|
The crowd of orbits disclosed by asteroidal detections invites attentive study. D'Arrest remarked in 1851,[1022] when only thirteen minor planets were known, that supposing their paths to be represented by solid hoops, not one of the thirteen could be lifted from its place without bringing the others with it. The complexity of interwoven tracks thus illustrated has grown almost in the numerical proportion of discovery. Yet no two actually intersect, because no two lie exactly in the same plane, so that the chances of collision are at present nil. There is only one case, indeed, in which it seems to be eventually possible. M. Lespiault has pointed out that the curves traversed by "Fides" and "Maia" approach so closely that a time may arrive when the bodies in question will either coalesce or unite to form a binary system.[1023]
The maze threaded by the 500 asteroids contrasts singularly with the harmoniously ordered and rhythmically separated orbits of the larger planets. Yet the seeming confusion is not without a plan. The established rules of our system are far from being totally disregarded by its minor members. The orbit of Pallas, with its inclination of 34 deg. 42', touches the limit of departure from the ecliptic level; the average obliquity of the asteroidal paths is somewhat less than that of the sun's equator;[1024] their mean eccentricity is below that of the curve traced out by Mercury, and all without exception are pursued in the planetary direction—from west to east.
The zone in which these small bodies travel is about three times as wide as the interval separating the earth from the sun. It extends perilously near to Jupiter, and dovetails into the sphere of Mars.
Their distribution is very unequal. They are most densely congregated about the place where a single planet ought, by Bode's Law, to revolve; it may indeed be said that only stragglers from the main body are found more than fifty million miles within or without a mean distance from the sun 2.8 times that of the earth. Significant gaps, too, occur where some force prohibitive of their presence would seem to be at work. The probable nature of that force was suggested by the late Professor Kirkwood, first in 1866, when the number of known asteroids was only eighty-eight, and again with more confidence in 1876, from the study of a list then run up to 172.[1025] It appears that these bare spaces are found just where a revolving body would have a period connected by a simple relation with that of Jupiter. It would perform two or three circuits to his one, five to his two, nine to his five, and so on. Kirkwood's inference was that the gaps in question were cleared of asteroids by the attractive influence of Jupiter. For disturbances recurring time after time—owing to commensurability of periods—nearly at the same part of the orbit, would have accumulated until the shape of that orbit was notably changed. The body thus displaced would have come in contact with other cosmical particles of the same family with itself—then, it may be assumed, more evenly scattered than now—would have coalesced with them, and permanently left its original track. In this way the regions of maximum perturbation would gradually have become denuded of their occupants.
We can scarcely doubt that this law of commensurability has largely influenced the present distribution of the asteroids. But its effects must have been produced while they were still in an unformed, perhaps a nebular condition. In a system giving room for considerable modification through disturbance, the recurrence of conjunctions with a dominating mass at the same orbital point need not involve instability.[1026] On the whole, the correspondence of facts with Kirkwood's hypothesis has not been impaired by their more copious collection.[1027] Some chasms of secondary importance have indeed been bridged; but the principal stand out more conspicuously through the denser scattering of orbits near their margins. Nor is it doubtful that the influence of Jupiter in some way produced them. M. de Freycinet's study of the problem they present[1028] has, however, led him to the conclusion that they existed ab origine, thus testifying rather to the preventive than to the perturbing power of the giant planet.
The existence, too, of numerous asteroidal pairs travelling in approximately coincident tracks, must date from a remote antiquity. They result, Professor Kirkwood[1029] believed, from the divellent action of Jupiter upon embryo pigmy planets, just as comets moving in pursuit of one another are a consequence of the sundering influence of the sun.
Leverrier fixed, in 1853,[1030] one-fourth of the earth's mass as the outside limit for the combined masses of all the bodies circulating between Mars and Jupiter; but it is far from probable that this maximum is at all nearly approached. M. Berberich[1031] held that the moon would more than outweigh the whole of them, a million of the lesser bodies shining like stars of the twelfth magnitude being needed, according to his judgment, to constitute her mass. And M. Niesten estimated that the whole of the 216 asteroids discovered up to August, 1880, amounted in volume to only 1/4000th of our globe,[1032] and we may safely add—since they are tolerably certain to be lighter, bulk for bulk, than the earth—that their proportionate mass is smaller still. A fairly concordant result was published in 1895 by Mr. B. M. Roszel.[1033] He found that the lunar globe probably contains forty times, the terrestrial globe 3,240 times the quantity of matter parcelled out among the first 311 minor planets. The actual size of a few of them may now be said to be known. Professor Pickering, from determinations of light-intensity, assigned to Vesta a diameter of 319 miles, to Pallas 167, to Juno 94, down to twelve and fourteen for the smaller members of the group.[1034] An albedo equal to that of Mars was assumed as the basis of the calculation. Moreover, Professor G. Mueller[1035] of Potsdam examined photometrically the phases of seven among them, of which four—namely, Vesta, Iris, Massalia, and Amphitrite—were found to conform precisely to the behaviour of Mars as regards light-change from position, while Ceres, Pallas, and Irene varied after the manner of the moon and Mercury. The first group were hence inferred to resemble Mars in physical constitution, nature of atmosphere, and reflective capacity; the second to be moon-like bodies.
Finally, Professor Barnard, directly measuring with the Yerkes refractor the minute discs presented by the original quartette, obtained the following authentic data concerning them:[1036] Diameter of Ceres, 477 miles, albedo = 0.18; diameter of Pallas, 304 miles, albedo = 0.23; diameter of Vesta, 239 miles, albedo = 0.74; diameter of Juno, 120 miles, albedo = 0.45. Thus, the rank of premier asteroid proves to belong to Ceres, and to have been erroneously assigned to Vesta in consequence of its deceptive brilliancy. What kind of surface this indicates, it is hard to say. The dazzling whiteness of snow can hardly be attributed to bare rock; yet the dynamical theory of gases—as Dr. Johnstone Stoney pointed out in 1867[1037]—prohibits the supposition that bodies of insignificant gravitative power can possess aerial envelopes. Even our moon, it is calculated, could not permanently hold back the particles of oxygen, nitrogen, or water-gas from escaping into infinite space; still less, a globe one thousand times smaller. Vogel's suspicion of an air-line in the spectrum of Vesta[1038] has, accordingly, not been confirmed.
* * * * *
Crossing the zone of asteroids on our journey outward from the sun, we meet with a group of bodies widely different from the "inferior" or terrestrial planets. Their gigantic size, low specific gravity, and rapid rotation, obviously from the first threw the "superior" planets into a class apart; and modern research has added qualities still more significant of a dissimilar physical constitution. Jupiter, a huge globe 86,000 miles in diameter, stands pre-eminent among them. He is, however, only primus inter pares; all the wider inferences regarding his condition may be extended, with little risk of error, to his fellows; and inferences in his case rest on surer grounds than in the case of the others, from the advantages offered for telescopic scrutiny by his comparative nearness.
Now the characteristic modern discovery concerning Jupiter is that he is a body midway between the solar and terrestrial stages of cosmical existence—a decaying sun or a developing earth, as we choose to put it—whose vast unexpended stores of internal heat are mainly, if not solely, efficient in producing the interior agitations betrayed by the changing features of his visible disc. This view, impressed upon modern readers by Mr. Proctor's popular works, was anticipated in the last century. Buffon wrote in his Epoques de la Nature (1778):[1039]—"La surface de Jupiter est, comme l'on sait, sujette a des changemens sensibles, qui semblent indiquer que cette grosse planete est encore dans un etat d'inconstance et de bouillonnement."
Primitive incandescence, attendant, in his fantastic view, on planetary origin by cometary impacts with the sun, combined, he concluded, with vast bulk to bring about this result. Jupiter has not yet had time to cool. Kant thought similarly in 1785;[1040] but the idea did not commend itself to the astronomers of the time, and dropped out of sight until Mr. Nasmyth arrived at it afresh in 1853.[1041] Even still, however, terrestrial analogies held their ground. The dark belts running parallel to the equator, first seen at Naples in 1630, continued to be associated—as Herschel had associated them in 1781—with Jovian trade-winds, in raising which the deficient power of the sun was supposed to be compensated by added swiftness of rotation. But opinion was not permitted to halt here.
In 1860 G. P. Bond of Cambridge (U.S.) derived some remarkable indications from experiments on the light of Jupiter.[1042] They showed that fourteen times more of the photographic rays striking it are reflected by the planet than by our moon, and that, unlike the moon, which sends its densest rays from the margin, Jupiter is brightest near the centre. But the most perplexing part of his results was that Jupiter actually seemed to give out more light than he received. Bond, however, rightly considered his data too uncertain for the support of so bold an assumption as that of original luminosity, and, even if the presence of native light were proved, thought that it might emanate from auroral clouds of the terrestrial kind. The conception of a sun-like planet was still a remote, and seemed an extravagant one.
Only since it was adopted and enforced by Zoellner in 1865,[1043] can it be regarded as permanently acquired to science. The rapid changes in the cloud-belts both of Jupiter and Saturn, he remarked, attest a high internal temperature. For we know that all atmospheric movements on the earth are sun-heat transformed into motion. But sun-heat at the distance of Jupiter possesses but 1/27, at that of Saturn 1/100 of its force here. The large amount of energy, then, obviously exerted in those remote firmaments must have some other source, to be found nowhere else than in their own active and all-pervading fires, not yet banked in with a thick solid crust.
The same acute investigator dwelt, in 1871,[1044] on the similarity between the modes of rotation of the great planets and of the sun, applying the same principles of explanation to each case. The fact of this similarity is undoubted. Cassini[1045] and Schroeter both noticed that markings on Jupiter travelled quicker the nearer they were to his equator; and Cassini even hinted at their possible assimilation to sun-spots.[1046] It is now well ascertained that, as a rule (not without exceptions), equatorial spots give a period some 5-1/2 minutes shorter than those in latitudes of about 30 deg. But, as Mr. Denning has pointed out,[1047] no single period will satisfy the observations either of different markings at the same epoch, or of the same markings at different epochs. Accelerations and retardations, depending upon processes of growth or change, take place in very much the same kind of way as in solar maculae, inevitably suggesting similarity of origin.
The interesting query as to Jupiter's surface incandescence has been studied since Bond's time with the aid of all the appliances furnished to physical inquirers by modern inventiveness, yet without bringing to it a categorical reply. Zoellner in 1865, Mueller in 1893, estimated his albedo at 0.62 and 0.75 respectively, that of fresh-fallen snow being 0.78, and of white paper 0.70.[1048] But the disc of Jupiter is by no means purely white. The general ground is tinged with ochre; the polar zones are leaden or fawn coloured; large spaces are at times stained or suffused with chocolate-browns and rosy hues. It is occasionally seen ruled from pole to pole with dusky bars, and is never wholly free from obscure markings. The reflection, then, by it, as a whole, of about 70 per cent. of the rays impinging upon it, might well suggest some original reinforcement.
Nevertheless, the spectroscope gives little countenance to the supposition of any considerable permanent light-emission. The spectrum of Jupiter, as examined by Huggins, 1862-64, and by Vogel, 1871-73, shows the familiar Fraunhofer rays belonging to reflected sunlight. But it also shows lines of native absorption. Some of these are identical with those produced by the action of our own atmosphere, especially one or more groups due to aqueous vapours; others are of unknown origin; and it is remarkable that one among the latter—a strong band in the red—agrees in position with a dark line in the spectra of some ruddy stars.[1049] There is, besides, a general absorption of blue rays, intensified—as Le Sueur observed at Melbourne in 1869[1050]—in the dusky markings, evidently through an increase of depth in the atmospheric strata traversed by the light proceeding from them.
All these observations, however (setting aside the stellar line as of doubtful significance), point to a cool planetary atmosphere. One spectrograph, it is true, taken by Dr. Henry Draper, September 27, 1879,[1051] seemed to attest the action of intrinsic light; but the peculiarity was referred by Dr. Vogel, with convincing clearness, to a flaw in the film.[1052] So far, then, native emissions from any part of Jupiter's diversified surface have not been detected; and, indeed, the blackness of the shadows cast by his satellites on his disc sufficiently proves that he sends out virtually none but reflected light.[1053] This conclusion, however, by no means invalidates that of his high internal temperature.
The curious phenomena attending Jovian satellite-transits may be explained, partly as effects of contrast, partly as due to temporary obscurations of the small discs projected on the large disc of Jupiter. At their first entry upon its marginal parts, which are several times less luminous than those near the centre, they invariably show as bright spots, then usually vanish as the background gains lustre, to reappear, after crossing the disc, thrown into relief, as before, against the dusky limb. But instances are not rare, more especially of the third and fourth satellites standing out, during the entire middle part of their course, in such inky darkness as to be mistaken for their own shadows. The earliest witness of a "black transit" was Cassini, September 2, 1665; Roemer in 1677, and Maraldi in 1707 and 1713, made similar observations, which have been multiplied in recent years. In some cases the process of darkening has been visibly attended by the formation, or emergence into view, of spots on the transiting body, as noted by the two Bonds at Harvard, March 18, 1848.[1054] The third satellite was seen by Dawes, half dark, half bright, when crossing Jupiter's disc, August 21, 1867;[1055] one-third dark by Davidson of California, January 15, 1884, under the same circumstances;[1056] and unmistakably spotted, both on and off the planet, by Schroeter, Secchi, Dawes, and Lassell.
The first satellite sometimes looks dusky, but never absolutely black, in travelling over the disc of Jupiter. The second appears uniformly white—a circumstance attributed by Dr. Spitta[1057] to its high albedo. The singularly different aspects, even during successive transits, of the third and fourth satellites, are connected by Professor Holden[1058] with the varied luminosity of the segments of the planetary surface they are projected upon, and W. H. Pickering inclines to the same opinion; but fluctuations in their own brightness[1059] may be a concurrent cause. Herschel concluded in 1797 that, like our moon, they always turn the same face towards their primary, and as regards the outer satellite, Engelmann's researches in 1871, and C. E. Burton's in 1873, made this almost certain; while both for the third and fourth Jovian moons it was completely assured by W. H. Pickering's and A. E. Douglass's observations at Arequipa in 1892,[1060] and at Flagstaff in 1894-95.[1061] Strangely enough, however, the interior members of the system have preserved a relatively swift rotation, notwithstanding the enormous checking influence upon it of Jove-raised tides.
All the satellites are stated, on good authority, to be more or less egg-shaped. On September 8, 1890, Barnard saw the first elongated and bisected by a bright equatorial belt, during one of its dark transits;[1062] and his observation, repeated August 3, 1891, was completely verified by Schaeberle and Campbell, who ascertained, moreover, that the longer axis of the prolate body was directed towards Jupiter's centre.[1063] The ellipticity of its companions was determined by Pickering and Douglass; indeed, that of No. 3 had long previously been noticed by Secchi.[1064] No. 3 also shows equatorial stripes, perceived in 1891 by Schaeberle and Campbell,[1065] and evident later to Pickering and Douglass;[1066] nor need we hesitate to admit as authentic their records of similar, though less conspicuous markings on the other satellites. A constitution analogous to that of Jupiter himself was thus unexpectedly suggested; and Vogel's detection of lines—or traces of lines—in their spectra, agreeing with absorption-rays derived from their primary, lends support to the conjecture that they possess gaseous envelopes similar to his.
The system of Jupiter, as it was discovered by Galileo, and investigated by Laplace, appeared in its outward aspect so symmetrical, and displayed in its inner mechanism such harmonious dynamical relations, that it might well have been deemed complete. Nevertheless, a new member has been added to it. Near midnight on September 9, 1892, Professor Barnard discerned with the Lick 36-inch "a tiny speck of light," closely following the planet.[1067] He instantly divined its nature, watched its hurried disappearance in the adjacent glare, and made sure of the reality of his discovery on the ensuing night. It was a delicate business throughout, the Liliputian luminary subsiding into invisibility before the slightest glint of Jovian light, and tarrying, only for brief intervals, far enough from the disc to admit of its exclusion by means of an occulting plate. The new satellite is estimated to be of the thirteenth stellar magnitude, and, if equally reflective of light with its next neighbour, Io (satellite No. 1), its diameter must be about one hundred miles. It revolves at a distance of 112,500 miles from Jupiter's centre, and of 68,000 from his bulging equatorial surface. Its period of 11h. 57m. 23s. is just two hours longer than Jupiter's period of rotation, so that Phobos still remains a unique example of a secondary body revolving faster than its primary rotates. Jupiter's innermost moon conforms in its motions strictly, indeed inevitably, to the plane of his equatorial protuberance, following, however, a sensibly elliptical path the major axis of which is in rapid revolution.[1068] Its very insignificance raises the suspicion that it may not prove solitary. Possibly it belongs to a zone peopled by asteroidal satellites. More than fifteen thousand such small bodies could be furnished out of the materials of a single full-sized satellite spoiled in the making. But we must be content for the present to register the fact without seeking to penetrate the meaning of its existence. Very high and very fine telescopic power is needed for its perception. Outside the United States, it has been very little observed. The only instruments in this country successfully employed for its detection are, we believe, Dr. Common's 5-foot reflector and Mr. Newall's 25-inch refractor.
In the course of his observations on Jupiter at Brussels in 1878, M. Niesten was struck with a rosy cloud attached to a whitish zone beneath the dark southern equatorial band.[1069] Its size was enormous. At the distance of Jupiter, its measured dimensions of 13" by 3" implied a real extension in longitude of 30,000, in latitude of something short of 7,000 miles. The earliest record of its appearance seems to be by Professor Pritchett, director of the Morrison Observatory (U.S.), who figured and described it July 9, 1878.[1070] It was again delineated August 9, by Tempel at Florence.[1071] In the following year it attracted the wonder and attention of almost every possessor of a telescope. Its colour had by that time deepened into a full brick-red, and was set off by contrast with a white equatorial spot of unusual brilliancy. During three ensuing years these remarkable objects continued to offer a visible and striking illustration of the compound nature of the planet's rotation. The red spot completed a circuit in nine hours fifty-five minutes thirty-six seconds; the white spot in about five and a half minutes less. Their relative motion was thus no less than 260 miles an hour, bringing them together in the same meridian at intervals of forty-four days ten hours forty-two minutes. Neither, however, preserved continuously the same uniform rate of travel. The period of each had lengthened by some seconds in 1883, while sudden displacements, associated with the recovery of lustre after recurrent fadings, were observed in the position of the white spot,[1072] recalling the leap forward of a reviving sun-spot. Just the opposite effect attended the rekindling of the companion object. While semi-extinct, in 1882-84, it lost little motion; but a fresh access of retardation was observed by Professor Young[1073] in connection with its brightening in 1886. This suggests very strongly that the red spot is fed from below. A shining aureola of "faculae," described by Bredichin at Moscow, and by Lohse at Potsdam, as encircling it in September, 1879,[1074] was held to strengthen the solar analogy.
The conspicuous visibility of this astonishing object lasted three years. When the planet returned to opposition in 1882-83, it had faded so considerably that Ricco's uncertain glimpse of it at Palermo, May 31, 1883, was expected to be the last. It had, nevertheless, begun to recover in December, and presented to Mr. Denning in the beginning of 1886 much the same aspect as in October, 1882.[1075] Observed by him in an intermediate stage, February 25, 1885, when "a mere skeleton of its former self," it bore a striking likeness to an "elliptical ring" descried in the same latitude by Mr. Gledhill in 1869-70. This, indeed, might be called the preliminary sketch for the famous object brought to perfection ten years later, but which Mr. H. C. Russell of Sydney saw and drew still unfinished in June, 1876,[1076] before it had separated from its matrix, the dusky south tropical belt. In earlier times, too, a marking "at once fixed and transient" had been repeatedly perceived attached to the southernmost of the central belts. It gave Cassini in 1665 a rotation-period of nine hours fifty-six minutes,[1077] reappeared and vanished eight times during the next forty-three years, and was last seen by Maraldi in 1713. It was, however, very much smaller than the recent object, and showed no unusual colour.[1078]
The assiduous observations made on the "Great Red Spot" by Mr. Denning at Bristol and by Professor Hough at Chicago afforded grounds only for negative conclusions as to its nature. It certainly did not represent the outpourings of a Jovian volcano; it was in no sense attached to the Jovian soil—if the phrase have any application to that planet; it was not a mere disclosure of a glowing mass elsewhere seethed over by rolling vapours. It was, indeed, certainly not self-luminous, a satellite projected upon it in transit having been seen to show as bright as upon the dusky equatorial bands. A fundamental objection to all three hypotheses is that the rotation of the spot was variable. It did not then ride at anchor, but floated free. Some held that its surface was depressed below the average cloud-level, and that the cavity was filled with vapours. Professor Wilson, on the other hand, observing with the 16-inch equatorial of the Goodsell Observatory in Minnesota, received a persistent impression of the object "being at a higher level than the other markings."[1079] A crucial experiment on this point was proposed by Mr. Stanley Williams in 1890.[1080] A dark spot moving faster along the same parallel was timed to overtake the red spot towards the end of July. A unique opportunity hence appeared to be at hand of determining the relative vertical depths of the two formations, one of which must inevitably, it was thought, pass above the other. No forecast included a third alternative, which was nevertheless adopted by the dark spot. It evaded the obstacle in its path by skirting round its southern edge.[1081] Nothing, then, was gained by the conjunction, beyond an additional proof of the singular repellent influence exerted by the red spot over the markings in its vicinity. It has, for example, gradually carved out a deep bay for its accommodation in the gray belt just north of it. The effect was not at first steadily present. A premonitory excavation was drawn by Schwabe at Dessau, September 5, 1831, and again by Trouvelot, Barnard, and Elvins in 1879; yet there was no sign of it in the following year. Its development can be traced in Dr. Boeddicker's beautiful delineations of Jupiter, made with the Parsonstown 3-foot reflector, from 1881 to 1886.[1082] They record the belt as straight in 1881, but as strongly indented from January, 1883; and the cavity now promises to outlast the spot. So long as it survives, however, the forces at work in the spot can have lost little of their activity. For it must be remembered that the belt has a shorter rotation-period than the red spot, which, accordingly (as Mr. Elvins of Toronto has pointed out), breasts and diverts, by its interior energy, a current of flowing matter, ever ready to fill up its natural bed, and override the barrier of obstruction.
The famous spot was described by Keeler in 1889, as "of a pale pink colour, slightly lighter in the middle. Its outline was a fairly true ellipse, framed in by bright white clouds."[1083] The fading continuously in progress from 1887 was temporarily interrupted in 1891. The revival, indeed, was brief. Professor Barnard wrote in August, 1892: "The great red spot is still visible, but it has just passed through a crisis that seemingly threatened its very existence. For the past month it has been all but impossible to catch the feeblest trace of the spot, though the ever-persistent bay in the equatorial belt close north of it, and which has been so intimately connected with the history of the red spot, has been as conspicuous as ever. It is now, however, possible to detect traces of the entire spot. An obscuring medium seems to have been passing over it, and has now drifted somewhat preceding the spot."[1084]
The object is now always inconspicuous, and often practically invisible, and may be said to float passively in the environing medium.[1085] Yet there are sparks beneath the ashes. A rosy tinge faintly suffused it in April, 1900,[1086] and its absolute end may still be remote.
The extreme complexity of the planet's surface-movements has been strikingly evinced by Mr. Stanley Williams's detailed investigations. He enumerated in 1896[1087] nine principal currents, all flowing parallel to the equator, but unsymmetrically placed north and south of it, and showing scant signs of conformity to the solar rule of retardation with increase of latitude. The linear rate of the planet's equatorial rotation was spectroscopically determined by Belopolsky and Deslandres in 1895. Both found it to fall short of the calculated speed, whence an enlargement, by self-refraction, of the apparent disc was inferred.[1088]
Jupiter was systematically photographed with the Lick 36-inch telescope during the oppositions of 1890, 1891, and 1892, the image thrown on the plates (after eightfold direct enlargement) being one inch in diameter. Mr. Stanley Williams's measurements and discussion of the set for 1891 showed the high value of the materials thus collected, although much more minute details can be seen than can at present be photographed. The red spot shows as "very distinctly annular" in several of these pictures.[1089] Recently, the planet has been portrayed by Deslandres with the 62-foot Meudon refractor.[1090] The extreme actinic feebleness of the equatorial bands was strikingly apparent on his plates.
In 1870, Mr. Ranyard[1091]—whose death, December 14, 1894, was a serious loss to astronomy—acting upon an earlier suggestion of Sir William Huggins, collected records of unusual appearances on the disc of Jupiter, with a view to investigate the question of their recurrence at regular intervals. He concluded that the development of the deeper tinges of colour, and of the equatorial "port-hole" markings girdling the globe in regular alternations of bright and dusky, agreed, so far as could be ascertained, with epochs of sun-spot maximum. The further inquiries of Dr. Lohse at Bothkamp in 1873[1092] went to strengthen the coincidence, which had been anticipated a priori by Zoellner in 1871.[1093] Moreover, separate and distinct evidence was alleged by Mr. Denning in 1899 of decennial outbreaks of disturbance in north temperate regions.[1094] It may, indeed, be taken for granted that what Hahn terms the universal pulse of the solar system[1095] affects the vicissitudes of Jupiter; but the law of those vicissitudes is far from being so obviously subordinate to the rhythmical flow of central disturbance as are certain terrestrial phenomena. The great planet, being in fact himself a "semi-sun," may be regarded as an originator, no less than a recipient, of agitating influences, the combined effects of which may well appear insubordinate to any obvious law.
It is likely that Saturn is in a still earlier stage of planetary development than Jupiter. He is the lightest for his size of all the planets. In fact, he would float in water. And since his density is shown, by the amount of his equatorial bulging, to increase centrally,[1096] it follows that his superficial materials must be of a specific gravity so low as to be inconsistent, on any probable supposition, with the solid or liquid states. Moreover, the chief arguments in favour of the high temperature of Jupiter, apply, with increased force, to Saturn; so that it may be concluded, without much risk of error, that a large proportion of his bulky globe, 73,000 miles in diameter, is composed of heated vapours, kept in active and agitated circulation by the process of cooling.
His unique set of appendages has, since the middle of the last century, formed the subject of searching and fruitful inquiries, both theoretical and telescopic. The mechanical problem of the stability of Saturn's rings was left by Laplace in a very unsatisfactory condition. Considering them as rotating solid bodies, he pointed out that they could not maintain their position unless their weight were in some way unsymmetrically distributed; but made no attempt to determine the kind or amount of irregularity needed to secure this end. Some observations by Herschel gave astronomers an excuse for taking for granted the fulfilment of the condition thus vaguely postulated; and the question remained in abeyance until once more brought prominently forward by the discovery of the dusky ring in 1850.
The younger Bond led the way, among modern observers, in denying the solidity of the structure. The fluctuations in its aspect were, he asserted in 1851,[1097] inconsistent with such a hypothesis. The fine dark lines of division, frequently detected in both bright rings, and as frequently relapsing into imperceptibility, were due, in his opinion, to the real nobility of their particles, and indicated a fluid formation. Professor Benjamin Peirce of Harvard University immediately followed with a demonstration, on abstract grounds, of their non-solidity.[1098] Streams of some fluid denser than water were, he maintained, the physical reality giving rise to the anomalous appearance first disclosed by Galileo's telescope.
The mechanism of Saturn's rings, proposed as the subject of the Adams Prize, was dealt with by James Clerk Maxwell in 1857. His investigation forms the groundwork of all that is at present known in the matter. Its upshot was to show that neither solid nor fluid rings could continue to exist, and that the only possible composition of the system was by an aggregated multitude of unconnected particles, each revolving independently in a period corresponding to its distance from the planet.[1099] This idea of a satellite-formation had been, remarkably enough, several times entertained and lost sight of. It was first put forward by Roberval in the seventeenth century, again by Jacques Cassini in 1715, and with perfect definiteness by Wright of Durham in 1750.[1100] Little heed, however, was taken of these casual anticipations of a truth which reappeared, a virtual novelty, as the legitimate outcome of the most refined modern methods.
The details of telescopic observation accord, on the whole, admirably with this hypothesis. The displacements or disappearance of secondary dividing-lines—the singular striated appearance, first remarked by Short in the eighteenth century, last by Perrotin and Lockyer at Nice, March 18, 1884[1101]—show the effects of waves of disturbance traversing a moving mass of gravitating particles;[1102] the broken and changing line of the planet's shadow on the ring gives evidence of variety in the planes of the orbits described by those particles. The whole ring-system, too, appears to be somewhat elliptical.[1103]
The satellite-theory has derived unlooked-for support from photometric inquiries. Professor Seeliger pointed out in 1888[1104] that the unvarying brilliancy of the outer rings under all angles of illumination, from 0 deg. to 30 deg., can be explained from no other point of view. Nor does the constitution of the obscure inner ring offer any difficulty. For it is doubtless formed of similar small bodies to those aggregated in the lucid members of the system, only much more thinly strewn, and reflecting, consequently, much less light. It is not, indeed, at first easy to see why these sparser flights should show as a dense dark shading on the body of Saturn. Yet this is invariably the case. The objection has been urged by Professor Hastings of Baltimore. The brightest parts of these appendages, he remarked,[1105] are more lustrous than the globe they encircle; but if the inner ring consists of identical materials, possessing presumably an equal reflective capacity, the mere fact of their scanty distribution would not cause them to show as dark against the same globe. Professor Seeliger, however, replied[1106] that the darkening is due to the never-ending swarms of their separate shadows transiting the planet's disc. Sunlight is not, indeed, wholly excluded. Many rays come and go between the open ranks of the meteorites. For the dusky ring is transparent. The planet it encloses shows through it, as if veiled with a strip of crape. A beautiful illustration of its quality in this respect was derived by Professor Barnard from an eclipse of Japetus, November 1, 1889.[1107] The eighth moon remained steadily visible during its passage through the shadow of the inner ring, but with a progressive loss of lustre in approaching its bright neighbour. There was no breach of continuity. The satellite met no gap, corresponding to that between the dusky ring and the body of Saturn, through which it could shine with undiminished light, but was slowly lost sight of as it plunged into deeper and deeper gloom. The important facts were thus established, that the brilliant and obscure rings merge into each other, and that the latter thins out towards the Saturnian globe.
The meteoric constitution of these appendages was beautifully demonstrated in 1895 by Professor Keeler,[1108] then director of the Alleghany Observatory, Pittsburgh. From spectrographs taken with the slit adjusted to coincidence with the equatorial plane of the system, he determined the comparative radial velocities of its different parts. And these supply a crucial test of Clerk Maxwell's theory. For if the rings were solid, the swiftest rates of rotation should be at their outer edges, corresponding to wider circles described in the same period; while, if they are pulverulent, the inverse relation must hold good. This proved to be actually the case. The motion slowed off outward, in agreement with the diminishing speed of particles travelling freely, each in its own orbit. Keeler's result was promptly confirmed by Campbell,[1109] as well as by Deslandres and Belopolsky.
A question of singular interest, and one which we cannot refrain from putting to ourselves, is—whether we see in the rings of Saturn a finished structure, destined to play a permanent part in the economy of the system; or whether they represent merely a stage in the process of development out of the chaotic state in which it is impossible to doubt that the materials of all planets were originally merged. M. Otto Struve attempted to give a definite answer to this important query.
A study of early and later records of observations disclosed to him, in 1851, an apparent progressive approach of the inner edge of the bright ring to the planet. The rate of approach he estimated at about fifty-seven English miles a year, or 11,000 miles during the 194 years elapsed since the time of Huygens.[1110] Were it to continue, a collapse of the system must be far advanced within three centuries. But was the change real or illusory—a plausible, but deceptive inference from insecure data? M. Struve resolved to put it to the test. A set of elaborately careful micrometrical measures of the dimensions of Saturn's rings, executed by himself at Pulkowa in the autumn of 1851, was provided as a standard of future comparison; and he was enabled to renew them, under closely similar circumstances, in 1882.[1111] But the expected diminution of the space between Saturn's globe and his rings had not taken place. A slight extension in the width of the system, both outward and inward, was indeed, hinted at; and it is worth notice that just such a separation of the rings was indicated by Clerk Maxwell's theory, so that there is an a priori likelihood of its being in progress. Yet Hall's measures in 1884-87[1112] failed to supply evidence of alteration with time; and Barnard's, executed at Lick in 1894-95,[1113] showed no sensible divergence from them. Hence, much weight cannot be laid upon Huygens's drawings and descriptions, which had been held to prove conclusively a partial filling up, since 1657, of the interval between the ring and the planet.[1114]
The rings of Saturn replace, in Professor G. H. Darwin's view,[1115] an abortive satellite, scattered by tidal action into annular form. For they lie closer to the planet than is consistent with the integrity of a revolving body of reasonable bulk. The limit of possible existence for such a mass was fixed by Roche of Montpellier, in 1848,[1116] at 2.44 mean radii of its primary; while the outer edge of the ring-system is distant 2.38 radii of Saturn from his centre. The virtual discovery of its pulverulent condition dates, then, according to Professor Darwin, from 1848. He conjectures that the appendage will eventually disappear, partly through the dispersal of its constituent particles inward, and their subsidence upon the planet's surface, partly by their dispersal outward, to a region beyond "Roche's limit," where coalescence might proceed unhindered by the strain of unequal attractions. One modest satellite, revolving inside Mimas, would then be all that was left of the singular appurtenances we now contemplate with admiration.
There seems reason to admit that Kirkwood's law of commensurability has had some effect in bringing about the present distribution of the matter composing them. Here the influential bodies are Saturn's moons, while the divisions and boundaries of the rings represent the spaces where their disturbing action conspires to eliminate revolving particles. Kirkwood, in fact, showed, in 1867,[1117] that a body circulating in the chasm between the bright rings known as "Cassini's division," would have a period nearly commensurable with those of four out of the eight moons; and Meyer of Geneva subsequently calculated all such combinations, with the result of bringing out coincidences between regions of maximum perturbation and the limiting and dividing lines of the system.[1118] This is in itself a strong confirmation of the view that the rings are made up of independently revolving small bodies.
On December 7, 1876, Professor Asaph Hall discovered at Washington a bright equatorial spot on Saturn, which he followed and measured through above sixty rotations, each performed in ten hours fourteen minutes twenty-four seconds.[1119] This, he was careful to add, represented the period, not necessarily of the planet, but only of the individual spot. The only previous determination of Saturn's axial movement (setting aside some insecure estimates by Schroeter) was Herschel's in 1794, giving a period of ten hours sixteen minutes. The substantial accuracy of Hall's result was verified by Mr. Denning in 1891.[1120] In May and June of that year, ten vague bright markings near the equator were watched by Mr. Stanley Williams, who derived from them a rotation period only two seconds shorter than that determined at Washington. Nevertheless, similarly placed spots gave in 1892 and 1893 notably quicker rates;[1121] so that the task of timing the general drift of the Saturnian surface by the displacements of such objects is hampered, to an indefinite extent, by their individual proper motions.
Saturn's outermost satellite, Japetus, is markedly variable—so variable that it sends us, when brightest, just 4-1/2 times as much light as when faintest. Moreover, its fluctuations depend upon its orbital position in such a way as to make it a conspicuous telescopic object when west, a scarcely discernible one when east of the planet. Herschel's inference[1122] of a partially obscured globe turning always the same face towards its primary seems the only admissible one, and is confirmed by Pickering's measurements of the varying intensity of its light. He remarked further that the dusky and brilliant hemispheres must be so posited as to divide the disc, viewed from Saturn, into nearly equal parts; so that this Saturnian moon, even when "full," appears very imperfectly illuminated over one-half of its surface.[1123]
Zoellner estimated the albedo of Saturn at 0.51, Mueller at 0.88, a value impossibly high, considering that the spectrum includes no vestige of original emissions. Closely similar to that of Jupiter, it shows the distinctive dark line in the red (wave-length 618), which we may call the "red-star line"; and Janssen, from the summit of Etna in 1867[1124] found traces in it of aqueous absorption. The light from the ring appears to be pure reflected sunshine unmodified by original atmospheric action.[1125]
Uranus, when favourably situated, can easily be seen with the naked eye as a star between the fifth and sixth magnitudes. There is indeed, some reason to suppose that he had been detected as a wandering orb by savage "watchers of the skies" in the Pacific long before he swam into Herschel's ken. Nevertheless, inquiries into his physical habitudes are still in an early stage. They are exceedingly difficult of execution, even with the best and largest modern telescopes; and their results remain clouded with uncertainty.
It will be remembered that Uranus presents the unusual spectacle of a system of satellites travelling nearly at right angles to the plane of the ecliptic. The existence of this anomaly gives a special interest to investigations of his axial movement, which might be presumed, from the analogy of the other planets, to be executed in the same tilted plane. Yet this is far from being certainly the case.
Mr. Buffham in 1870-72 caught traces of bright markings on the Uranian disc, doubtfully suggesting a rotation in about twelve hours in a plane not coincident with that in which his satellites circulate.[1126] Dusky bands resembling those of Jupiter, but very faint, were barely perceptible to Professor Young at Princeton in 1883. Yet, though almost necessarily inferred to be equatorial, they made a considerable angle with the trend of the satellites' orbits.[1127] More distinctly by the brothers Henry, with the aid of their fine refractor, two gray parallel rulings, separated by a brilliant zone, were discerned every clear night at Paris from January to June, 1884.[1128] What were taken to be the polar regions appeared comparatively dusky. The direction of the equatorial rulings (for so we may safely call them) made an angle of 40 deg. with the satellites' line of travel. Similar observations were made at Nice by MM. Perrotin and Thollon, March to June, 1884, a lucid spot near the equator, in addition, indicating rotation in a period of about ten hours.[1129] The discrepancy was, however, considerably reduced by Perrotin's study of the planet in 1889 with the new 30-inch equatoreal.[1130] The dark bands, thus viewed to better advantage than in 1884, appeared to deviate no more than 10 deg. from the satellites' orbit-plane. No definitive results, on the other hand, were derived by Professors Holden, Schaeberle, and Keeler from their observations of Uranus in 1889-90 with the potent instrument on Mount Hamilton. Shadings, it is true, were almost always, though faintly, seen; but they appeared under an anomalous, possibly an illusory aspect. They consisted, not of parallel, but of forked bands.[1131]
Measurements of the little sea-green disc which represents to us the massive bulk of Uranus, by Young, Schiaparelli,[1132] Safarik, H. C. Wilson[1133] and Perrotin, prove it to be quite distinctly bulged. The compression at once caught Barnard's trained eye in 1894,[1134] when he undertook at Lick a micrometrical investigation of the system; and he was surprised to perceive that the major axis of the elliptical surface made an angle of about 28 deg. with the line of travel pursued by the satellites. Nothing more can be learned on this curious subject for some years, since the pole of the planet is just now turned nearly towards the earth; but Barnard's conclusion is unlikely to be seriously modified. He fixed the mean diameter of Uranus at 34,900 miles. But this estimate was materially reduced through Dr. See's elimination of irradiative effects by means of daylight measures, executed at Washington in 1901.[1135]
The visual spectrum of this planet was first examined by Father Secchi in 1869, and later, with more advantages for accuracy, by Huggins, Vogel,[1136] and Keeler.[1137] It is a very remarkable one. In lieu of the reflected Fraunhofer lines, imperceptible perhaps through feebleness of light, six broad bands of original absorption appear, one corresponding to the blue-green ray of hydrogen (F), another to the "red-star line" of Jupiter and Saturn, the rest as yet unidentified. The hydrogen band seems much too strong and diffuse to be the mere echo of a solar line, and might accordingly be held to imply the presence of free hydrogen in the Uranian atmosphere. This, however, would be difficult of reconcilement with Keeler's identification of an absorption-group in the yellow with a telluric waterband.
Notwithstanding its high albedo—0.62, according to Zoellner—proof is wanting that any of the light of Uranus is inherent. Mr. Albert Taylor announced, indeed, in 1889, his detection, with Common's giant reflector, of bright flutings in its spectrum;[1138] but Professor Keeler's examination proved them to be merely contrast effects.[1139] Sir William and Lady Huggins, moreover, obtained about the same time a photograph purely solar in character. The spectrum it represented was crossed by numerous Fraunhofer lines, and by no others. It was, then, presumably composed entirely of reflected light.
* * * * *
Judging from the indications of an almost evanescent spectrum, Neptune, as regards physical condition, is the twin of Uranus, as Saturn of Jupiter. Of the circumstances of his rotation we are as good as completely ignorant. Mr. Maxwell Hall, indeed, noticed at Jamaica, in November and December, 1883, certain rhythmical fluctuations of brightness, suggesting revolution on an axis in slightly less than eight hours;[1140] but Professor Pickering reduces the supposed variability to an amount altogether too small for certain perception, and Dr. G. Mueller denies its existence in toto. It is true their observations were not precisely contemporaneous with those of Mr. Hall[1141] who believes the partial obscurations recorded by himself to have been of a passing kind, and to have suddenly ceased after a fortnight of prevalence. Their less conspicuous renewal was visible to him in November, 1884, confirming a rotation period of 7.92 hours.
It was ascertained at first by indirect means that the orbit of Neptune's satellite is inclined about 20 deg. to his equator. Mr. Marth[1142] having drawn attention to the rapid shifting of its plane of motion, M. Tisserand and Professor Newcomb[1143] independently published the conclusion that such shifting necessarily results from Neptune's ellipsoidal shape. The movement is of the kind exemplified—although with inverted relations—in the precession of the equinoxes. The pole of the satellite, owing to the pull of Neptune's equatorial protuberance, describes a circle round the pole of his equator in a retrograde direction, and in a period of over five hundred years. The amount of compression indicated for the primary body is, at the outside, 1/85; whence it can be inferred that Neptune possesses a lower rotatory velocity than the other giant planets. Direct verification of the trend theoretically inferred for the satellite's movement was obtained by Dr. See in 1899. The Washington 26-inch refractor disclosed to him, under exceptionally favourable conditions, a set of equatorial belts on the disc of Neptune, and they took just the direction prescribed by theory. Their objective reality cannot be doubted, although Barnard was unable, either with the Lick or the Yerkes telescope,[1144] to detect any definite markings on this planet. Its diameter was found by him to be 32,900 miles.
The possibility that Neptune may not be the most remote body circling round the sun has been contemplated ever since he has been known to exist. Within the last few years the position at a given epoch of a planet far beyond his orbital verge has been approximately fixed by two separate investigators.
Professor George Forbes of Edinburgh adopted in 1880 a novel plan of search for unknown members of the solar system, the first idea of which was thrown out by M. Flammarion in November, 1879.[1145] It depends upon the movements of comets. It is well known that those of moderately short periods are, for a reason already explained, connected with the larger planets in such a way that the cometary aphelia fall near some planetary orbit. Jupiter claims a large retinue of such partial dependents, Neptune owns six, and there are two considerable groups, the farthest distances of which from the sun lie respectively near 100 and 300 times that of the earth. At each of these vast intervals, one involving a period of 1,000, the other of 5,000 years, Professor Forbes maintains that an unseen planet circulates. He even computed elements for the nearer of the two, and fixed its place on the celestial sphere;[1146] but the photographic searches made for it by Dr. Roberts at Crowborough and by Mr. Wilson at Daramona proved unavailing. Undeterred by Deichmueller's discouraging opinion that cometary orbits extending beyond the recognised bounds of the solar system are too imperfectly known to serve as the basis of trustworthy conclusions,[1147] the Edinburgh Professor returned to the attack in 1901.[1148] He now sought to prove that the lost comet of 1556 actually returned in 1844, but with elements so transformed by ultra-Neptunian perturbations as to have escaped immediate identification. If so, the "wanted" planet has just entered the sign Libra, and, being larger than Jupiter, should be possible to find.
Almost simultaneously with Forbes, Professor Todd set about groping for the same object by the help of a totally different set of indications. Adams's approved method commended itself to him; but the hypothetical divagations of Neptune having scarcely yet had time to develop, he was thrown back upon the "residual errors" of Uranus. They gave him a virtually identical situation for the new planet with that derived from the clustering of cometary aphelia.[1149] Yet its assigned distance was little more than half that of the nearer of Professor Forbes's remote pair, and it completed a revolution in 375 instead of 1,000 years. The agreement in them between the positions determined, on separate grounds, for the ultra-Neptunian traveller was merely an odd coincidence; nor can we be certain, until it is seen, that we have really got into touch with it.
FOOTNOTES:
[Footnote 965: Phil. Trans., vol. lxxiv., p. 260.]
[Footnote 966: Novae Observationes, p. 105.]
[Footnote 967: Phil. Trans., vol. i., p. 243.]
[Footnote 968: Mem. de l'Ac., 1720, p. 146.]
[Footnote 969: Phil. Trans., vol. lxxiv., p. 273.]
[Footnote 970: A large work, entitled Areographische Fragmente, in which Schroeter embodied the results of his labours on Mars, 1785-1803, narrowly escaped the conflagration of 1813, and was published at Leyden in 1881.]
[Footnote 971: Beitraege, p. 124.]
[Footnote 972: Mem. R. A. Soc., vol. xxxii., p. 183.]
[Footnote 973: Astr. Nach., No. 1,468.]
[Footnote 974: Observatory, vol. viii., p. 437.]
[Footnote 975: Month. Not., vols. xxviii., p. 37; xxix., p. 232; xxxiii., p. 552.]
[Footnote 976: Flammarion, L'Astronomie, t. i., p. 266.]
[Footnote 977: Smyth, Cel. Cycle, vol. i., p. 148 (1st ed.).]
[Footnote 978: Phil. Trans., vol. cxxi., p. 417.]
[Footnote 979: Month. Not., vol. xxv., p. 227.]
[Footnote 980: Phil. Mag., vol. xxxiv., p. 75.]
[Footnote 981: Proctor, Quart. Jour. of Science, vol. x., p. 185; Maunder, Sunday Mag., January, February, March, 1882; Campbell, Publ. Astr. Pac. Soc., vol. vi., p. 273.]
[Footnote 982: Am. Jour. of Sc., vol. xxviii., p. 163.]
[Footnote 983: Burton, Trans. Roy. Dublin Soc., vol. i., 1880, p. 169.]
[Footnote 984: Month. Not., vol. xxvii., p. 179; Astroph. Journ., vol. i., p. 193.]
[Footnote 985: Untersuchungen ueber die Spectra der Planeten, p. 20; Astroph. Journ., vol. i., p. 203.]
[Footnote 986: Publ. Astr. Pac. Soc., vols. vi., p. 228; ix., p. 109; Astr. and Astroph., vol. xiii., p. 752; Astroph. Jour., vol. ii., p. 28.]
[Footnote 987: Ibid., vol. v., p. 328.]
[Footnote 988: Ibid., vols. i., p. 311; iii., p. 254.]
[Footnote 989: C. Christiansen, Beiblaetter, 1886, p. 532.]
[Footnote 990: Astr. and Astrophysics, vol. xi., p. 671.]
[Footnote 991: Flammarion, La Planete Mars, p. 574.]
[Footnote 992: Memoires Couronnes, t. xxxix.]
[Footnote 993: Lockyer, Nature, vol. xlvi., p. 447.]
[Footnote 994: Mem. Spettr. Italiani, t. xi., p. 28.]
[Footnote 995: Bull. Astr., t. iii., p. 324.]
[Footnote 996: Journ. Brit. Astr. Ass., vol. i., p. 88.]
[Footnote 997: Publ. Pac. Astr. Soc., vol. ii., p. 299; Percival Lowell, Mars, 1896; Annals of the Lowell Observatory, vol. ii., 1900.]
[Footnote 998: Old and New Astr., p. 545.]
[Footnote 999: L'Astronomie, t. xi., p. 445.]
[Footnote 1000: La Planete Mars, p. 588.]
[Footnote 1001: Month. Notices, vol. lvi., p. 166.]
[Footnote 1002: L'Astronomie, t. viii.]
[Footnote 1003: Astr. Nach., No. 3,271; Astr. and Astrophysics, vol. xiii., p. 716.]
[Footnote 1004: Month. Not., vol. xxxviii., p. 41; Mem. Roy. Astr. Soc., vol. xliv., p. 123.]
[Footnote 1005: Astr. and Astrophysics, vol. xi., p. 668.]
[Footnote 1006: Ibid., p. 850.]
[Footnote 1007: Comptes Rendus, t. cxv., p. 379.]
[Footnote 1008: Astr. Jour., No. 384; Publ. Astr. Pac. Soc., vol. vi., p. 109. Cf. Observatory vol. xvii., pp. 295-336.]
[Footnote 1009: See Mr. Wentworth Erck's remarks in Trans. Roy. Dublin Soc., vol. i., p. 29.]
[Footnote 1010: Month. Not., vol. xxxviii., p. 206.]
[Footnote 1011: Annals Harvard Coll. Obs., vol. xi., pt. ii., p. 217.]
[Footnote 1012: Young, Gen. Astr., p. 366.]
[Footnote 1013: Campbell, Publ. Pac. Astr. Soc., vol. vi., p. 270.]
[Footnote 1014: Astr. Nach., No. 3,319.]
[Footnote 1015: Witch of Atlas, stanza iii. I am indebted to Dr. Garnett for the reference.]
[Footnote 1016: Recommended by Chandler, Astr. Jour., No. 452.]
[Footnote 1017: Harvard Circulars, Nos. 36, 37, 51.]
[Footnote 1018: Astr. Nach., No. 3,687.]
[Footnote 1019: Montangerand, Comptes Rendus, March 11, 1901.]
[Footnote 1020: Pickering, Astroph. Jour., vol. xiii., p. 277.]
[Footnote 1021: Harvard Circular, No. 58.]
[Footnote 1022: Astr. Nach., No. 752.]
[Footnote 1023: L. Niesten, Annuaire, Bruxelles, 1881, p. 269.]
[Footnote 1024: According to Svedstrup (Astr. Nach., Nos. 2,240-41), the inclination to the ecliptic of the "mean asteroid's" orbit is = 6 deg.]
[Footnote 1025: Smiths. Report, 1876, p. 358; The Asteroids (Kirkwood), p. 42, 1888.]
[Footnote 1026: Tisserand, Annuaire, Paris, 1891, p. B. 15; Newcomb, Astr. Jour., No. 477; Backlund, Bull. Astr., t. xvii., p. 81; Parmentier, Bull. Soc. Astr. de France, March, 1896; Observatory, vol. xviii., p. 207.]
[Footnote 1027: Berberich, Astr. Nach., No. 3,088.]
[Footnote 1028: Bull. Astr., t. xviii., p. 39.]
[Footnote 1029: The Asteroids, p. 48; Publ. Astr. Pac. Soc., vols. ii., p. 48; iii., p. 95.]
[Footnote 1030: Comptes Rendus, t. xxxvii., p. 797.]
[Footnote 1031: Bull. Astr., t. v., p. 180.]
[Footnote 1032: Annuaire, Bruxelles, 1881, p. 243.]
[Footnote 1033: Johns Hopkins Un. Circular, January, 1895; Observatory, vol. xviii., p. 127.]
[Footnote 1034: Harvard Annals, vol. xi., part ii., p. 294.]
[Footnote 1035: Astr. Nach., Nos. 2,724-5.]
[Footnote 1036: Month. Not., vol. lxi., p. 69.]
[Footnote 1037: Astroph. Jour., vol. vii., p. 25.]
[Footnote 1038: Spectra der Planeten, p. 24.]
[Footnote 1039: Tome i., p. 93.]
[Footnote 1040: Berlinische Monatsschrift, 1785, p. 211.]
[Footnote 1041: Month. Not., vol. xiii., p. 40.]
[Footnote 1042: Mem. Am. Ac., vol. viii., p. 221.]
[Footnote 1043: Photom. Unters., p. 303.]
[Footnote 1044: Astr. Nach., No. 1,851.]
[Footnote 1045: Mem. de l'Ac., t. x., p. 514.]
[Footnote 1046: Ibid., 1692, p. 7.]
[Footnote 1047: Month. Not., vol. xliv., p. 63.]
[Footnote 1048: Photom. Unters., pp. 165, 273; Potsdam Publ., No. 30.]
[Footnote 1049: Vogel, Sp. der Planeten, p. 33, note.]
[Footnote 1050: Proc. Roy. Soc., vol. xviii., p. 250.]
[Footnote 1051: Month. Not., vol. xl., p. 433.]
[Footnote 1052: Sitzungsberichte, Berlin, 1895, ii., p. 15.]
[Footnote 1053: The anomalous shadow-effects recorded by Webb (Cel. Objects, p. 170, 4th ed.) are obviously of atmospheric and optical origin.]
[Footnote 1054: Engelmann, Ueber die Helligkeitsverhaeltnisse der Jupiterstrabanten, p. 59.]
[Footnote 1055: Month. Not., vol. xxviii., p. 11.]
[Footnote 1056: Observatory, vol. vii., p. 175.]
[Footnote 1057: Month. Not., vol. xlviii., p. 43.]
[Footnote 1058: Publ. Astr. Pac. Soc., vol. ii., p. 296.]
[Footnote 1059: Pickering failed to obtain any photometric evidence of their variability. Harvard Annals, vol. xi., p. 245.]
[Footnote 1060: Astr. and Astroph., vol. xii., pp. 194, 481.]
[Footnote 1061: Annals Lowell Obs., vol. ii., pt. i.]
[Footnote 1062: Astr. Nach., Nos. 2,995, 3,206; Month. Not., vols. li., p. 556; liv., p. 134. Barnard remains convinced that the oval forms attributed to Jupiter's satellites are illusory effects of their markings. Astr. Nach., Nos. 3,206, 3,453; Astr. and Astroph., vol. xiii., p. 272.]
[Footnote 1063: Publ. Astr. Pac. Soc., vol. iii., p. 355.]
[Footnote 1064: Astr. Nach., No. 1,017.]
[Footnote 1065: Publ. Astr. Pac. Soc., vol. iii., p. 359.]
[Footnote 1066: Astr. Nach., No. 3,432.]
[Footnote 1067: Astr. Jour., Nos. 275, 325, 367, 472; Observatory, vol. xv., p. 425.]
[Footnote 1068: Tisserand, Comptes Rendus, October 8, 1894; Cohn, Astr. Nach., No. 3,404.]
[Footnote 1069: Bull. Ac. R. Bruxelles, t. xlviii., p. 607.]
[Footnote 1070: Astr. Nach., No. 2,294.]
[Footnote 1071: Ibid., No. 2,284.]
[Footnote 1072: Denning, Month. Not., vol. xliv., pp. 64, 66; Nature, vol. xxv., p. 226.]
[Footnote 1073: Sidereal Mess., December, 1886, p. 289.]
[Footnote 1074: Astr. Nach., Nos. 2,280, 2,282.]
[Footnote 1075: Month. Not., vol. xlvi., p. 117.]
[Footnote 1076: Proc. Roy. Soc. N. S. Wales, vol. xiv., p. 68.]
[Footnote 1077: Phil. Trans., vol. i., p. 143.]
[Footnote 1078: For indications relative to the early history of the red spot, see Holden, Publ. Astr. Pac. Soc., vol. ii., p. 77; Noble, Month. Not., vol. xlvii., p. 515; A. S. Williams, Observatory, vol. xiii., p. 338.]
[Footnote 1079: Astr. and Astrophysics, vol. xi., p. 192.]
[Footnote 1080: Month. Not., vol. l., p. 520.]
[Footnote 1081: Observatory, vol. xiii., pp. 297, 326.]
[Footnote 1082: Trans. R. Dublin Soc., vol. iv., p. 271, 1889.]
[Footnote 1083: Publ. Astr. Pac. Soc., vol. ii., p. 289.]
[Footnote 1084: Astr. and Astrophysics, vol. xi., p. 686.]
[Footnote 1085: Denning, Knowledge, vol. xxiii., p. 200; Observatory, vol. xxiv., p. 312; Pop. Astr., vol. ix., p. 448; Nature, vol. lv., p. 89.]
[Footnote 1086: Williams, Observatory, vol. xxiii., p. 282.]
[Footnote 1087: Month. Not., vol. lvi., p. 143.]
[Footnote 1088: Belopolsky, Astr. Nach., No. 3,326.]
[Footnote 1089: Publ. Astr. Pac. Soc., vol. iv., p. 176.]
[Footnote 1090: Bull. Astr., 1900, p. 70.]
[Footnote 1091: Month. Not., vol. xxxi., p. 34.]
[Footnote 1092: Beobachtungen, Heft ii., p. 99.]
[Footnote 1093: Ber. Saechs. Ges. der Wiss., 1871, p. 553.]
[Footnote 1094: Month. Not., vol. lix., p. 76.]
[Footnote 1095: Beziehungen der Sonnenfleckenperiode, p. 175.]
[Footnote 1096: A. Hall, Astr. Nach., No. 2,269.]
[Footnote 1097: Astr. Jour. (Gould's), vol. ii., p. 17.]
[Footnote 1098: Ibid., p. 5.]
[Footnote 1099: On the Stability of the Motion of Saturn's Rings, p. 67.]
[Footnote 1100: Mem. de l'Ac., 1715, p. 47; Montucla, Hist. des Math., t. iv., p. 19; An Original Theory of the Universe, p. 115.]
[Footnote 1101: Comptes Rendus, t. xcviii., p. 718.]
[Footnote 1102: Proctor, Saturn and its System (1865), p. 125.]
[Footnote 1103: Perrotin, Comptes Rendus, t. cvi., p. 1716.]
[Footnote 1104: Abhandl. Akad. der Wiss., Munich, Bd. xvi., p. 407.]
[Footnote 1105: Smiths. Report, 1880 (Holden).]
[Footnote 1106: Quoted by Dr. E. Anding, Astr. Nach., No. 2,881.]
[Footnote 1107: Astr. and Astrophysics, vol. xi., p. 119; Month. Not., vol. l., p. 108.]
[Footnote 1108: Astroph. Jour., vol. i., p. 416.]
[Footnote 1109: Ibid., vol. ii., p. 127.]
[Footnote 1110: Mem. de l'Ac. Imp. (St. Petersb.), t. vii., 1853, p. 464.]
[Footnote 1111: Astr. Nach., No. 2,498.]
[Footnote 1112: Washington Observations, App. ii., p. 22]
[Footnote 1113: Month. Not., vol. lvi., p. 163.]
[Footnote 1114: T. Lewis, Observatory, vol. xviii., p. 379.]
[Footnote 1115: Harper's Magazine, June, 1889.]
[Footnote 1116: Mem. de l'Acad. de Montpellier, t. viii., p. 296, 1873.]
[Footnote 1117: Meteoric Astronomy, chap. xii. He carried the subject somewhat farther in 1871. See Observatory, vol. vi., p. 335.]
[Footnote 1118: Astr. Nach., No. 2,527.]
[Footnote 1119: Amer. Jour. of Sc., vol. xiv., p. 325.]
[Footnote 1120: Observatory, vol. xiv., p. 369.]
[Footnote 1121: Month. Not., vol. liv., p. 297.]
[Footnote 1122: Phil. Trans., vol. lxxxii., p. 14.]
[Footnote 1123: Smiths. Report, 1880.]
[Footnote 1124: Comptes Rendus, t. lxiv., p. 1304.]
[Footnote 1125: Huggins, Proc. R. Soc., vol. xlvi., p. 231; Keeler, Astr. Nach., No. 2,927; Vogel, Astroph. Jour., vol. i., p. 278.]
[Footnote 1126: Month. Not., vol. xxxiii., p. 164.]
[Footnote 1127: Astr. Nach., No 2,545.]
[Footnote 1128: Comptes Rendus, t. xcviii., p. 1419.]
[Footnote 1129: Comptes Rendus, t. xcviii., pp. 718, 967.]
[Footnote 1130: V. J. S. Astr. Ges., Jahrg. xxiv., p. 267.]
[Footnote 1131: Publ. Astr. Pac. Soc., vol. iii., p. 287.]
[Footnote 1132: Astr. Nach., No. 2,526.]
[Footnote 1133: Ibid., No. 2,730.]
[Footnote 1134: Astr. Jour., Nos. 370, 374.]
[Footnote 1135: Astr. Nach., No. 3,768.]
[Footnote 1136: Ann. der Phys., Bd. clviii., p. 470; Astroph. Jour., vol. i., p. 280.]
[Footnote 1137: Astr. Nach., No. 2,927.]
[Footnote 1138: Month. Not., vol. xlix., p. 405.]
[Footnote 1139: Astr. Nach., No. 2,927; Scheiner's Spectralanalyse, p. 221.]
[Footnote 1140: Month. Not., vol. xliv., p. 257.]
[Footnote 1141: Observatory, vol. vii., pp. 134, 221, 264.]
[Footnote 1142: Month. Not., vol. xlvi., p. 507.]
[Footnote 1143: Comptes Rendus, t. cvii., p. 804; Astr. and Astroph., vol. xiii., p. 291; Astr. Jour., No. 186.]
[Footnote 1144: Astr. Jour., Nos. 342, 436, 508.]
[Footnote 1145: Astr. Pop., p. 661; La Nature, January 3, 1880.]
[Footnote 1146: Proc. Roy. Soc. Edinb., vols. x., p. 429; xi., p. 89.]
[Footnote 1147: Vierteljahrsschrift. Astr. Ges., Jahrg. xxi., p. 206.]
[Footnote 1148: Proc. Roy. Soc. Edinb., vol. xxiii., p. 370; Nature, vol. lxiv., p. 524.]
[Footnote 1149: Amer. Jour. of Science, vol. xx., p. 225.]
CHAPTER IX
THEORIES OF PLANETARY EVOLUTION
We cannot doubt that the solar system, as we see it, is the result of some process of growth—that, during innumerable ages, the forces of Nature were at work upon its materials, blindly modelling them into the shape appointed for them from the beginning by Omnipotent Wisdom. To set ourselves to inquire what that process was may be an audacity, but it is a legitimate, nay, an inevitable one. For man's implanted instinct to "look before and after" does not apply to his own little life alone, but regards the whole history of creation, from the highest to the lowest—from the microscopic germ of an alga or a fungus to the visible frame and furniture of the heavens.
Kant considered that the inquiry into the mode of origin of the world was one of the easiest problems set by Nature; but it cannot be said that his own solution of it was satisfactory. He, however, struck out in 1755 a track which thought still pursues. In his Allgemeine Naturgeschichte the growth of sun and planets was traced from the cradle of a vast and formless mass of evenly diffused particles, and the uniformity of their movements was sought to be accounted for by the unvarying action of attractive and repulsive forces, under the dominion of which their development was carried forward.
In its modern form, the "Nebular Hypothesis" made its appearance in 1796.[1150] It was presented by Laplace with diffidence, as a speculation unfortified by numerical buttresses of any kind, yet with visible exultation at having, as he thought, penetrated the birth-secret of our system. He demanded, indeed, more in the way of postulates than Kant had done. He started with a sun ready made,[1151] and surrounded with a vast glowing atmosphere, extending into space out beyond the orbit of the farthest planet, and endowed with a slow rotatory motion. As this atmosphere or nebula cooled, it contracted; and as it contracted, its rotation, by a well-known mechanical law, became accelerated. At last a point arrived when tangential velocity at the equator increased beyond the power of gravity to control, and equilibrium was restored by the separation of a nebulous ring revolving in the same period as the generating mass. After a time, the ring broke up into fragments, all eventually reunited in a single revolving and rotating body. This was the first and farthest planet.
Meanwhile the parent nebula continued to shrink and whirl quicker and quicker, passing, as it did so, through successive crises of instability, each resulting in, and terminated by, the formation of a planet, at a smaller distance from the centre, and with a shorter period of revolution than its predecessor. In these secondary bodies the same process was repeated on a reduced scale, the birth of satellites ensuing upon their contraction, or not, according to circumstances. Saturn's ring, it was added, afforded a striking confirmation of the theory of annular separation,[1152] and appeared to have survived in its original form in order to throw light on the genesis of the whole solar system; while the four first discovered asteroids offered an example in which the debris of a shattered ring had failed to coalesce into a single globe.
This scene of cosmical evolution was a characteristic bequest from the eighteenth century to the nineteenth. It possessed the self-sufficing symmetry and entireness appropriate to the ideas of a time of renovation, when the complexity of nature was little accounted of in comparison with the imperious orderliness of the thoughts of man. Since its promulgation, however, knowledge has transgressed many boundaries, and set at naught much ingenious theorising. How has it fared with Laplace's sketch of the origin of the world? It has at least not been discarded as effete. The groundwork of speculation on the subject is still furnished by it. It is, nevertheless, admittedly inadequate. Of much that exists it gives no account, or an erroneous one. The march of events certainly did not everywhere—even if it did anywhere—follow the exact path prescribed for it. Yet modern science attempts to supplement, but scarcely ventures to supersede it.
Thought has, in many directions, been profoundly modified by Mayer's and Joule's discovery, in 1842, of the equivalence between heat and motion. Its corollary was the grand idea of the "conservation of energy," now one of the cardinal principles of science. This means that, under the ordinary circumstances of observation, the old maxim ex nihilo nihil fit applies to force as well as to matter. The supplies of heat, light, electricity, must be kept up, or the stream will cease to flow. The question of the maintenance of the sun's heat was thus inevitably raised; and with the question of maintenance that of origin is indissolubly connected.
Dr. Julius Robert Mayer, a physician residing at Heilbronn, was the first to apply the new light to the investigation of what Sir John Herschel had termed the "great secret." He showed that if the sun were a body either simply cooling or in a state of combustion, it must long since have "gone out." Had an equal mass of coal been set alight four or five centuries after the building of the Pyramid of Cheops, and kept burning at such a rate as to supply solar light and heat during the interim, only a few cinders would now remain in lieu of our undiminished glorious orb. Mayer looked round for an alternative. He found it in the "meteoric hypothesis" of solar conservation.[1153] The importance in the economy of our system of the bodies known as falling stars was then (in 1848) beginning to be recognised. It was known that they revolved in countless swarms round the sun; that the earth daily encountered millions of them; and it was surmised that the cone of the zodiacal light represented their visible condensation towards the attractive centre. From the zodiacal light, then, Mayer derived the store needed for supporting the sun's radiations. He proved that, by the stoppage of their motion through falling into the sun, bodies would evolve from 4,600 to 9,200 times as much heat (according to their ultimate velocity) as would result from the burning of equal masses of coal, their precipitation upon the sun's surface being brought about by the resisting medium observed to affect the revolutions of Encke's comet. There was, however, a difficulty. The quantity of matter needed to keep, by the sacrifice of its movement, the hearth of our system warm and bright would be very considerable. Mayer's lowest estimate put it at 94,000 billion kilogrammes per second, or a mass equal to that of our moon bi-annually. But so large an addition to the gravitating power of the sun would quickly become sensible in the movement of the bodies dependent upon him. Their revolutions would be notably accelerated. Mayer admitted that each year would be shorter than the previous one by a not insignificant fraction of a second, and postulated an unceasing waste of substance, such as Newton had supposed must accompany emission of the material corpuscles of light, to neutralise continual reinforcement.
Mayer's views obtained a very small share of publicity, and owned Mr. Waterston as their independent author in this country. The meteoric, or "dynamical," theory of solar sustentation was expounded by him before the British Association in 1853. It was developed with his usual ability by Lord Kelvin, in the following year. The inflow of meteorites, he remarked, "is the only one of all conceivable causes of solar heat which we know to exist from independent evidence."[1154] We know it to exist, but we now also know it to be entirely insufficient. The supplies presumed to be contained in the zodiacal light would be quickly exhausted; a constant inflow from space would be needed to meet the demand. But if moving bodies were drawn into the sun at anything like the required rate, the air, even out here at ninety-three millions of miles distance, would be thick with them; the earth would be red-hot from their impacts;[1155] geological deposits would be largely meteoric;[1156] to say nothing of the effects on the mechanism of the heavens. Lord Kelvin himself urged the inadmissibility of the "extra-planetary" theory of meteoric supply on the very tangible ground that, if it were true, the year would be shorter now, actually by six weeks, than at the opening of the Christian era. The "intra-planetary" supply, however, is too scanty to be anything more than a temporary makeshift.
The meteoric hypothesis was naturally extended from the maintenance of the sun's heat to the formation of the bodies circling round him. The earth—no less doubtless than the other planets—is still growing. Cosmical matter in the shape of falling stars and aerolites, to the amount, adopting Professor Newton's estimate, of 100 tons daily, is swept up by it as it pursues its orbital round. Inevitably the idea suggested itself that this process of appropriation gives the key to the life-history of our globe, and that the momentary streak of fire in the summer sky represents a feeble survival of the glowing hailstorm by which in old times it was fashioned and warmed. Mr. E. W. Brayley supported this view of planetary production in 1864,[1157] and it has recommended itself to Haidinger, Helmholtz, Proctor, and Faye. But the negative evidence of geological deposits appears fatal to it.
The theory of solar energy now generally regarded as the true one was enounced by Helmholtz in a popular lecture in 1854. It depends upon the same principle of the equivalence of heat and motion which had suggested the meteoric hypothesis. But here the movement surrendered and transformed belongs to the particles, not of any foreign bodies, but of the sun itself. Drawn together from a wide ambit by the force of their own gravity, their fall towards the sun's centre must have engendered a vast thermal store, of which 453/454 are computed to be already spent. Presumably, however, this stream of reinforcement is still flowing. In the very act of parting with heat, the sun develops a fresh stock. His radiations, in short, are the direct result of shrinkage through cooling. A diminution of the solar diameter by 380 feet yearly would just suffice to cover the present rate of emission, and would for ages remain imperceptible with our means of observation, since, after the lapse of 6,000 years, the lessening of angular size would scarcely amount to one second.[1158] But the process, though not terminated, is strictly a terminable one. In less than five million years, the sun will have contracted to half its present bulk. In seven million more, it will be as dense as the earth. It is difficult to believe that it will then be a luminous body.[1159] Nor can an unlimited past duration be admitted. Helmholtz considered that radiation might have gone on with its actual intensity for twenty-two, Langley allows only eighteen million years. The period can scarcely be stretched, by the most generous allowances, to double the latter figure. But this is far from meeting the demands of geologists and biologists.
An attempt was made in 1881 to supply the sun with machinery analogous to that of a regenerative furnace, enabling it to consume the same fuel over and over again, and so to prolong indefinitely its beneficent existence. The inordinate "waste" of energy, which shocks our thrifty ideas, was simultaneously abolished. The earth stops and turns variously to account one 2,250-millionth part of the solar radiations; each of the other planets and satellites takes a proportionate share; the rest, being all but an infinitesmal fraction of the whole, is dissipated through endless space, to serve what purpose we know not. Now, on the late Sir William Siemens's plan, this reckless expenditure would cease; the solar incomings and outgoings would be regulated on approved economic principles, and the inevitable final bankruptcy would be staved off to remote ages.
But there was a fatal flaw in its construction. He imagined a perpetual circulation of combustible materials, alternately surrendering and regaining chemical energy, the round being kept going by the motive force of the sun's rotation.[1160] This, however, was merely to perch the globe upon a tortoise, while leaving the tortoise in the air. The sun's rotation contains a certain definite amount of mechanical power—enough, according to Lord Kelvin, if directly converted into heat, to keep up the sun's emission during 116 years and six days—a mere moment in cosmical time. More economically applied, it would no doubt go farther. Its exhaustion would, nevertheless, under the most favourable circumstances, ensue in a comparatively short period.[1161] Many other objections equally unanswerable have been urged to the "regenerative" hypothesis, but this one suffices.
Dr. Croll's collision hypothesis[1162] is less demonstrably unsound, but scarcely less unsatisfactory. By the mutual impact of two dark masses rushing together with tremendous speed, he sought to provide the solar nebula with an immense original stock of heat for the reinforcement of that subsequently evolved in the course of its progressive contraction. The sun, while still living on its capital, would thus have a larger capital to live on, and the time-demands of the less exacting geologists and biologists might be successfully met. But the primitive event, assumed for the purpose of dispensing them from the inconvenience of "hurrying up their phenomena," is not one that a sane judgment can readily admit to have ever, in point of actual fact, happened.
There remains, then, as the only intelligible rationale of solar sustentation, Helmholtz's shrinkage theory. And this has a very important bearing upon the nebular view of planetary formation; it may, in fact, be termed its complement. For it involves the idea that the sun's materials, once enormously diffused, gradually condensed to their present volume with development of heat and light, and, it may plausibly be added, with the separation of dependent globes. The data furnished by spectrum analysis, too, favour the supposition of a common origin for sun and planets by showing their community of substance; while gaseous nebulae present examples of vast masses of tenuous vapour, such as our system may plausibly be conjectured to have primitively sprung from.
But recent science raises many objections to the details, if it supplies some degree of confirmation to the fundamental idea of Laplace's cosmogony. The detection of the retrograde movement of Neptune's satellite made it plain that the anomalous conditions of the Uranian world were due to no extraordinary disturbance, but to a systematic variety of arrangement at the outskirts of the solar domain. So that, were a trans-Neptunian planet discovered, we should be fully prepared to find it rotating, and surrounded by satellites circulating from east to west. The uniformity of movement, upon the probabilities connected with which the French geometer mainly based his scheme, thus at once vanishes. |
|