|
115. Garden Vegetables. Various green, fresh, and succulent vegetables form an essential part of our diet. They are of importance not so much on account of their nutritious elements, which are usually small, as for the salts they supply, especially the salts of potash. It is a well-known fact that the continued use of a diet from which fresh vegetables are excluded leads to a disease known as scurvy. They are also used for the agreeable flavor possessed by many, and the pleasant variety and relish they give to the food. The undigested residue left by all green vegetables affords a useful stimulus to intestinal contraction, and tends to promote the regular action of the bowels.
116. Fruits. A great variety of fruits, both fresh and dry, is used as food, or as luxuries. They are of little nutritive value, containing, as they do, much water and only a small amount of proteid, but are of use chiefly for the sugar, vegetable acids, and salts they contain.
In moderate quantity, fruits are a useful addition to our regular diet. They are cooling and refreshing, of agreeable flavor, and tend to prevent constipation. Their flavor and juiciness serve to stimulate a weak appetite and to give variety to an otherwise heavy diet. If eaten in excess, especially in an unripe or an overripe state, fruits may occasion a disturbance of the stomach and bowels, often of a severe form.
117. Condiments. The refinements of cookery as well as the craving of the appetite, demand many articles which cannot be classed strictly as foods. They are called condiments, and as such may be used in moderation. They give flavor and relish to food, excite appetite and promote digestion. Condiments increase the pleasure of eating, and by their stimulating properties promote secretions of the digestive fluids and excite the muscular contractions of the alimentary canal.
The well-known condiments are salt, vinegar, pepper, ginger, nutmeg, cloves, and various substances containing ethereal oils and aromatics. Their excessive use is calculated to excite irritation and disorder of the digestive organs.
118. Salt The most important and extensively used of the condiments is common salt. It exists in all ordinary articles of diet, but in quantities not sufficient to meet the wants of the bodily tissues. Hence it is added to many articles of food. It improves their flavor, promotes certain digestive secretions, and meets the nutritive demands of the body. The use of salt seems based upon an instinctive demand of the system for something necessary for the full performance of its functions. Food without salt, however nutritious in other respects, is taken with reluctance and digested with difficulty.
Salt has always played an important and picturesque part in the history of dietetics. Reference to its worth and necessity abounds in sacred and profane history. In ancient times, salt was the first thing placed on the table and the last removed. The place at the long table, above or below the salt, indicated rank. It was everywhere the emblem of hospitality. In parts of Africa it is so scarce that it is worth its weight in gold, and is actually used as money. Torture was inflicted upon prisoners of state in olden times by limiting the food to water and bread, without salt. So intense may this craving for salt become, that men have often risked their liberty and even their lives to obtain it.
119. Water. The most important natural beverage is pure water; in fact it is the only one required. Man has, however, from the earliest times preferred and daily used a variety of artificial drinks, among which are tea, coffee, and cocoa.
All beverages except certain strong alcoholic liquors, consist almost entirely of water. It is a large element of solid foods, and our bodies are made up to a great extent of water. Everything taken into the circulating fluids of the body, or eliminated from them, is done through the agency of water. As a solvent it is indispensable in all the activities of the body.
It has been estimated that an average-sized adult loses by means of the lungs, skin, and kidneys about eighty ounces of water every twenty-four hours. To restore this loss about four pints must be taken daily. About one pint of this is obtained from the food we eat, the remaining three pints being taken as drink. One of the best ways of supplying water to the body is by drinking it in its pure state, when its solvent properties can be completely utilized. The amount of water consumed depends largely upon the amount of work performed by the body, and upon the temperature.
Being one of the essential elements of the body, it is highly important that water should be free from harmful impurities. If it contain the germs of disease, sickness may follow its use. Without doubt the most important factor in the spread of disease is, with the exception of impure air, impure water. The chief agent in the spread of typhoid fever is impure water. So with cholera, the evidence is overwhelming that filthy water is an all-powerful agent in the spread of this terrible disease.
120. Tea, Coffee, and Cocoa. The active principle of tea is called theine; that of coffee, caffeine, and of cocoa, theobromine. They also contain an aromatic, volatile oil, to which they owe their distinctive flavor. Tea and coffee also contain an astringent called tannin, which gives the peculiar bitter taste to the infusions when steeped too long. In cocoa, the fat known as cocoa butter amounts to fifty per cent.
121. Tea. It has been estimated that one-half of the human race now use tea, either habitually or occasionally. Its use is a prolific source of indigestion, palpitation of the heart, persistent wakefulness, and of other disorders. When used at all it should be only in moderation. Persons who cannot use it without feeling its hurtful effects, should leave it alone. It should not be taken on an empty stomach, nor sipped after every mouthful of food.
122. Coffee. Coffee often disturbs the rhythm of the heart and causes palpitation. Taken at night, coffee often causes wakefulness. This effect is so well known that it is often employed to prevent sleep. Immoderate use of strong coffee may produce other toxic effects, such as muscular tremors, nervous anxiety, sick-headache, palpitation, and various uncomfortable feelings in the cardiac region. Some persons cannot drink even a small amount of tea or coffee without these unpleasant effects. These favorite beverages are unsuitable for young people.
123. Cocoa. The beverage known as cocoa comes from the seeds of the cocoa-tree, which are roasted like the coffee berries to develop the aroma. Chocolate is manufactured cocoa,—sugar and flavors being added to the prepared seeds. Chocolate is a convenient and palatable form of highly nutritious food. For those with whom tea and coffee disagree, it may be an agreeable beverage. The large quantity of fat which it contains, however, often causes it to be somewhat indigestible.
124. Alcoholic Beverages. There is a class of liquids which are certainly not properly food or drink, but being so commonly used as beverages, they seem to require special notice in this chapter. In view of the great variety of alcoholic beverages, the prevalence of their use, and the very remarkable deleterious effects they produce upon the bodily organism, they imperatively demand our most careful attention, both from a physiological and an hygienic point of view.
125. Nature of Alcohol. The ceaseless action of minute forms of plant life, in bringing about the decomposition of the elaborated products of organized plant or animal structures, will be described in more detail (secs. 394-398).
All such work of vegetable organisms, whether going on in the moulding cheese, in the souring of milk, in putrefying meat, in rotting fruit, or in decomposing fruit juice, is essentially one of fermentation, caused by these minute forms of plant life. There are many kinds of fermentation, each with its own special form of minute plant life or micro-organism.
In this section we are more especially concerned about that fermentation which results from the decomposition of sweet fruit, plant, or other vegetable, juices which are composed largely of water containing sugar and flavoring matters.
This special form of fermentation is known as alcoholic or vinous fermentation, and the micro-organisms that cause it are familiarly termed alcoholic ferments. The botanist classes them as Saccharomycetes, of which there are several varieties. Germs of Saccharomycetes are found on the surfaces and stems of fruit as it is ripening. While the fruit remains whole these germs have no power to invade the juice, and even when the skins are broken the conditions are less favorable for their work than for that of the moulds,[18] which are the cause of the rotting of fruit.
But when fruit is crushed and its juice pressed out, the Saccharomycetes are carried into it where they cannot get the oxygen they need from the air. They are then able to obtain oxygen by taking it from the sugar of the juice. By so doing they cause a breaking up of the sugar and a rearrangement of its elements. Two new substances are formed in this decomposition of sugar, viz., carbon dioxid, which arises from the liquid in tiny bubbles, and alcohol, a poison which remains in the fermenting fluid.
Now we must remember that fermentation entirely changes the nature of the substance fermented. For all forms of decomposition this one law holds good. Before alcoholic fermentation, the fruit juice was wholesome and beneficial; after fermentation, it becomes, by the action of the minute germs, a poisonous liquid known as alcohol, and which forms an essential part of all intoxicating beverages.
Taking advantage of this great law of fermentation which dominates the realm of nature, man has devised means to manufacture various alcoholic beverages from a great variety of plant structures, as ripe grapes, pears, apples, and other fruits, cane juices, corn, the malt of barley, rye, wheat, and other cereals.
The process differs according to the substance used and the manner in which it is treated, but the ultimate outcome is always the same, viz., the manufacture of a beverage containing a greater or less proportion of alcoholic poison. By the process of distillation, new and stronger liquor is made. Beverages thus distilled are known as ardent spirits. Brandy is distilled from wine, rum from fermented molasses, and commercial alcohol mostly from whiskey.
The poisonous element in all forms of intoxicating drinks, and the one so fraught with danger to the bodily tissues, is the alcohol they contain. The proportion of the alcoholic ingredient varies, being about 50 per cent in brandy, whiskey, and rum, about 20 to 15 per cent in wines, down to 5 per cent, or less, in the various beers and cider; but whether the proportion of alcohol be more or less, the same element of danger is always present.
126. Effects of Alcoholic Beverages upon the Human System. One of the most common alcoholic beverages is wine, made from the juice of grapes. As the juice flows from the crushed fruit the ferments are washed from the skins and stems into the vat. Here they bud and multiply rapidly, producing alcohol. In a few hours the juice that was sweet and wholesome while in the grape is changed to a poisonous liquid, capable of injuring whoever drinks it. One of the gravest dangers of wine-drinking is the power which the alcohol in it has to create a thirst which demands more alcohol. The spread of alcoholism in wine-making countries is an illustration of this fact.
Another alcoholic beverage, common in apple-growing districts, is cider. Until the microscope revealed the ferment germ on the "bloom" of the apple-skin, very little was known of the changes produced in cider during the mysterious process of "working." Now, when we see the bubbles of gas in the glass of cider we know what has produced them, and we know too that a poison which we do not see is there also in corresponding amounts. We have learned, too, to trace the wrecked hopes of many a farmer's family to the alcohol in the cider which he provided so freely, supposing it harmless.
Beer and other malt liquors are made from grain. By sprouting the grain, which changes its starch to sugar, and then dissolving out the sugar with water, a sweet liquid is obtained which is fermented with yeast, one kind of alcoholic ferment. Some kinds of beer contain only a small percentage of alcohol, but these are usually drunk in proportionately large amounts. The life insurance company finds the beer drinker a precarious risk; the surgeon finds him an unpromising subject; the criminal court finds him conspicuous in its proceedings. The united testimony from all these sources is that beer is demoralizing, mentally, morally, and physically.
127. Cooking. The process through which nearly all food used by civilized man has to pass before it is eaten is known as cooking. Very few articles indeed are consumed in their natural state, the exceptions being eggs, milk, oysters, fruit and a few vegetables. Man is the only animal that cooks his food. Although there are savage races that have no knowledge of cooking, civilized man invariably cooks most of his food. It seems to be true that as nations advance in civilization they make a proportionate advance in the art of cooking.
Cooking answers most important purposes in connection with our food, especially from its influence upon health. It enables food to be more readily chewed, and more easily digested. Thus, a piece of meat when raw is tough and tenacious, but if cooked the fibers lose much of their toughness, while the connective tissues are changed into a soft and jelly-like mass. Besides, the meat is much more readily masticated and acted upon by the digestive fluids. So cooking makes vegetables and grains softer, loosens their structure, and enables the digestive juices readily to penetrate their substance.
Cooking also improves or develops flavors in food, especially in animal foods, and thus makes them attractive and pleasant to the palate. The appearance of uncooked meat, for example, is repulsive to our taste, but by the process of cooking, agreeable flavors are developed which stimulate the appetite and the flow of digestive fluids.
Another important use of cooking is that it kills any minute parasites or germs in the raw food. The safeguard of cooking thus effectually removes some important causes of disease. The warmth that cooking imparts to food is a matter of no slight importance; for warm food is more readily digested, and therefore nourishes the body more quickly.
The art of cooking plays a very important part in the matter of health, and thus of comfort and happiness. Badly cooked and ill-assorted foods are often the cause of serious disorders. Mere cooking is not enough, but good cooking is essential.
Experiments.
Experiments with the Proteids.
Experiment 31. As a type of the group of proteids we take the white of egg, egg-white or egg-albumen. Break an egg carefully, so as not to mix the white with the yolk. Drop about half a teaspoonful of the raw white of egg into half a pint of distilled water. Beat the mixture vigorously with a glass rod until it froths freely. Filter through several folds of muslin until a fairly clear solution is obtained.
Experiment 32. To a small quantity of this solution in a test tube add strong nitric acid, and boil. Note the formation of a white precipitate, which turns yellow. After cooling, add ammonia, and note that the precipitate becomes orange.
Experiment 33. Add to the solution of egg-albumen, excess of strong solution of caustic soda (or potash), and then a drop or two of very dilute solution (one per cent) of copper sulphate. A violet color is obtained which deepens on boiling.
Experiment 34. Boil a small portion of the albumen solution in a test tube, adding drop by drop dilute acetic acid (two per cent) until a flaky coagulum of insoluble albumen separates.
Experiments with Starch.
Experiment 35. Wash a potato and peel it. Grate it on a nutmeg grater into a tall cylindrical glass full of water. Allow the suspended particles to subside, and after a time note the deposit. The lowest layer consists of a white powder, or starch, and above it lie coarser fragments of cellulose and other matters.
Experiment 36. Examine under the microscope a bit of the above white deposit. Note that each starch granule shows an eccentric hilum with concentric markings. Add a few drops of very dilute solution of iodine. Each granule becomes blue, while the markings become more distinct.
Experiment 37. Examine a few of the many varieties of other kinds of starch granules, as in rice, arrowroot, etc. Press some dry starch powder between the thumb and forefinger, and note the peculiar crepitation.
Experiment 38. Rub a few bits of starch in a little cold water. Put a little of the mixture in a large test tube, and then fill with boiling water. Boil until an imperfect opalescent solution is obtained.
Experiment 39. Add powdered dry starch to cold water. It is insoluble. Filter and test the filtrate with iodine. It gives no blue color.
Experiment 40. Boil a little starch with water; if there is enough starch it sets on cooling and a paste results.
Experiment 41. Moisten some flour with water until it forms a tough, tenacious dough; tie it in a piece of cotton cloth, and knead it in a vessel containing water until all the starch is separated. There remains on the cloth a grayish white, sticky, elastic "gluten," made up of albumen, some of the ash, and fats. Draw out some of the gluten into threads, and observe its tenacious character.
Experiment 42. Shake up a little flour with ether in a test tube, with a tight-fitting cork. Allow the mixture to stand for an hour, shaking it from time to time. Filter off the ether, and place some of it on a perfectly clean watch glass. Allow the ether to evaporate, when a greasy stain will be left, thus showing the presence of fats in the flour.
Experiment 43. Secure a specimen of the various kinds of flour, and meal, peas, beans, rice, tapioca, potato, etc. Boil a small quantity of each in a test tube for some minutes. Put a bit of each thus cooked on a white plate, and pour on it two or three drops of the tincture of iodine. Note the various changes of color,—blue, greenish, orange, or yellowish.
Experiments with Milk.
Experiment 44. Use fresh cow's milk. Examine the naked-eye character of the milk. Test its reaction with litmus paper. It is usually neutral or slightly alkaline.
Experiment 45. Examine with the microscope a drop of milk, noting numerous small, highly refractive oil globules floating in a fluid.
Experiment 46. Dilute one ounce of milk with ten times its volume of water. Add cautiously dilute acetic acid until there is a copious, granular-looking precipitate of the chief proteid of milk (caseinogen), formerly regarded as a derived albumen. This action is hastened by heating.
Experiment 47. Saturate milk with Epsom salts, or common salt. The proteid and fat separate, rise to the surface, and leave a clear fluid beneath.
Experiment 48. Place some milk in a basin; heat it to about 100 degrees F., and add a few drops of acetic acid. The mass curdles and separates into a solid curd (proteid and fat) and a clear fluid (the whey), which contains the lactose.
Experiment 49. Take one or two teaspoonfuls of fresh milk in a test tube; heat it, and add a small quantity of extract of rennet. Note that the whole mass curdles in a few minutes, so that the tube can be inverted without the curd falling out. Soon the curd shrinks, and squeezes out a clear, slightly yellowish fluid, the whey.
Experiment 50. Boil the milk as before, and allow it to cool; then add rennet. No coagulation will probably take place. It is more difficult to coagulate boiled milk with rennet than unboiled milk.
Experiment 51. Test fresh milk with red litmus paper; it should turn the paper pale blue, showing that it is slightly alkaline. Place aside for a day or two, and then test with blue litmus paper; it will be found to be acid. This is due to the fact that lactose undergoes the lactic acid fermentation. The lactose is converted into lactic acid by means of a special ferment.
Experiment 52. Evaporate a small quantity of milk to dryness in an open dish. After the dry residue is obtained, continue to apply heat; observe that it chars and gives off pungent gases. Raise the temperature until it is red hot; allow the dish then to cool; a fine white ash will be left behind. This represents the inorganic matter of the milk.
Experiments with the Sugars.
Experiment 53. Cane sugar is familiar as cooking and table sugar. The little white grains found with raisins are grape sugar, or glucose. Milk sugar is readily obtained of the druggist. Prepare a solution of the various sugars by dissolving a small quantity of each in water. Heat each solution with sulphuric acid, and it is seen to darken or char slowly.
Experiment 54. Place some Fehling solution (which can be readily obtained at the drug store as a solution, or tablets may be bought which answer the same purpose) in a test tube, and boil. If no yellow discoloration takes place, it is in good condition. Add a few drops of the grape sugar solution and boil, when the mixture suddenly turns to an opaque yellow or red color.
Experiment 55. Repeat same experiment with milk sugar.
Chapter VI.
Digestion.
128. The Purpose of Digestion. As we have learned, our bodies are subject to continual waste, due both to the wear and tear of their substance, and to the consumption of material for the production of their heat and energy. The waste occurs in no one part alone, but in all the tissues.
Now, the blood comes into direct contact with every one of these tissues. The ultimate cells which form the tissues are constantly being bathed by the myriads of minute blood-vessels which bring to the cells the raw material needed for their continued renewal. These cells are able to select from the nutritive fluid whatever they require to repair their waste, and to provide for their renewed activity. At the same time, the blood, as it bathes the tissues, sweeps into its current and bears away the products of waste.
Thus the waste occurs in the tissues and the means of repair are obtained from the blood. The blood is thus continually being impoverished by having its nourishment drained away. How, then, is the efficiency of the blood maintained? The answer is that while the ultimate purpose of the food is for the repair of the waste, its immediate destination is the blood.[19]
129. Absorption of Food by the Blood. How does the food pass from the cavity of the stomach and intestinal canal into the blood-vessels? There are no visible openings which permit communication. It is done by what in physics is known as endosmotic and exosmotic action. That is, whenever there are two solutions of different densities, separated only by an animal membrane, an interchange will take place between them through the membrane.
To illustrate: in the walls of the stomach and intestines there is a network of minute vessels filled with blood,—a liquid containing many substances in solution. The stomach and intestinal canal also contain liquid food, holding many substances in solution. A membrane, made up of the extremely thin walls of the blood-vessels and intestines, separates the liquids. An exchange takes place between the blood and the contents of the stomach and bowels, by which the dissolved substances of food pass through the separating membranes into the blood.
This change, by which food is made ready to pass into the blood, constitutes food-digestion, and the organs concerned in bringing about this change in the food are the digestive organs.
130. The General Plan of Digestion. It is evident that the digestive organs will be simple or complex, according to the amount of change which is necessary to prepare the food to be taken up by the blood. If the requisite change is slight, the digestive organs will be few, and their structure simple. But if the food is varied and complex in composition, the digestive apparatus will be complex. This condition applies to the food and the digestion of man.
The digestive apparatus of the human body consists of the alimentary canal and tributary organs which, although outside of this canal, communicate with it by ducts. The alimentary canal consists of the mouth, the pharynx, the oesophagus, the stomach, and the intestines. Other digestive organs which are tributary to this canal, and discharge their secretions into it, are the salivary glands,[20] the liver, and the pancreas.
The digestive process is subdivided into three steps, which take place in the mouth, in the stomach, and in the intestines.
131. The Mouth. The mouth is the cavity formed by the lips, the cheeks, the palate, and the tongue. Its bony roof is made up of the upper jawbone on each side, and the palate bones behind. This is the hard palate, and forms only the front portion of the roof. The continuation of the roof is called the soft palate, and is made up of muscular tissue covered with mucous membrane.
The mouth continues behind into the throat, the separation between the two being marked by fleshy pillars which arch up from the sides to form the soft palate. In the middle of this arch there hangs from its free edge a little lobe called the uvula. On each side where the pillars begin to arch is an almond-shaped body known as the tonsil. When we take cold, one or both of the tonsils may become inflamed, and so swollen as to obstruct the passage into the throat. The mouth is lined with mucous membrane, which is continuous with that of the throat, oesophagus, stomach, and intestines (Fig. 51).
132. Mastication, or Chewing. The first step of the process of digestion is mastication, the cutting and grinding of the food by the teeth, effected by the vertical and lateral movements of the lower jaw. While the food is thus being crushed, it is moved to and fro by the varied movements of the tongue, that every part of it may be acted upon by the teeth. The advantage of this is obvious. The more finely the food is divided, the more easily will the digestive fluids reach every part of it, and the more thoroughly and speedily will digestion ensue.
The act of chewing is simple and yet important, for if hurriedly or imperfectly done, the food is in a condition to cause disturbance in the digestive process. Thorough mastication is a necessary introduction to the more complicated changes which occur in the later digestion.
133. The Teeth. The teeth are attached to the upper and lower maxillary bones by roots which sink into the sockets of the jaws. Each tooth consists of a crown, the visible part, and one or more fangs, buried in the sockets. There are in adults 32 teeth, 16 in each jaw.
Teeth differ in name according to their form and the uses to which they are specially adapted. Thus, at the front of the jaws, the incisors, or cutting teeth, number eight, two on each side. They have a single root and the crown is beveled behind, presenting a chisel-like edge. The incisors divide the food, and are well developed in rodents, as squirrels, rats, and beavers.
Next come the canine teeth, or cuspids, two in each jaw, so called from their resemblance to the teeth of dogs and other flesh-eating animals. These teeth have single roots, but their crowns are more pointed than in the incisors. The upper two are often called eye teeth, and the lower two, stomach teeth. Next behind the canines follow, on each side, two bicuspids. Their crowns are broad, and they have two roots. The three hindmost teeth in each jaw are the molars, or grinders. These are broad teeth with four or five points on each, and usually each molar has three roots.
The last molars are known as the wisdom teeth, as they do not usually appear until the person has reached the "years of discretion." All animals that live on grass, hay, corn, and the cereals generally, have large grinding teeth, as the horse, ox, sheep, and elephant.
The following table shows the teeth in their order:
Mo. Bi. Ca. In. In. Ca. Bi. Mo.
Upper 3 2 1 2 2 1 2 3 = 16 } = 32 Lower 3 2 1 2 2 1 2 3 = 16
The vertical line indicates the middle of the jaw, and shows that on each side of each jaw there are eight teeth.
134. Development of the Teeth. The teeth just described are the permanent set, which succeeds the temporary or milk teeth. The latter are twenty in number, ten in each jaw, of which the four in the middle are incisors. The tooth beyond on each side is an eye tooth, and the next two on each side are bicuspids, or premolars.
The milk teeth appear during the first and second years, and last until about the sixth or seventh year, from which time until the twelfth or thirteenth year, they are gradually pushed out, one by one, by the permanent teeth. The roots of the milk teeth are much smaller than those of the second set.
The plan of a gradual succession of teeth is a beautiful provision of nature, permitting the jaws to increase in size, and preserving the relative position and regularity of the successive teeth.
135. Structure of the Teeth. If we should saw a tooth down through its center we would find in the interior a cavity. This is the pulp cavity, which is filled with the dental pulp, a delicate substance richly supplied with nerves and blood-vessels, which enter the tooth by small openings at the point of the root. The teeth are thus nourished like other parts of the body. The exposure of the delicate pulp to the air, due to the decay of the dentine, gives rise to the pain of toothache.
Surrounding the cavity on all sides is the hard substance known as the dentine, or tooth ivory. Outside the dentine of the root is a substance closely resembling bone, called cement. In fact, it is true bone, but lacks the Haversian canals. The root is held in its socket by a dense fibrous membrane which surrounds the cement as the periosteum does bone.
The crown of the tooth is not covered by cement, but by the hard enamel, which forms a strong protection for the exposed part. When the teeth are first "cut," the surface of the enamel is coated with a delicate membrane which answers to the Scriptural phrase "the skin of the teeth." This is worn off in adult life.
136. Insalivation. The thorough mixture of the saliva with the food is called insalivation. While the food is being chewed, it is moistened with a fluid called saliva, which flows into the mouth from six little glands. There are on each side of the mouth three salivary glands, which secrete the saliva from the blood. The parotid is situated on the side of the face in front of the ear. The disease, common in childhood, during which this gland becomes inflamed and swollen, is known as the "mumps." The submaxillary gland is placed below and to the inner side of the lower jaw, and the sublingual is on the floor of the mouth, between the tongue and the gums. Each gland opens into the mouth by a little duct. These glands somewhat resemble a bunch of grapes with a tube for a stalk.
The saliva is a colorless liquid without taste or smell. Its principal element, besides water, is a ferment called ptyalin, which has the remarkable property of being able to change starch into a form of cane-sugar, known as maltose.
Thus, while the food is being chewed, another process is going on by which starch is changed into sugar. The saliva also moistens the food into a mass for swallowing, and aids in speech by keeping the mouth moist.
The activity of the salivary glands is largely regulated by their abundant supply of nerves. Thus, the saliva flows into the mouth, even at the sight, smell, or thought of food. This is popularly known as "making the mouth water." The flow of saliva may be checked by nervous influences, as sudden terror and undue anxiety.
Experiment 56. To show the action of saliva on starch. Saliva for experiment may be obtained by chewing a piece of India rubber and collecting the saliva in a test tube. Observe that it is colorless and either transparent or translucent, and when poured from one vessel to another is glairy and more or less adhesive. Its reaction is alkaline to litmus paper.
Experiment 57. Make a thin paste from pure starch or arrowroot. Dilute a little of the saliva with five volumes of water, and filter it. This is best done through a filter perforated at its apex by a pin-hole. In this way all air-bubbles are avoided. Label three test tubes A, B, and C. In A, place starch paste; in B, saliva; and in C one volume of saliva and three volumes of starch paste. Place them for ten minutes in a water bath at about 104 degrees Fahrenheit.
Test portions of all three for a reducing sugar, by means of Fehling's solution or tablets.[21] A and B give no evidence of sugar, while C reduces the Fehling, giving a yellow or red deposit of cuprous oxide. Therefore, starch is converted into a reducing sugar by the saliva. This is done by the ferment ptyalin contained in saliva.
137. The Pharynx and OEsophagus. The dilated upper part of the alimentary canal is called the pharynx. It forms a blind sac above the level of the mouth. The mouth opens directly into the pharynx, and just above it are two openings leading into the posterior passages of the nose. There are also little openings, one on each side, from which begin the Eustachian tubes, which lead upward to the ear cavities.
The windpipe opens downward from the pharynx, but this communication can be shut off by a little plate or lid of cartilage, the epiglottis. During the act of swallowing, this closes down over the entrance to the windpipe, like a lid, and prevents the food from passing into the air-passages. This tiny trap-door can be seen, by the aid of a mirror, if we open the mouth wide and press down the back of the tongue with the handle of a spoon (Figs. 46, 84, and 85).
Thus, there are six openings from the pharynx; the oesophagus being the direct continuation from it to the stomach. If we open the mouth before a mirror we see through the fauces the rear wall of the pharynx. In its lining membrane is a large number of glands, the secretion from which during a severe cold may be quite troublesome.
The oesophagus, or gullet, is a tube about nine inches long, reaching from the throat to the stomach. It lies behind the windpipe, pierces the diaphragm between the chest and abdomen, and opens into the stomach. It has in its walls muscular fibers, which, by their worm-like contractions, grasp the successive masses of food swallowed, and pass them along downwards into the stomach.
138. Deglutition, or Swallowing. The food, having been well chewed and mixed with saliva, is now ready to be swallowed as a soft, pasty mass. The tongue gathers it up and forces it backwards between the pillars of the fauces into the pharynx.
If we place the fingers on the "Adam's apple," and then pretend to swallow something, we can feel the upper part of the windpipe and the closing of its lid (epiglottis), so as to cover the entrance and prevent the passage of food into the trachea.
There is only one pathway for the food to travel, and that is down the oesophagus. The slow descent of the food may be seen if a horse or dog be watched while swallowing. Even liquids do not fall or flow down the food passage. Hence, acrobats can drink while standing on their heads, or a horse with its mouth below the level of the oesophagus. The food is under the control of the will until it has entered the pharynx; all the later movements are involuntary.
139. The Stomach. The stomach is the most dilated portion of the alimentary canal and the principal organ of digestion. Its form is not easily described. It has been compared to a bagpipe, which it resembles somewhat, when moderately distended. When empty it is flattened, and in some parts its opposite walls are in contact.
We may describe the stomach as a pear-shaped bag, with the large end to the left and the small end to the right. It lies chiefly on the left side of the abdomen, under the diaphragm, and protected by the lower ribs. The fact that the large end of the stomach lies just beneath the diaphragm and the heart, and is sometimes greatly distended on account of indigestion or gas, may cause feelings of heaviness in the chest or palpitation of the heart. The stomach is subject to greater variations in size than any other organ of the body, depending on its contents. Just after a moderate meal it averages about twelve inches in length and four in diameter, with a capacity of about four pints.
The orifice by which the food enters is called the cardiac opening, because it is near the heart. The other opening, by which the food leaves the stomach, and where the small intestine begins, is the pyloric orifice, and is guarded by a kind of valve, known as the pylorus, or gatekeeper. The concave border between the two orifices is called the small curvature, and the convex as the great curvature, of the stomach.
140. Coats of Stomach. The walls of the stomach are formed by four coats, known successively from without as serous, muscular, sub-mucous, and mucous. The outer coat is the serous membrane which lines the abdomen,—the peritoneum (note, p. 135). The second coat is muscular, having three sets of involuntary muscular fibers. The outer set runs lengthwise from the cardiac orifice to the pylorus. The middle set encircles all parts of the stomach, while the inner set consists of oblique fibers. The third coat is the sub-mucous, made up of loose connective tissues, and binds the mucous to the muscular coat. Lastly there is the mucous coat, a moist, pink, inelastic membrane, which completely lines the stomach. When the stomach is not distended, the mucous layer is thrown into folds presenting a corrugated appearance.
141. The Gastric Glands. If we were to examine with a hand lens the inner surface of the stomach, we would find it covered with little pits, or depressions, at the bottom of which would be seen dark dots. These dots are the openings of the gastric glands. In the form of fine, wavy tubes, the gastric glands are buried in the mucous membrane, their mouths opening on the surface. When the stomach is empty the mucous membrane is pale, but when food enters, it at once takes on a rosy tint. This is due to the influx of blood from the large number of very minute blood-vessels which are in the tissue between the rows of glands.
The cells of the gastric glands are thrown into a state of greater activity by the increased quantity of blood supply. As a result, soon after food enters the stomach, drops of fluid collect at the mouths of the glands and trickle down its walls to mix with the food. Thus these glands produce a large quantity of gastric juice, to aid in the digestion of food.
142. Digestion in the Stomach. When the food, thoroughly mixed with saliva, reaches the stomach, the cardiac end of that organ is closed as well as the pyloric valve, and the muscular walls contract on the contents. A spiral wave of motion begins, becoming more rapid as digestion goes on. Every particle of food is thus constantly churned about in the stomach and thoroughly mixed with the gastric juice. The action of the juice is aided by the heat of the parts, a temperature of about 99 degrees Fahrenheit.
The gastric juice is a thin almost colorless fluid with a sour taste and odor. The reaction is distinctly acid, normally due to free hydrochloric acid. Its chief constituents are two ferments called pepsin and rennin, free hydrochloric acid, mineral salts, and 95 per cent of water.
Pepsin the important constituent of the gastric juice, has the power, in the presence of an acid, of dissolving the proteid food-stuffs. Some of which is converted into what are called peptones, both soluble and capable of filtering through membranes. The gastric juice has no action on starchy foods, neither does it act on fats, except to dissolve the albuminous walls of the fat cells. The fat itself is thus set free in the form of minute globules. The whole contents of the stomach now assume the appearance and the consistency of a thick soup, usually of a grayish color, known as chyme.
It is well known that "rennet" prepared from the calf's stomach has a remarkable effect in rapidly curdling milk, and this property is utilized in the manufacture of cheese. Now, a similar ferment is abundant in the gastric juice, and may be called rennin. It causes milk to clot, and does this by so acting on the casein as to make the milk set into a jelly. Mothers are sometimes frightened when their children, seemingly in perfect health, vomit masses of curdled milk. This curdling of the milk is, however, a normal process, and the only noteworthy thing is its rejection, usually due to overfeeding.
Experiment 58. To show that pepsin and acid are necessary for gastric digestion. Take three beakers, or large test tubes; label them A, B, C. Put into A water and a few grains of powdered pepsin. Fill B two-thirds full of dilute hydrochloric acid (one teaspoonful to a pint), and fill C two-thirds full of hydrochloric acid and a few grains of pepsin. Put into each a small quantity of well-washed fibrin, and place them all in a water bath at 104 degrees Fahrenheit for half an hour.
Examine them. In A, the fibrin is unchanged; in B, the fibrin is clear and swollen up; in C, it has disappeared, having first become swollen and clear, and completely dissolved, being finally converted into peptones. Therefore, both acid and ferment are required for gastric digestion.
Experiment 59. Half fill with dilute hydrochloric acid three large test tubes, labelled A, B, C. Add to each a few grains of pepsin. Boil B, and make C faintly alkaline with sodic carbonate. The alkalinity may be noted by adding previously some neutral litmus solution. Add to each an equal amount—a few threads—of well-washed fibrin which has been previously steeped for some time in dilute hydrochloric acid, so that it is swollen and transparent. Keep the tubes in a water-bath at about 104 degrees Fahrenheit for an hour and examine them at intervals of twenty minutes.
After five to ten minutes the fibrin in A is dissolved and the fluid begins to be turbid. In B and C there is no change. Even after long exposure to 100 degrees Fahrenheit there is no change in B and C.
After a variable time, from one to four hours, the contents of the stomach, which are now called chyme, begin to move on in successive portions into the next part of the intestinal canal. The ring-like muscles of the pylorus relax at intervals to allow the muscles of the stomach to force the partly digested mass into the small intestines. This action is frequently repeated, until even the indigestible masses which the gastric juice cannot break down are crowded out of the stomach into the intestines. From three to four hours after a meal the stomach is again quite emptied.
A certain amount of this semi-liquid mass, especially the peptones, with any saccharine fluids, resulting from the partial conversion of starch or otherwise, is at once absorbed, making its way through the delicate vessels of the stomach into the blood current, which is flowing through the gastric veins to the portal vein of the liver.
]
143. The Small Intestine. At the pyloric end of the stomach the alimentary canal becomes again a slender tube called the small intestine. This is about twenty feet long and one inch in diameter, and is divided, for the convenience of description, into three parts.
The first 12 inches is called the duodenum. Into this portion opens the bile duct from the liver with the duct from the pancreas, these having been first united and then entering the intestine as a common duct.
The next portion of the intestine is called the jejunum, because it is usually empty after death.
The remaining portion is named the ileum, because of the many folds into which it is thrown. It is the longest part of the small intestine, and terminates in the right iliac region, opening into the large intestine. This opening is guarded by the folds of the membrane forming the ileo-caecal valve, which permits the passage of material from the small to the large intestine, but prevents its backward movement.
144. The Coats of the Small Intestine. Like the stomach, the small intestine has four coats, the serous, muscular, sub-mucous, and mucous. The serous is the peritoneum.[22] The muscular consists of an outer layer of longitudinal, and an inner layer of circular fibers, by contraction of which the food is forced along the bowel. The sub-mucous coat is made up of a loose layer of tissue in which the blood-vessels and nerves are distributed. The inner, or mucous, surface has a fine, velvety feeling, due to a countless number of tiny, thread-like projections, called villi. They stand up somewhat like the "pile" of velvet. It is through these villi that the digested food passes into the blood.
The inner coat of a large part of the small intestine is thrown into numerous transverse folds called valvulae conniventes. These seem to serve two purposes, to increase the extent of the surface of the bowels and to delay mechanically the progress of the intestinal contents. Buried in the mucous layer throughout the length, both of the small and large intestines, are other glands which secrete intestinal fluids. Thus, in the lower part of the ileum there are numerous glands in oval patches known as Peyer's patches. These are very prone to become inflamed and to ulcerate during the course of typhoid fever.
145. The Large Intestine. The large intestine begins in the right iliac region and is about five or six feet long. It is much larger than the small intestine, joining it obliquely at short distance from its end. A blind pouch, or dilated pocket is thus formed at the place of junction, called the caecum. A valvular arrangement called the ileo-caecal valve, which is provided with a button-hole slit, forms a kind of movable partition between this part of the large intestine and the small intestine.
Attached to the caecum is a worm-shaped tube, about the size of a lead pencil, and from three to four inches long, called the vermiform appendix. Its use is unknown. This tube is of great surgical importance, from the fact that it is subject to severe inflammation, often resulting in an internal abscess, which is always dangerous and may prove fatal. Inflammation of the appendix is known as appendicitis,—a name quite familiar on account of the many surgical operations performed of late years for its relief.
The large intestine passes upwards on the right side as the ascending colon, until the under side of the liver is reached, where it passes to the left side, as the transverse colon, below the stomach. It there turns downward, as the descending colon, and making an S-shaped curve, ends in the rectum. Thus the large intestine encircles, in the form of a horseshoe, the convoluted mass of small intestines.
Like the small intestine, the large has four coats. The mucous coat, however, has no folds, or villi, but numerous closely set glands, like some of those of the small intestine. The longitudinal muscular fibers of the large intestine are arranged in three bands, or bundles, which, being shorter than the canal itself, produce a series of bulgings or pouches in its walls. This sacculation of the large bowel is supposed to be designed for delaying the onward flow of its contents, thus allowing more time for the absorption of the liquid material. The blood-vessels and nerves of this part of the digestive canal are very numerous, and are derived from the same sources as those of the small intestine.
146. The Liver. The liver is a part of the digestive apparatus, since it forms the bile, one of the digestive fluids. It is a large reddish-brown organ, situated just below the diaphragm, and on the right side. The liver is the largest gland in the body, and weighs from 50 to 60 ounces. It consists of two lobes, the right and the left, the right being much the larger. The upper, convex surface of the liver is very smooth and even; but the under surface is irregular, broken by the entrance and exit of the various vessels which belong to the organ. It is held in its place by five ligaments, four of which are formed by double folds of the peritoneum.
The thin front edge of the liver reaches just below the bony edge of the ribs; but the dome-shaped diaphragm rises slightly in a horizontal position, and the liver passes up and is almost wholly covered by the ribs. In tight lacing, the liver is often forced downward out from the cover of the ribs, and thus becomes permanently displaced. As a result, other organs in the abdomen and pelvis are crowded together, and also become displaced.
147. Minute Structure of the Liver. When a small piece of the liver is examined under a microscope it is found to be made up of masses of many-sided cells, each about 1/1000 of an inch in diameter. Each group of cells is called a lobule. When a single lobule is examined under the microscope it appears to be of an irregular, circular shape, with its cells arranged in rows, radiating from the center to the circumference. Minute, hair-like channels separate the cells one from another, and unite in one main duct leading from the lobule. It is the lobules which give to the liver its coarse, granular appearance, when torn across.
Now there is a large vessel called the portal vein that brings to the liver blood full of nourishing material obtained from the stomach and intestines. On entering the liver this great vein conducts itself as if it were an artery. It divides and subdivides into smaller and smaller branches, until, in the form of the tiniest vessels, called capillaries, it passes inward among the cells to the very center of the hepatic lobules.
148. The Bile. We have in the liver, on a grand scale, exactly the same conditions as obtain in the smaller and simpler glands. The thin-walled liver cells take from the blood certain materials which they elaborate into an important digestive fluid, called the bile.[23] This newly manufactured fluid is carried away in little canals, called bile ducts. These minute ducts gradually unite and form at last one main duct, which carries the bile from the liver. This is known as the hepatic duct. It passes out on the under side of the liver, and as it approaches the intestine, it meets at an acute angle the cystic duct which proceeds from the gall bladder and forms with it the common bile duct. The common duct opens obliquely into the horseshoe bend of the duodenum.
The cystic duct leads back to the under surface of the liver, where it expands into a sac capable of holding about two ounces of fluid, and is known as the gall bladder. Thus the bile, prepared in the depths of the liver by the liver cells, is carried away by the bile ducts, and may pass directly into the intestines to mix with the food. If, however, digestion is not going on, the mouth of the bile duct is closed, and in that case the bile is carried by the cystic duct to the gall bladder. Here it remains until such time as it is needed.
149. Blood Supply of the Liver. We must not forget that the liver itself, being a large and important organ, requires constant nourishment for the work assigned to it. The blood which is brought to it by the portal vein, being venous, is not fit to nourish it. The work is done by the arterial blood brought to it by a great branch direct from the aorta, known as the hepatic artery, minute branches of which in the form of capillaries, spread themselves around the hepatic lobules.
The blood, having done its work and now laden with impurities, is picked up by minute veinlets, which unite again and again till they at last form one great trunk called the hepatic vein. This carries the impure blood from the liver, and finally empties it into one of the large veins of the body.
After the blood has been robbed of its bile-making materials, it is collected by the veinlets that surround the lobules, and finds its way with other venous blood into the hepatic vein. In brief, blood is brought to the liver and distributed through its substance by two distinct channels,—the portal vein and the hepatic artery, but it leaves the liver by one distinct channel,—the hepatic vein.
150. Functions of the Liver. We have thus far studied the liver only as an organ of secretion, whose work is to elaborate bile for future use in the process of digestion. This is, however, only one of its functions, and perhaps not the most important. In fact, the functions of the liver are not single, but several. The bile is not wholly a digestive fluid, but it contains, also, materials which are separated from the blood to be cast out of the body before they work mischief. Thus, the liver ranks above all others as an organ of excretion, that is, it separates material of no further use to the body.
Of the various ingredients of the bile, only the bile salts are of use in the work of digestion, for they act upon the fats in the alimentary canal, and aid somehow in their emulsion and absorption. They appear to be themselves split up into other substances, and absorbed with the dissolved fats into the blood stream again.
The third function of the liver is very different from those already described. It is found that the liver of an animal well and regularly fed, when examined soon after death, contains a quantity of a carbohydrate substance not unlike starch. This substance, extracted in the form of a white powder, is really an animal starch. It is called glycogen, or liver sugar, and is easily converted into grape sugar.
The hepatic cells appear to manufacture this glycogen and to store it up from the food brought by the portal blood. It is also thought the glycogen thus deposited and stored up in the liver is little by little changed into sugar. Then, as it is wanted, the liver disposes of this stored-up material, by pouring it, in a state of solution, into the hepatic vein. It is thus steadily carried to the tissues, as their needs demand, to supply them with material to be transformed into heat and energy.
151. The Pancreas. The pancreas, or sweetbread, is much smaller than the liver. It is a tongue-like mass from six to eight inches long, weighing from three to four ounces, and is often compared in appearance to a dog's tongue. It is somewhat the shape of a hammer with the handle running to a point.
The pancreas lies behind the stomach, across the body, from right to left, with its large head embraced in the horseshoe bend of the duodenum. It closely resembles the salivary glands in structure, with its main duct running from one end to the other. This duct at last enters the duodenum in company with the common bile duct.
The pancreatic juice, the most powerful in the body, is clear, somewhat viscid, fluid. It has a decided alkaline reaction and is not unlike saliva in many respects. Combined with the bile, this juice acts upon the large drops of fat which pass from the stomach into the duodenum and emulsifies them. This process consists partly in producing a fine subdivision of the particles of fat, called an emulsion, and partly in a chemical decomposition by which a kind of soap is formed. In this way the oils and fats are divided into particles sufficiently minute to permit of their being absorbed into the blood.
Again, this most important digestive fluid produces on starch an action similar to that of saliva, but much more powerful. During its short stay in the mouth, very little starch is changed into sugar, and in the stomach, as we have seen, the action of the saliva is arrested. Now, the pancreatic juice takes up the work in the small intestine and changes the greater part of the starch into sugar. Nor is this all, for it also acts powerfully upon the proteids not acted upon in the stomach, and changes them into peptones that do not differ materially from those resulting from gastric digestion. The remarkable power which the pancreatic juice possesses of acting on all the food-stuffs appears to be due mainly to the presence of a specific element or ferment, known as trypsin.
Experiment 60. To show the action of pancreatic juice upon oils or fats. Put two grains of Fairchild's extract of pancreas into a four-ounce bottle. Add half a teaspoonful of warm water, and shake well for a few minutes; then add a tablespoonful of cod liver oil; shake vigorously.
A creamy, opaque mixture of the oil and water, called an emulsion, will result. This will gradually separate upon standing, the pancreatic extract settling in the water at the bottom. When shaken it will again form an emulsion.
Experiment 61. To show the action of pancreatic juice on starch. Put two tablespoonfuls of smooth starch paste into a goblet, and while still so warm as just to be borne by the mouth, stir into it two grains of the extract of pancreas. The starch paste will rapidly become thinner, and gradually change into soluble starch, in a perfectly fluid solution. Within a few minutes some of the starch is converted through intermediary stages into maltose. Use the Fehling test for sugar.
152. Digestion in the Small Intestines. After digestion in the stomach has been going on for some time, successive portions of the semi-digested food begin to pass into the duodenum. The pancreas now takes on new activity, and a copious flow of pancreatic juice is poured along its duct into the intestines. As the food is pushed along over the common opening of the bile and pancreatic ducts, a great quantity of bile from this reservoir, the gall bladder, is poured into the intestines. These two digestive fluids are now mixed with the chyme, and act upon it in the remarkable manner just described.
The inner surface of the small intestine also secretes a liquid called intestinal juice, the precise functions of which are not known. The chyme, thus acted upon by the different digestive fluids, resembles a thick cream, and is now called chyle. The chyle is propelled along the intestine by the worm-like contractions of its muscular walls. A function of the bile, not yet mentioned, is to stimulate these movements, and at the same time by its antiseptic properties to prevent putrefaction of the contents of the intestine.
153. Digestion in the Large Intestines. Digestion does not occur to any great extent in the large intestines. The food enters this portion of the digestive canal through the ileo-caecal valve, and travels through it slowly. Time is thus given for the fluid materials to be taken up by the blood-vessels of the mucous membrane. The remains of the food now become less fluid, and consist of undigested matter which has escaped the action of the several digestive juices, or withstood their influence. Driven onward by the contractions of the muscular walls, the refuse materials at last reach the rectum, from which they are voluntarily expelled from the body.
Absorption.
154. Absorption. While food remains within the alimentary canal it is as much outside of the body, so far as nutrition is concerned, as if it had never been taken inside. To be of any service the food must enter the blood; it must be absorbed. The efficient agents in absorption are the blood-vessels, the lacteals, and the lymphatics. The process through which the nutritious material is fitted to enter the blood, is called absorption. It is a process not confined, as we shall see, simply to the alimentary canal, but one that is going on in every tissue.
The vessels by which the process of absorption is carried on are called absorbents. The story, briefly told, is this: certain food materials that have been prepared to enter the blood, filter through the mucous membrane of the intestinal canal, and also the thin walls of minute blood-vessels and lymphatics, and are carried by these to larger vessels, and at last reach the heart, thence to be distributed to the tissues.
155. Absorption from the Mouth and Stomach. The lining of the mouth and oesophagus is not well adapted for absorption. That this does occur is shown by the fact that certain poisonous chemicals, like cyanide of potash, if kept in the mouth for a few moments will cause death. While we are chewing and swallowing our food, no doubt a certain amount of water and common salt, together with sugar which has been changed from starch by the action of the saliva, gains entrance to the blood.
In the stomach, however, absorption takes place with great activity. The semi-liquid food is separated from the enormous supply of blood-vessels in the mucous membrane only by a thin porous partition. There is, therefore, nothing to prevent the exchange taking place between the blood and the food. Water, along with any substances in the food that have become dissolved, will pass through the partition and enter the blood-current. Thus it is that a certain amount of starch that has been changed into sugar, of salts in solution, of proteids converted into peptones, is taken up directly by the blood-vessels of the stomach.
156. Absorption by the Intestines. Absorption by the intestines is a most active and complicated process. The stomach is really an organ more for the digestion than the absorption of food, while the small intestines are especially constructed for absorption. In fact, the greatest part of absorption is accomplished by the small intestines. They have not only a very large area of absorbing surface, but also structures especially adapted to do this work.
157. The Lacteals. We have learned in Section 144 that the mucous lining of the small intestines is crowded with millions of little appendages called villi, meaning "tufts of hair." These are only about 1/30 of an inch long, and a dime will cover more than five hundred of them. Each villus contains a loop of blood-vessels, and another vessel, the lacteal, so called from the Latin word lac, milk, because of the milky appearance of the fluid it contains. The villi are adapted especially for the absorption of fat. They dip like the tiniest fingers into the chyle, and the minute particles of fat pass through their cellular covering and gain entrance to the lacteals. The milky material sucked up by the lacteals is not in a proper condition to be poured at once into the blood current. It is, as it were, in too crude a state, and needs some special preparation.
The intestines are suspended to the posterior wall of the abdomen by a double fold of peritoneum called the mesentery. In this membrane are some 150 glands about the size of an almond, called mesenteric glands. Now the lacteals join these glands and pour in their fluid contents to undergo some important changes. It is not unlikely that the mesenteric glands may intercept, like a filter, material which, if allowed to enter the blood, would disturb the whole body. Thus, while the glands might suffer, the rest of the body might escape. This may account for the fact that these glands and the lymphatics may be easily irritated and inflamed, thus becoming enlarged and sensitive, as often occurs in the axilla.
Having been acted upon by the mesenteric glands, and passed through them, the chyle flows onward until it is poured into a dilated reservoir for the chyle, known as the receptaculum chyli. This is a sac-like expansion of the lower end of the thoracic duct. Into this receptacle, situated at the level of the upper lumbar vertebrae, in front of the spinal column, are poured, not only the contents of the lacteals, but also of the lymphatic vessels of the lower limbs.
158. The Thoracic Duct. This duct is a tube from fifteen to eighteen inches long, which passes upwards in front of the spine to reach the base of the neck, where it opens at the junction of the great veins of the left side of the head with those of the left arm. Thus the thoracic duct acts as a kind of feeding pipe to carry along the nutritive material obtained from the food and to pour it into the blood current. It is to be remembered that the lacteals are in reality lymphatics—the lymphatics of the intestines.
159. The Lymphatics. In nearly every tissue and organ of the body there is a marvelous network of vessels, precisely like the lacteals, called the lymphatics. These are busily at work taking up and making over anew waste fluids or surplus materials derived from the blood and tissues generally. It is estimated that the quantity of fluid picked up from the tissues by the lymphatics and restored daily to the circulation is equal to the bulk of the blood in the body. The lymphatics seem to start out from the part in which they are found, like the rootlets of a plant in the soil. They carry a turbid, slightly yellowish fluid, called lymph, very much like blood without the red corpuscles.
Now, just as the chyle was not fit to be immediately taken up by the blood, but was passed through the mesenteric glands to be properly worked over, so the lymph is carried to the lymphatic glands, where it undergoes certain changes to fit it for being poured into the blood. Nature, like a careful housekeeper, allows nothing to be wasted that can be of any further service in the animal economy (Figs. 63 and 64).
The lymphatics unite to form larger and larger vessels, and at last join the thoracic duct, except the lymphatics of the right side of the head and chest and right arm. These open by the right lymphatic duct into the venous system on the right side of the neck.
The whole lymphatic system may be regarded as a necessary appendage to the vascular system (Chapter VII.). It is convenient, however, to treat it under the general topic of absorption, in order to complete the history of food digestion.
160. The Spleen and Other Ductless Glands. With the lymphatics may be classified, for convenience, a number of organs called ductless or blood glands. Although they apparently prepare materials for use in the body, they have no ducts or canals along which may be carried the result of their work. Again, they are called blood glands because it is supposed they serve some purpose in preparing material for the blood.
The spleen is the largest of these glands. It lies beneath the diaphragm, and upon the left side of the stomach. It is of a deep red color, full of blood, and is about the size and shape of the palm of the hand.
The spleen has a fibrous capsule from which partitions pass inwards, dividing it into spaces by a framework of elastic tissue, with plain muscular fibers. These spaces are filled with what is called the spleen pulp, through which the blood filters from its artery, just as a fluid would pass through a sponge. The functions of the spleen are not known. It appears to take some part in the formation of blood corpuscles. In certain diseases, like malarial fever, it may become remarkably enlarged. It may be wholly removed from an animal without apparent injury. During digestion it seems to act as a muscular pump, drawing the blood onwards with increased vigor along its large vein to the liver.
The thyroid is another ductless gland. It is situated beneath the muscles of the neck on the sides of "Adam's apple" and below it. It undergoes great enlargement in the disease called goitre.
The thymus is also a blood gland. It is situated around the windpipe, behind the upper part of the breastbone. Until about the end of the second year it increases in size, and then it begins gradually to shrivel away. Like the spleen, the thyroid and thymus glands are supposed to work some change in the blood, but what is not clearly known.
The suprarenal capsules are two little bodies, one perched on the top of each kidney, in shape not unlike that of a conical hat. Of their functions nothing definite is known.
Experiments.
The action produced by the tendency of fluids to mix, or become equally diffused in contact with each other, is known as osmosis, a form of molecular attraction allied to that of adhesion. The various physical processes by which the products of digestion are transferred from the digestive canal to the blood may be illustrated in a general way by the following simple experiments.
The student must, however, understand that the necessarily crude experiments of the classroom may not conform in certain essentials to these great processes conducted in the living body, which they are intended to illustrate and explain.
Experiment 62. Simple Apparatus for Illustrating Endosmotic Action. "Remove carefully a circular portion, about an inch in diameter, of the shell from one end of an egg, which may be done without injuring the membranes, by cracking the shell in small pieces, which are picked off with forceps. A small glass tube is then introduced through an opening in the shell and membranes of the other end of the egg, and is secured in a vertical position by wax or plaster of Paris, the tube penetrating the yelk. The egg is then placed in a wine-glass partly filled with water. In the course of a few minutes, the water will have penetrated the exposed membrane, and the yelk will rise in the tube."—Flint's Human Physiology, page 293.
Experiment 63. Stretch a piece of moist bladder across a glass tube,—a common lamp-chimney will do. Into this put a strong saline solution. Now suspend the tube in a wide mouthed vessel of water. After a short time it will be found that a part of the salt solution has passed through into the water, while a larger amount of water has passed into the tube and raised the height of the liquid within it.
161. The Quantity of Food as Affected by Age. The quantity of food required to keep the body in proper condition is modified to a great extent by circumstances. Age, occupation, place of residence, climate, and season, as well as individual conditions of health and disease, are always important factors in the problem. In youth the body is not only growing, but the tissue changes are active. The restless energy and necessary growth at this time of life cannot be maintained without an abundance of wholesome food. This food supply for young people should be ample enough to answer the demands of their keen appetite and vigorous digestion.
In adult life, when the processes of digestion and assimilation are active, the amount of food may without harm, be in excess of the actual needs of the body. This is true, however, only so long as active muscular exercise is taken.
In advanced life the tissue changes are slow, digestion is less active, and the ability to assimilate food is greatly diminished. Growth has ceased, the energy which induced activity is gone, and the proteids are no longer required to build up worn-out tissues. Hence, as old age approaches, the quantity of nitrogenous foods should be steadily diminished.
Experiment 64. Obtain a sheep's bladder and pour into it a heavy solution of sugar or some colored simple elixir, found at any drug store. Tie the bladder carefully and place it in a vessel containing water. After a while it will be found that an interchange has occurred, water having passed into the bladder and the water outside having become sweet.
Experiment 65. Make a hole about as big as a five-cent piece in the large end of an egg. That is, break the shell carefully and snip the outer shell membrane, thus opening the space between the outer and inner membranes. Now put the egg into a glass of water, keeping it in an upright position by resting on a napkin-ring. There is only the inner shell membrane between the liquid white of the egg (albumen) and the water.
An interchange takes place, and the water passes towards the albumen. As the albumen does not pass out freely towards the water, the membrane becomes distended, like a little bag at the top of the egg.
162. Ill Effects of a too Generous Diet. A generous diet, even of those who take active muscular exercise, should be indulged in only with vigilance and discretion. Frequent sick or nervous headaches, a sense of fullness, bilious attacks, and dyspepsia are some of the after-effects of eating more food than the body actually requires. The excess of food is not properly acted upon by the digestive juices, and is liable to undergo fermentation, and thus to become a source of irritation to the stomach and the intestines. If too much and too rich food be persistently indulged in, the complexion is apt to become muddy, the skin, especially of the face, pale and sallow, and more or less covered with blotches and pimples; the breath has an unpleasant odor, and the general appearance of the body is unwholesome.
An excess of any one of the different classes of foods may lead to serious results. Thus a diet habitually too rich in proteids, as with those who eat meat in excess, often over-taxes the kidneys to get rid of the excess of nitrogenous waste, and the organs of excretion are not able to rid the tissues of waste products which accumulate in the system. From the blood, thus imperfectly purified, may result kidney troubles and various diseases of the liver and the stomach.
163. Effect of Occupation. Occupation has an important influence upon the quantity of food demanded for the bodily support. Those who work long and hard at physical labor, need a generous amount of nutritious food. A liberal diet of the cereals and lean meat, especially beef, gives that vigor to the muscles which enables one to undergo laborious and prolonged physical exertion. On the other hand, those who follow a sedentary occupation do not need so large a quantity of food. Brain-workers who would work well and live long, should not indulge in too generous a diet. The digestion of heavy meals involves a great expenditure of nervous force. Hence, the forces of the brain-worker, being required for mental exertion, should not be expended to an unwarranted extent on the task of digestion.
164. Effect of Climate. Climate also has a marked influence on the quantity of food demanded by the system. Much more food of all kinds is consumed in cold than in warm climates. The accounts by travelers of the quantity of food used by the inhabitants of the frigid zone are almost beyond belief. A Russian admiral gives an instance of a man who, in his presence, ate at a single meal 28 pounds of rice and butter. Dr. Hayes, the Arctic traveler, states from personal observation that the daily ration of the Eskimos is 12 to 15 pounds of meat. With the thermometer ranging from 60 to 70 degrees F. below zero, there was a persistent craving for strong animal diet, especially fatty foods.[24]
The intense cold makes such a drain upon the heat-producing power of the body that only food containing the largest proportion of carbon is capable of making up for the loss. In tropical countries, on the other hand, the natives crave and subsist mainly upon fruits and vegetables.
165. The Kinds of Food Required. An appetite for plain, well-cooked food is a safe guide to follow. Every person in good health, taking a moderate amount of daily exercise, should have a keen appetite for three meals a day and enjoy them. Food should be both nutritious and digestible. It is nutritious in proportion to the amount of material it furnishes for the nourishment of the tissues. It is digestible in a greater or less degree in respect to the readiness with which it yields to the action of the digestive fluids, and is prepared to be taken up by the blood. This digestibility depends partly upon the nature of the food in its raw state, partly upon the effect produced upon it by cooking, and to some extent upon its admixture with other foods. Certain foods, as the vegetable albumens, are both nutritious and digestible. A hard-working man may grow strong and maintain vigorous health on most of them, even if deprived of animal food.
While it is true that the vegetable albumens furnish all that is really needed for the bodily health, animal food of some kind is an economical and useful addition to the diet. Races of men who endure prolonged physical exertion have discovered for themselves, without the teaching of science, the great value of meat. Hence the common custom of eating meat with bread and vegetables is a sound one. It is undoubtedly true that the people of this country, as a rule, eat meat too often and too much at a time. The judicious admixture of different classes of foods greatly aids their digestibility.
The great abundance and variety of food in this country, permit this principle to be put into practice. A variety of mixed foods, as milk, eggs, bread, and meat, are almost invariably associated to a greater or less extent at every meal.
Oftentimes where there is of necessity a sameness of diet, there arises a craving for special articles of food. Thus on long voyages, and during long campaigns in war, there is an almost universal craving for onions, raw potatoes, and other vegetables.
166. Hints about Meals. On an average, three meals each day, from five to six hours apart, is the proper number for adults. Five hours is by no means too long a time to intervene between consecutive meals, for it is not desirable to introduce new food into the stomach, until the gastric digestion of the preceding meal has been completed, and until the stomach has had time to rest, and is in condition to receive fresh material. The stomach, like other organs, does its work best at regular periods.[25]
Eating out of mealtimes should be strictly avoided, for it robs the stomach of its needed rest. Food eaten when the body and mind are wearied is not well digested. Rest, even for a few minutes, should be taken before eating a full meal. It is well to lie down, or sit quietly and read, fifteen minutes before eating, and directly afterwards, if possible.
Severe exercise and hard study just after a full meal, are very apt to delay or actually arrest digestion, for after eating heartily, the vital forces of the body are called upon to help the stomach digest its food. If our bodily energies are compelled, in addition to this, to help the muscles or brain, digestion is retarded, and a feeling of dullness and heaviness follows. Fermentative changes, instead of the normal digestive changes, are apt to take place in the food.
167. Practical Points about Eating. We should not eat for at least two or three hours before going to bed. When we are asleep, the vital forces are at a low ebb, the process of digestion is for the time nearly suspended, and the retention of incompletely digested food in the stomach may cause bad dreams and troubled sleep. But in many cases of sleeplessness, a trifle of some simple food, especially if the stomach seems to feel exhausted, often appears to promote sleep and rest.
[NOTE. The table on the next page shows the results of many experiments to illustrate the time taken for the gastric digestion of a number of the more common solid foods. There are a good many factors of which the table takes no account, such as the interval since the last meal, state of the appetite, amount of work and exercise, method of cooking, and especially the quantity of food.]
Table Showing the Digestibility of the More Common Solid Foods.
Food How Time in Cooked Stomach, Hours ————————————————————————- Apples, sweet and mellow Raw 1-1/2 Apples, sour and hard " 2-1/2 Apple Dumpling Boiled 3 Bass, striped, fresh Broiled 3 Beans, pod Boiled 2-1/2 Beef, with salt only " 2-3/4 " fresh, lean Raw 3 " " " Fried 4 " " " Roasted 3-1/2 " old, hard, salted Boiled 4-1/4 Beefsteak Broiled 3 Beets Boiled 3-3/4 Bread, corn Baked 3-1/4 " wheat, fresh " 3-1/2 Butter Melted 3-1/2 Cabbage, with vinegar Raw 2 " " " Boiled 4-1/2 " heads Raw 2-1/2 Carrots Boiled 3-1/4 Cheese, old, strong Raw 3-1/2 Chicken, full-grown Fricassee 2-3/4 " soup Boiled 3 Codfish, cured, dried " 2 Corncake Baked 2-3/4 Custard " 2-3/4 Duck, domestic Roasted 4 " wild " 4-1/2 Eggs, fresh, whipped Raw 1-1/2 " " 2 " soft-boiled Boiled 3 " hard-boiled " 3-1/2 " Fried 3-1/2 Fowl, domestic Boiled 4 " " Roasted 4 Gelatin Boiled 2-1/2 Goose Roasted 2-1/2 Green corn and beans Boiled 3-3/4 Hash, meat and vegetables Warmed 2-1/2 Lamb Broiled 2-1/2 Liver " 2 Milk Boiled 2 " Raw 2-1/4 Mutton, fresh Broiled 3 " " Boiled 3 " " Roasted 3-1/4 Oysters, fresh Raw 2-1/2 " " Roasted 3-1/4 " " Stewed 3-1/2 Parsnips Boiled 2-1/2 Pig Roasted 2-1/2 Pig's feet, soused Boiled 1 Pork, recently salted " 4-1/2 " Fried 4-1/4 " Raw 3 " steaks Fried 3-1/4 " Stewed 3 " fat or lean Roasted 5-1/4 Potatoes Baked 2-1/2 " Boiled 3-1/2 " Roasted 2-1/2 Rice Boiled 1 Sago " 1-3/4 Salmon, salted " 4 Soup, barley " 1-1/2 " beans " 3 " beef, vegetables, bread " 4 " marrow bone " 4-1/2 " mutton " 3-1/2 Sponge Cake Baked 2-1/2 Suet, beef, fresh Boiled 5-1/3 " mutton " 4-1/2 Tapioca " 2 Tripe, soused " 1 Trout, salmon, fresh " 1-1/2 " " " Fried 1-1/2 Turkey, wild Roasted 2-1/4 " domestic Boiled 2-1/4 " " Roasted 2-1/2 Turnips Boiled 3-1/2 Veal Roasted 4 " Fried 4-1/2 Venison, steaks Broiled 1-1/2
The state of mind has much to do with digestion. Sudden fear or joy, or unexpected news, may destroy the appetite at once. Let a hungry person be anxiously awaiting a hearty meal, when suddenly a disastrous telegram is brought him; all appetite instantly disappears, and the tempting food is refused. Hence we should laugh and talk at our meals, and drive away anxious thoughts and unpleasant topics of discussion.
The proper chewing of the food is an important element in digestion. Hence, eat slowly, and do not "bolt" large fragments of food. If imperfectly chewed, it is not readily acted upon by the gastric juice, and often undergoes fermentative changes which result in sour stomach, gastric pain, and other digestive disturbance.
If we take too much drink with our meals, the flow of the saliva is checked, and digestion is hindered. It is not desireable to dilute the gastric juice, nor to chill the stomach with large amount of cold liquid.
Do not take food and drink too hot or too cold. If they are taken too cold, the stomach is chilled, and digestion delayed. If we drink freely of ice-water, it may require half an hour or more for the stomach to regain its natural heat.
It is a poor plan to stimulate a flagging appetite with highly spiced food and bitter drinks. An undue amount of pepper, mustard, horseradish, pickles, and highly seasoned meat-sauces may stimulate digestion for the time, but they soon impair it.
[NOTE. The process of gastric digestion was studied many years ago by Dr. Beaumont and others, in the remarkable case of Alexis St. Martin, a French-Canadian, who met with a gun-shot wound which left a permanent opening into his stomach, guarded by a little valve of mucous membrane. Through this opening the lining of the stomach could be seen, the temperature ascertained, and numerous experiments made as to the digestibility of various kinds of food.
It was by these careful and convincing experiments that the foundation of our exact knowledge of the composition and action of gastric juice was laid. The modest book in which Dr. Beaumont published his results is still counted among the classics of physiology. The production of artificial fistulae in animals, a method that has since proved so fruitful, was first suggested by his work.]
It cannot be too strongly stated that food of a simple character, well cooked and neatly served, is more productive of healthful living than a great variety of fancy dishes which unduly stimulate the digestive organs, and create a craving for food in excess of the bodily needs.
168. The Proper Care of the Teeth. It is our duty not only to take the very best care of our teeth, but to retain them as long as possible. Teeth, as we well know, are prone to decay. We may inherit poor and soft teeth: our mode of living may make bad teeth worse. If an ounce of prevention is ever worth a pound of cure, it is in keeping the teeth in good order. Bad teeth and toothless gums mean imperfect chewing of the food and, hence, impaired digestion. To attain a healthful old age, the power of vigorous mastication must be preserved.
One of the most frequent causes of decay of the teeth is the retention of fragments of food between and around them. The warmth and moisture of the mouth make these matters decompose quickly. The acid thus generated attacks the enamel of the teeth, causing decay of the dentine. Decayed teeth are often the cause of an offensive breath and a foul stomach.
To keep the teeth clean and wholesome, they should be thoroughly cleansed at bedtime and in the morning with a soft brush and warm water. Castile soap, and some prepared tooth-powder without grit, should be used, and the brush should be applied on both sides of the teeth.
The enamel, once broken through, is never renewed. The tooth decays, slowly but surely: hence we must guard against certain habits which injure the enamel, as picking the teeth with pins and needles. We should never crack nuts, crush hard candy, or bite off stout thread with the teeth. Stiff tooth-brushes, gritty and cheap tooth-powders, and hot food and drink, often injure the enamel. |
|