submarine, like the cigar to which it is so often compared, carries its fire at its front tip. The most common type of boat will have two or four torpedo tubes in this chamber. The more modern ones will have a second torpedo chamber astern with the same number of tubes and carry other torpedoes on deck which by an ingenious device can be launched from their outside cradles by mechanism within the boat. In the torpedo chamber are twice as many spare torpedoes as there are tubes, made fast along the sides. Here too the anchor winch stands with the cable attached to the anchor outside the boat and an automatic knife which cuts the cable should the anchor be fouled.



Immediately aft of the torpedo chamber, cut off by a water-tight partition, is the battery compartment. It gets its name because of the fact, that beneath the deck which is full of traps readily raised are the electric storage batteries of anywhere from 60 to 260 cells according to the size of the boat. This room is commonly used as the loafing place for the crew, being regarded as very spacious and empty. In it are nothing but the electric stove, the kitchen sink, the various lockers for food and all the housekeeping apparatus of the submarine. Mighty trim and compact they all are. The builder of twentieth century flats with his kitchenettes and his in-door beds might learn a good deal from a study of the smaller type of submarine. Next aft come the officers' staterooms, rather smaller than prison cells, each holding a bunk, a bureau, and a desk. Each holds also a good deal of moisture, for the greatest discomfort in submarine life comes from the fact that everything is dripping with the water resulting from the constant condensation of the air within.

The great compartment amidships given over to machinery is a place to test the nerves. The aisle down the centre is scarcely two feet wide and on each side are whirling wheels, engines, and electric motors. Only the photographs can give a clear idea of the crowded appearance of this compartment. It contains steering wheels, the gyroscopic compass, huge valves, dials showing depth of submergence, Kingston levers, motor controllers, all polished and shining, each doing its work and each easily thrown out of gear by an ignorant touch.

The author once spending the night on a United States man-of-war was shown by the captain to his own cabin, that officer occupying the admiral's cabin for the time. At the head of the bunk were two small electric push buttons absolutely identical in appearance and about two inches apart. "Push this button," said the captain genially, "if you want the Jap boy to bring you shaving water or anything else. But be sure to push the right one. If you push the other you will call the entire crew to quarters at whatever hour of night the bell may ring."

The possibility of mistaking the button rested heavily on the writer's nerves all night. A somewhat similar feeling comes over one who walks the narrow path down the centre of the machinery compartment of a submarine. He seems hedged about by mysterious apparatus a touch of which, or even an accidental jostle may release powerful and even murderous forces.

While the submarine is under way, submerged, the operator at every piece of individual machinery stands at its side ready for action. Here are the gunner's mates at the diving rudder. They watch steadily a big gauge on which a needle which shows how deep the boat is sinking. When the required depth is reached swift turns of two big brass wheels set the horizontal rudders that check the descent and keep the boat on an even keel. Other men stand at the levers of the Kingston valves which, when open, flood the ballast tanks with water and secure the submergence of the boat. Most of the underwater boats to-day sink rapidly on an even keel. The old method of depressing the nose of the boat so as to make a literal dive has been abandoned, partly because of the inconvenience it caused to the men within who suddenly found the floor on which they were standing tilted at a sharp angle, and partly because the diving position proved to be a dangerous one for the boat.

In the early days of the submarines the quarters for the men were almost intolerable. The sleeping accommodations were cramped and there was no place for the men off duty to lounge and relax from the strain of constant attention to duty. Man cannot keep his body in a certain fixed position even though it be not rigid, for many hours. This is shown as well at the base ball grounds at the end of the sixth inning when "all stretch" as it was in the old time underwater boats. The crews now have space in which to loaf and even the strain of long silent watches under water is relieved by the use of talking machines and musical instruments. The efficiency of the boat of course is only that of her crew, and since more care and more scientific thought has been given to the comfort of the men, to the purity of the air they breathe, and even to their amusements, the effect upon the work done by the craft has been apparent. Ten years ago hot meals were unthought of on a submarine; now the electric cooker provides for quite an elaborate bill of fare. But ten years ago the submarine was only expected to cruise for a few hours off the harbour's mouth carrying a crew of twenty men or less. Now it stays at sea sometimes for as long as three months. Its crews number often as many as fifty and the day is in sight when accommodations will have to be made for the housing of at least eighty men in such comparative comfort that they can stand a six months' voyage without loss of morale or decrease in physical vigour.

Previous Part     1  2  3  4  5  6  7  8     Next Part
Home - Random Browse