|
The exactness of the coincidence thus brought to light was fully confirmed by further inquiries. A diligent search through the scattered records of sun-spot observations, from the time of Galileo and Scheiner onwards, put Wolf[360] in possession of materials by which he was enabled to correct Schwabe's loosely-indicated decennial period to one of slightly over eleven (11.11) years; and he further showed that this fell in with the ebb and flow of magnetic change even better than Lamont's 10-1/3 year cycle. The analogy was also pointed out between the "light-curve," or zig-zagged line representing on paper the varying intensity in the lustre of certain stars, and the similar delineation of spot-frequency; the ascent from minimum to maximum being, in both cases, usually steeper than the descent from maximum to minimum; while an additional point of resemblance was furnished by the irregularities in height of the various maxima. In other words, both the number of spots on the sun and the brightness of variable stars increase, as a rule, more rapidly than they decrease; nor does the amount of that increase, in either instance, show any approach to uniformity.
The endeavour, suggested by the very nature of the phenomenon, to connect sun-spots with weather was less successful. The first attempt of the kind was made by Sir William Herschel in 1801, and a very notable one it was. Meteorological statistics, save of the scantiest and most casual kind, did not then exist; but the price of corn from year to year was on record, and this, with full recognition of its inadequacy, he adopted as his criterion. Nor was he much better off for information respecting the solar condition. What little he could obtain, however, served, as he believed, to confirm his surmise that a copious emission of light and heat accompanies an abundant formation of "openings" in the dazzling substance whence our supply of those indispensable commodities is derived.[361] He gathered, in short, from his inquiries very much what he had expected to gather, namely, that the price of wheat was high when the sun showed an unsullied surface, and that food and spots became plentiful together.[362]
Yet this plausible inference was scarcely borne out by a more exact collocation of facts. Schwabe failed to detect any reflection of the sun-spot period in his meteorological register. Gautier[363] reached a provisional conclusion the reverse—though not markedly the reverse—of Herschel's. Wolf, in 1852, derived from an examination of Vogel's collection of Zurich Chronicles (1000-1800 A.D.) evidence showing (as he thought) that minimum years were usually wet and stormy, maximum years dry and genial;[364] but a subsequent review of the subject in 1859 convinced him that no relation of any kind between the two kinds of effects was traceable.[365] With the singular affection of our atmosphere known as the Aurora Borealis (more properly Aurora Polaris) the case was different. Here the Zurich Chronicles set Wolf on the right track in leading him to associate such luminous manifestations with a disturbed condition of the sun; since subsequent detailed observation has exhibited the curve of auroral frequency as following with such fidelity the jagged lines figuring to the eye the fluctuations of solar and magnetic activity, as to leave no reasonable doubt that all three rise and sink together under the influence of a common cause. As long ago as 1716,[366] Halley had conjectured that the Northern Lights were due to magnetic "effluvia," but there was no evidence on the subject forthcoming until Hiorter observed at Upsala in 1741 their agitating influence upon the magnetic needle. That the effect was no casual one was made superabundantly clear by Arago's researches in 1819 and subsequent years. Now both were perceived to be swayed by the same obscure power of cosmical disturbance.
The sun is not the only one of the heavenly bodies by which the magnetism of the earth is affected. Proofs of a similar kind of lunar action were laid by Kreil in 1841 before the Bohemian Society of Sciences, and with minor corrections were fully substantiated by Sabine's more extended researches. It was thus ascertained that each lunar day, or the interval of twenty-four hours and about fifty-four minutes between two successive meridian passages of our satellite, is marked by a perceptible, though very small, double oscillation of the needle—two progressive movements from east to west, and two returns from west to east.[367] Moreover, the lunar, like the solar influence (as was proved in each case by Sabine's analysis of the Hobarton and Toronto observations), extends to all three "magnetic elements," affecting not only the position of the horizontal or declination needle, but also the dip and intensity. It seems not unreasonable to attribute some portion of the same subtle power to the planets and even to the stars, though with effects rendered imperceptible by distance.
We have now to speak of the discovery and application to the heavenly bodies of a totally new method of investigation. Spectrum analysis may be shortly described as a mode of distinguishing the various species of matter by the kind of light proceeding from each. This definition at once explains how it is that, unlike every other system of chemical analysis, it has proved available in astronomy. Light, so far as quality is concerned, ignores distance. No intrinsic change, that we yet know of, is produced in it by a journey from the farthest bounds of the visible universe; so that, provided only that in quantity it remain sufficient for the purpose, its peculiarities can be equally well studied whether the source of its vibrations be one foot or a hundred billion miles distant. Now the most obvious distinction between one kind of light and another resides in colour. But of this distinction the eye takes cognisance in an aesthetic, not in a scientific sense. It finds gladness in the "thousand tints" of nature, but can neither analyse nor define them. Here the refracting prism—or the combination of prisms known as the "spectroscope"—comes to its aid, teaching it to measure as well as to perceive. It furnishes, in a word, an accurate scale of colour. The various rays which, entering the eye together in a confused crowd, produce a compound impression made up of undistinguishable elements, are, by the mere passage through a triangular piece of glass, separated one from the other, and ranged side by side in orderly succession, so that it becomes possible to tell at a glance what kinds of light are present, and what absent. Thus, if we could only be assured that the various chemical substances when made to glow by heat, emit characteristic rays—rays, that is, occupying a place in the spectrum reserved for them, and for them only—we should at once be in possession of a mode of identifying such substances with the utmost readiness and certainty. This assurance, which forms the solid basis of spectrum analysis, was obtained slowly and with difficulty.
The first to employ the prism in the examination of various flames (for it is only in a state of vapour that matter emits distinctive light) was a young Scotchman named Thomas Melvill, who died in 1753, at the age of twenty-seven. He studied the spectrum of burning spirits, into which were successively introduced sal ammoniac, potash, alum, nitre, and sea-salt, and observed the singular predominance, under almost all circumstances, of a particular shade of yellow light, perfectly definite in its degree of refrangibility[368]—in other words, taking up a perfectly definite position in the spectrum. His experiments were repeated by Morgan,[369] Wollaston, and—with far superior precision and diligence—by Fraunhofer.[370] The great Munich optician, whose work was completely original, rediscovered Melvill's deep yellow ray and measured its place in the colour-scale. It has since become well known as the "sodium line," and has played a very important part in the history of spectrum analysis. Nevertheless, its ubiquity and conspicuousness long impeded progress. It was elicited by the combustion of a surprising variety of substances—sulphur, alcohol, ivory, wood, paper; its persistent visibility suggesting the accomplishment of some universal process of nature rather than the presence of one individual kind of matter. But if spectrum analysis were to exist as a science at all, it could only be by attaining certainty as to the unvarying association of one special substance with each special quality of light.
Thus perplexed, Fox Talbot[371] hesitated in 1826 to enounce this fundamental principle. He was inclined to believe that the presence in the spectrum of any individual ray told unerringly of the volatilisation in the flame under scrutiny of some body as whose badge or distinctive symbol that ray might be regarded; but the continual prominence of the yellow beam staggered him. It appeared, indeed, without fail where sodium was; but it also appeared where it might be thought only reasonable to conclude that sodium was not. Nor was it until thirty years later that William Swan,[372] by pointing out the extreme delicacy of the spectral test, and the singularly wide dispersion of sodium, made it appear probable (but even then only probable) that the questionable yellow line was really due invariably to that substance. Common salt (chloride of sodium) is, in fact, the most diffusive of solids. It floats in the air; it flows with water; every grain of dust has its attendant particle; its absolute exclusion approaches the impossible. And withal, the light that it gives in burning is so intense and concentrated, that if a single grain be divided into 180 million parts, and one alone of such inconceivably minute fragments be present in a source of light, the spectroscope will show unmistakably its characteristic beam.
Amongst the pioneers of knowledge in this direction were Sir John Herschel[373]—who, however, applied himself to the subject in the interests of optics, not of chemistry—W. A. Miller,[374] and Wheatstone. The last especially made a notable advance when, in the course of his studies on the "prismatic decomposition" of the electric light, he reached the significant conclusion that the rays visible in its spectrum were different for each kind of metal employed as "electrodes."[375] Thus indications of a wider principle were to be found in several quarters, but no positive certainty on any single point was obtained, until, in 1859, Gustav Kirchhoff, professor of physics in the University of Heidelberg, and his colleague, the eminent chemist Robert Bunsen, took the matter in hand. By them the general question as to the necessary and invariable connection of certain rays in the spectrum with certain kinds of matter, was first resolutely confronted, and first definitely answered. It was answered affirmatively—else there could have been no science of spectrum analysis—as the result of experiments more numerous, more stringent, and more precise than had previously been undertaken.[376] And the assurance of their conclusion was rendered doubly sure by the discovery, through the peculiarities of their light alone, of two new metals, named from the blue and red rays by which they were respectively distinguished, "caesium," and "rubidium."[377] Both were immediately afterwards actually obtained in small quantities by evaporation of the Durckheim mineral waters.
The link connecting this important result with astronomy may now be indicated. In the year 1802 it occurred to William Hyde Wollaston to substitute for the round hole used by Newton and his successors for the admittance of light to be examined with the prism, an elongated "crevice" 1/20th of an inch in width. He thereupon perceived that the spectrum, thus formed of light, as it were, purified by the abolition of overlapping images, was traversed by seven dark lines. These he took to be natural boundaries of the various colours,[378] and satisfied with this quasi-explanation, allowed the subject to drop. It was independently taken up after twelve years by a man of higher genius. In the course of experiments on light, directed towards the perfecting of his achromatic lenses, Fraunhofer, by means of a slit and a telescope, made the surprising discovery that the solar spectrum is crossed, not by seven, but by thousands of obscure transverse streaks.[379] Of these he counted some 600, and carefully mapped 324, while a few of the most conspicuous he set up (if we may be permitted the expression) as landmarks, measuring their distances apart with a theodolite, and affixing to them the letters of the alphabet, by which they are still universally known. Nor did he stop here. The same system of examination applied to the rest of the heavenly bodies showed the mild effulgence of the moon and planets to be deficient in precisely the same rays as sunlight; while in the stars it disclosed the differences in likeness which are always an earnest of increased knowledge. The spectra of Sirius and Castor, instead of being delicately ruled crosswise throughout, like that of the sun, were seen to be interrupted by three massive bars of darkness—two in the blue and one in the green;[380] the light of Pollux, on the other hand, seemed precisely similar to sunlight attenuated by distance or reflection, and that of Capella, Betelgeux, and Procyon to share some of its peculiarities. One solar line especially—that marked in his map with the letter D—proved common to all the four last-mentioned stars; and it was remarkable that it exactly coincided in position with the conspicuous yellow beam (afterwards, as we have said, identified with the light of glowing sodium) which he had already found to accompany most kinds of combustion. Moreover, both the dark solar and the bright terrestrial "D lines" were displayed by the refined Munich appliances as double.
In this striking correspondence, discovered by Fraunhofer in 1815, was contained the very essence of solar chemistry; but its true significance did not become apparent until long afterwards. Fraunhofer was by profession, not a physicist, but a practical optician. Time pressed; he could not and would not deviate from his appointed track; all that was possible to him was to indicate the road to discovery, and exhort others to follow it.[381]
Partially and inconclusively at first this was done. The "fixed lines" (as they were called) of the solar spectrum took up the position of a standing problem, to the solution of which no approach seemed possible. Conjectures as to their origin were indeed rife. An explanation put forward by Zantedeschi[382] and others, and dubiously favoured by Sir David Brewster and Dr. J. H. Gladstone,[383] was that they resulted from "interference"—that is, a destruction of the motion producing in our eyes the sensation of light, by the superposition of two light-waves in such a manner that the crests of one exactly fill up the hollows of the other. This effect was supposed to be brought about by imperfections in the optical apparatus employed.
A more plausible view was that the atmosphere of the earth was the agent by which sunlight was deprived of its missing beams. For a few of them this is actually the case. Brewster found in 1832 that certain dark lines, which were invisible when the sun stood high in the heavens, became increasingly conspicuous as he approached the horizon.[384] These are the well-known "atmospheric lines;" but the immense majority of their companions in the spectrum remain quite unaffected by the thickness of the stratum of air traversed by the sunlight containing them. They are then obviously due to another cause.
There remained the true interpretation—absorption in the sun's atmosphere; and this, too, was extensively canvassed. But a remarkable observation made by Professor Forbes of Edinburgh[385] on the occasion of the annular eclipse of May 15, 1836, appeared to throw discredit upon it. If the problematical dark lines were really occasioned by the stoppage of certain rays through the action of a vaporous envelope surrounding the sun, they ought, it seemed, to be strongest in light proceeding from his edges, which, cutting that envelope obliquely, passed through a much greater depth of it. But the circle of light left by the interposing moon, and of course derived entirely from the rim of the solar disc, yielded to Forbes's examination precisely the same spectrum as light coming from its central parts. This circumstance helped to baffle inquirers, already sufficiently perplexed. It still remains an anomaly, of which no satisfactory explanation has been offered.
Convincing evidence as to the true nature of the solar lines was however at length, in the autumn of 1859, brought forward at Heidelburg. Kirchhoff's experimentum crucis in the matter was a very simple one. He threw bright sunshine across a space occupied by vapour of sodium, and perceived with astonishment that the dark Fraunhofer line D, instead of being effaced by flame giving a luminous ray of the same refrangibility, was deepened and thickened by the superposition.
He tried the same experiment, substituting for sunbeams light from a Drummond lamp, and with similar result. A dark furrow, corresponding in every respect to the solar D-line, was instantly seen to interrupt the otherwise unbroken radiance of its spectrum. The inference was irresistible, that the effect thus produced artificially was brought about naturally in the same way, and that sodium formed an ingredient in the glowing atmosphere of the sun.[386] This first discovery was quickly followed up by the identification of numerous bright rays in the spectra of other metallic bodies with others of the hitherto mysterious Fraunhofer lines. Kirchhoff was thus led to the conclusion that (besides sodium) iron, magnesium, calcium, and chromium, are certainly solar constituents, and that copper, zinc, barium, and nickel are also present, though in smaller quantities.[387] As to cobalt, he hesitated to pronounce, but its existence in the sun has since been established.
These memorable results were founded upon a general principle first enunciated by Kirchhoff in a communication to the Berlin Academy, December 15, 1859, and afterwards more fully developed by him.[388] It may be expressed as follows: Substances of every kind are opaque to the precise rays which they emit at the same temperature; that is to say, they stop the kinds of light or heat which they are then actually in a condition to radiate. But it does not follow that cool bodies absorb the rays which they would give out if sufficiently heated. Hydrogen at ordinary temperatures, for instance, is almost perfectly transparent, but if raised to the glowing point—as by the passage of electricity—it then becomes capable of arresting, and at the same time of displaying in its own spectrum light of four distinct colours.
This principle is fundamental to solar chemistry. It gives the key to the hieroglyphics of the Fraunhofer lines. The identical characters which are written bright in terrestrial spectra are written dark in the unrolled sheaf of sun-rays; the meaning remains unchanged. It must, however, be remembered that they are only relatively dark. The substances stopping those particular tints in the neighbourhood of the sun are at the same time vividly glowing with the very same. Remove the dazzling solar background, by contrast with which they show as obscure, and they will be seen, and, at critical moments, actually have been seen, in all their native splendour. It is because the atmosphere of the sun is cooler than the globe it envelops that the different kinds of vapour constituting that atmosphere take more than they give, absorb more light than they are capable of emitting; raise them to the same temperature as the sun itself, and their powers of emission and absorption being brought exactly to the same level, the thousands of dusky rays in the solar spectrum will be at once obliterated.
The establishment of the terrestrial science of spectrum analysis was due, as we have seen, equally to Kirchhoff and Bunsen, but its celestial application to Kirchhoff alone. He effected this object of the aspirations, more or less dim, of many other thinkers and workers, by the union of two separate, though closely related lines of research—the study of the different kinds of light emitted by various bodies, and the study of the different kinds of light absorbed by them. The latter branch appears to have been first entered upon by Dr. Thomas Young in 1803;[389] it was pursued by the younger Herschel,[390] by William Allen Miller, Brewster, and Gladstone. Brewster indeed made, in 1833,[391] a formal attempt to found what might be called an inverse system of analysis with the prism based upon absorption; and his efforts were repeated, just a quarter of a century later, by Gladstone.[392] But no general point of view was attained; nor, it may be added, was it by this path attainable.
Kirchhoff's map of the solar spectrum, drawn to scale with exquisite accuracy, and printed in three shades of ink to convey the graduated obscurity of the lines, was published in the Transactions of the Berlin Academy for 1861 and 1862.[393] Representations of the principal lines belonging to various elementary bodies formed, as it were, a series of marginal notes accompanying the great solar scroll, enabling the veriest tiro in the new science to decipher its meaning at a glance. Where the dark solar and bright metallic rays agreed in position, it might safely be inferred that the metal emitting them was a solar constituent; and such coincidences were numerous. In the case of iron alone, no less than sixty occurred in one-half of the spectral area, rendering the chances[394] absolutely overwhelming against mere casual conjunction. The preparation of this elaborate picture proved so trying to the eyes that Kirchhoff was compelled by failing vision to resign the latter half of the task to his pupil Hofmann. The complete map measured nearly eight feet in length.
The conclusions reached by Kirchhoff were no sooner announced than they took their place, with scarcely a dissenting voice, among the established truths of science. The broad result, that the dark lines in the spectrum of the sun afford an index to its chemical composition no less reliable than any of the tests used in the laboratory, was equally captivating to the imagination of the vulgar, and authentic in the judgment of the learned; and, like all genuine advances in the knowledge of Nature, it stimulated curiosity far more than it gratified it. Now the history of how discoveries were missed is often quite as instructive as the history of how they were made; it may then be worth while to expend a few words on the thoughts and trials by which, in the present case, the actual event was heralded.
Three times it seemed on the verge of being anticipated. The experiment, which in Kirchhoff's hands proved decisive, of passing sunlight through glowing vapours and examining the superposed spectra, was performed by Professor W. A. Miller of King's College in 1845.[395] Nay, more, it was performed with express reference to the question, then already (as has been noted) in debate, of the possible production of Fraunhofer's lines by absorption in a solar atmosphere. Yet it led to nothing.
Again, at Paris in 1849, with a view to testing the asserted coincidence between the solar D-line and the bright yellow beam in the spectrum of the electric arc (really due to the unsuspected presence of sodium), Leon Foucault threw a ray of sunshine across the arc and observed its spectrum.[396] He was surprised to see that the D-line was rendered more intensely dark by the combination of lights. To assure himself still further, he substituted a reflected image of one of the white-hot carbon-points for the sunbeam, with an identical result. The same ray was missing. It needed but another step to have generalised this result, and thus laid hold of a natural truth of the highest importance; but that step was not taken. Foucault, keen and brilliant though he was, rested satisfied with the information that the voltaic arc had the power of stopping the kind of light emitted by it; he asked no further question, and was consequently the bearer of no further intelligence on the subject.
The truth conveyed by this remarkable experiment was, however, divined by one eminent man. Professor Stokes of Cambridge stated to Sir William Thomson (now Lord Kelvin), shortly after it had been made, his conviction that an absorbing atmosphere of sodium surrounded the sun. And so forcibly was his hearer impressed with the weight of the argument based upon the absolute agreement of the D-line in the solar spectrum with the yellow ray of burning sodium (then freshly certified by W. H. Miller), combined with Foucault's "reversal" of that ray, that he regularly inculcated, in his public lectures on natural philosophy at Glasgow, five or six years before Kirchhoff's discovery, not only the fact of the presence of sodium in the solar neighbourhood, but also the principle of the study of solar and stellar chemistry in the spectra of flames.[397] Yet it does not appear to have occurred to either of these two distinguished professors—themselves among the foremost of their time in the successful search for new truths—to verify practically a sagacious conjecture in which was contained the possibility of a scientific revolution. It is just to add, that Kirchhoff was unacquainted, when he undertook his investigation, either with the experiment of Foucault or the speculation of Stokes.
For C. J. Angstrom, on the other hand, perhaps somewhat too much has been claimed in the way of anticipation. His Optical Researches appeared at Upsala in 1853, and in their English garb two years later.[398] They were undoubtedly pregnant with suggestion, yet made no epoch in discovery. The old perplexities continued to prevail after, as before their publication. To Angstrom, indeed, belongs the great merit of having revived Euler's principle of the equivalence of emission and absorption; but he revived it in its original crude form, and without the qualifying proviso which alone gave it value as a clue to new truths. According to his statement, a body absorbs all the series of vibrations it is, under any circumstances, capable of emitting, as well as those connected with them by simple harmonic relations. This is far too wide. To render it either true or useful, it had to be reduced to the cautious terms employed by Kirchhoff. Radiation strictly and necessarily corresponds with absorption only when the temperature is the same. In point of fact, Angstrom was still, in 1853, divided between adsorption and interference as the mode of origin of the Fraunhofer dark rays. Very important, however, was his demonstration of the compound nature of the spark-spectrum, which he showed to be made up of the spectrum of the metallic electrodes superposed upon that of the gas or gases across which the discharge passed.
It may here be useful—since without some clear ideas on the subject no proper understanding of recent astronomical progress is possible—to take a cursory view of the elementary principles of spectrum analysis. To many of our readers they are doubtless already familiar; but it is better to appear trite to some than obscure even to a few.
The spectrum, then, of a body is simply the light proceeding from it spread out by refraction[399] into a brilliant variegated band, passing from brownish-red through crimson, orange, yellow, green, and azure into dusky violet. The reason of this spreading-out or "dispersion" is that the various colours have different wave-lengths, and consequently meet with different degrees of retardation in traversing the denser medium of the prism. The shortest and quickest vibrations (producing the sensation we call "violet") are thrown farthest away from their original path—in other words, suffer the widest "deviation;" the longest and slowest (the red) travel much nearer to it. Thus the sheaf of rays which would otherwise combine into a patch of white light are separated through the divergence of their tracks after refraction by a prism, so as to form a tinted riband. This visible spectrum is prolonged invisibly at both ends by a long range of vibrations, either too rapid or too sluggish to affect the eye as light, but recognisable through their chemical and heating effects.
Now all incandescent solid or liquid substances, and even gases ignited under great pressure, give what is called a "continuous spectrum;" that is to say, the light derived from them is of every conceivable hue. Sorted out with the prism, its tints merge imperceptibly one into the other, uninterrupted by any dark spaces. No colours, in short, are missing. But gases and vapours rendered luminous by heat emit rays of only a few tints, which accordingly form an interrupted spectrum, usually designated as one of lines or bands. And since these rays are perfectly definite and characteristic—not being the same for any two substances—it is easy to tell what kind of matter is concerned in producing them. We may suppose that the inconceivably minute particles which by their rapid thrilling agitate the ethereal medium so as to produce light, are free to give out their peculiar tone of vibration only when floating apart from each other in gaseous form; but when crowded together into a condensed mass, the clear ring of the distinctive note is drowned, so to speak, in a universal molecular clang. Thus prismatic analysis has no power to identify individual kinds of matter, except when they present themselves as glowing vapours.
A spectrum is said to be "reversed" when lines previously seen bright on a dark background appear dark on a bright background. In this form it is equally characteristic of chemical composition with the "direct" spectrum, being due to absorption, as the latter is to emission. And absorption and emission are, by Kirchhoff's law, strictly correlative. This is easily understood by the analogy of sound. For just as a tuning-fork responds to sound-waves of its own pitch, but remains indifferent to those of any other, so those particles of matter whose nature it is, when set swinging by heat, to vibrate a certain number of times in a second, thus giving rise to light of a particular shade of colour, appropriate those same vibrations, and those only, when transmitted past them,—or, phrasing it otherwise, are opaque to them, and transparent to all others.
It should further be explained that the shape of the bright or dark spaces in the spectrum has nothing whatever to do with the nature of the phenomena. The "lines" and "bands" so frequently spoken of are seen as such for no other reason than because the light forming them is admitted through a narrow, straight opening. Change that opening into a fine crescent or a sinuous curve, and the "lines" will at once appear as crescents or curves.
Resuming in a sentence what has been already explained, we find that the prismatic analysis of the heavenly bodies was founded upon three classes of facts: First, the unmistakable character of the light given by each different kind of glowing vapour; secondly, the identity of the light absorbed with the light emitted by each; thirdly, the coincidence observed between rays missing from the solar spectrum and rays absorbed by various terrestrial substances. Thus, a realm of knowledge, pronounced by Morinus[400] in the seventeenth century, and no less dogmatically by Auguste Comte[401] in the nineteenth, hopelessly out of reach of the human intellect, was thrown freely open, and the chemistry of the sun and stars took at once a leading place among the experimental sciences.
The immediate increase of knowledge was not the chief result of Kirchhoff's labours; still more important was the change in the scope and methods of astronomy, which, set on foot in 1852 by the detection of a common period affecting at once the spots on the sun and the magnetism of the earth, was extended and accelerated by the discovery of spectrum analysis. The nature of that change is concisely indicated by the heading of the present chapter; we would now ask our readers to endeavour to realise somewhat distinctly what is implied by the "foundation of astronomical physics."
Just three centuries ago, Kepler drew a forecast of what he called a "physical astronomy"—a science treating of the efficient causes of planetary motion, and holding the "key to the inner astronomy."[402] What Kepler dreamed of and groped after, Newton realized. He showed the beautiful and symmetrical revolutions of the solar system to be governed by a uniformly acting cause, and that cause no other than the familiar force of gravity, which gives stability to all our terrestrial surroundings. The world under our feet was thus for the first time brought into physical connection with the worlds peopling space, and a very tangible relationship was demonstrated as existing between what used to be called the "corruptible" matter of the earth and the "incorruptible" matter of the heavens.
This process of unification of the cosmos—this levelling of the celestial with the sublunary—was carried no farther until the fact unexpectedly emerged from a vast and complicated mass of observations, that the magnetism of the earth is subject to subtle influences, emanating, certainly from some, and presumably from all of the heavenly bodies; the inference being thus rendered at least plausible, that a force not less universal than gravity itself, but with whose modes of action we are as yet unacquainted, pervades the universe, and forms, it might be said, an intangible bond of sympathy between its parts. Now for the investigation of this influence two roads are open. It may be pursued by observation either of the bodies from which it proceeds, or of the effects which it produces—that is to say, either by the astronomer or by the physicist, or, better still, by both concurrently. Their acquisitions are mutually profitable; nor can either be considered as independent of the other. Any important accession to knowledge respecting the sun, for example, may be expected to cast a reflected light on the still obscure subject of terrestrial magnetism; while discoveries in magnetism or its alter ego electricity must profoundly affect solar inquiries.
The establishment of the new method of spectrum analysis drew far closer this alliance between celestial and terrestrial science. Indeed, they have come to merge so intimately one into the other, that it is no easier to trace their respective boundaries than it is to draw a clear dividing-line between the animal and vegetable kingdoms. Yet up to the middle of the last century, astronomy, while maintaining her strict union with mathematics, looked with indifference on the rest of the sciences; it was enough that she possessed the telescope and the calculus. Now the materials for her inductions are supplied by the chemist, the electrician, the inquirer into the most recondite mysteries of light and the molecular constitution of matter. She is concerned with what the geologist, the meteorologist, even the biologist, has to say; she can afford to close her ears to no new truth of the physical order. Her position of lofty isolation has been exchanged for one of community and mutual aid. The astronomer has become, in the highest sense of the term, a physicist; while the physicist is bound to be something of an astronomer.
This, then, is what is designed to be conveyed by the "foundation of astronomical or cosmical physics." It means the establishment of a science of Nature whose conclusions are not only presumed by analogy, but are ascertained by observation, to be valid wherever light can travel and gravity is obeyed—a science by which the nature of the stars can be studied upon the earth, and the nature of the earth can be made better known by study of the stars—a science, in a word, which is, or aims at being, one and universal, even as Nature—the visible reflection of the invisible highest Unity—is one and universal.
It is not too much to say that a new birth of knowledge has ensued. The astronomy so signally promoted by Bessel[403]—the astronomy placed by Comte[404] at the head of the hierarchy of the physical sciences—was the science of the movements of the heavenly bodies. And there were those who began to regard it as a science which, from its very perfection, had ceased to be interesting—whose tale of discoveries was told, and whose farther advance must be in the line of minute technical improvements, not of novel and stirring disclosures. But the science of the nature of the heavenly bodies is one only in the beginning of its career. It is full of the audacities, the inconsistencies, the imperfections, the possibilities of youth. It promises everything; it has already performed much; it will doubtless perform much more. The means at its disposal are vast and are being daily augmented. What has so far been secured by them it must now be our task to extricate from more doubtful surroundings and place in due order before our readers.
FOOTNOTES:
[Footnote 347: Wolf, Gesch. der Astr., p. 655.]
[Footnote 348: Manuel Johnson, Mem. R.A.S., vol. xxvi., p. 197.]
[Footnote 349: Astronomie Theorique et Pratique, t. iii., p. 20.]
[Footnote 350: Wolf, Gesch. der Astr., p. 654.]
[Footnote 351: Month. Not., vol. xvii., p. 241.]
[Footnote 352: Mem. R.A.S., vol. xxvi., p. 200.]
[Footnote 353: Astr. Nach., No. 495.]
[Footnote 354: Gehler's Physikalisches Woerterbuch, art. Sonnenflecken, p. 851.]
[Footnote 355: Zweite Abth., p. 401.]
[Footnote 356: Annalen der Physik (Poggendorff's), Bd. lxxxiv., p. 580.]
[Footnote 357: Phil. Trans., vol. cxlii., p. 103.]
[Footnote 358: Mittheilungen der Naturforschenden Gesellschaft, 1852, p. 183.]
[Footnote 359: Archives des Sciences, t. xxi., p. 194.]
[Footnote 360: Neue Untersuchungen, Mitth. Naturf. Ges., 1852, p. 249.]
[Footnote 361: Phil. Trans., vol. xci., p. 316.]
[Footnote 362: Evidence of an eleven-yearly fluctuation in the price of food-grains in India was collected some years ago by Mr. Frederick Chambers. Nature, vol. xxxiv., p. 100.]
[Footnote 363: Bibl. Un. de Geneve, t. li., p. 336.]
[Footnote 364: Neue Untersuchungen, p. 269.]
[Footnote 365: Die Sonne und ihre Flecken, p. 30. Arago was the first who attempted to decide the question by keeping, through a series of years, a parallel register of sun-spots and weather; but the data regarding the solar condition amassed at the Paris Observatory from 1822 to 1830 were not sufficiently precise to support any inference.]
[Footnote 366: Phil. Trans., vol. xxix., p. 421.]
[Footnote 367: Ibid., vols. cxliii., p. 558, cxlvi., p. 505.]
[Footnote 368: Observations on Light and Colours, p. 35.]
[Footnote 369: Phil. Trans., vol. lxxv., p. 190.]
[Footnote 370: Denkschriften (Munich. Ac. of Sc.), 1814, 1815, Bd. v., p. 197.]
[Footnote 371: Edinburgh Journal of Science, vol. v., p. 77. See also Phil. Mag., Feb., 1834, vol. iv., p. 112.]
[Footnote 372: Ed. Phil. Trans., vol. xxi., p. 411.]
[Footnote 373: On the Absorption of Light by Coloured Media, Ed. Phil. Trans., vol. ix., p. 445 (1823).]
[Footnote 374: Phil. Mag., vol. xxvii, (ser. iii.), p. 81.]
[Footnote 375: Report Brit. Ass., 1835, p. 11 (pt. ii.). Electrodes are the terminals from one to the other of which the electric spark passes, volatilising and rendering incandescent in its transit some particles of their substance, the characteristic light of which accordingly flashes out in the spectrum.]
[Footnote 376: Phil. Mag., vol. xx., p. 93.]
[Footnote 377: Annalen der Physik, Bd. cxiii., p. 357.]
[Footnote 378: Phil. Trans., vol. xcii., p. 378.]
[Footnote 379: Denkschriften, Bd. v., p. 202.]
[Footnote 380: Ibid., p. 220; Edin. Jour. of Science, vol. viii., p. 9.]
[Footnote 381: Denkschriften, Bd. v., p. 222.]
[Footnote 382: Arch. des Sciences, 1849, p. 43.]
[Footnote 383: Phil. Trans., vol. cl., p. 159, note.]
[Footnote 384: Ed. Phil. Trans., vol. xii., p. 528.]
[Footnote 385: Phil. Trans., vol. cxxvi., p. 453. "I conceive," he says, "that this result proves decisively that the sun's atmosphere has nothing to do with the production of this singular phenomenon" (p. 455). And Brewster's well-founded opinion that it had much to do with it was thereby, in fact, overthrown.]
[Footnote 386: Monatsberichte, Berlin, 1859, p. 664.]
[Footnote 387: Abhandlungen, Berlin, 1861, pp. 80, 81.]
[Footnote 388: Ibid., 1861, p. 77; Annalen der Physik, Bd. cxix., p. 275. A similar conclusion, reached by Balfour Stewart in 1858, for heat-rays (Ed. Phil. Trans., vol. xxii., p. 13), was, in 1860, without previous knowledge of Kirchhoff's work, extended to light (Phil. Mag., vol. xx., p. 534); but his experiments wanted the precision of those executed at Heidelburg.]
[Footnote 389: Miscellaneous Works, vol. i., p. 189.]
[Footnote 390: Ed. Phil. Trans., vol. ix., p. 458.]
[Footnote 391: Ibid., vol. xii., p. 519.]
[Footnote 392: Quart. Jour. Chem. Soc., vol. x. p. 79.]
[Footnote 393: A facsimile accompanied Sir H. Roscoe's translation of Kirchhoff's "Researches on the Solar Spectrum" (London, 1862-63).]
[Footnote 394: Estimated by Kirchhoff's at a trillion to one. Abhandl., 1861, p. 79.]
[Footnote 395: Phil. Mag., vol. xxvii. (3rd series), p. 90.]
[Footnote 396: L'Institut, Feb. 7, 1849, p. 45; Phil. Mag., vol. xix. (4th series), p. 193.]
[Footnote 397: Ann. d. Phys., vol. cxviii., p. 110.]
[Footnote 398: Phil. Mag., vol. ix. (4th series), p. 327.]
[Footnote 399: Spectra may be produced by diffraction as well as by refraction; but we are here only concerned with the subject in its simplest aspect.]
[Footnote 400: Astrologia Gallica (1661), p. 189.]
[Footnote 401: Pos. Phil., vol. i., pp. 114, 115 (Martineau's trans.).]
[Footnote 402: Proem Astronomiae Pars Optica (1640), Op., t. ii.]
[Footnote 403: Pop. Vorl., pp. 14, 19, 408.]
[Footnote 404: Pos. Phil., p. 115.]
CHAPTER II
SOLAR OBSERVATIONS AND THEORIES
The zeal with which solar studies have been pursued during the last half century has already gone far to redeem the neglect of the two preceding ones. Since Schwabe's discovery was published in 1851, observers have multiplied, new facts have been rapidly accumulated, and the previous comparative quiescence of thought on the great subject of the constitution of the sun, has been replaced by a bewildering variety of speculations, conjectures, and more or less justifiable inferences. It is satisfactory to find this novel impulse not only shared, but to a large extent guided, by our countrymen.
William Rutter Dawes, one of many clergymen eminent in astronomy, observed, in 1852, with the help of a solar eye-piece of his own devising, some curious details of spot-structure.[405] The umbra—heretofore taken for the darkest part of the spot—was seen to be suffused with a mottled, nebulous illumination, in marked contrast with the striated appearance of the penumbra; while through this "cloudy stratum" a "black opening" permitted the eye to divine farther unfathomable depths beyond. The hole thus disclosed—evidently the true nucleus—was found to be present in all considerable, as well as in many small maculae.
Again, the whirling motions of some of these objects were noticed by him. The remarkable form of one sketched at Wateringbury, in Kent, January 17, 1852, gave him the means of detecting and measuring a rotatory movement of the whole spot round the black nucleus at the rate of 100 degrees in six days. "It appeared," he said, "as if some prodigious ascending force of a whirlwind character, in bursting through the cloudy stratum and the two higher and luminous strata, had given to the whole a movement resembling its own."[406] An interpretation founded, as is easily seen, on the Herschelian theory, then still in full credit.
An instance of the same kind was observed by Mr. W. R. Birt in 1860,[407] and cyclonic movements are now a recognised feature of sun-spots. They are, however, as Father Secchi[408] concluded from his long experience, but temporary and casual. Scarcely three per cent. of all spots visible exhibit the spiral structure which should invariably result if a conflict of opposing, or the friction of unequal, currents were essential, and not merely incidental to their origin. A whirlpool phase not unfrequently accompanies their formation, and may be renewed at periods of recrudescence or dissolution; but it is both partial and inconstant, sometimes affecting only one side of a spot, sometimes slackening gradually its movement in one direction, to resume it, after a brief pause, in the opposite. Persistent and uniform notions, such as the analogy of terrestrial storms would absolutely require, are not to be found. So that the "cyclonic theory" of sun-spots, suggested by Herschel in 1847,[409] and urged, from a different point of view, by Faye in 1872, may be said to have completely broken down.
The drift of spots over the sun's surface was first systematically investigated by Carrington, a self-constituted astronomer, gifted with the courage and the instinct of thoughtful labour.
Born at Chelsea in May, 1826, Richard Christopher Carrington entered Trinity College, Cambridge, in 1844. He was intended for the Church, but Professor Challis's lectures diverted him to astronomy, and he resolved, as soon as he had taken his degree, to prepare, with all possible diligence, to follow his new vocation. His father, who was a brewer on a large scale at Brentford, offered no opposition; ample means were at his disposal; nevertheless, he chose to serve an apprenticeship of three years as observer in the University of Durham, as though his sole object had been to earn a livelihood. He quitted the post only when he found that its restricted opportunities offered no farther prospect of self-improvement.
He now built an observatory of his own at Redhill in Surrey, with the design of completing Bessel's and Argelander's survey of the northern heavens by adding to it the circumpolar stars omitted from their view. This project, successfully carried out between 1854 and 1857, had another and still larger one superposed upon it before it had even begun to be executed. In 1852, while the Redhill Observatory was in course of erection, the discovery of the coincidence between the sun-spot and magnetic periods was announced. Carrington was profoundly interested, and devoted his enforced leisure to the examination of records, both written and depicted, of past solar observations. Struck with their fragmentary and inconsistent character, he resolved to "appropriate," as he said, by "close and methodical research," the eleven-year period next ensuing.[410] He calculated rightly that he should have the field pretty nearly to himself; for many reasons conspire to make public observatories slow in taking up new subjects, and amateurs with freedom to choose, and means to treat them effectually, were scarcer then than they are now.
The execution of this laborious task was commenced November 9, 1853. It was intended to be merely a parergon—a "second subject," upon which daylight energies might be spent, while the hours of night were reserved for cataloguing those stars that "are bereft of the baths of ocean." Its results, however, proved of the highest interest, although the vicissitudes of life barred the completion, in its full integrity, of the original design. By the death, in 1858, of the elder Carrington, the charge of the brewery devolved upon his son; and eventually absorbed so much of his care that it was found advisable to bring the solar observations to a premature close, on March 24, 1861.
His scientific life may be said to have closed with them. Attacked four years later with severe, and, in its results, permanent illness, he disposed of the Brentford business, and withdrew to Churt, near Farnham, in Surrey. There, in a lonely spot, on the top of a detached conical hill known as the "Devil's Jump," he built a second observatory, and erected an instrument which he was no longer able to use with pristine effectiveness; and there, November 27, 1875, he died of the rupture of a blood vessel on the brain, before he had completed his fiftieth year.[411]
His observations of sun-spots were of a geometrical character. They concerned positions and movements, leaving out of sight physical peculiarities. Indeed, the prudence with which he limited his task to what came strictly within the range of his powers to accomplish, was one of Carrington's most valuable qualities. The method of his observations, moreover, was chosen with the same practical sagacity as their objects. As early as 1847, Sir John Herschel had recommended the daily self-registration of sun-spots,[412] and he enforced the suggestion, with more immediate prospect of success, in 1854.[413] The art of celestial photography, however, was even then in a purely tentative stage, and Carrington wisely resolved to waste no time on dubious experiments, but employ the means of registration and measurement actually at his command. These were very simple, yet very effective. To the "helioscope" employed by Father Scheiner[414] two centuries and a quarter earlier, a species of micrometer was added. The image of the sun was projected upon a screen by means of a firmly-clamped telescope, in the focus of which were placed two cross-wires forming angles of 45 deg. with the meridian. The six instants were then carefully noted at which these were met by the edges of the disc as it traversed the screen, and by the nucleus of the spot to be measured.[415] A short process of calculation then gave the exact position of the spot as referred to the sun's centre.
From a series of 5,290 observations made in this way, together with a great number of accurate drawings, Carrington derived conclusions of great importance on each of the three points which he had proposed to himself to investigate. These were: the law of the sun's rotation, the existence and direction of systematic currents, and the distribution of spots on the solar surface.
Grave discrepancies were early perceived to exist between determinations of the sun's rotation by different observers. Galileo, with "comfortable generality," estimated the period at "about a lunar month";[416] Scheiner, at twenty-seven days.[417] Cassini, in 1678, made it 25.58; Delambre, in 1775, no more than twenty-five days. Later inquiries brought these divergences within no more tolerable limits. Laugier's result of 25.34 days—obtained in 1841—enjoyed the highest credit, yet it differed widely in one direction from that of Boehm (1852), giving 25.52 days, and in the other from that of Kysaeus (1846), giving 25.09 days. Now the cause of these variations was really obvious from the first, although for a long time strangely overlooked. Scheiner pointed out in 1630 that different spots gave different periods, adding the significant remark that one at a distance from the solar equator revolved more slowly than those nearer to it.[418] But the hint was wasted. For upwards of two centuries ideas on the subject were either retrograde or stationary. What were called the "proper motions" of spots were, however, recognised by Schroeter,[419] and utterly baffled Laugier,[420] who despaired of obtaining any concordant result as to the sun's rotation except by taking the mean of a number of discordant ones. At last, in 1855, a valuable course of observations made at Capo di Monte, Naples, in 1845-6, enabled C. H. F. Peters[421] to set in the clearest light the insecurity of determinations based on the assumption of fixity in objects plainly affected by movements uncertain both in amount and direction.
Such was the state of affairs when Carrington entered upon his task. Everything was in confusion; the most that could be said was that the confusion had come to be distinctly admitted and referred to its true source. What he discovered was this: that the sun, or at least the outer shell of the sun visible to us, has no single period of rotation, but drifts round, carrying the spots with it, at a rate continually accelerated from the poles to the equator. In other words, the time of axial revolution is shortest at the equator and lengthens with increase of latitude. Carrington devised a mathematical formula by which the rate or "law" of this lengthening was conveniently expressed; but it was a purely empirical one. It was a concise statement, but implied no physical interpretation. It summarised, but did not explain the facts. An assumed "mean period" for the solar rotation of 25.38 days (twenty-five days nine hours, very nearly), was thus found to be actually conformed to only in two parallels of solar latitude (14 deg. north and south), while the equatorial period was slightly less than twenty-five, and that of latitude 50 deg. rose to twenty-seven days and a half.[422] These curious results gave quite a new direction to ideas on solar physics.
The other two "elements" of the sun's rotation were also ascertained by Carrington with hitherto unattained precision. He fixed the inclination of its axis to the ecliptic at 82 deg. 45'; the longitude of the ascending node at 73 deg. 40' (for the epoch 1850 A.D.). These data—which have scarcely yet been improved upon—suffice to determine the position in space of the sun's equator. Its north pole is directed towards a star in the coils of the Dragon, midway between Vega and the Pole-star; its plane intersects that of the earth's orbit in such a way that our planet finds itself in the same level on or about the 3rd of June and the 5th of December, when any spots visible on the disc cross it in apparently straight lines. At other times, the paths pursued by them seem curved—downward (to an observer in the northern hemisphere) between June and December, upward between December and June.
A singular peculiarity in the distribution of sun-spots emerged from Carrington's studies at the time of the minimum of 1856. Two broad belts of the solar surface, as we have seen, are frequented by them, of which the limits may be put at 6 deg. and 35 deg. of north and south latitude. Individual equatorial spots are not uncommon, but nearer to the poles than 35 deg. they are a rare exception. Carrington observed—as an extreme instance—in July, 1858, one in south latitude 44 deg.; and Peters, in June, 1846, watched, during several days, a spot in 50 deg. 24' north latitude. But beyond this no true macula has ever been seen; for Lahire's reported observation of one in latitude 70 deg. is now believed to have had its place on the solar globe erroneously assigned; and the "veiled spots" described by Trouvelot in 1875[423] as occurring within 10 deg. of the pole can only be regarded as, at the most, the same kind of disturbance in an undeveloped form.
But the novelty of Carrington's observations consisted in the detection of certain changes in distribution concurrent with the progress of the eleven-year period. As the minimum approached, the spot-zones contracted towards the equator, and there finally vanished; then, as if by a fresh impulse, spots suddenly reappeared in high latitude, and spread downwards with the development of the new phase of activity. Scarcely had this remark been made public,[424] when Wolf[425] found a confirmation of its general truth in Boehm's observations during the years 1833-36; and a perfectly similar behaviour was noted both by Spoerer and Secchi at the minimum epoch of 1867. The ensuing period gave corresponding indications; and it may now be looked upon as established that the spot-zones close in towards the equator with the advance of each cycle, their activity culminating, as a rule, in a mean latitude of about 16 deg., and expiring when it is reduced to 6 deg. Before this happens, however, a completely new disturbance will have manifested itself some 35 deg. north and south of the equator, and will have begun to travel over the same course as its predecessor. Each series of sun-spots is thus, to some extent, overlapped by the succeeding one; so that while the average interval from one maximum to the next is eleven years, the period of each distinct wave of agitation is twelve or fourteen.[426] Curious evidence of the retarded character of the maximum of 1883-4 was to be found in the unusually low latitude of the spot-zones when it occurred. Their movement downward having gone on regularly while the crisis was postponed, its final symptoms were hence displaced locally as well as in time. The "law of zones" was duly obeyed at the minima of 1890[427] and 1901, and Spoerer found evidence of conformity to it so far back as 1619.[428] His researches, however, also showed that it was in abeyance during some seventy years previously to 1716, during which period sun-spots remained persistently scarce, and auroral displays were feeble and infrequent even in high northern latitudes. An unaccountable suspension of solar activity is, in fact, indicated.[429]
Gustav Spoerer, born at Berlin in 1822, began to observe sun-spots with the view of assigning the law of solar rotation in December, 1860. His assiduity and success with limited means attracted attention, and a Government endowment was procured for his little solar observatory at Anclam, in Pomerania, the Crown Prince (afterwards Emperor Frederick) adding a five-inch refractor to its modest equipment. Unaware of Carrington's discovery (not made known until January, 1859), he arrived at and published, in June, 1861,[430] a similar conclusion as to the equatorial quickening of the sun's movement on its axis. Appointed observer in the new Astrophysical establishment at Potsdam in 1874, he continued his sun-spot determinations there for twenty years, and died July 7, 1895.
The time had now evidently come for a fundamental revision of current notions respecting the nature of the sun. Herschel's theory of a cool, dark, habitable globe, surrounded by, and protected against, the radiations of a luminous and heat-giving envelope, was shattered by the first dicta of spectrum analysis. Traces of it may be found for a few years subsequent to 1859,[431] but they are obviously survivals from an earlier order of ideas, doomed to speedy extinction. It needs only a moment's consideration of the meaning at last found for the Fraunhofer lines to see the incompatibility of the new facts with the old conceptions. They implied not only the presence near the sun, as glowing vapours, of bodies highly refractory to heat, but that these glowing vapours formed the relatively cool envelope of a still hotter internal mass. Kirchhoff, accordingly, included in his great memoir "On the Solar Spectrum," read before the Berlin Academy of Sciences, July 11, 1861, an exposition of the views on the subject to which his memorable investigations had led him. They may be briefly summarised as follows:
Since the body of the sun gives a continuous spectrum, it must be either solid or liquid,[432] while the interruptions in its light prove it to be surrounded by a complex atmosphere of metallic vapours, somewhat cooler than itself. Spots are simply clouds due to local depressions of temperature, differing in no respect from terrestrial clouds except as regards the kinds of matter composing them. These sun-clouds take their origin in the zones of encounter between polar and equatorial currents in the solar atmosphere.
This explanation was liable to all the objections urged against the "cumulus theory" on the one hand, and the "trade-wind theory" on the other. Setting aside its propounder, it was consistently upheld perhaps by no man eminent in science except Spoerer; and his advocacy of it proved ineffective to secure its general adoption.
M. Faye, of the Paris Academy of Sciences, was the first to propose a coherent scheme of the solar constitution covering the whole range of new discovery. The fundamental ideas on the subject now in vogue here made their first connected appearance. Much, indeed, remained to be modified and corrected; but the transition was finally made from the old to the new order of thought. The essence of the change may be conveyed in a single sentence. The sun was thenceforth regarded, not as a mere heated body, or—still more remotely from the truth—as a cool body unaccountably spun round with a cocoon of fire, but as a vast heat-radiating machine. The terrestrial analogy was abandoned in one more particular besides that of temperature. The solar system of circulation, instead of being adapted, like that of the earth, to the distribution of heat received from without, was seen to be directed towards the transportation towards the surface of the heat contained within. Polar and equatorial currents, tending to a purely superficial equalisation of temperature, were replaced by vertical currents bringing up successive portions of the intensely heated interior mass, to contribute their share in turn to the radiation into space which might be called the proper function of a sun.
Faye's views, which were communicated to the Academy of Sciences, January 16, 1865,[433] were avowedly based on the anomalous mode of solar rotation discovered by Carrington. This may be regarded either as an acceleration increasing from the poles to the equator, or as a retardation increasing from the equator to the poles, according to the rate of revolution we choose to assume for the unseen nucleus. Faye preferred to consider it a retardation produced by ascending currents continually left behind as the sphere widened in which the matter composing them was forced to travel. He further supposed that the depth from which these vertical currents rose, and consequently the amount of retardation effected by their ascent to the surface, became progressively greater as the poles were approached, owing to the considerable flattening of the spheroidal surface from which they started;[434] but the adoption of this expedient has been shown to involve inadmissible consequences.
The extreme internal mobility betrayed by Carrington's and Spoerer's observations led to the inference that the matter composing the sun was mainly or wholly gaseous. This had already been suggested by Father Secchi[435] a year earlier, and by Sir John Herschel in April, 1864;[436] but it first obtained general currency through Faye's more elaborate presentation. A physical basis was afforded for the view by Cagniard de la Tour's experiments in 1822,[437] proving that, under conditions of great heat and pressure, the vaporous state was compatible with a very considerable density. The position was strengthened when Andrews showed, in 1869,[438] that above a fixed limit of temperature, varying for different bodies, true liquefaction is impossible, even though the pressure be so tremendous as to retain the gas within the same space that enclosed the liquid. The opinion that the mass of the sun is gaseous now commands a very general assent; although the gaseity admitted is of such a nature as to afford the consistence rather of honey or pitch than of the aeriform fluids with which we are familiar.
On another important point the course of subsequent thought was powerfully influenced by Faye's conclusions in 1865. Arago somewhat hastily inferred from experiments with the polariscope the wholly gaseous nature of the visible disc of the sun. Kirchhoff, on the contrary, believed (erroneously, as we now know) that the brilliant continuous spectrum derived from it proved it to be a white-hot solid or liquid. Herschel and Secchi[439] indicated a cloud-like structure as that which would best harmonise the whole of the evidence at command. The novelty introduced by Faye consisted in regarding the photosphere no longer "as a defined surface, in the mathematical sense, but as a limit to which, in the general fluid mass, ascending currents carry the physical or chemical phenomena of incandescence."[440] Uprushing floods of mixed vapours with strong affinities—say of calcium or sodium and oxygen—at last attain a region cool enough to permit their combination; a fine dust of solid or liquid compound particles (of lime or soda, for example) there collects into the photospheric clouds, and descending by its own weight in torrents of incandescent rain, is dissociated by the fierce heat below, and replaced by ascending and combining currents of similar constitution.
This first attempt to assign the part played in cosmical physics by chemical affinities was marked by the importation into the theory of the sun of the now familiar phrase dissociation. It is indeed tolerably certain that no such combinations as those contemplated by Faye occur at the photospheric level, since the temperature there must be enormously higher than would be needed to reduce all metallic earths and oxides; but molecular changes of some kind, dependent perhaps in part upon electrical conditions, in part upon the effects of radiation into space, most likely replace them. The conjecture was emitted by Dr. Johnstone Stoney in 1867[441] that the photospheric clouds are composed of carbon-particles precipitated from their mounting vapour just where the temperature is lowered by expansion and radiation to the boiling-point of that substance. But this view, though countenanced by Angstrom,[442] and advocated by Hastings of Baltimore,[443] and other authorities,[444] is open to grave objections.[445]
In Faye's theory, sun-spots were regarded as simply breaks in the photospheric clouds, where the rising currents had strength to tear them asunder. It followed that they were regions of increased heat—regions, in fact, where the temperature was too high to permit the occurrence of the precipitations to which the photosphere is due. Their obscurity was attributed, as in Dr. Brester's more recent Theorie du Soleil, to deficiency of emissive power. Yet here the verdict of the spectroscope is adverse and irreversible.
After every deduction, however, has been made, we still find that several ideas of permanent value were embodied in this comprehensive sketch of the solar constitution. The principal of these were; first, that the sun is a mainly gaseous body; secondly, that its stores of heat are rendered available at the surface by means of vertical convection-currents—by the bodily transport, that is to say, of intensely hot matter upward, and of comparatively cool matter downward; thirdly, that the photosphere is a surface of condensation, forming the limit set by the cold of space to this circulating process, and that a similar formation must attend, at a certain stage, the cooling of every cosmical body.
To Warren de la Rue belongs the honour of having obtained the earliest results of substantial value in celestial photography. What had been done previously was interesting in the way of promise, but much could not be claimed for it as actual performance. Some "pioneering experiments" were made by Dr. J. W. Draper of New York in 1840, resulting in the production of a few "moon-pictures" one inch in diameter;[446] but slight encouragement was derived from them, either to himself or others. Bond of Cambridge (U.S.), however, secured in 1850 with the Harvard 15-inch refractor that daguerreotype of the moon with which the career of extra-terrestrial photography may be said to have formally opened. It was shown in London at the Great Exhibition of 1851, and determined the direction of De la Rue's efforts. Yet it did little more than prove the art to be a possible one.
Warren de la Rue was born in Guernsey in 1815, and died in London April 19, 1889. Educated at the Ecole Sainte-Barbe in Paris, he made a large fortune as a paper manufacturer in England, and thus amply and early provided the material supplies for his scientific campaign. Towards the end of 1853 he took some successful lunar photographs. They were remarkable as the first examples of the application to astronomical light-painting of the collodion process, invented by Archer in 1851; and also of the use of reflectors (De la Rue's was one of thirteen inches, constructed by himself) for that kind of work. The absence of a driving apparatus was, however, very sensibly felt; the difficulty of moving the instrument by hand so as accurately to follow the moon's apparent motion being such as to cause the discontinuance of the experiments until 1857, when the want was supplied. De la Rue's new observatory, built in that year at Cranford, was expressly dedicated to celestial photography; and there he applied to the heavenly bodies the stereoscopic method of obtaining relief, and turned his attention to the delicate business of photographing the sun.
A solar daguerreotype was taken at Paris, April 2, 1845,[447] by Foucault and Fizeau, acting on a suggestion from Arago. But the attempt, though far from being unsuccessful, does not, at that time, seem to have been repeated. Its great difficulty consisted in the enormous light-power of the object to be represented, rendering an inconceivably short period of exposure indispensable, under pain of getting completely "burnt-up" plates. In 1857 De la Rue was commissioned by the Royal Society to construct an instrument specially adapted to the purpose for the Kew Observatory. The resulting "photoheliograph" may be described as a small telescope (of 3-1/2 inches aperture and 50 focus), with a plate-holder at the eye-end, guarded in front by a spring-slide, the rapid movement of which across the field of view secured for the sensitive plate a virtually instantaneous exposure. By its means the first solar light-pictures of real value were taken, and the autographic record of the solar condition recommended by Sir John Herschel was commenced and continued at Kew during fourteen years—1858-72. The work of photographing the sun is now carried on in every quarter of the globe, from Mauritius to Massachusetts, and the days are few indeed on which the self-betrayal of the camera can be evaded by our chief luminary. In the year 1883 the incorporation of Indian with Greenwich pictures afforded a record of the state of the solar surface on 340 days; and 364 were similarly provided for in 1897 and 1899.
The conclusions arrived at by photographic means at Kew were communicated to the Royal Society in a series of papers drawn up jointly by De la Rue, Balfour Stewart, and Benjamin Loewy, in 1865 and subsequent years. They influenced materially the progress of thought on the subject they were concerned with.
By its rotation the sun itself offers opportunities for bringing the stereoscope to bear upon it. Two pictures, taken at an interval of twenty-six minutes, show just the amount of difference needed to give, by their combination, the maximum effect of solidity.[448] De la Rue thus obtained, in 1861, a stereoscopic view of a sun-spot and surrounding faculae, representing the various parts in their true mutual relations. "I have ascertained in this way," he wrote,[449] "that the faculae occupy the highest portions of the sun's photosphere, the spots appearing like holes in the penumbrae, which appeared lower than the regions surrounding them; in one case, parts of the faculae were discovered to be sailing over a spot apparently at some considerable height above it." Thus Wilson's inference as to the depressed nature of spots received, after the lapse of not far from a century, proof of the most simple, direct, and convincing kind. A careful application of Wilson's own geometrical test gave results only a trifle less decisive. Of 694 spots observed, 78 per cent. showed, as they traversed the disc, the expected effects of perspective;[450] and their absence in the remaining 22 per cent. might be explained by internal commotions producing irregularities of structure. The absolute depth of spot-cavities—at least of their sloping sides—was determined by Father Secchi through measurement of the "parallax of profundity"[451]—that is, of apparent displacements attendant on the sun's rotation, due to depression below the sun's surface. He found that in every case it fell short of 4,000 miles, and averaged not more than 1,321, corresponding, on the terrestrial scale, to an excavation in the earth's crust of 1-1/5 miles. Of late, however, the reality of even this moderate amount of depression has been denied. Mr. Howlett's persevering observations, extending over a third of a century, the results of which were presented to the Royal Astronomical Society in December, 1894,[452] availed to shatter the consensus of opinion which had so long been maintained on the subject of spot-structure.[453] It has become impossible any longer to hold that it is uniformly cavernous; and what seem like actually protruding umbrae are occasionally vouched for on unimpeachable authority.[454] We can only infer that the forms of sun-spots are really more various than had been supposed; that they are peculiarly subject to disturbance; and that the level of the nuclei may rise and fall during the phases of commotion, like lavas within volcanic craters.
The opinion of the Kew observers as to the nature of such disturbances was strongly swayed by another curious result of the "statistical method" of inquiry. They found that of 1,137 instances of spots accompanied by faculae, 584 had those faculae chiefly or entirely on the left, 508 showed a nearly equal distribution, while 45 only had faculous appendages mainly on the right side.[455] Now the rotation of the sun, as we see it, is performed from left to right; so that the marked tendency of the faculae was a lagging one. This was easily accounted for by supposing the matter composing them to have been flung upwards from a considerable depth, whence it would reach the surface with the lesser absolute velocity belonging to a smaller circle of revolution, and would consequently fall behind the cavities or "spots" formed by its abstraction. An attempt, it is true, made by M. Wilsing at Potsdam in 1888[456] to determine the solar rotation from photographs of faculae had an outcome inconsistent with this view of their origin. They unexpectedly gave a uniform period. No trace of the retardation poleward from the equator, shown by the spots, could be detected in their movements. But the experiment was obviously inconclusive;[457] and M. Stratonoff's[458] repetition of it with ampler materials gave a full assurance that faculae rotate like spots in periods lengthening as latitude augments.
The ideas of M. Faye were, on two fundamental points, contradicated by the Kew investigators. He held spots to be regions of uprush and of heightened temperature; they believed their obscurity to be due to a downrush of comparatively cool vapours. Now M. Chacornac, observing, at Ville-Urbanne, March 6, 1865, saw floods of photospheric matter visibly precipitating themselves into the abyss opened by a great spot, and carrying with them small neighbouring maculae.[459] Similar instances were repeatedly noted by Father Secchi, who considered the existence of a kind of suction in spots to be quite beyond question.[460] The tendency in their vicinity, to put it otherwise, is centripetal, not centrifugal; and this alone seems to negative the supposition of a central uprush.
A fresh witness was by this time at hand. The application of the spectroscope to the direct examination of the sun's surface dates from March 4, 1866, when Sir Norman Lockyer (to give him his present title) undertook an inquiry into the cause of the darkening in spots.[461] It was made possible by the simple device of throwing upon the slit of the spectroscope an image of the sun, any part of which could be subjected to special scrutiny, instead of, as had hitherto been done, admitting rays from every portion of his surface indiscriminately. The answer to the inquiry was prompt and unmistakable, and was again, in this case, adverse to the French theorist's view. The obscurations in question were found to be produced by no deficiency of emissive power, but by an increase of absorptive action. The background of variegated light remains unchanged, but more of it is stopped by the interposition of a dense mass of relatively cool vapours. The spectrum of a sun-spot is crossed by the same set of multitudinous dark lines, with some minor differences, visible in the ordinary solar spectrum. We must then conclude that the same vapours (speaking generally) which are dispersed over the unbroken solar surface are accumulated in the umbral cavity, the compression incident to such accumulation being betrayed by the thickening of certain lines of absorption. But there is also a general absorption, extending almost continuously from one end of the spot-spectrum to the other. Using, however, a spectroscope of exceptionally high dispersive power, Professor Young of Princeton, New Jersey, succeeded in 1883 in "resolving" the supposed continuous obscurity of spot-spectra into a countless multitude of fine dark lines set very close together.[462] Their structure was seen still more perfectly, about five years later, by M. Duner,[463] Director of the Upsala Observatory, who traced besides some shadowy vestiges of the crowded doublets and triplets forming the array, from the spots on to the general solar surface. They cease to be separable in the blue part of the spectrum; and the ultra-violet radiations of spots show nothing distinctive.[464]
As to the movements of the constipated vapours forming spots, the spectroscope is also competent to supply information. The principle of the method by which it is procured will be explained farther on. Suffice it here to say that the transport, at any considerable velocity, to or from the eye of the gaseous material giving bright or dark lines, can be measured by the displacement of such lines from their previously known normal positions. In this way movements have been detected in or above spots of enormous rapidity, ranging up to 320 miles per second. But the result, so far, has been to negative the ascription to them of any systematic direction. Uprushes and downrushes are doubtless, as Father Cortie remarks,[465] "correlated phenomena in the production of a sun-spot"; but neither seem to predominate as part of its regular internal economy.
The same kind of spectroscopic evidence tells heavily against a theory of sun-spots started by Faye in 1872. He had been foremost in pointing out that the observations of Carrington and Spoerer absolutely forbade the supposition that any phenomenon at all resembling our trade-winds exists in the sun. They showed, indeed, that beyond the parallels of 20 deg. there is a general tendency in spots to a slow poleward displacement, while within that zone they incline to approach the equator; but their "proper movements" gave no evidence of uniformly flowing currents in latitude. The systematic drift of the photosphere is strictly a drift in longitude; its direction is everywhere parallel to the equator. This fact being once clearly recognised, the "solar tornado" hypothesis at once fell to pieces; but M. Faye[466] perceived another source of vorticose motion in the unequal rotating velocities of contiguous portions of the photosphere. The "pores" with which the whole surface of the sun is studded he took to be the smaller eddies resulting from these inequalities; the spots to be such eddies developed into whirlpools. It only needs to thrust a stick into a stream to produce the kind of effect designated. And it happens that the differences of angular movement adverted to attain a maximum just about the latitudes where spots are most frequent and conspicuous.
There are, however, grave difficulties in identifying the two kinds of phenomena. One (already mentioned) is the total absence of the regular swirling motion—in a direction contrary to that of the hands of a watch north of the solar equator, in the opposite sense south of it—which should impress itself upon every lineament of a sun-spot if the cause assigned were a primary producing, and not merely (as it possibly may be) a secondary determining one. The other, pointed out by Young,[467] is that the cause is inadequate to the effect. The difference of movement, or relative drift, supposed to occasion such prodigious disturbances, amounts, at the utmost, for two portions of the photosphere 123 miles apart, to about five yards a minute. Thus the friction of contiguous sections must be quite insignificant.
A view better justified by observation was urged by Secchi in and after the year 1872, and was presented in an improved form by Professor Young in his excellent little book on The Sun, published in 1882.[468] Spots are manifestly associated with violent eruptive action, giving rise to the faculae and prominences which usually garnish their borders. It is accordingly contended that upon the withdrawal of matter from below by the flinging up of a prominence must ensue a sinking-in of the surface, into which the partially cooled erupted vapours rush and settle, producing just the kind of darkening by increased absorption told of by the spectroscope. Round the edges of the cavity the rupture of the photospheric shell will form lines of weakness provocative of further eruptions, which will, in their turn, deepen and enlarge the cavity. The phenomenon thus tends to perpetuate itself, until equilibrium is at last restored by internal processes. A sun-spot might then be described as an inverted terrestrial volcano, in which the outbursts of heated matter take place on the borders instead of at the centre of the crater, while the cooled products gather in the centre instead of at the borders. |
|