|
Similar appearances are conspicuous during transits. But while the Mercurian halo is characteristically seen on the sun, the "silver thread" round the limb of Venus commonly shows on the part off the sun. There are, however, instances of each description in both cases. Mr. Grant, in collecting the records of physical phenomena accompanying the transits of 1761 and 1769, remarks that no one person saw both kinds of annulus, and argues a dissimilarity in their respective modes of production.[868] Such a dissimilarity probably exists, in the sense that the inner section of the ring is illusory, the outer, a genuine result of the bending of light in a gaseous envelope; but the distinction of separate visibility has not been borne out by recent experience. Several of the Australian observers during the transit of 1874 witnessed the complete phenomenon. Mr. J. Macdonnell, at Eden, saw a "shadowy nebulous ring" surround the whole disc when ingress was two-thirds accomplished; Mr. Tornaghi, at Goulburn, perceived a halo, entire and unmistakable, at half egress.[869] Similar observations were made at Sydney,[870] and were renewed in 1882 by Lescarbault at Orgeres, by Metzger in Java, and by Barnard at Vanderbilt University.[871]
Spectroscopic indications of aqueous vapour as present in the atmosphere of Venus, were obtained in 1874 and 1882, by Tacchini and Ricco in Italy, and by Young in New Jersey.[872] Janssen, however, who made a special study of the point subsequently to the transit of 1882, found them much less certain than he had anticipated;[873] and Vogel, by repeated examinations, 1871-73, could detect only the very slightest variations from the pattern of the solar spectrum. Some additions there indeed seem to be in the thickening of a few water and oxygen-lines; but so nearly evanescent as to induce the persuasion that most of the light we receive from Venus has traversed only the tenuous upper portion of its atmosphere.[874] It is reflected, at any rate, with comparatively slight diminution. On the 26th and 27th of September, 1878, a close conjunction gave Mr. James Nasmyth the rare opportunity of watching Venus and Mercury for several hours side by side in the field of his reflector; when the former appeared to him like clean silver, the latter as dull as lead or zinc.[875] Yet the light incident upon Mercury is, on an average, three and a half times as strong as the light reaching Venus. Thus, the reflective power of Venus must be singularly strong. And we find, accordingly, from a combination of Zoellner's with Mueller's results, that its albedo is but little inferior to that of new-fallen snow; in other words, it gives back 77 per cent. of the luminous rays impinging upon it.
This extraordinary brilliancy would be intelligible were it permissible to suppose that we see nothing of the planet but a dense canopy of clouds. But the hypothesis is discountenanced by the Flagstaff observations, and is irreconcilable with the visibility of mountainous elevations, and permanent surface-markings. To Mr. Lowell these were so distinct and unchanging as to furnish data for a chart of the Cytherean globe, and the peculiar arrangement of divergent shading exhibited in it cannot off-hand be set down as unreal, in view of Perrotin's earlier discernment of analogous linear traces. Gruithuisen's "snow-caps,"[876] however—it is safe to say—do not exist as such; although shining regions near the poles form a well-attested trait of the strange Cytherean landscape.
The "secondary," or "ashen light," of Venus was first noticed by Riccioli in 1643; it was seen by Derham about 1715, by Kirch in 1721, by Schroeter and Harding in 1806;[877] and the reality of the appearance has since been authenticated by numerous and trustworthy observations. It is precisely similar to that of the "old moon in the new moon's arms"; and Zenger, who witnessed it with unusual distinctness, January 8, 1883,[878] supposes it due to the same cause—namely, to the faint gleam of reflected earth-light from the night-side of the planet. When we remember, however, that "full earth-light" on Venus, at its nearest, has little more than 1/12000 its intensity on the moon, we see at once that the explanation is inadequate. Nor can Professor Safarik's,[879] by phosphorescence of the warm and teeming oceans with which Zoellner[880] regarded the globe of Venus as mainly covered, be seriously entertained. Vogel's suggestion is more plausible. He and O. Lohse, at Bothkamp, November 3 to 11, 1871, saw the dark hemisphere partially illuminated by secondary light, extending 30 deg. from the terminator, and thought the effect might be produced by a very extensive twilight.[881] Others have had recourse to the analogy of our aurorae, and J. Lamp suggested that the grayish gleam, visible to him at Bothkamp, October 21 and 26, 1887,[882] might be an accompaniment of electrical processes connected with the planet's meteorology. Whatever the origin of the phenomenon, it may serve, on a night-enwrapt hemisphere, to dissipate some of the thick darkness otherwise encroached upon only by "the pale light of stars."
Venus was once supposed to possess a satellite. But belief in its existence has died out. No one, indeed, has caught even a deceptive glimpse of such an object during the last 125 years. Yet it was repeatedly and, one might have thought, well observed in the seventeenth and eighteenth centuries. Fontana "discovered" it in 1645; Cassini—an adept in the art of seeing—recognised it in 1672, and again in 1686; Short watched it for a full hour in 1740 with varied instrumental means; Tobias Mayer in 1759, Montaigne in 1761; several astronomers at Copenhagen in March, 1764, noted what they considered its unmistakable presence; as did Horrebow in 1768. But M. Paul Stroobant,[883] who in 1887 submitted all the available data on the subject to a searching examination, identified Horrebow's satellite with Theta Librae, a fifth-magnitude star; and a few other apparitions were, by his industry, similarly explained away. Nevertheless, several withstood all efforts to account for them, and together form a most curious case of illusion. For it is quite certain that Venus has no such conspicuous attendant.
* * * * *
The third planet encountered in travelling outward from the sun is the abode of man. He has in consequence opportunities for studying its physical habitudes altogether different from the baffling glimpse afforded to him of the other members of the solar family. Regarding the earth, then, a mass of knowledge so varied and comprehensive has been accumulated as to form a science—or rather several sciences—apart. But underneath all lie astronomical relations, the recognition and investigation of which constitute one of the most significant intellectual events of the present century.
It is indeed far from easy to draw a line of logical distinction between items of knowledge which have their proper place here, and those which should be left to the historian of geology. There are some, however, of which the cosmical connections are so close that it is impossible to overlook them. Among these is the ascertainment of the solidity of the globe. At first sight it seems difficult to conceive what the apparent positions of the stars can have to do with subterranean conditions; yet it was from star measurements alone that Hopkins, in 1839, concluded the earth to be solid to a depth of at least 800 or 1,000 miles.[884] His argument was, that if it were a mere shell filled with liquid, precession and nutation would be much larger than they are observed to be. For the shell alone would follow the pull of the sun and moon on its equatorial girdle, leaving the liquid behind; and being thus so much the lighter, would move the more readily. There is, it is true, grave reason to doubt whether this reasoning corresponds with the actual facts of the case;[885] but the conclusion to which it led has been otherwise affirmed and extended.
Indications of an identical purport have been derived from another kind of external disturbance, affecting our globe through the same agencies. Lord Kelvin (then Sir William Thomson) pointed out in 1862[886] that tidal influences are brought to bear on land as well as on water, although obedience to them is perceptible only in the mobile element. Some bodily distortion of the earth's figure must, however, take place, unless we suppose it of absolute or "preternatural" rigidity, and the amount of such distortion can be determined from its effect in diminishing oceanic tides below their calculated value. For if the earth were perfectly plastic to the stresses of solar and lunar gravity, tides—in the ordinary sense—would not exist. Continents and oceans would swell and subside together. It is to the difference in the behaviour of solid and liquid terrestrial constituents that the ebb and flow of the waters are due.
Six years later, the distinguished Glasgow professor suggested that this criterion might, by the aid of a prolonged series of exact tidal observations, be practically applied to test the interior condition of our planet.[887] In 1882, accordingly, suitable data extending over thirty-three years having at length become available, Mr. G. H. Darwin performed the laborious task of their analysis, with the general result that the "effective rigidity" of the earth's mass must be at least as great as that of steel.[888]
Ratification from an unexpected quarter has lately been brought to this conclusion. The question of a possible mobility in the earth's axis of rotation has often been mooted. Now at last it has received an affirmative reply. Dr. Kuestner detected, in his observations of 1884-85, effects apparently springing from a minute variation in the latitude of Berlin. The matter having been brought before the International Geodetic Association in 1888, special observations were set on foot at Berlin, Potsdam, Prague, and Strasbourg, the upshot of which was to bring plainly to view synchronous, and seemingly periodic fluctuations of latitude to the extent of half a second of arc. The reality of these was verified by an expedition to Honolulu in 1891-92, the variations there corresponding inversely to those simultaneously determined in Europe.[889] Their character was completely defined by Mr. S. C. Chandler's discussion in October, 1891.[890] He showed that they could be explained by supposing the pole of the earth to describe a circle with a radius of thirty feet in a period of fourteen months. Confirmation of this hypothesis was found by Dr. B. A. Gould in the Cordoba observations,[891] and it was provided with a physical basis through the able co-operation of Professor Newcomb.[892] The earth, owing to its ellipsoidal shape, should, apart from disturbance, rotate upon its "axis of figure," or shortest diameter; since thus alone can the centrifugal forces generated by its spinning balance each other. Temporary causes, however, such as heavy falls of snow or rain limited to one continental area, the shifting of ice-masses, even the movements of winds, may render the globe slightly lop-sided, and thus oblige it to forsake its normal axis, and rotate on one somewhat divergent from it. This "instantaneous axis" (for it is incessantly changing) must, by mathematical theory, revolve round the axis of figure in a period of 306 days. Provided, that is to say, the earth were a perfectly rigid body. But it is far from being so; it yields sensibly to every strain put upon it; and this yielding tends to protract the time of circulation of the displaced pole. The length of its period, then, serves as a kind of measure of the plasticity of the globe; which, according to Newcomb's and S. S. Hough's independent calculations,[893] seems to be a little less than that of steel. In an earth compacted of steel, the instantaneous axis would revolve in 441 days; in the actual earth, the process is accomplished in 428 days. By this new path, accordingly, astronomers have been led to an identical estimate of the consistence of our globe with that derived from tidal investigations.
Variations of latitude are intrinsically complex. To produce them, an incalculable interplay of causes must be at work, each with its proper period and law of action.[894] All the elements of the phenomenon are then in a perpetual state of flux,[895] and absorb for their continual redetermination, the arduous and combined labours of many astronomers. Nor is this trouble superfluous. Minute in extent though they be, the shiftings of the pole menace the very foundations of exact celestial science; their neglect would leave the entire fabric insecure. Just at the beginning of the present century they reached a predicted minimum, but are expected again to augment their range after the year 1902. The interesting suggestion has been made by Mr. J. Halm that such fluctuations are, in some obscure way, affected by changes in solar activity, and conform like them to an eleven-year cycle.[896]
In a paper read before the Geological Society, December 15, 1830,[897] Sir John Herschel threw out the idea that the perplexing changes of climate revealed by the geological record might be explained through certain slow fluctuations in the eccentricity of the earth's orbit, produced by the disturbing action of the other planets. Shortly afterwards, however, he abandoned the position as untenable;[898] and it was left to the late Dr. James Croll, in 1864[899] and subsequent years, to reoccupy and fortify it. Within restricted limits (as Lagrange and, more certainly and definitely, Leverrier proved), the path pursued by our planet round the sun alternately contracts, in the course of ages, into a moderate ellipse, and expands almost to a circle, the major axis, and consequently the mean distance, remaining invariable. Even at present, when the eccentricity approaches a minimum, the sun is nearer to us in January than in July by above three million miles, and some 850,000 years ago this difference was more than four times as great. Dr. Croll brought together[900] a mass of evidence to support the view, that, at epochs of considerable eccentricity, the hemisphere of which the winter, occurring at aphelion, was both intensified and prolonged, must have undergone extensive glaciation; while the opposite hemisphere, with a short, mild winter, and long, cool summer, enjoyed an approach to perennial spring. These conditions were exactly reversed at the end of 10,500 years, through the shifting of the perihelion combined with the precession of the equinoxes, the frozen hemisphere blooming into a luxuriant garden as its seasons came round to occur at the opposite sites of the terrestrial orbit, and the vernal hemisphere subsiding simultaneously into ice-bound rigour.[901] Thus a plausible explanation was offered of the anomalous alternations of glacial and semi-tropical periods, attested, on incontrovertible geological evidence, as having succeeded each other in times past over what are now temperate regions. They succeeded each other, it is true, with much less frequency and regularity than the theory demanded; but the discrepancy was overlooked or smoothed away. The most recent glacial epoch was placed by Dr. Croll about 200,000 years ago, when the eccentricity of the earth's orbit was 3.4 times as great as it is now. At present a faint representation of such a state of things is afforded by the southern hemisphere. One condition of glaciation in the coincidence of winter with the maximum of remoteness from the sun, is present; the other—a high eccentricity—is deficient. Yet the ring of ice-bound territory hemming in the southern pole is well known to be far more extensive than the corresponding region in the north.
The verification of this ingenious hypothesis depends upon a variety of intricate meteorological conditions, some of which have been adversely interpreted by competent authorities.[902] What is still more serious, its acceptance seems precluded by time-relations of a simple kind. Dr. Wright[903] has established with some approach to certainty that glacial conditions ceased in Canada and the United States about ten or twelve thousand years ago. The erosive action of the Falls of Niagara qualifies them to serve as a clepsydra, or water-clock on a grand scale; and their chronological indications have been amply corroborated elsewhere and otherwise on the same continent. The astronomical Ice Age, however, should have been enormously more antique. No reconciliation of the facts with the theory appears possible.
The first attempt at an experimental estimate of the "mean density" of the earth was Maskelyne's observation in 1774 of the deflection of a plumb-line through the attraction of Schehallien. The conclusion thence derived, that our globe weighs 4-1/2 times as much as an equal bulk of water,[904] was not very exact. It was considerably improved upon by Cavendish, who, in 1798, brought into use the "torsion-balance" constructed for the same purpose by John Michell. The resulting estimate of 5.48 was raised to 5.66 by Francis Baily's elaborate repetition of the process in 1838-42. From experiments on the subject made in 1872-73 by Cornu and Baille the slightly inferior value of 5.56 was derived; and it was further shown that the data collected by Baily, when corrected for a systematic error, gave practically the same result (5.55).[905] M. Wilsing's of 5.58, obtained at Potsdam in 1889,[906] nearly agreed with it; while Professor Poynting, by means of a common balance, arrived at a terrestrial mean density of 5.49.[907] Professor Boys next entered the field with an exquisite apparatus, in which a quartz fibre performed the functions of a torsion-rod; and the figure 5.53 determined by him, and exactly confirmed by Dr. Braun's research at Mariaschein, Bohemia, in 1896,[908] may be called the standard value of the required datum. Newton's guess at the average weight of the earth as five or six times that of water has thus been curiously verified.
Operations for determining the figure of the earth were carried out during the last century on an unprecedented scale. The Russo-Scandinavian arc, of which the measurement was completed under the direction of the elder Struve in 1855, reached from Hammerfest to Ismailia on the Danube, a length of 25 deg. 20'. But little inferior to it was the Indian arc, begun by Lambton in the first years of the century, continued by Everest, revised and extended by Walker. Both were surpassed in compass by the Anglo-French arc, which embraced 28 deg.; and considerable segments of meridians near the Atlantic and Pacific shores of North America were measured under the auspices of the United States Coast Survey. But these operations shrink into insignificance by comparison with Sir David Gill's grandiose scheme for uniting two hemispheres by a continuous network of triangulation. The history of geodesy in South Africa began with Lacaille's measurements in 1752. They were repeated and enlarged in scope by Sir Thomas Maclear in 1841-48; and his determinations prepared the way for a complete survey of Cape Colony and Natal, executed during the ten years 1883-92 by Colonel Morris, R.E., under the direction of Sir David Gill.[909] Bechuanaland and Rhodesia were subsequently included in the work; and the Royal Astronomer obtained, in 1900, the support of the International Geodetic Association for its extension to the mouth of the Nile. Nor was this the limit of his design. By carrying the survey along the Levantine coast, connection can be established with Struve's system, and the magnificent amplitude of 105 deg. will be given to the conjoined African and European arcs. Meantime, the French have undertaken the remeasurement of Bouguer's Peruvian arc, and a corresponding Russo-Swedish[910] enterprise is progressing in Spitzbergen; so that abundant materials will ere long be provided for fresh investigations of the shape and size of our planet. The smallness of the outstanding uncertainty can be judged of by comparing J. B. Listing's[911] with General Clarke's[912] results, published in the same year (1878). Listing stated the dimensions of the terrestrial spheroid as follows: Equatorial radius = 3,960 miles; polar radius = 3,947 miles; ellipticity = 1/288.5. Clarke's corresponding figures were: 3,963 and 3,950 miles, giving an ellipticity of 1/293.5. The value of the latter fraction at present generally adopted is 1/292; that is to say, the thickness of the protuberant equatorial ring is held to be 1/292 of the equatorial radius. From astronomical considerations, it is true, Newcomb estimated the ratio at 1/308;[913] but for obtaining this particular datum, geodetical methods are unquestionably to be preferred.
* * * * *
The moon possesses for us a unique interest. She in all probability shared the origin of the earth; she perhaps prefigures its decay. She is at present its minister and companion. Her existence, so far as we can see, serves no other purpose than to illuminate the darkness of terrestrial nights, and to measure, by swiftly-recurring and conspicuous changes of aspect, the long span of terrestrial time. Inquiries stimulated by visible dependence, and aided by relatively close vicinity, have resulted in a wonderfully minute acquaintance with the features of the single lunar hemisphere open to our inspection.
Selenography, in the modern sense, is little more than a hundred years old. It originated with the publication in 1791 of Schroeter's Selenotopographische Fragmente.[914] Not but that the lunar surface had already been diligently studied, chiefly by Hevelius, Cassini, Riccioli, and Tobias Mayer; the idea, however, of investigating the moon's physical condition, and detecting symptoms of the activity there of natural forces through minute topographical inquiry, first obtained effect at Lilienthal. Schroeter's delineations, accordingly, imperfect though they were, afforded a starting-point for a comparative study of the superficial features of our satellite.
The first of the curious objects which he named "rills" was noted by him in 1787. Before 1801 he had found eleven; Lohrmann added 75; Maedler 55; Schmidt published in 1866 a catalogue of 425, of which 278 had been detected by himself;[915] and he eventually brought the number up to nearly 1,000. They are, then, a very persistent lunar feature, though wholly without terrestrial analogue. There is no difference of opinion as to their nature. They are quite obviously clefts in a rocky surface, 100 to 500 yards deep, usually a couple of miles across, and pursuing straight, curved, or branching tracks up to 150 miles in length. As regards their origin, the most probable view is that they are fissures produced in cooling; but Neison inclines to consider them rather as dried watercourses.[916]
On February 24, 1792, Schroeter perceived what he took to be distinct traces of a lunar twilight, and continued to observe them during nine consecutive years.[917] They indicated, he thought, the presence of a shallow atmosphere, about 29 times more tenuous than our own. Bessel, on the other hand, considered that the only way of "saving" a lunar atmosphere was to deny it any refractive power, the sharpness and suddenness of star-occultations negativing the possibility of gaseous surroundings of greater density (admitting an extreme supposition) than 1/500 that of terrestrial air.[918] Newcomb places the maximum at 1/400. Sir John Herschel concluded "the non-existence of any atmosphere at the moon's edge having 1/1980 part of the density of the earth's atmosphere."[919]
This decision was fully borne out by Sir William Huggins's spectroscopic observation of the disappearance behind the moon's limb of the small star Eta Piscium, January 4, 1865.[920] Not the slightest sign of selective absorption or unequal refraction was discernible. The entire spectrum went out at once, as if a slide had suddenly dropped over it. The spectroscope has uniformly told the same tale; for M. Thollon's observation during the total solar eclipse at Sohag of a supposed thickening at the moon's rim, of certain dark lines in the solar spectrum, is now acknowledged to have been illusory. Moonlight, analysed with the prism, is found to be pure reflected sunlight, diminished in quantity, owing to the low reflective capability of the lunar surface, to less than one-fifth its incident intensity, but wholly unmodified in quality.
Nevertheless, the diameter of the moon appeared from the Greenwich observations discussed by Airy in 1865[921] to be 4" smaller than when directly measured; and the effect would be explicable by refraction in a lunar atmosphere 2,000 times thinner than our own at the sea-level. But the difference was probably illusory. It resulted in part, if not wholly, from the visual enlargement by irradiation of the bright disc of the moon. Professor Comstock, employing the 16-inch Clark equatoreal of the Washburn Observatory, found in 1897 the refractive displacements of occulted stars so trifling as to preclude the existence of a permanent lunar atmosphere of much more than 1/5000 the density of the terrestrial envelope.[922] The possibility, however, was admitted that, on the illuminated side of the moon, temporary exhalations of aqueous vapour might arise from ice-strata evaporated by sun-heat. Meantime, some renewed evidence of actual crepuscular gleams on the moon had been gathered by MM. Paul and Prosper Henry of the Paris Observatory, as well as by Mr. W. H. Pickering, in the pure air of Arequipa, at an altitude of 8,000 feet above the sea.[923] An occultation of Jupiter, too, observed by him August 12, 1892,[924] was attended with a slight flattening of the planet's disc through the effect, it was supposed, of lunar refraction—but of refraction in an atmosphere possessing, at the most, 1/4000 the density at the sea-level of terrestrial air, and capable of holding in equilibrium no more than 1/250 of an inch of mercury. Yet this small barometric value corresponds, Mr. Pickering remarks, "to a pressure of hundreds of tons per square mile of the lunar surface." The compression downward of gaseous strata on the moon should, in any case, proceed very gradually, owing to the slight power of lunar gravity,[925] and they might hence play an important part in the economy of our satellite while evading spectroscopic and other tests. Thus—as Mr. Ranyard remarked[926]—the cliffs and pinnacles of the moon bear witness, by their unworn condition, to the efficiency of atmospheric protection against meteoric bombardment; and Mr. Pickering shows that it could be afforded by such a tenuous envelope as that postulated by him.
The first to emulate Schroeter's selenographical zeal was Wilhelm Gotthelf Lohrmann, a land-surveyor of Dresden, who, in 1824, published four out of twenty-five sections of the first scientifically executed lunar chart, on a scale of 37-1/2 inches to a lunar diameter. His sight, however, began to fail three years later, and he died in 1840, leaving materials from which the work was completed and published in 1878 by Dr. Julius Schmidt, late director of the Athens Observatory. Much had been done in the interim. Beer and Maedler began at Berlin in 1830 their great trigonometrical survey of the lunar surface, as yet neither revised nor superseded. A map, issued in four parts, 1834-36, on nearly the same scale as Lohrmann's, but more detailed and authoritative, embodied the results. It was succeeded, in 1837, by a descriptive volume bearing the imposing title, Der Mond; oder allgemeine vergleichende Selenographie. This summation of knowledge in that branch, though in truth leaving many questions open, had an air of finality which tended to discourage further inquiry.[927] It gave form to a reaction against the sanguine views entertained by Hevelius, Schroeter, Herschel and Gruithuisen as to the possibilities of agreeable residence on the moon, and relegated the "Selenites," one of whose cities Schroeter thought he had discovered, and of whose festal processions Gruithuisen had not despaired of becoming a spectator, to the shadowy land of the Ivory Gate. All examples of change in lunar formations were, moreover, dismissed as illusory. The light contained in the work was, in short, a "dry light," not stimulating to the imagination. "A mixture of a lie," Bacon shrewdly remarks, "doth ever add pleasure." For many years, accordingly, Schmidt had the field of selenography almost to himself.
Reviving interest in the subject was at once excited and displayed by the appointment, in 1864, of a Lunar Committee of the British Association. The indirect were of greater value than the direct fruits of its labours. An English school of selenography rose into importance. Popularity was gained for the subject by the diffusion of works conspicuous for ingenuity and research. Nasmyth's and Carpenter's beautifully illustrated volume (1874) was succeeded, after two years, by a still more weighty contribution to lunar science in Mr. Neison's well-known book, accompanied by a map, based on the survey of Beer and Maedler, but adding some 500 measures of positions, besides the representation of several thousand new objects. With Schmidt's Charte der Gebirge der Mondes, Germany once more took the lead. This splendid delineation, built upon Lohrmann's foundation, embraced the detail contained in upwards of 3,000 original drawings, representing the labour of thirty-four years. No less than 32,856 craters are represented in it, on a scale of seventy-five inches to a diameter. An additional help to lunar inquiries was provided at the same time in this country by the establishment, through the initiative of the late Mr. W. R. Birt, of the Selenographical Society.
But the strongest incentive to diligence in studying the rugged features of our celestial helpmate has been the idea of probable or actual variation in them. A change always seems to the inquisitive intellect of man like a breach in the defences of Nature's secrets, through which it may hope to make its way to the citadel. What is desirable easily becomes credible; and thus statements and rumours of lunar convulsions have successively, during the last hundred years, obtained credence, and successively, on closer investigation, been rejected. The subject is one as to which illusion is peculiarly easy. Our view of the moon's surface is a bird's-eye view. Its conformation reveals itself indirectly through irregularities in the distribution of light and darkness. The forms of its elevations and depressions can be inferred only from the shapes of the black, unmitigated shadows cast by them. But these shapes are in a state of perpetual and bewildering fluctuation, partly through changes in the angle of illumination, partly through changes in our point of view, caused by what are called the moon's "librations."[928] The result is, that no single observation can be exactly repeated by the same observer, since identical conditions recur only after the lapse of a great number of years.
Local peculiarities of surface, besides, are liable to produce perplexing effects. The reflection of earth-light at a particular angle from certain bright summits completely, though temporarily, deceived Herschel into the belief that he had witnessed, in 1783 and 1787, volcanic outbursts on the dark side of the moon. The persistent recurrence, indeed, of similar appearances under circumstances less amenable to explanation inclined Webb to the view that effusions of native light actually occur.[929] More cogent proofs must, however, be adduced before a fact so intrinsically improbable can be admitted as true.
But from the publication of Beer and Maedler's work until 1866, the received opinion was that no genuine sign of activity had ever been seen, or was likely to be seen, on our satellite; that her face was a stereotyped page, a fixed and irrevisable record of the past. A profound sensation, accordingly, was produced by Schmidt's announcement, in October, 1866, that the crater "Linne," in the Mare Serenitatis, had disappeared,[930] effaced, as it was supposed, by an igneous outflow. The case seemed undeniable, and is still dubious. Linne had been known to Lohrmann and Maedler, 1822-32, as a deep crater, five or six miles in diameter, the third largest in the dusky plain known as the "Mare Serenitatis"; and Schmidt had observed and drawn it, 1840-43, under a practically identical aspect. Now it appears under high light as a whitish spot, in the centre of which, as the rays begin to fall obliquely, a pit, scarcely two miles across, emerges into view.[931] The crateral character of this comparatively minute depression was detected by Father Secchi, February 11, 1867.
This is not all. Schroeter's description of Linne, as seen by him November 5, 1788, tallies quite closely with modern observation;[932] while its inconspicuousness in 1797 is shown by its omission from Russell's lunar globe and maps.[933] We are thus driven to adopt one of two suppositions: either Lohrmann, Maedler, and Schmidt were entirely mistaken in the size and importance of Linne, or a real change in its outward semblance supervened during the first half of the century, and has since passed away, perhaps again to recur. The latter hypothesis seems the more probable: and its probability is strengthened by much evidence of actual obscuration or variation of tint in other parts of the lunar surface, more especially on the floor of the great "walled plain" named "Plato."[934] From a re-examination with a 13-inch refractor at Arequipa in 1891-92, of this region, and of the Mare Serenitatis, Mr. W. H. Pickering inclines to the belief that lunar volcanic action, once apparently so potent, is not yet wholly extinct.[935]
An instance of an opposite kind of change was alleged by Dr. Hermann J. Klein of Cologne in March, 1878.[936] In Linne the obliteration of an old crater had been assumed; in "Hyginus N.," the formation of a new crater was asserted. Yet, quite possibly, the same cause may have produced the effects thought to be apparent in both. It is, however, far from certain that any real change has affected the neighbourhood of Hyginus. The novelty of Klein's observation of May 19, 1877, may have consisted simply in the detection of a hitherto unrecognised feature. The region is one of complex formation, consequently of more than ordinary liability to deceptive variations in aspect under rapid and entangled fluctuations of light and shade.[937] Moreover, it seems to be certain, from Messrs. Pratt and Capron's attentive study, that "Hyginus N." is no true crater, but a shallow, saucer-like depression, difficult of clear discernment.[938] Under suitable illumination, nevertheless, it contains, and is marked by, an ample shadow.[939]
In both these controverted instances of change, lunar photography was invoked as a witness; but, notwithstanding the great advances made in the art by De la Rue in this country, by Draper, and, above all, by Rutherford in America, without decisive results. Investigations of the kind began to assume a new aspect in 1890, when Professor Holden organised them at the Lick Observatory.[940] Autographic moon-pictures were no longer taken casually, but on system; and Dr. Weinek's elaborate study, and skilful reproductions of them at Prague,[941] gave them universal value. They were designed to provide materials for an atlas on the scale of Beer and Maedler's, of which some beautiful specimen-plates have been issued. At Paris, in 1894, with the aid of a large "equatoreal coude," a work of similar character was set on foot by MM. Loewy and Puiseux. Its progress has been marked by the successive publication of five instalments of a splendid atlas, on a scale of about eight feet to the lunar diameter, accompanied by theoretical dissertations, designed to establish a science of "selenology." The moon's formations are thus not only delineated under every variety of light-incidence, but their meaning is sought to be elicited, and their history and mutual relations interpreted.[942] Henceforth, at any rate, the lunar volcanoes can scarcely, without notice taken, breathe hard in their age-long sleep.
Melloni was the first to get undeniable heating effects from moonlight. His experiments, made on Mount Vesuvius early in 1846,[943] were repeated with like result by Zantedeschi at Venice four years later. A rough measure of the intensity of those effects was arrived at by Piazzi Smyth at Guajara, on the Peak of Teneriffe, in 1856. At a distance of fifteen feet from the thermomultiplier, a Price's candle was found to radiate just twice as much heat as the full moon.[944] Then, after thirteen years, in 1869-72, an exact and extensive series of observations on the subject were made by the present Earl of Rosse. The lunar radiations, from the first to the last quarter, displayed, when concentrated with the Parsonstown three-foot mirror, appreciable thermal energy, increasing with the phase, and largely due to "dark heat," distinguished from the quicker-vibrating sort by inability to traverse a plate of glass. This was supposed to indicate an actual heating of the surface, during the long lunar day of 300 hours, to about 500 deg. F.[945] (corrected later to 197 deg.),[946] the moon thus acting as a direct radiator no less than as a reflector of heat. But the conclusion was very imperfectly borne out by Dr. Boeddicker's observations with the same instrument and apparatus during the total lunar eclipse of October 4, 1884.[947] This initial opportunity of measuring the heat phases of an eclipsed moon was used with the remarkable result of showing that the heat disappeared almost completely, though not quite simultaneously, with the light. Confirmatory evidence of the extraordinary promptitude with which our satellite parts with heat already to some extent appropriated, was afforded by Professor Langley's bolometric observations at Allegheny of the partial eclipse of September 23, 1885.[948] Yet it is certain that the moon sends us a perceptible quantity of heat on its own account, besides simply throwing back solar radiations. For in February, 1885, Professor Langley succeeded, after many fruitless attempts, in getting measures of a "lunar heat-spectrum." The incredible delicacy of the operation may be judged of from the statement that the sum-total of the thermal energy dispersed by his rock-salt prisms was insufficient to raise a thermometer fully exposed to it one-thousandth of a degree Centigrade! The singular fact was, however, elicited that this almost evanescent spectrum is made up of two superposed spectra, one due to reflection, the other, with a maximum far down in the infra-red, to radiation.[949] The corresponding temperature of the moon's sunlit surface Professor Langley considers to be about that of freezing water.[950] Repeated experiments having failed to get any thermal effects from the dark part of the moon, it was inferred that our satellite "has no internal heat sensible at the surface"; so that the radiations from the lunar soil giving the low maximum in the heat-spectrum, "must be due purely to solar heat which has been absorbed and almost immediately re-radiated." Professor Langley's explorations of the terra incognita of immensely long wave-lengths where lie the unseen heat-emissions from the earth into space, led him to the discovery that these, contrary to the received opinion, are in good part transmissible by our atmosphere, although they are completely intercepted by glass. Another important result of the Allegheny work was the abolition of the anomalous notion of the "temperature of space," fixed by Pouillet at -140 deg. C. For space in itself can have no temperature, and stellar radiation is a negligible quantity. Thus, it is safe to assume "that a perfect thermometer suspended in space at the distance of the earth or moon from the sun, but shielded from its rays, would sensibly indicate the absolute zero,"[951] ordinarily placed at -273 deg. C.
A "Prize Essay on the Distribution of the Moon's Heat" (The Hague), 1891, by Mr. Frank W. Very, who had taken an active part in Professor Langley's long-sustained inquiry, embodies the fruits of its continuation. They show the lunar disc to be tolerably uniform in thermal power. The brighter parts are also indeed hotter, but not much. The traces perceived of a slight retention of heat by the substances forming the lunar surface, agreed well with the Parsonstown observations of the total eclipse of the moon, January 28, 1888.[952] For they brought out an unmistakable divergence between the heat and light phases. A curious decrease of heat previous to the first touch of the earth's shadow upon the lunar globe remains unexplained, unless it be admissible to suppose the terrestrial atmosphere capable of absorbing heat at an elevation of 190 miles. The probable range of temperature on the moon was discussed by Professor Very in 1898.[953] He concluded it to be very wide. Hotter than boiling water under the sun's vertical rays, the arid surface of our dependent globe must, he found, cool in the 14-day lunar night to about the temperature of liquid air.
Although that fundamental part of astronomy known as "celestial mechanics" lies outside the scope of this work, and we therefore pass over in silence the immense labours of Plana, Damoiseau, Hansen, Delaunay, G. W. Hill, and Airy in reconciling the observed and calculated motions of the moon, there is one slight but significant discrepancy which is of such importance to the physical history of the solar system, that some brief mention must be made of it.
Halley discovered in 1693, by examining the records of ancient eclipses, that the moon was going faster then than 2,000 years previously—so much faster, as to have got ahead of the place in the sky she would otherwise have occupied, by about two of her own diameters. It was one of Laplace's highest triumphs to have found an explanation of this puzzling fact. He showed, in 1787, that it was due to a very slow change in the ovalness of the earth's orbit, tending, during the present age of the world, to render it more nearly circular. The pull of the sun upon the moon is thereby lessened; the counter-pull of the earth gets the upper hand; and our satellite, drawn nearer to us by something less than an inch each year,[954] proportionately quickens her pace. Many thousands of years hence the process will be reversed; the terrestrial orbit will close in at the sides, the lunar orbit will open out under the growing stress of solar gravity, and our celestial chronometer will lose instead of gaining time.
This is all quite true as Laplace put it; but it is not enough. Adams, the virtual discoverer of Neptune, found with surprise in 1853 that the received account of the matter was "essentially incomplete," and explained, when the requisite correction was introduced, only half the observed acceleration.[955] What was to be done with the remaining half? Here Delaunay, the eminent French mathematical astronomer, unhappily drowned at Cherbourg in 1872 by the capsizing of a pleasure-boat, came to the rescue.[956]
It is obvious to anyone who considers the subject a little attentively, that the tides must act to some extent as a friction-brake upon the rotating earth. In other words, they must bring about an almost infinitely slow lengthening of the day. For the two masses of water piled up by lunar influence on the hither and farther sides of our globe, strive, as it were, to detach themselves from the unity of the terrestrial spheroid, and to follow the movements of the moon. The moon, accordingly, holds them against the whirling earth, which revolves like a shaft in a fixed collar, slowly losing motion and gaining heat, eventually dissipated through space.[957] This must go on (so far as we can see) until the periods of the earth's rotation and of the moon's revolution coincide. Nay, the process will be continued—should our oceans survive so long—by the feebler tide-raising power of the sun, ceasing only when day and night cease to alternate, when one side of our planet is plunged in perpetual darkness and the other seared by unchanging light.
Here, then, we have the secret of the moon's turning always the same face towards the earth. It is that in primeval times, when the moon was liquid or plastic, an earth-raised tidal wave rapidly and forcibly reduced her rotation to its present exact agreement with her period of revolution. This was divined by Kant[958] nearly a century before the necessity for such a mode of action presented itself to any other thinker. In a weekly paper published at Koenigsberg in 1754, the modern doctrine of "tidal friction" was clearly outlined by him, both as regards its effects actually in progress on the rotation of the earth, and as regards its effects already consummated on the rotation of the moon—the whole forming a preliminary attempt at what he called a "natural history" of the heavens. His sagacious suggestion, however, remained entirely unnoticed until revived—it would seem independently—by Julius Robert Mayer in 1848;[959] while similar, and probably original, conclusions were reached by William Ferrel of Allensville, Kentucky, in 1858.[960]
Delaunay was not then the inventor or discoverer of tidal friction; he merely displayed it as an effective cause of change. He showed reason for believing that its action in checking the earth's rotation, far from being, as Ferrel had supposed, completely neutralised by the contraction of the globe through cooling, was a fact to be reckoned with in computing the movements, as well as in speculating on the history, of the heavenly bodies. The outstanding acceleration of the moon was thus at once explained. It was explained as apparent only—the reflection of a real lengthening, by one second in 100,000 years, of the day. But on this point the last word has not yet been spoken.
Professor Newcomb undertook in 1870 the onerous task of investigating the errors of Hansen's Lunar Tables as compared with observations prior to 1750. The results, published in 1878,[961] proved somewhat perplexing. They tend, in general, to reduce the amount of acceleration left unaccounted for by Laplace's gravitational theory, and proportionately to diminish the importance of the part played by tidal friction. But, in order to bring about this diminution, and at the same time conciliate Alexandrian and Arabian observations, it is necessary to reject as total the ancient solar eclipses known as those of Thales and Larissa. This may be a necessary, but it must be admitted to be a hazardous expedient. Its upshot was to indicate a possibility that the observed and calculated values of the moon's acceleration might after all prove to be identical; and the small outstanding discrepancy was still further diminished by Tisserand's investigation, differently conducted, of the same Arabian eclipses discussed by Newcomb.[962] The necessity of having recourse to a lengthening day is then less pressing than it seemed some time ago; and the effect, if perceptible in the moon's motion, should, M. Tisserand remarked, be proportionately so in the motions of all the other heavenly bodies. The presence of the apparent general acceleration that should ensue can be tested with most promise of success, according to the same authority, by delicate comparisons of past and future transits of Mercury.
Newcomb further showed that small residual irregularities are still found in the movements of our satellite, inexplicable either by any known gravitational influence, or by any uniform value that could be assigned to secular acceleration.[963] If set down to the account of imperfections in the "time-keeping" of the earth, it could only be on the arbitrary supposition of fluctuations in its rate of going themselves needing explanation. This, it is true, might be found in very slight changes of figure,[964] not altogether unlikely to occur. But into this cloudy and speculative region astronomers for the present decline to penetrate. They prefer, if possible, to deal only with calculable causes, and thus to preserve for their "most perfect of sciences" its special prerogative of assured prediction.
FOOTNOTES:
[Footnote 796: Neueste Beytraege zur Erweiterung der Sternkunde, Bd. iii., p. 14 (1800).]
[Footnote 797: Ibid., p. 24.]
[Footnote 798: Phil. Trans., vol. xciii., p. 215.]
[Footnote 799: Mem. Roy. Astr. Soc., vol. vi., p. 116.]
[Footnote 800: Month. Not., vol. xix., pp. 11, 25.]
[Footnote 801: Ibid., vol. xxxviii., p. 398.]
[Footnote 802: Am. Jour. of Sc., vol. xvi., p. 124.]
[Footnote 803: Wash. Obs. for 1876, Part ii., p. 34.]
[Footnote 804: Pop. Astr., vol. ii., p. 168; Astr. Jour., No. 335.]
[Footnote 805: Astr. and Astrophysics, vol. xiii., p. 866.]
[Footnote 806: Ibid., p. 867.]
[Footnote 807: Month. Not., vol. xxiv., p. 18.]
[Footnote 808: Ibid., vol. xxiii., p. 234 (Challis).]
[Footnote 809: Untersuchungen ueber die Spectra der Planeten, p. 9.]
[Footnote 810: Sirius, vol. vii., p. 131.]
[Footnote 811: Potsdam Publ., No. 30; Astr. Nach., No. 3,171; Frost, Astr. and Astrophysics, vol. xii., p. 619.]
[Footnote 812: Zoellner and Winnecke made it=O.13, Astr. Nach., No. 2,245.]
[Footnote 813: Neueste Beytraege, Bd. iii., p. 50.]
[Footnote 814: Astr. Jahrbuch, 1804, pp. 97-102.]
[Footnote 815: Webb, Celestial Objects, p. 46 (4th ed.).]
[Footnote 816: L'Astronomie, t. ii., p. 141.]
[Footnote 817: Observations sur les Planetes Venus et Mercure, p. 87.]
[Footnote 818: Observatory, vol. vi., p. 40.]
[Footnote 819: Atti dell' Accad. dei Lincei, t. v. ii., p. 283, 1889; Astr. Nach., No. 2,944.]
[Footnote 820: Astr. Nach. No. 2,479.]
[Footnote 821: Memoirs Amer. Acad., vol. xii., No. 4, p. 464.]
[Footnote 822: Hist. de l'Astr., p. 682.]
[Footnote 823: Comptes Rendus, t. xlix., p. 379.]
[Footnote 824: Comptes Rendus, t. l., p. 40.]
[Footnote 825: Ibid., p. 46.]
[Footnote 826: Astr. Nach., Nos. 1,248 and 1,281.]
[Footnote 827: Comptes Rendus, t. lxxxiii., pp. 510, 561.]
[Footnote 828: Handbuch der Mathematik, Bd. ii., p. 327.]
[Footnote 829: Comptes Rendus, t. lxxxiii., p. 721.]
[Footnote 830: Nature, vol. xviii., pp. 461, 495, 539.]
[Footnote 831: Oppolzer, Astr. Nach., No. 2,239.]
[Footnote 832: Ibid., Nos. 2,253-4 (C. H. F. Peters).]
[Footnote 833: Ibid., Nos. 2,263 and 2,277. See also Tisserand in Ann. Bur. des Long., 1882, p. 729.]
[Footnote 834: See J. Bauschinger's Untersuchungen (1884), summarised in Bull. Astr., t. i., p. 506, and Astr. Nach., No. 2,594. Newcomb finds the anomalous motion of the perihelion to be even larger (43" instead of 38") than Leverrier made it. Month. Not., February, 1884, p. 187. Harzer's attempt to account for it in Astr. Nach., No. 3,030, is more ingenious than successful.]
[Footnote 835: Jour. des Scavans, December, 1667, p. 122.]
[Footnote 836: Elemens d'Astr., p. 525. Cf. Chandler, Pop. Astr., February, 1897, p. 393.]
[Footnote 837: Beobachtungen ueber die sehr betraechtlichen Gebirge und Rotation der Venus, 1792, p. 35. Schroeter's final result in 1811 was 23h. 21m. 7.977s. Monat. Corr., Bd. xxv., p. 367.]
[Footnote 838: Astr. Nach., No. 404.]
[Footnote 839: Rendiconti del R. Istituto Lombardo, t. xxiii., serie ii.]
[Footnote 840: Astr. Nach., No. 3,304.]
[Footnote 841: Bothkamp Beobachtungen, Heft ii., p. 120.]
[Footnote 842: Comptes Rendus, t. cxi., p. 542; t. cxxii., p. 395.]
[Footnote 843: Month. Not., vol. lvii., p. 402; Astr. Nach., No. 3,406.]
[Footnote 844: Mem. Spettroscopisti Italiani, t. xxv., p. 93; Nature, vol. liii., p. 306.]
[Footnote 845: Astr. Nach., No. 3,329.]
[Footnote 846: Ibid.]
[Footnote 847: Bull. de l'Acad. de Belgique, t. xxi., p. 452, 1891.]
[Footnote 848: Observations sur les Planetes Venus et Mercure, 1892.]
[Footnote 849: Astr. Nach., No. 3,300.]
[Footnote 850: Ibid., No. 3,332.]
[Footnote 851: Ibid., No. 3,314.]
[Footnote 852: Ibid., No. 3,170.]
[Footnote 853: Ibid., No. 3,641. The velocity of a point on the equator of Venus, if Brenner's period of 23h. 57m. were exact, would be 0.28 miles per second; but the displacements due to this rate would be doubled by reflection.]
[Footnote 854: Novae Observationes, p. 92.]
[Footnote 855: Mem. de l'Ac., 1700, p. 296.]
[Footnote 856: Phil. Trans., vol. lxxxiii., p. 201.]
[Footnote 857: Webb, Cel. Objects, p. 58.]
[Footnote 858: Month. Not., vol. xlii., p. 111.]
[Footnote 859: Bull. Ac. de Bruxelles, t. xliii., p. 22.]
[Footnote 860: Phil. Trans., vol. lxxxii., p. 309; Aphroditographische Fragmente, p. 85 (1796).]
[Footnote 861: Astr. Nach., No. 679.]
[Footnote 862: Month. Not., vol. xiv., p. 169.]
[Footnote 863: Ibid., vol. xxiv., p. 25.]
[Footnote 864: Am. Jour. of Sc., vol. xliii., p. 129 (2d ser.); vol. ix., p. 47 (3d ser.).]
[Footnote 865: Astroph. Jour., vol. ix., p. 284.]
[Footnote 866: Month. Not., vol. xxxvi., p. 347.]
[Footnote 867: Old and New Astronomy, p. 448.]
[Footnote 868: Hist. Phys. Astr., p. 431.]
[Footnote 869: Mem. Roy. Astr. Soc., vol. xlvii., pp. 77, 84.]
[Footnote 870: Astr. Reg., vol. xiii., p. 132.]
[Footnote 871: L'Astronomie, t. ii., p. 27; Astr. Nach., No. 2,021; Am. Jour. of Sc., vol. xxv., p. 430.]
[Footnote 872: Mem. Spettr. Ital., Dicembre, 1882; Am. Jour. of Sc., vol. xxv., p. 328.]
[Footnote 873: Comptes Rendus, t. cxvi., p. 288.]
[Footnote 874: Vogel, Spectra der Planeten, p. 15.]
[Footnote 875: Nature, vol. xix., p. 23.]
[Footnote 876: Nova Acta Acad. Naturae Curiosorum, Bd. x., 239.]
[Footnote 877: Astr. Jahrbuch, 1809, p. 164.]
[Footnote 878: Month Not., vol. xliii., p. 331.]
[Footnote 879: Report Brit. Ass., 1873, p. 407. The paper contains a valuable record of observations of the phenomenon.]
[Footnote 880: Photom. Untersuchungen, p. 301.]
[Footnote 881: Bothkamp Beobachtungen, Heft ii., p. 126.]
[Footnote 882: Astr. Nach., No. 2,818.]
[Footnote 883: Memoires de l'Acad. de Bruxelles, t. xlix., No. 5, 4to; Astr. Nach., No. 2,809; f. Schorr, Der Venusmond, 1875.]
[Footnote 884: Phil. Trans., 1839, 1841, 1842.]
[Footnote 885: Delaunay objected (Comptes Rendus, t. lxvii., p. 65) that the viscosity of the contained liquid (of which Hopkins took no account) would, where the movements were so excessively slow as those of the earth's axis, almost certainly cause it to behave like a solid. Lord Kelvin, however (Report Brit. Ass., 1876, ii., p. 1), considered Hopkins's argument valid as regards the comparatively quick solar semi-annual and lunar fortnightly nutations.]
[Footnote 886: Phil. Trans., cliii., p. 573.]
[Footnote 887: Report Brit. Ass., 1868, p. 494.]
[Footnote 888: Ibid., 1882, p. 474.]
[Footnote 889: Albrecht, Astr. Nach., No. 3,131.]
[Footnote 890: Astr. Jour., Nos. 248, 249.]
[Footnote 891: Ibid., No. 258.]
[Footnote 892: Month. Not., vol. lii., p. 336.]
[Footnote 893: Astr. Nach., No. 3,097; Phil. Trans., vol. clxxxvi., A., p. 469; Proc. Roy. Soc., vol. lix.]
[Footnote 894: See Chandler's searching investigations, Astr. Jour., Nos. 329, 344, 351, 392, 402, 406, 412, 446, 489, 490, 494, 495.]
[Footnote 895: Rees, Pop. Astr., No. 74, 1900.]
[Footnote 896: Nature, vol. lxi., p. 447; see also A. V. Baecklund, Astr. Nach., No. 3,787.]
[Footnote 897: Trans. Geol. Soc., vol. iii. (2d ser.), p. 293.]
[Footnote 898: See his Treatise on Astronomy, p. 199 (1833).]
[Footnote 899: Phil. Mag., vol. xxviii. (4th ser.), p. 121.]
[Footnote 900: Climate and Time, 1875; Discussions on Climate and Cosmology, 1885.]
[Footnote 901: See for a popular account of the theory, Sir R. Ball's The Cause of an Ice Age, 1892.]
[Footnote 902: See A. Woeikof, Phil. Mag., vol. xxi., p. 223.]
[Footnote 903: The Ice Age in North America, London, 1890.]
[Footnote 904: Phil. Trans., vol. lxviii., p. 783.]
[Footnote 905: Comptes Rendus, t. lxxvi., p. 954.]
[Footnote 906: Potsdam Publ., Nos. 22, 23.]
[Footnote 907: Phil. Trans., vol. clxxxii., p. 565; Adams Prize Essay for 1893.]
[Footnote 908: Denkschriften Akad. der Wiss. Wien, Bd. lxiv.; quoted by Poynting. Nature, vol. lxii., p. 404.]
[Footnote 909: Report on the Geodetic Survey of S. Africa, 1894.]
[Footnote 910: Nature, vol. lxii., p. 622; Hollis, Observatory, vol. xxiii., p. 337; Poincare, Comptes Rendus, July 23, 1900.]
[Footnote 911: Astr. Nach., No. 2,228.]
[Footnote 912: Young's Gen. Astr., p. 601.]
[Footnote 913: Astr. Constants, p. 195.]
[Footnote 914: The second volume was published at Gottingen in 1802.]
[Footnote 915: Ueber Rillen auf dem Monde, p. 13. Cf. The Moon, by T. Gwyn Elger, p. 20. W. H. Pickering, Harvard Annals, vol. xxxii., p. 249.]
[Footnote 916: The Moon, p. 73.]
[Footnote 917: Selen. Fragm., Th. ii., p. 399.]
[Footnote 918: Astr. Nach., No. 263 (1834); Pop. Vorl., pp. 615-620 (1838).]
[Footnote 919: Outlines of Astr., par. 431.]
[Footnote 920: Month. Not., vol. xxv., p. 61.]
[Footnote 921: Month. Not., vol. xxv., p. 264.]
[Footnote 922: Astroph. Jour., vol. vi., p. 422.]
[Footnote 923: Harvard Annals, vol. xxxii., p. 81.]
[Footnote 924: Astr. and Astrophysics, vol. xi., p. 778.]
[Footnote 925: Neison, The Moon, p. 25.]
[Footnote 926: Knowledge, vol. xvii., p. 85.]
[Footnote 927: Neison, The Moon, p. 104.]
[Footnote 928: The combination of a uniform rotational with an unequal orbital movement causes a slight swaying of the moon's globe, now east, now west, by which we are able to see round the edges of the averted hemisphere. There is also a "parallactic" libration, depending on the earth's rotation; and a species of nodding movement—the "libration in latitude"—is produced by the inclination of the moon's axis to her orbit, and by her changes of position with regard to the terrestrial equator. Altogether, about 2/11 of the invisible side come into view.]
[Footnote 929: Cel. Objects, p. 58 (4th ed.).]
[Footnote 930: Astr. Nach., No. 1,631.]
[Footnote 931: Cf. Leo Brenner, Naturwiss. Wochenschrift, January 13, 1895; Jour. Brit. Astr. Ass., vol. v., pp. 29, 222.]
[Footnote 932: Respighi, Les Mondes, t. xiv., p. 294; Huggins, Month. Not., vol. xxvii., p. 298.]
[Footnote 933: Birt, Ibid., p. 95.]
[Footnote 934: Report Brit. Ass., 1872, p. 245.]
[Footnote 935: Observatory, vol. xv., p. 250.]
[Footnote 936: Astr. Reg., vol. xvi., p. 265; Astr. Nach., No. 2,275.]
[Footnote 937: Lindsay and Copeland, Month. Not., vol. xxxix., p. 195.]
[Footnote 938: Observatory, vols. ii., p. 296; iv., p. 373. N. E. Green (Astr. Reg., vol. xvii., p. 144) concluded the object a mere "spot of colour," dark under oblique light.]
[Footnote 939: Webb, Cel. Objects, p. 101.]
[Footnote 940: Publ. Lick Observatory, vol. iii., p. 7.]
[Footnote 941: Ibid., p. 21; Mee, Knowledge, vol. xviii., p. 135.]
[Footnote 942: Comptes Rendus, t. cxxii., p. 967; Bull. Astr., August, 1899; Ann. Bureau des Long., 1898; Nature, vols. lii., p. 439; lvi., p. 280; lix., p. 304; lx., p. 491; Astroph. Jour. vol. vi., p. 51.]
[Footnote 943: Comptes Rendus, t. xxii., p. 541.]
[Footnote 944: Phil. Trans., vol. cxlviii., p. 502.]
[Footnote 945: Proc. Roy. Soc., vol. xvii., p. 443.]
[Footnote 946: Phil. Trans., vol. clxiii., p. 623.]
[Footnote 947: Trans. R. Dublin Soc., vol. iii., p. 321.]
[Footnote 948: Science, vol. vii., p. 9.]
[Footnote 949: Amer. Jour. of Science, vol. xxxviii., p. 428.]
[Footnote 950: "The Temperature of the Moon," Memoirs National Acad. of Sciences, vol. iv., p. 193, 1889.]
[Footnote 951: Temperature of the Moon, p. iii.; see also App. ii., p. 206.]
[Footnote 952: Trans. R. Dublin Soc., vol. iv., p. 481, 1891; Rosse, Proc. Roy. Institution, May 31, 1895.]
[Footnote 953: Astroph. Jour., vol. viii., pp. 199, 265.]
[Footnote 954: Airy, Observatory, vol. iii., p. 420.]
[Footnote 955: Phil. Trans., vol. cxliii., p. 397; Proc. Roy. Soc., vol. vi., p. 321.]
[Footnote 956: Comptes Rendus, t. lxi., p. 1023.]
[Footnote 957: Professor Darwin calculated that the heat generated by tidal friction in the course of lengthening the earth's period of rotation from 23 to 24 hours, equalled 23 million times the amount of its present annual loss by cooling. Nature, vol. xxxiv., p. 422.]
[Footnote 958: Saemmtl. Werke (ed. 1839), Th. vi., pp. 5-12. See also C. J. Monro's useful indications in Nature, vol. vii., p. 241.]
[Footnote 959: Dynamik des Himmels, p. 40.]
[Footnote 960: Gould's Astr. Jour., vol. iii., p. 138.]
[Footnote 961: Wash. Obs. for 1875, vol. xxii., App. ii.]
[Footnote 962: Comptes Rendus, t. cxiii., p. 669; Annuaire, Paris, 1892.]
[Footnote 963: Newcomb, Pop. Astr. (4th ed.), p. 101.]
[Footnote 964: Sir W. Thomson, Report Brit. Ass., 1876, p. 12.]
CHAPTER VIII
PLANETS AND SATELLITES—(continued)
"The analogy between Mars and the earth is perhaps by far the greatest in the whole solar system." So Herschel wrote in 1783,[965] and so we may safely say to-day, after six score further years of scrutiny. The circumstance lends a particular interest to inquiries into the physical habitudes of our exterior planetary neighbour.
Fontana first caught glimpses, at Naples in 1636 and 1638,[966] of dusky stains on the ruddy disc of Mars. They were next seen by Hooke and Cassini in 1666, and this time with sufficient distinctness to serve as indexes to the planet's rotation, determined by the latter as taking place in a period of twenty-four hours forty minutes.[967] Increased confidence was given to this result through Maraldi's precise verification of it in 1719.[968] Among the spots observed by him, he distinguished two as stable in position, though variable in size. They were of a peculiar character, showing as bright patches round the poles, and had already been noticed during sixty years back. A current conjecture of their snowy nature obtained validity when Herschel connected their fluctuations in extent with the progress of the Martian seasons. The inference of frozen precipitations could scarcely be resisted when once it was clearly perceived that the shining polar zones did actually by turns diminish and grow with the alternations of summer and winter in the corresponding hemisphere.
This, it may be said, was the opening of our acquaintance with the state of things prevailing on the surface of Mars. It was accompanied by a steady assertion, on Herschel's part, of permanence in the dark markings, notwithstanding partial obscurations by clouds and vapours floating in a "considerable but moderate atmosphere." Hence the presumed inhabitants of the planet were inferred to "probably enjoy a situation in many respects similar to ours."[969]
Schroeter, on the other hand, went altogether wide of the truth as regards Mars. He held that the surface visible to us is a mere shell of drifting cloud, deriving a certain amount of apparent stability from the influence on evaporation and condensation of subjacent but unseen areographical features;[970] and his opinion prevailed with his contemporaries. It was, however, rejected by Kunowsky in 1822, and finally overthrown by Beer and Maedler's careful studies during five consecutive oppositions, 1830-39. They identified at each the same dark spots, frequently blurred with mists, especially when the local winter prevailed, but fundamentally unchanged.[971] In 1862 Lockyer established a "marvellous agreement" with Beer and Maedler's results of 1830, leaving no doubt as to the complete fixity of the main features, amid "daily, nay, hourly," variations of detail through transits of clouds.[972] On seventeen nights of the same opposition, F. Kaiser of Leyden obtained drawings in which nearly all the markings noted in 1830 at Berlin reappeared, besides spots frequently seen respectively by Arago in 1813, by Herschel in 1783, and one sketched by Huygens in 1672 with a writing-pen in his diary.[973] From these data the Leyden observer arrived at a period of rotation of 24h. 37m. 22.62s., being just one second shorter than that deduced, exclusively from their own observations, by Beer and Maedler. The exactness of this result was practically confirmed by the inquiries of Professor Bakhuyzen of Leyden.[974] Using for a middle term of comparison the disinterred observations of Schroeter, with those of Huygens at one, and of Schiaparelli at the other end of an interval of 220 years, he was enabled to show, with something like certainty, that the time of rotation (24h. 37m. 22.735s.) ascribed to Mars by Mr. Proctor[975] in reliance on a drawing executed by Hooke in 1666, was too long by nearly one-tenth of a second. The minuteness of the correction indicates the nicety of care employed. Nor employed vainly; for, owing to the comparative antiquity of the records available in this case, an almost infinitesimal error becomes so multiplied by frequent repetition as to produce palpable discrepancies in the positions of the markings at distant dates. Hence Bakhuyzen's period of 24h. 37m. 22.66s. is undoubtedly of a precision unapproached as regards any other heavenly body save the earth itself.
Two facts bearing on the state of things at the surface of Mars were, then, fully acquired to science in or before the year 1862. The first was that of the seasonal fluctuations of the polar spots; the second, that of the general permanence of certain dark gray or greenish patches, perceived with the telescope as standing out from the deep yellow ground of the disc. That these varieties of tint correspond to the real diversities of a terraqueous globe, the "ripe cornfield"[976] sections representing land, the dusky spots and streaks, oceans and straits, has long been the prevalent opinion. Sir J. Herschel in 1830 led the way in ascribing the redness of the planet's light to an inherent peculiarity of soil.[977] Previously it had been assimilated to our sunset glows rather than to our red sandstone formations—set down, that is, to an atmospheric stoppage of blue rays. But the extensive Martian atmosphere, implicitly believed in on the strength of some erroneous observations by Cassini and Roemer in the seventeenth century, vanished before the sharp occultation of a small star in Leo, witnessed by Sir James South in 1822;[978] and Dawes's observation in 1865,[979] that the ruddy tinge is deepest near the central parts of the disc, certified its non-atmospheric origin. The absolute whiteness of the polar snow-caps was alleged in support of the same inference by Sir William Huggins in 1867.[980]
All recent operations tend to show that the atmosphere of Mars is much thinner than our own. This was to have been expected a priori, since the same proportionate mass of air would on his smaller globe form a relatively sparse covering.[981] Besides, gravity there possesses less than four-tenths its force here, so that this sparser covering would weigh less, and be less condensed, than if it enveloped the earth. Atmospheric pressure would accordingly be of about two and a quarter, instead of fifteen terrestrial pounds per square inch. This corresponds with what the telescope shows us. It is extremely doubtful whether any features of the earth's actual surface could be distinguished by a planetary spectator, however well provided with optical assistance. Professor Langley's inquiries[982] led him to conclude that fully twice as much light is absorbed by our air as had previously been supposed—say 40 per cent. of vertical rays in a clear sky. Of the sixty reaching the earth, less than a quarter would be reflected even from white sandstone; and this quarter would again pay heavy toll in escaping back to space. Thus not more than perhaps ten or twelve out of the original hundred sent by the sun would, under the most favourable circumstances, and from the very centre of the earth's disc, reach the eye of a Martian or lunar observer. The light by which he views our world is, there is little doubt, light reflected from the various strata of our atmosphere, cloud or mist-laden or serene, as the case may be, with an occasional snow-mountain figuring as a permanent white spot.
This consideration at once shows us how much more tenuous the Martian air must be, since it admits of topographical delineations of the Martian globe. The clouds, too, that form in it seem in general to be rather of the nature of ground-mists than of heavy cumulus.[983] Occasionally, indeed, durable and extensive strata become visible. During the latter half of October, 1894, for instance, a region as large as Europe remained apparently cloud-covered. Yet most recent observers are unable to detect the traces of aqueous absorption in the Martian spectrum noted by Huggins in 1867[984] and by Vogel in 1873.[985] Campbell vainly looked for them,[986] visually in 1894, spectrographically in 1896; Keeler was equally unsuccessful;[987] Jewell[988] holds that they could, with present appliances, only be perceived if the atmosphere of Mars were much richer in water-vapour than that of the earth. There can be little doubt, however, that its supply is about the minimum adequate to the needs of a living, and perhaps a life-nuturing planet.
The climate of Mars seems to be unexpectedly mild. Its theoretical mean temperature, taking into account both distance from the sun and albedo, is 34 deg. C. below freezing.[989] Yet its polar snows are both less extensive and less permanent than those on the earth. The southern white hood, noticed by Schiaparelli in 1877 to have survived the summer only as a small lateral patch, melted completely in 1894. Moreover, Mr. W. H. Pickering observed with astonishment the disappearance, in the course of thirty-three days of June and July, 1892, of 1,600,000 square miles of southern snow.[990] Curiously enough, the initial stage of shrinkage in the white calotte was marked by its division into two unequal parts, as if in obedience to the mysterious principle of duplication governing so many Martian phenomena.[991] Changes of the hues associated respectively with land and water accompanied in lower latitudes, and were thought to be occasioned by floods ensuing upon this rapid antarctic thaw. It is true that scarcity of moisture would account for the scantiness and transitoriness of snowy deposits easily liquefied because thinly spread. But we might expect to see the whole wintry hemisphere, at any rate, frost-bound, since the sun radiates less than half as much heat on Mars as on the earth. Water seems, nevertheless, to remain, as a rule, uncongealed everywhere outside the polar regions. We are at a loss to imagine by what beneficent arrangement the rigorous conditions naturally to be looked for can be modified into a climate which might be found tolerable by creatures constituted like ourselves.
Martian topography may be said to form nowadays a separate sub-department of descriptive astronomy. The amount of detail become legible by close scrutiny on a little disc which, once in fifteen years, attains a maximum of about 1/5000 the area of the full moon, must excite surprise and might provoke incredulity. Spurious discoveries, however, have little chance of holding their own where there are so many competitors quite as ready to dispute as to confirm.
The first really good map of Mars was constructed in 1869 by Proctor from drawings by Dawes. Kaiser of Leyden followed in 1872 with a representation founded upon data of his own providing in 1862-64; and Terby, in his valuable Areographie, presented to the Brussels Academy in 1873[992] a careful discussion of all important observations from the time of Fontana downwards, thus virtually adding to knowledge by summarising and digesting it. The memorable opposition of September 5, 1877, marked a fresh epoch in the study of Mars. While executing a trigonometrical survey (the first attempted) of the disc, then of the unusual size of 25" across, G. V. Schiaparelli, director of the Milan Observatory, detected a novel and curious feature. What had been taken for Martian continents were found to be, in point of fact, agglomerations of islands, separated from each other by a network of so-called "canals" (more properly channels).[993] These are obviously extensions of the "seas," originating and terminating in them, and sharing their gray-green hue, but running sometimes to a length of three or four thousand miles in a straight line, and preserving throughout a nearly uniform breadth of about sixty miles. Further inquiries have fully substantiated the discovery made at the Brera Observatory. The "canals" of Mars are an actually existent and permanent phenomenon. An examination of the drawings in his possession showed M. Terby that they had been seen, though not distinctively recognised, by Dawes, Secchi, and Holden; several were independently traced out by Burton at the opposition of 1879; all were recovered by Schiaparelli himself in 1879 and 1881-82; and their indefinite multiplication resulted from Lovell's observations in 1894 and 1896.
When the planet culminated at midnight, and was therefore in opposition, December 26, 1881, its distance was greater, and its apparent diameter less than in 1877, in the proportion of sixteen to twenty-five. Its atmosphere was, however, more transparent, and ours of less impediment to northern observers, the object of scrutiny standing considerably higher in northern skies. Never before, at any rate, had the true aspect of Mars come out so clearly as at Milan, with the 8-3/4-inch Merz refractor of the observatory, between December, 1881, and February, 1882. The canals were all again there, but this time they were—in as many as twenty cases—seen in duplicate. That is to say, a twin-canal ran parallel to the original one at an interval of 200 to 400 miles.[994]
We are here brought face to face with an apparently insoluble enigma. Schiaparelli regards the "germination" of his canals as a periodical phenomenon depending on the Martian seasons. It is, assuredly, not an illusory one, since it was plainly apparent, during the opposition of 1886, to MM. Perrotin and Thollon at Nice,[995] and to the former, using the new 30-inch refractor of that observatory, in 1888; Mr. A. Stanley Williams, with the help of only a 6-1/2-inch reflector, distinctly perceived in 1890 seven of the duplicate objects noted at Milan,[996] and the Lick observations, both of 1890 and of 1892, together with the drawings made at Flagstaff and Mexico during the last favourable oppositions of the nineteenth century, brought unequivocal confirmation to the accuracy of Schiaparelli's impressions.[997] Various conjectures have been hazarded in explanation of this bizarre appearance. The difficulty of conceiving a physical reality corresponding to it has suggested recourse to an optical rationale. Proctor regarded it as an effect of diffraction;[998] Stanislas Meunier, of oblique reflection from overlying mist-banks;[999] Flammarion considers it possible that companion-canals might, under special circumstances, be evoked by refraction as a kind of mirage.[1000] But none of these speculations are really admissible, when all the facts are taken into account. The view that the canals of Mars are vast rifts due to the cooling of the globe, is recommended by the circumstance that they tend to follow great circles; nevertheless, it would break down if, as Schiaparelli holds, the fluctuations in their visibility depend upon actual obliterations and re-emergencies. Fantastic though the theory of their artificial origin appear, it is held by serious astronomers. Its vogue is largely due to Mr. Lowell's ingenious advocacy. He considers the Martian globe to be everywhere intersected by an elaborate system of irrigation-works, rendered necessary by a perennial water-famine, relieved periodically by the melting of the polar snows. Nor does he admit the existence of oceans, or lakes. What have been taken for such are really tracts covered with vegetation, the bright areas intermixed with them representing sandy deserts. And it is noteworthy in this connection that Professor Barnard obtained in 1894,[1001] with the great Lick refractor, "suggestive and impressive views" disclosing details of light and shade on the gray-green patches so intricate and minute as almost to preclude the supposition of their aqueous nature.
The closeness of the terrestrial analogy has thus of late been much impaired. Even if the surface of Mars be composed of land and water, their distribution must be of a completely original type. The interlacing everywhere of continents with arms of the sea (if that be the correct interpretation of the visual effects) implies that their levels scarcely differ;[1002] and Schiaparelli carries most observers with him in holding that their outlines are not absolutely constant, encroachments of dusky upon bright tints suggesting extensive inundations.[1003] The late N. E. Green's observations at Madeira in 1877 indicated, on the other hand, a rugged south polar region. The contour of the snow-cap not only appeared indented, as if by valleys and promontories, but brilliant points were discerned outside the white area, attributed to isolated snow-peaks.[1004] Still more elevated, if similarly explained, must be the "ice island" first seen in a comparatively low latitude by Dawes in January, 1865.
On August 4, 1892, Mars stood opposite to the sun at a distance of only 34,865,000 miles from the earth. In point of vicinity, then, its situation was scarcely less favourable than in 1877. The low altitude of the planet, however, practically neutralised this advantage for northern observers, and public expectation, which had been raised to the highest pitch by the announcements of sensation-mongers, was somewhat disappointed at the "meagreness" of the news authentically received from Mars. Valuable series of observations were, nevertheless, made at Lick and Arequipa; and they unite in testifying to the genuine prevalence of surface-variability, especially in certain regions of intermediate tint, and perhaps of the "crude consistence" of "boggy Syrtes, neither sea, nor good dry land." Professor Holden insisted on the "enormous difficulties in the way of completely explaining the recorded phenomena by terrestrial analogies";[1005] Mr. W. H. Pickering spoke of "conspicuous and startling changes." They, however, merely overlaid, and partially disguised, a general stability. Among the novelties detected by Mr. Pickering were a number of "lakes," or "oases" (in Lowell's phraseology), under the aspect of black dots at the junctions of two or more canals;[1006] and he, no less than the Lick astronomers and M. Perrotin at Nice,[1007] observed brilliant clouds projecting beyond the terminator, or above the limb, while carried round by the planet's rotation. They seemed to float at an altitude of at least twenty miles, or about four times the height of terrestrial cirrus; but this was not wonderful, considering the low power of gravity acting upon them. Great capital was made in the journalistic interest out of these imaginary signals from intelligent Martians, desirous of opening communications with (to them) problematical terrestrial beings. Similar effects had, however, been seen before by Mr. Knobel in 1873, by M. Terby in 1888, and at the Lick Observatory in 1890; and they were discerned again with particular distinctness by Professor Hussey at Lick, August 27, 1896.[1008]
The first photograph of Mars was taken by Gould at Cordoba in 1879. Little real service in planetary delineation has, it is true, been so far rendered by the art, yet one achievement must be recorded to its credit. A set of photographs obtained by Mr. W. H. Pickering on Wilson's Peak, California, April 9, 1890, showed the southern polar cap of Mars as of moderate dimensions, but with a large dim adjacent area. Twenty-four hours later, on a corresponding set, the dim area was brilliantly white. The polar cap had become enlarged in the interim, apparently through a wide-spreading snow-fall, by the annexation of a territory equal to that of the United States. The season was towards the close of winter in Mars. Never until then had the process of glacial extension been actually (it might be said) superintended in that distant globe.
Mars was gratuitously supplied with a pair of satellites long before he was found actually to possess them. Kepler interpreted Galileo's anagram of the "triple" Saturn in this sense; they were perceived by Micromegas on his long voyage through space; and the Laputan astronomers had even arrived at a knowledge, curiously accurate under the circumstances, of their distances and periods. But terrestrial observers could see nothing of them until the night of August 11, 1877. The planet was then within one month of its second nearest approach to the earth during the last century; and in 1845 the Washington 26-inch refractor was not in existence.[1009] Professor Asaph Hall, accordingly, determined to turn the conjecture to account for an exhaustive inquiry into the surroundings of Mars. Keeping his glaring disc just outside the field of view, a minute attendant speck of light was "glimpsed" August 11. Bad weather, however, intervened, and it was not until the 16th that it was ascertained to be what it appeared—a satellite. On the following evening a second, still nearer to the primary, was discovered, which, by the bewildering rapidity of its passages hither and thither, produced at first the effect of quite a crowd of little moons.[1010]
Both these delicate objects have since been repeatedly observed, both in Europe and America, even with comparatively small instruments. At the opposition of 1884, indeed, the distance of the planet was too great to permit of the detection of both elsewhere than at Washington. But the Lick equatoreal showed them, July 18, 1888, when their brightness was only 0.12 its amount at the time of their discovery; so that they can now be followed for a considerable time before and after the least favourable oppositions.
The names chosen for them were taken from the Iliad, where "Deimos" and "Phobos" (Fear and Panic) are represented as the companions in battle of Ares. In several respects, they are interesting and remarkable bodies. As to size, they may be said to stand midway between meteorites and satellites. From careful photometric measures executed at Harvard in 1877 and 1879, Professor Pickering concluded their diameters to be respectively six and seven miles.[1011] This is on the assumption that they reflect the same proportion of the light incident upon them that their primary does. But it may very well be that they are less reflective, in which case they would be more extensive. The albedo of Mars is put by Mueller at 0.27; his surface, in other words, returns 27 per cent. of the rays striking it. If we put the albedo of his satellites equal to that of our moon, 0.17, their diameters will be increased from 6 and 7 to 7-1/2 and 9 miles, Phobos, the inner one, being the larger. Mr. Lowell, however, formed a considerably larger estimate of their dimensions.[1012] It is interesting to note that Deimos, according to Professor Pickering's very distinct perception, does not share the reddish tint of Mars.
Deimos completes its nearly circular revolutions in thirty hours eighteen minutes, at a distance from the surface of its ruling body of 12,500 miles; Phobos traverses an elliptical orbit[1013] in seven hours thirty-nine minutes twenty-two seconds, at a distance of only 3,760 miles. This is the only known instance of a satellite circulating faster than its primary rotates, and is a circumstance of some importance as regards theories of planetary development. To a Martian spectator the curious effect would ensue of a celestial object, seemingly exempt from the general motion of the sphere, rising in the west, setting in the east, and culminating twice, or even thrice a day; which, moreover, in latitudes above 69 deg. north or south, would be permanently and altogether hidden by the intervening curvature of the globe.
* * * * *
The detection of new members of the solar system has come to be one of the most ordinary of astronomical events. Since 1846 no single year has passed without bringing its tribute of asteroidal discovery. In the last of the seventies alone, a full score of miniature planets were distinguished from the thronging stars amid which they seem to move; 1875 brought seventeen such recognitions; their number touched a minimum of one in 1881; it rose in 1882, and again in 1886, to eleven; dropped to six in 1889, and sprang up with the aid of photography to twenty-seven in 1892. That high level has since, on an average, been maintained; and on January 1, 1902, nearly 500 asteroids were recognised as revolving between the orbits of Mars and Jupiter. Of these, considerably more than one hundred are claimed by one investigator alone—Dr. Max Wolf of Heidelburg; M. Charlois of Nice comes second with 102; while among the earlier observers Palisa of Vienna contributed 86, and C. H. F. Peters of Clinton (N. Y.), whose varied and useful career terminated July 19, 1890, 52 to the grand total. The construction by Chacornac and his successors at Paris, and more recently by Peters at Clinton, of ecliptical charts showing all stars down to the thirteenth and fourteenth magnitudes respectively, rendered the picking out of moving objects above that brightness a mere question of time and diligence. Both, however, are vastly economised by the photographic method. Tedious comparisons of the sky with charts are no longer needed for the identification of unrecorded, because simulated stars. Planetary bodies declare themselves by appearing upon the plate, not in circular, but in linear form. Their motion converts their images into trails, long or short according to the time of exposure. The first asteroid (No. 323) thus detected was by Max Wolf, December 22, 1891.[1014] Eighteen others were similarly discovered in 1892, by the same skilful operator; and ten more through Charlois's adoption at Nice of the novel plan now in exclusive use for picking up errant light-specks. Far more onerous than the task of their discovery is that of keeping them in view once discovered—of tracking out their paths, ixing their places, and calculating the disturbing effects upon them of the mighty Jovian mass. These complex operations have come to be centralised at Berlin under the superintendence of Professor Tietjen, and their results are given to the public through the medium of the Berliner Astronomisches Jahrbuch.
The cui bono? however, began to be agitated. Was it worth while to maintain a staff of astronomers for the sole purpose of keeping hold over the identity of the innumerable component particles of a cosmical ring? The prospect, indeed, of all but a select few of the asteroids being thrown back by their contemptuous captors into the sea of space seemed so imminent that Professor Watson provided by will against the dereliction of the twenty-two discovered by himself. But the fortunes of the whole family improved through the distinction obtained by one of them. On August 14, 1898, the trail of a rapidly-moving, star-like object of the eleventh magnitude imprinted itself on a plate exposed by Herr Witt at the Urania Observatory, Berlin. Its originator proved to be unique among asteroids. "Eros" is, in sober fact,
'one of those mysterious stars Which hide themselves between the Earth and Mars,'
divined or imagined by Shelley.[1015] True, several of its congeners invade the Martian sphere at intervals; but the proper habitat of Eros is within that limit, although its excursions transcend it. In other words, its mean distance from the sun is about 135, as compared with the Martian distance of 141 million miles. Further, its orbit being so fortunately circumstanced as to bring it once in sixty-seven years within some 15 millions of miles of the earth, it is of extraordinary value to celestial surveyors. The calculation of its movements was much facilitated by detections, through a retrospective search,[1016] of many of its linear images among the star-dots on the Harvard plates.[1017] The little body—which can scarcely be more than twenty miles in diameter—shows peculiarities of behaviour as well as of position. Dr. von Oppolzer, in February, 1901,[1018] announced it to be extensively and rapidly variable. Once in 2 hours 38 minutes it lost about three-fourths of its light,[1019] but these fluctuations quickly diminished in range, and in the beginning of May ceased altogether.[1020] Evidently, then, they depend upon the situation of the asteroid relatively to ourselves; and, so far, events lent countenance to M. Andre's eclipse hypothesis, since mutual occultations of the supposed planetary twins could only take place when the plane of their revolutions passed through the earth, and this condition would be transitory. Yet the recognition in Eros of an "Algol asteroid" seems on other grounds inadmissible;[1021] nor until the phenomenon is conspicuously renewed—as it probably will be at the opposition of 1903—can there be much hope of finding its appropriate rationale. |
|