p-books.com
A History of Science, Volume 1(of 5)
by Henry Smith Williams
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

ABSTRACT SCIENCE

But, indeed, practical knowledge was, as has been said over and over, the essential characteristic of Egyptian science. Yet another illustration of this is furnished us if we turn to the more abstract departments of thought and inquire what were the Egyptian attempts in such a field as mathematics. The answer does not tend greatly to increase our admiration for the Egyptian mind. We are led to see, indeed, that the Egyptian merchant was able to perform all the computations necessary to his craft, but we are forced to conclude that the knowledge of numbers scarcely extended beyond this, and that even here the methods of reckoning were tedious and cumbersome. Our knowledge of the subject rests largely upon the so-called papyrus Rhind,(10) which is a sort of mythological hand-book of the ancient Egyptians. Analyzing this document, Professor Erman concludes that the knowledge of the Egyptians was adequate to all practical requirements. Their mathematics taught them "how in the exchange of bread for beer the respective value was to be determined when converted into a quantity of corn; how to reckon the size of a field; how to determine how a given quantity of corn would go into a granary of a certain size," and like every-day problems. Yet they were obliged to make some of their simple computations in a very roundabout way. It would appear, for example, that their mental arithmetic did not enable them to multiply by a number larger than two, and that they did not reach a clear conception of complex fractional numbers. They did, indeed, recognize that each part of an object divided into 10 pieces became 1/10 of that object; they even grasped the idea of 2/3 this being a conception easily visualized; but they apparently did not visualize such a conception as 3/10 except in the crude form of 1/10 plus 1/10 plus 1/10. Their entire idea of division seems defective. They viewed the subject from the more elementary stand-point of multiplication. Thus, in order to find out how many times 7 is contained in 77, an existing example shows that the numbers representing 1 times 7, 2 times 7, 4 times 7, 8 times 7 were set down successively and various experimental additions made to find out which sets of these numbers aggregated 77.

—1 7 —2 14 —4 28 —8 56

A line before the first, second, and fourth of these numbers indicated that it is necessary to multiply 7 by 1 plus 2 plus 8—that is, by 11, in order to obtain 77; that is to say, 7 goes 11 times in 77. All this seems very cumbersome indeed, yet we must not overlook the fact that the process which goes on in our own minds in performing such a problem as this is precisely similar, except that we have learned to slur over certain of the intermediate steps with the aid of a memorized multiplication table. In the last analysis, division is only the obverse side of multiplication, and any one who has not learned his multiplication table is reduced to some such expedient as that of the Egyptian. Indeed, whenever we pass beyond the range of our memorized multiplication table-which for most of us ends with the twelves—the experimental character of the trial multiplication through which division is finally effected does not so greatly differ from the experimental efforts which the Egyptian was obliged to apply to smaller numbers.

Despite his defective comprehension of fractions, the Egyptian was able to work out problems of relative complexity; for example, he could determine the answer of such a problem as this: a number together with its fifth part makes 21; what is the number? The process by which the Egyptian solved this problem seems very cumbersome to any one for whom a rudimentary knowledge of algebra makes it simple, yet the method which we employ differs only in that we are enabled, thanks to our hypothetical x, to make a short cut, and the essential fact must not be overlooked that the Egyptian reached a correct solution of the problem. With all due desire to give credit, however, the fact remains that the Egyptian was but a crude mathematician. Here, as elsewhere, it is impossible to admire him for any high development of theoretical science. First, last, and all the time, he was practical, and there is nothing to show that the thought of science for its own sake, for the mere love of knowing, ever entered his head.

In general, then, we must admit that the Egyptian had not progressed far in the hard way of abstract thinking. He worshipped everything about him because he feared the result of failing to do so. He embalmed the dead lest the spirit of the neglected one might come to torment him. Eye-minded as he was, he came to have an artistic sense, to love decorative effects. But he let these always take precedence over his sense of truth; as, for example, when he modified his lists of kings at Abydos to fit the space which the architect had left to be filled; he had no historical sense to show to him that truth should take precedence over mere decoration. And everywhere he lived in the same happy-go-lucky way. He loved personal ease, the pleasures of the table, the luxuries of life, games, recreations, festivals. He took no heed for the morrow, except as the morrow might minister to his personal needs. Essentially a sensual being, he scarcely conceived the meaning of the intellectual life in the modern sense of the term. He had perforce learned some things about astronomy, because these were necessary to his worship of the gods; about practical medicine, because this ministered to his material needs; about practical arithmetic, because this aided him in every-day affairs. The bare rudiments of an historical science may be said to be crudely outlined in his defective lists of kings. But beyond this he did not go. Science as science, and for its own sake, was unknown to him. He had gods for all material functions, and festivals in honor of every god; but there was no goddess of mere wisdom in his pantheon. The conception of Minerva was reserved for the creative genius of another people.



III. SCIENCE OF BABYLONIA AND ASSYRIA

Throughout classical antiquity Egyptian science was famous. We know that Plato spent some years in Egypt in the hope of penetrating the alleged mysteries of its fabled learning; and the story of the Egyptian priest who patronizingly assured Solon that the Greeks were but babes was quoted everywhere without disapproval. Even so late as the time of Augustus, we find Diodorus, the Sicilian, looking back with veneration upon the Oriental learning, to which Pliny also refers with unbounded respect. From what we have seen of Egyptian science, all this furnishes us with a somewhat striking commentary upon the attainments of the Greeks and Romans themselves. To refer at length to this would be to anticipate our purpose; what now concerns us is to recall that all along there was another nation, or group of nations, that disputed the palm for scientific attainments. This group of nations found a home in the valley of the Tigris and Euphrates. Their land was named Mesopotamia by the Greeks, because a large part of it lay between the two rivers just mentioned. The peoples themselves are familiar to every one as the Babylonians and the Assyrians. These peoples were of Semitic stock—allied, therefore, to the ancient Hebrews and Phoenicians and of the same racial stem with the Arameans and Arabs.

The great capital of the Babylonians during the later period of their history was the famed city of Babylon itself; the most famous capital of the Assyrians was Nineveh, that city to which, as every Bible-student will recall, the prophet Jonah was journeying when he had a much-exploited experience, the record of which forms no part of scientific annals. It was the kings of Assyria, issuing from their palaces in Nineveh, who dominated the civilization of Western Asia during the heyday of Hebrew history, and whose deeds are so frequently mentioned in the Hebrew chronicles. Later on, in the year 606 B.C., Nineveh was overthrown by the Medes(1) and Babylonians. The famous city was completely destroyed, never to be rebuilt. Babylon, however, though conquered subsequently by Cyrus and held in subjection by Darius,(2) the Persian kings, continued to hold sway as a great world-capital for some centuries. The last great historical event that occurred within its walls was the death of Alexander the Great, which took place there in the year 322 B.C.

In the time of Herodotus the fame of Babylon was at its height, and the father of history has left us a most entertaining account of what he saw when he visited the wonderful capital. Unfortunately, Herodotus was not a scholar in the proper acceptance of the term. He probably had no inkling of the Babylonian language, so the voluminous records of its literature were entirely shut off from his observation. He therefore enlightens us but little regarding the science of the Babylonians, though his observations on their practical civilization give us incidental references of no small importance. Somewhat more detailed references to the scientific attainments of the Babylonians are found in the fragments that have come down to us of the writings of the great Babylonian historian, Berosus,(3) who was born in Babylon about 330 B.C., and who was, therefore, a contemporary of Alexander the Great. But the writings of Berosus also, or at least such parts of them as have come down to us, leave very much to be desired in point of explicitness. They give some glimpses of Babylonian history, and they detail at some length the strange mythical tales of creation that entered into the Babylonian conception of cosmogony—details which find their counterpart in the allied recitals of the Hebrews. But taken all in all, the glimpses of the actual state of Chaldean(4) learning, as it was commonly called, amounted to scarcely more than vague wonder-tales. No one really knew just what interpretation to put upon these tales until the explorers of the nineteenth century had excavated the ruins of the Babylonian and Assyrian cities, bringing to light the relics of their wonderful civilization. But these relics fortunately included vast numbers of written documents, inscribed on tablets, prisms, and cylinders of terra-cotta. When nineteenth-century scholarship had penetrated the mysteries of the strange script, and ferreted out the secrets of an unknown tongue, the world at last was in possession of authentic records by which the traditions regarding the Babylonians and Assyrians could be tested. Thanks to these materials, a new science commonly spoken of as Assyriology came into being, and a most important chapter of human history was brought to light. It became apparent that the Greek ideas concerning Mesopotamia, though vague in the extreme, were founded on fact. No one any longer questions that the Mesopotamian civilization was fully on a par with that of Egypt; indeed, it is rather held that superiority lay with the Asiatics. Certainly, in point of purely scientific attainments, the Babylonians passed somewhat beyond their Egyptian competitors. All the evidence seems to suggest also that the Babylonian civilization was even more ancient than that of Egypt. The precise dates are here in dispute; nor for our present purpose need they greatly concern us. But the Assyrio-Babylonian records have much greater historical accuracy as regards matters of chronology than have the Egyptian, and it is believed that our knowledge of the early Babylonian history is carried back, with some certainty, to King Sargon of Agade,(5) for whom the date 3800 B.C. is generally accepted; while somewhat vaguer records give us glimpses of periods as remote as the sixth, perhaps even the seventh or eighth millenniums before our era.

At a very early period Babylon itself was not a capital and Nineveh had not come into existence. The important cities, such as Nippur and Shirpurla, were situated farther to the south. It is on the site of these cities that the recent excavations have been made, such as those of the University of Pennsylvania expeditions at Nippur,(6) which are giving us glimpses into remoter recesses of the historical period.

Even if we disregard the more problematical early dates, we are still concerned with the records of a civilization extending unbroken throughout a period of about four thousand years; the actual period is in all probability twice or thrice that. Naturally enough, the current of history is not an unbroken stream throughout this long epoch. It appears that at least two utterly different ethnic elements are involved. A preponderance of evidence seems to show that the earliest civilized inhabitants of Mesopotamia were not Semitic, but an alien race, which is now commonly spoken of as Sumerian. This people, of whom we catch glimpses chiefly through the records of its successors, appears to have been subjugated or overthrown by Semitic invaders, who, coming perhaps from Arabia (their origin is in dispute), took possession of the region of the Tigris and Euphrates, learned from the Sumerians many of the useful arts, and, partly perhaps because of their mixed lineage, were enabled to develop the most wonderful civilization of antiquity. Could we analyze the details of this civilization from its earliest to its latest period we should of course find the same changes which always attend racial progress and decay. We should then be able, no doubt, to speak of certain golden epochs and their periods of decline. To a certain meagre extent we are able to do this now. We know, for example, that King Khammurabi, who lived about 2200 B.C., was a great law-giver, the ancient prototype of Justinian; and the epochs of such Assyrian kings as Sargon II., Asshurnazirpal, Sennacherib, and Asshurbanapal stand out with much distinctness. Yet, as a whole, the record does not enable us to trace with clearness the progress of scientific thought. At best we can gain fewer glimpses in this direction than in almost any other, for it is the record of war and conquest rather than of the peaceful arts that commanded the attention of the ancient scribe. So in dealing with the scientific achievements of these peoples, we shall perforce consider their varied civilizations as a unity, and attempt, as best we may, to summarize their achievements as a whole. For the most part, we shall not attempt to discriminate as to what share in the final product was due to Sumerian, what to Babylonian, and what to Assyrian. We shall speak of Babylonian science as including all these elements; and drawing our information chiefly from the relatively late Assyrian and Babylonian sources, which, therefore, represent the culminating achievements of all these ages of effort, we shall attempt to discover what was the actual status of Mesopotamian science at its climax. In so far as we succeed, we shall be able to judge what scientific heritage Europe received from the Orient; for in the records of Babylonian science we have to do with the Eastern mind at its best. Let us turn to the specific inquiry as to the achievements of the Chaldean scientist whose fame so dazzled the eyes of his contemporaries of the classic world.

BABYLONIAN ASTRONOMY

Our first concern naturally is astronomy, this being here, as in Egypt, the first-born and the most important of the sciences. The fame of the Chaldean astronomer was indeed what chiefly commanded the admiration of the Greeks, and it was through the results of astronomical observations that Babylonia transmitted her most important influences to the Western world. "Our division of time is of Babylonian origin," says Hornmel;(7) "to Babylonia we owe the week of seven days, with the names of the planets for the days of the week, and the division into hours and months." Hence the almost personal interest which we of to-day must needs feel in the efforts of the Babylonian star-gazer.

It must not be supposed, however, that the Chaldean astronomer had made any very extraordinary advances upon the knowledge of the Egyptian "watchers of the night." After all, it required patient observation rather than any peculiar genius in the observer to note in the course of time such broad astronomical conditions as the regularity of the moon's phases, and the relation of the lunar periods to the longer periodical oscillations of the sun. Nor could the curious wanderings of the planets escape the attention of even a moderately keen observer. The chief distinction between the Chaldean and Egyptian astronomers appears to have consisted in the relative importance they attached to various of the phenomena which they both observed. The Egyptian, as we have seen, centred his attention upon the sun. That luminary was the abode of one of his most important gods. His worship was essentially solar. The Babylonian, on the other hand, appears to have been peculiarly impressed with the importance of the moon. He could not, of course, overlook the attention-compelling fact of the solar year; but his unit of time was the lunar period of thirty days, and his year consisted of twelve lunar periods, or 360 days. He was perfectly aware, however, that this period did not coincide with the actual year; but the relative unimportance which he ascribed to the solar year is evidenced by the fact that he interpolated an added month to adjust the calendar only once in six years. Indeed, it would appear that the Babylonians and Assyrians did not adopt precisely the same method of adjusting the calendar, since the Babylonians had two intercular months called Elul and Adar, whereas the Assyrians had only a single such month, called the second Adar.(8) (The Ve'Adar of the Hebrews.) This diversity further emphasizes the fact that it was the lunar period which received chief attention, the adjustment of this period with the solar seasons being a necessary expedient of secondary importance. It is held that these lunar periods have often been made to do service for years in the Babylonian computations and in the allied computations of the early Hebrews. The lives of the Hebrew patriarchs, for example, as recorded in the Bible, are perhaps reckoned in lunar "years." Divided by twelve, the "years" of Methuselah accord fairly with the usual experience of mankind.

Yet, on the other hand, the convenience of the solar year in computing long periods of time was not unrecognized, since this period is utilized in reckoning the reigns of the Assyrian kings. It may be added that the reign of a king "was not reckoned from the day of his accession, but from the Assyrian new year's day, either before or after the day of accession. There does not appear to have been any fixed rule as to which new year's day should be chosen; but from the number of known cases, it appears to have been the general practice to count the reigning years from the new year's day nearest the accession, and to call the period between the accession day and the first new year's day 'the beginning of the reign,' when the year from the new year's day was called the first year, and the following ones were brought successively from it. Notwithstanding, in the dates of several Assyrian and Babylonian sovereigns there are cases of the year of accession being considered as the first year, thus giving two reckonings for the reigns of various monarchs, among others, Shalmaneser, Sennacherib, Nebuchadrezzar."(9) This uncertainty as to the years of reckoning again emphasizes the fact that the solar year did not have for the Assyrian chronology quite the same significance that it has for us.

The Assyrian month commenced on the evening when the new moon was first observed, or, in case the moon was not visible, the new month started thirty days after the last month. Since the actual lunar period is about twenty-nine and one-half days, a practical adjustment was required between the months themselves, and this was probably effected by counting alternate months as Only 29 days in length. Mr. R. Campbell Thompson(10) is led by his studies of the astrological tablets to emphasize this fact. He believes that "the object of the astrological reports which related to the appearance of the moon and sun was to help determine and foretell the length of the lunar month." Mr. Thompson believes also that there is evidence to show that the interculary month was added at a period less than six years. In point of fact, it does not appear to be quite clearly established as to precisely how the adjustment of days with the lunar months, and lunar months with the solar year, was effected. It is clear, however, according to Smith, "that the first 28 days of every month were divided into four weeks of seven days each; the seventh, fourteenth, twenty-first, twenty-eighth days respectively being Sabbaths, and that there was a general prohibition of work on these days." Here, of course, is the foundation of the Hebrew system of Sabbatical days which we have inherited. The sacredness of the number seven itself—the belief in which has not been quite shaken off even to this day—was deduced by the Assyrian astronomer from his observation of the seven planetary bodies—namely, Sin (the moon), Samas (the sun), Umunpawddu (Jupiter), Dilbat (Venus), Kaimanu (Saturn), Gudud (Mercury), Mustabarru-mutanu (Mars).(11) Twelve lunar periods, making up approximately the solar year, gave peculiar importance to the number twelve also. Thus the zodiac was divided into twelve signs which astronomers of all subsequent times have continued to recognize; and the duodecimal system of counting took precedence with the Babylonian mathematicians over the more primitive and, as it seems to us, more satisfactory decimal system.

Another discrepancy between the Babylonian and Egyptian years appears in the fact that the Babylonian new year dates from about the period of the vernal equinox and not from the solstice. Lockyer associates this with the fact that the periodical inundation of the Tigris and Euphrates occurs about the equinoctial period, whereas, as we have seen, the Nile flood comes at the time of the solstice. It is but natural that so important a phenomenon as the Nile flood should make a strong impression upon the minds of a people living in a valley. The fact that occasional excessive inundations have led to most disastrous results is evidenced in the incorporation of stories of the almost total destruction of mankind by such floods among the myth tales of all peoples who reside in valley countries. The flooding of the Tigris and Euphrates had not, it is true, quite the same significance for the Mesopotamians that the Nile flood had for the Egyptians. Nevertheless it was a most important phenomenon, and may very readily be imagined to have been the most tangible index to the seasons. But in recognizing the time of the inundations and the vernal equinox, the Assyrians did not dethrone the moon from its accustomed precedence, for the year was reckoned as commencing not precisely at the vernal equinox, but at the new moon next before the equinox.

ASTROLOGY

Beyond marking the seasons, the chief interests that actuated the Babylonian astronomer in his observations were astrological. After quoting Diodorus to the effect that the Babylonian priests observed the position of certain stars in order to cast horoscopes, Thompson tells us that from a very early day the very name Chaldean became synonymous with magician. He adds that "from Mesopotamia, by way of Greece and Rome, a certain amount of Babylonian astrology made its way among the nations of the west, and it is quite probable that many superstitions which we commonly record as the peculiar product of western civilization took their origin from those of the early dwellers on the alluvial lands of Mesopotamia. One Assurbanipal, king of Assyria B.C. 668-626, added to the royal library at Nineveh his contribution of tablets, which included many series of documents which related exclusively to the astrology of the ancient Babylonians, who in turn had borrowed it with modifications from the Sumerian invaders of the country. Among these must be mentioned the series which was commonly called 'the Day of Bel,' and which was decreed by the learned to have been written in the time of the great Sargon I., king of Agade, 3800 B.C. With such ancient works as these to guide them, the profession of deducing omens from daily events reached such a pitch of importance in the last Assyrian Empire that a system of making periodical reports came into being. By these the king was informed of all the occurrences in the heavens and on earth, and the results of astrological studies in respect to after events. The heads of the astrological profession were men of high rank and position, and their office was hereditary. The variety of information contained in these reports is best gathered from the fact that they were sent from cities as far removed from each other as Assur in the north and Erech in the south, and it can only be assumed that they were despatched by runners, or men mounted on swift horses. As reports also came from Dilbat, Kutba, Nippur, and Bursippa, all cities of ancient foundation, the king was probably well acquainted with the general course of events in his empire."(12)

From certain passages in the astrological tablets, Thompson draws the interesting conclusion that the Chaldean astronomers were acquainted with some kind of a machine for reckoning time. He finds in one of the tablets a phrase which he interprets to mean measure-governor, and he infers from this the existence of a kind of a calculator. He calls attention also to the fact that Sextus Empiricus(13) states that the clepsydra was known to the Chaldeans, and that Herodotus asserts that the Greeks borrowed certain measures of time from the Babylonians. He finds further corroboration in the fact that the Babylonians had a time-measure by which they divided the day and the night; a measure called kasbu, which contained two hours. In a report relating to the day of the vernal equinox, it is stated that there are six kasbu of the day and six kasbu of the night.

While the astrologers deduced their omens from all the celestial bodies known to them, they chiefly gave attention to the moon, noting with great care the shape of its horns, and deducing such a conclusion as that "if the horns are pointed the king will overcome whatever he goreth," and that "when the moon is low at its appearance, the submission (of the people) of a far country will come."(14) The relations of the moon and sun were a source of constant observation, it being noted whether the sun and moon were seen together above the horizon; whether one set as the other rose, and the like. And whatever the phenomena, there was always, of course, a direct association between such phenomena and the well-being of human kind—in particular the king, at whose instance, and doubtless at whose expense, the observations were carried out.

From omens associated with the heavenly bodies it is but a step to omens based upon other phenomena of nature, and we, shall see in a moment that the Babylonian prophets made free use of their opportunities in this direction also. But before we turn from the field of astronomy, it will be well to inform ourselves as to what system the Chaldean astronomer had invented in explanation of the mechanics of the universe. Our answer to this inquiry is not quite as definite as could be desired, the vagueness of the records, no doubt, coinciding with the like vagueness in the minds of the Chaldeans themselves. So far as we can interpret the somewhat mystical references that have come down to us, however, the Babylonian cosmology would seem to have represented the earth as a circular plane surrounded by a great circular river, beyond which rose an impregnable barrier of mountains, and resting upon an infinite sea of waters. The material vault of the heavens was supposed to find support upon the outlying circle of mountains. But the precise mechanism through which the observed revolution of the heavenly bodies was effected remains here, as with the Egyptian cosmology, somewhat conjectural. The simple fact would appear to be that, for the Chaldeans as for the Egyptians, despite their most careful observations of the tangible phenomena of the heavens, no really satisfactory mechanical conception of the cosmos was attainable. We shall see in due course by what faltering steps the European imagination advanced from the crude ideas of Egypt and Babylonia to the relatively clear vision of Newton and Laplace.

CHALDEAN MAGIC

We turn now from the field of the astrologer to the closely allied province of Chaldean magic—a province which includes the other; which, indeed, is so all-encompassing as scarcely to leave any phase of Babylonian thought outside its bounds.

The tablets having to do with omens, exorcisms, and the like magic practices make up an astonishingly large proportion of the Babylonian records. In viewing them it is hard to avoid the conclusion that the superstitions which they evidenced absolutely dominated the life of the Babylonians of every degree. Yet it must not be forgotten that the greatest inconsistencies everywhere exist between the superstitious beliefs of a people and the practical observances of that people. No other problem is so difficult for the historian as that which confronts him when he endeavors to penetrate the mysteries of an alien religion; and when, as in the present case, the superstitions involved have been transmitted from generation to generation, their exact practical phases as interpreted by any particular generation must be somewhat problematical. The tablets upon which our knowledge of these omens is based are many of them from the libraries of the later kings of Nineveh; but the omens themselves are, in such cases, inscribed in the original Accadian form in which they have come down from remote ages, accompanied by an Assyrian translation. Thus the superstitions involved had back of them hundreds of years, even thousands of years, of precedent; and we need not doubt that the ideas with which they are associated were interwoven with almost every thought and deed of the life of the people. Professor Sayce assures us that the Assyrians and Babylonians counted no fewer than three hundred spirits of heaven, and six hundred spirits of earth. "Like the Jews of the Talmud," he says, "they believed that the world was swarming with noxious spirits, who produced the various diseases to which man is liable, and might be swallowed with the food and drink which support life." Fox Talbot was inclined to believe that exorcisms were the exclusive means used to drive away the tormenting spirits. This seems unlikely, considering the uniform association of drugs with the magical practices among their people. Yet there is certainly a strange silence of the tablets in regard to medicine. Talbot tells us that sometimes divine images were brought into the sick-chamber, and written texts taken from holy books were placed on the walls and bound around the sick man's members. If these failed, recourse was had to the influence of the mamit, which the evil powers were unable to resist. On a tablet, written in the Accadian language only, the Assyrian version being taken, however, was found the following:

1. Take a white cloth. In it place the mamit, 2. in the sick man's right hand. 3. Take a black cloth, 4. wrap it around his left hand. 5. Then all the evil spirits (a long list of them is given) 6. and the sins which he has committed 7. shall quit their hold of him 8. and shall never return.

The symbolism of the black cloth in the left hand seems evident. The dying man repents of his former evil deeds, and he puts his trust in holiness, symbolized by the white cloth in his right hand. Then follow some obscure lines about the spirits:

1. Their heads shall remove from his head. 2. Their heads shall let go his hands. 3. Their feet shall depart from his feet.

Which perhaps may be explained thus: we learn from another tablet that the various classes of evil spirits troubled different parts of the body; some injured the head, some the hands and the feet, etc., therefore the passage before may mean "the spirits whose power is over the hand shall loose their hands from his," etc. "But," concludes Talbot, "I can offer no decided opinion upon such obscure points of their superstition."(15)

In regard to evil spirits, as elsewhere, the number seven had a peculiar significance, it being held that that number of spirits might enter into a man together. Talbot has translated(16) a "wild chant" which he names "The Song of the Seven Spirits."

1. There are seven! There are seven! 2. In the depths of the ocean there are seven! 3. In the heights of the heaven there are seven! 4. In the ocean stream in a palace they were born. 5. Male they are not: female they are not! 6. Wives they have not! Children are not born to them! 7. Rules they have not! Government they know not! 8. Prayers they hear not! 9. There are seven! There are seven! Twice over there are seven!

The tablets make frequent allusion to these seven spirits. One starts thus:

1. The god (—-) shall stand by his bedside; 2. These seven evil spirits he shall root out and shall expel them from his body, 3. and these seven shall never return to the sick man again.(17)

Altogether similar are the exorcisms intended to ward off disease. Professor Sayce has published translations of some of these.(18) Each of these ends with the same phrase, and they differ only in regard to the particular maladies from which freedom is desired. One reads:

"From wasting, from want of health, from the evil spirit of the ulcer, from the spreading quinsy of the gullet, from the violent ulcer, from the noxious ulcer, may the king of heaven preserve, may the king of earth preserve."

Another is phrased thus:

"From the cruel spirit of the head, from the strong spirit of the head, from the head spirit that departs not, from the head spirit that comes not forth, from the head spirit that will not go, from the noxious head spirit, may the king of heaven preserve, may the king of earth preserve."

As to omens having to do with the affairs of everyday life the number is legion. For example, Moppert has published, in the Journal Asiatique,(19) the translation of a tablet which contains on its two sides several scores of birth-portents, a few of which maybe quoted at random:

"When a woman bears a child and it has the ears of a lion, a strong king is in the country." "When a woman bears a child and it has a bird's beak, that country is oppressed." "When a woman bears a child and its right hand is wanting, that country goes to destruction." "When a woman bears a child and its feet are wanting, the roads of the country are cut; that house is destroyed." "When a woman bears a child and at the time of its birth its beard is grown, floods are in the country." "When a woman bears a child and at the time of its birth its mouth is open and speaks, there is pestilence in the country, the Air-god inundates the crops of the country, injury in the country is caused."

Some of these portents, it will be observed, are not in much danger of realization, and it is curious to surmise by what stretch of the imagination they can have been invented. There is, for example, on the same tablet just quoted, one reference which assures us that "when a sheep bears a lion the forces march multitudinously; the king has not a rival." There are other omens, however, that are so easy of realization as to lead one to suppose that any Babylonian who regarded all the superstitious signs must have been in constant terror. Thus a tablet translated by Professor Sayce(20) gives a long list of omens furnished by dogs, in which we are assured that:

1. If a yellow dog enters into the palace, exit from that palace will be baleful. 2. If a dog to the palace goes, and on a throne lies down, that palace is burned. 3. If a black dog into a temple enters, the foundation of that temple is not stable. 4. If female dogs one litter bear, destruction to the city.

It is needless to continue these citations, since they but reiterate endlessly the same story. It is interesting to recall, however, that the observations of animate nature, which were doubtless superstitious in their motive, had given the Babylonians some inklings of a knowledge of classification. Thus, according to Menant,(21) some of the tablets from Nineveh, which are written, as usual, in both the Sumerian and Assyrian languages, and which, therefore, like practically all Assyrian books, draw upon the knowledge of old Babylonia, give lists of animals, making an attempt at classification. The dog, lion, and wolf are placed in one category; the ox, sheep, and goat in another; the dog family itself is divided into various races, as the domestic dog, the coursing dog, the small dog, the dog of Elan, etc. Similar attempts at classification of birds are found. Thus, birds of rapid flight, sea-birds, and marsh-birds are differentiated. Insects are classified according to habit; those that attack plants, animals, clothing, or wood. Vegetables seem to be classified according to their usefulness. One tablet enumerates the uses of wood according to its adaptability for timber-work of palaces, or construction of vessels, the making of implements of husbandry, or even furniture. Minerals occupy a long series in these tablets. They are classed according to their qualities, gold and silver occupying a division apart; precious stones forming another series. Our Babylonians, then, must be credited with the development of a rudimentary science of natural history.

BABYLONIAN MEDICINE

We have just seen that medical practice in the Babylonian world was strangely under the cloud of superstition. But it should be understood that our estimate, through lack of correct data, probably does much less than justice to the attainments of the physician of the time. As already noted, the existing tablets chance not to throw much light on the subject. It is known, however, that the practitioner of medicine occupied a position of some, authority and responsibility. The proof of this is found in the clauses relating to the legal status of the physician which are contained in the now famous code(22) of the Babylonian King Khamurabi, who reigned about 2300 years before our era. These clauses, though throwing no light on the scientific attainments of the physician of the period, are too curious to be omitted. They are clauses 215 to 227 of the celebrated code, and are as follows:

215. If a doctor has treated a man for a severe wound with a lancet of bronze and has cured the man, or has opened a tumor with a bronze lancet and has cured the man's eye, he shall receive ten shekels of silver.

216. If it was a freedman, he shall receive five shekels of silver.

217. If it was a man's slave, the owner of the slave shall give the doctor two shekels of silver.

218. If a physician has treated a free-born man for a severe wound with a lancet of bronze and has caused the man to die, or has opened a tumor of the man with a lancet of bronze and has destroyed his eye, his hands one shall cut off.

219. If the doctor has treated the slave of a freedman for a severe wound with a bronze lancet and has caused him to die, he shall give back slave for slave.

220. If he has opened his tumor with a bronze lancet and has ruined his eye, he shall pay the half of his price in money.

221. If a doctor has cured the broken limb of a man, or has healed his sick body, the patient shall pay the doctor five shekels of silver.

222. If it was a freedman, he shall give three shekels of silver.

223. If it was a man's slave, the owner of the slave shall give two shekels of silver to the doctor.

224. If the doctor of oxen and asses has treated an ox or an ass for a grave wound and has cured it, the owner of the ox or the ass shall give to the doctor as his pay one-sixth of a shekel of silver.

225. If he has treated an ox or an ass for a severe wound and has caused its death, he shall pay one-fourth of its price to the owner of the ox or the ass.

226. If a barber-surgeon, without consent of the owner of a slave, has branded the slave with an indelible mark, one shall cut off the hands of that barber.

227. If any one deceive the surgeon-barber and make him brand a slave with an indelible mark, one shall kill that man and bury him in his house. The barber shall swear, "I did not mark him wittingly," and he shall be guiltless.

ESTIMATES OF BABYLONIAN SCIENCE

Before turning from the Oriental world it is perhaps worth while to attempt to estimate somewhat specifically the world-influence of the name, Babylonian science. Perhaps we cannot better gain an idea as to the estimate put upon that science by the classical world than through a somewhat extended quotation from a classical author. Diodorus Siculus, who, as already noted, lived at about the time of Augustus, and who, therefore, scanned in perspective the entire sweep of classical Greek history, has left us a striking summary which is doubly valuable because of its comparisons of Babylonian with Greek influence. Having viewed the science of Babylonia in the light of the interpretations made possible by the recent study of original documents, we are prepared to draw our own conclusions from the statements of the Greek historian. Here is his estimate in the words of the quaint translation made by Philemon Holland in the year 1700:(23)

"They being the most ancient Babylonians, hold the same station and dignity in the Common-wealth as the Egyptian Priests do in Egypt: For being deputed to Divine Offices, they spend all their Time in the study of Philosophy, and are especially famous for the Art of Astrology. They are mightily given to Divination, and foretel future Events, and imploy themselves either by Purifications, Sacrifices, or other Inchantments to avert Evils, or procure good Fortune and Success. They are skilful likewise in the Art of Divination, by the flying of Birds, and interpreting of Dreams and Prodigies: And are reputed as true Oracles (in declaring what will come to pass) by their exact and diligent viewing the Intrals of the Sacrifices. But they attain not to this Knowledge in the same manner as the Grecians do; for the Chaldeans learn it by Tradition from their Ancestors, the Son from the Father, who are all in the mean time free from all other publick Offices and Attendances; and because their Parents are their Tutors, they both learn every thing without Envy, and rely with more confidence upon the truth of what is taught them; and being train'd up in this Learning, from their very Childhood, they become most famous Philosophers, (that Age being most capable of Learning, wherein they spend much of their time). But the Grecians for the most part come raw to this study, unfitted and unprepar'd, and are long before they attain to the Knowledge of this Philosophy: And after they have spent some small time in this Study, they are many times call'd off and forc'd to leave it, in order to get a Livelihood and Subsistence. And although some, few do industriously apply themselves to Philosophy, yet for the sake of Gain, these very Men are opinionative, and ever and anon starting new and high Points, and never fix in the steps of their Ancestors. But the Barbarians keeping constantly close to the same thing, attain to a perfect and distinct Knowledge in every particular.

"But the Grecians, cunningly catching at all Opportunities of Gain, make new Sects and Parties, and by their contrary Opinions wrangling and quarelling concerning the chiefest Points, lead their Scholars into a Maze; and being uncertain and doubtful what to pitch upon for certain truth, their Minds are fluctuating and in suspence all the days of their Lives, and unable to give a certain assent unto any thing. For if any Man will but examine the most eminent Sects of the Philosophers, he shall find them much differing among themselves, and even opposing one another in the most weighty parts of their Philosophy. But to return to the Chaldeans, they hold that the World is eternal, which had neither any certain Beginning, nor shall have any End; but all agree, that all things are order'd, and this beautiful Fabrick is supported by a Divine Providence, and that the Motions of the Heavens are not perform'd by chance and of their own accord, but by a certain and determinate Will and Appointment of the Gods.

"Therefore from a long observation of the Stars, and an exact Knowledge of the motions and influences of every one of them, wherein they excel all others, they fortel many things that are to come to pass.

"They say that the Five Stars which some call Planets, but they Interpreters, are most worthy of Consideration, both for their motions and their remarkable influences, especially that which the Grecians call Saturn. The brightest of them all, and which often portends many and great Events, they call Sol, the other Four they name Mars, Venus, Mercury, and Jupiter, with our own Country Astrologers. They give the Name of Interpreters to these Stars, because these only by a peculiar Motion do portend things to come, and instead of Jupiters, do declare to Men before-hand the good-will of the Gods; whereas the other Stars (not being of the number of the Planets) have a constant ordinary motion. Future Events (they say) are pointed at sometimes by their Rising, and sometimes by their Setting, and at other times by their Colour, as may be experienc'd by those that will diligently observe it; sometimes foreshewing Hurricanes, at other times Tempestuous Rains, and then again exceeding Droughts. By these, they say, are often portended the appearance of Comets, Eclipses of the Sun and Moon, Earthquakes and all other the various Changes and remarkable effects in the Air, boding good and bad, not only to Nations in general, but to Kings and Private Persons in particular. Under the course of these Planets, they say are Thirty Stars, which they call Counselling Gods, half of whom observe what is done under the Earth, and the other half take notice of the actions of Men upon the Earth, and what is transacted in the Heavens. Once every Ten Days space (they say) one of the highest Order of these Stars descends to them that are of the lowest, like a Messenger sent from them above; and then again another ascends from those below to them above, and that this is their constant natural motion to continue for ever. The chief of these Gods, they say, are Twelve in number, to each of which they attribute a Month, and one Sign of the Twelve in the Zodiack.

"Through these Twelve Signs the Sun, Moon, and the other Five Planets run their Course. The Sun in a Years time, and the Moon in the space of a Month. To every one of the Planets they assign their own proper Courses, which are perform'd variously in lesser or shorter time according as their several motions are quicker or slower. These Stars, they say, have a great influence both as to good and bad in Mens Nativities; and from the consideration of their several Natures, may be foreknown what will befal Men afterwards. As they foretold things to come to other Kings formerly, so they did to Alexander who conquer'd Darius, and to his Successors Antigonus and Seleucus Nicator; and accordingly things fell out as they declar'd; which we shall relate particularly hereafter in a more convenient time. They tell likewise private Men their Fortunes so certainly, that those who have found the thing true by Experience, have esteem'd it a Miracle, and above the reach of man to perform. Out of the Circle of the Zodiack they describe Four and Twenty Stars, Twelve towards the North Pole, and as many to the South.

"Those which we see, they assign to the living; and the other that do not appear, they conceive are Constellations for the Dead; and they term them Judges of all things. The Moon, they say, is in the lowest Orb; and being therefore next to the Earth (because she is so small), she finishes her Course in a little time, not through the swiftness of her Motion, but the shortness of her Sphear. In that which they affirm (that she has but a borrow'd light, and that when she is eclips'd, it's caus'd by the interposition of the shadow of the Earth) they agree with the Grecians.

"Their Rules and Notions concerning the Eclipses of the Sun are but weak and mean, which they dare not positively foretel, nor fix a certain time for them. They have likewise Opinions concerning the Earth peculiar to themselves, affirming it to resemble a Boat, and to be hollow, to prove which, and other things relating to the frame of the World, they abound in Arguments; but to give a particular Account of 'em, we conceive would be a thing foreign to our History. But this any Man may justly and truly say, That the Chaldeans far exceed all other Men in the Knowledge of Astrology, and have study'd it most of any other Art or Science: But the number of years during which the Chaldeans say, those of their Profession have given themselves to the study of this natural Philosophy, is incredible; for when Alexander was in Asia, they reckon'd up Four Hundred and Seventy Thousand Years since they first began to observe the Motions of the Stars."

Let us now supplement this estimate of Babylonian influence with another estimate written in our own day, and quoted by one of the most recent historians of Babylonia and Assyria.(24) The estimate in question is that of Canon Rawlinson in his Great Oriental Monarchies.(25) Of Babylonia he says:

"Hers was apparently the genius which excogitated an alphabet; worked out the simpler problems of arithmetic; invented implements for measuring the lapse of time; conceived the idea of raising enormous structures with the poorest of all materials, clay; discovered the art of polishing, boring, and engraving gems; reproduced with truthfulness the outlines of human and animal forms; attained to high perfection in textile fabrics; studied with success the motions of the heavenly bodies; conceived of grammar as a science; elaborated a system of law; saw the value of an exact chronology—in almost every branch of science made a beginning, thus rendering it comparatively easy for other nations to proceed with the superstructure.... It was from the East, not from Egypt, that Greece derived her architecture, her sculpture, her science, her philosophy, her mathematical knowledge—in a word, her intellectual life. And Babylon was the source to which the entire stream of Eastern civilization may be traced. It is scarcely too much to say that, but for Babylon, real civilization might not yet have dawned upon the earth."

Considering that a period of almost two thousand years separates the times of writing of these two estimates, the estimates themselves are singularly in unison. They show that the greatest of Oriental nations has not suffered in reputation at the hands of posterity. It is indeed almost impossible to contemplate the monuments of Babylonian and Assyrian civilization that are now preserved in the European and American museums without becoming enthusiastic. That certainly was a wonderful civilization which has left us the tablets on which are inscribed the laws of a Khamurabi on the one hand, and the art treasures of the palace of an Asshurbanipal on the other. Yet a candid consideration of the scientific attainments of the Babylonians and Assyrians can scarcely arouse us to a like enthusiasm. In considering the subject we have seen that, so far as pure science is concerned, the efforts of the Babylonians and Assyrians chiefly centred about the subjects of astrology and magic. With the records of their ghost-haunted science fresh in mind, one might be forgiven for a momentary desire to take issue with Canon Rawlinson's words. We are assured that the scientific attainments of Europe are almost solely to be credited to Babylonia and not to Egypt, but we should not forget that Plato, the greatest of the Greek thinkers, went to Egypt and not to Babylonia to pursue his studies when he wished to penetrate the secrets of Oriental science and philosophy. Clearly, then, classical Greece did not consider Babylonia as having a monopoly of scientific knowledge, and we of to-day, when we attempt to weigh the new evidence that has come to us in recent generations with the Babylonian records themselves, find that some, at least, of the heritages for which Babylonia has been praised are of more than doubtful value. Babylonia, for example, gave us our seven-day week and our system of computing by twelves. But surely the world could have got on as well without that magic number seven; and after some hundreds of generations we are coming to feel that the decimal system of the Egyptians has advantages over the duodecimal system of the Babylonians. Again, the Babylonians did not invent the alphabet; they did not even accept it when all the rest of the world had recognized its value. In grammar and arithmetic, as with astronomy, they seemed not to have advanced greatly, if at all, upon the Egyptians. One field in which they stand out in startling pre-eminence is the field of astrology; but this, in the estimate of modern thought, is the very negation of science. Babylonia impressed her superstitions on the Western world, and when we consider the baleful influence of these superstitions, we may almost question whether we might not reverse Canon Rawlinson's estimate and say that perhaps but for Babylonia real civilization, based on the application of true science, might have dawned upon the earth a score of centuries before it did. Yet, after all, perhaps this estimate is unjust. Society, like an individual organism, must creep before it can walk, and perhaps the Babylonian experiments in astrology and magic, which European civilization was destined to copy for some three or four thousand years, must have been made a part of the necessary evolution of our race in one place or in another. That thought, however, need not blind us to the essential fact, which the historian of science must needs admit, that for the Babylonian, despite his boasted culture, science spelled superstition.



IV. THE DEVELOPMENT OF THE ALPHABET

Before we turn specifically to the new world of the west, it remains to take note of what may perhaps be regarded as the very greatest achievement of ancient science. This was the analysis of speech sounds, and the resulting development of a system of alphabetical writing. To comprehend the series of scientific inductions which led to this result, we must go back in imagination and trace briefly the development of the methods of recording thought by means of graphic symbols. In other words, we must trace the evolution of the art of writing. In doing so we cannot hold to national lines as we have done in the preceding two chapters, though the efforts of the two great scientific nations just considered will enter prominently into the story.

The familiar Greek legend assures us that a Phoenician named Kadmus was the first to bring a knowledge of letters into Europe. An elaboration of the story, current throughout classical times, offered the further explanation that the Phoenicians had in turn acquired the art of writing from the Egyptians or Babylonians. Knowledge as to the true origin and development of the art of writing did not extend in antiquity beyond such vagaries as these. Nineteenth-century studies gave the first real clews to an understanding of the subject. These studies tended to authenticate the essential fact on which the legend of Kadmus was founded; to the extent, at least, of making it probable that the later Grecian alphabet was introduced from Phoenicia—though not, of course, by any individual named Kadmus, the latter being, indeed, a name of purely Greek origin. Further studies of the past generation tended to corroborate the ancient belief as to the original source of the Phoenician alphabet, but divided scholars between two opinions: the one contending that the Egyptian hieroglyphics were the source upon which the Phoenicians drew; and the other contending with equal fervor that the Babylonian wedge character must be conceded that honor.

But, as has often happened in other fields after years of acrimonious controversy, a new discovery or two may suffice to show that neither contestant was right. After the Egyptologists of the school of De Rouge(1) thought they had demonstrated that the familiar symbols of the Phoenician alphabet had been copied from that modified form of Egyptian hieroglyphics known as the hieratic writing, the Assyriologists came forward to prove that certain characters of the Babylonian syllabary also show a likeness to the alphabetical characters that seemingly could not be due to chance. And then, when a settlement of the dispute seemed almost hopeless, it was shown through the Egyptian excavations that characters even more closely resembling those in dispute had been in use all about the shores of the Mediterranean, quite independently of either Egyptian or Assyrian writings, from periods so ancient as to be virtually prehistoric.

Coupled with this disconcerting discovery are the revelations brought to light by the excavations at the sites of Knossos and other long-buried cities of the island of Crete.(2) These excavations, which are still in progress, show that the art of writing was known and practised independently in Crete before that cataclysmic overthrow of the early Greek civilization which archaeologists are accustomed to ascribe to the hypothetical invasion of the Dorians. The significance of this is that the art of writing was known in Europe long before the advent of the mythical Kadmus. But since the early Cretan scripts are not to be identified with the scripts used in Greece in historical times, whereas the latter are undoubtedly of lineal descent from the Phoenician alphabet, the validity of the Kadmus legend, in a modified form, must still be admitted.

As has just been suggested, the new knowledge, particularly that which related to the great antiquity of characters similar to the Phoenician alphabetical signs, is somewhat disconcerting. Its general trend, however, is quite in the same direction with most of the new archaeological knowledge of recent decades—-that is to say, it tends to emphasize the idea that human civilization in most of its important elaborations is vastly older than has hitherto been supposed. It may be added, however, that no definite clews are as yet available that enable us to fix even an approximate date for the origin of the Phoenician alphabet. The signs, to which reference has been made, may well have been in existence for thousands of years, utilized merely as property marks, symbols for counting and the like, before the idea of setting them aside as phonetic symbols was ever conceived. Nothing is more certain, in the judgment of the present-day investigator, than that man learned to write by slow and painful stages. It is probable that the conception of such an analysis of speech sounds as would make the idea of an alphabet possible came at a very late stage of social evolution, and as the culminating achievement of a long series of improvements in the art of writing. The precise steps that marked this path of intellectual development can for the most part be known only by inference; yet it is probable that the main chapters of the story may be reproduced with essential accuracy.

FIRST STEPS

For the very first chapters of the story we must go back in imagination to the prehistoric period. Even barbaric man feels the need of self-expression, and strives to make his ideas manifest to other men by pictorial signs. The cave-dwellers scratched pictures of men and animals on the surface of a reindeer horn or mammoth tusk as mementos of his prowess. The American Indian does essentially the same thing to-day, making pictures that crudely record his successes in war and the chase. The Northern Indian had got no farther than this when the white man discovered America; but the Aztecs of the Southwest and the Maya people of Yucatan had carried their picture-making to a much higher state of elaboration.(3) They had developed systems of pictographs or hieroglyphics that would doubtless in the course of generations have been elaborated into alphabetical systems, had not the Europeans cut off the civilization of which they were the highest exponents.

What the Aztec and Maya were striving towards in the sixteenth century A.D., various Oriental nations had attained at least five or six thousand years earlier. In Egypt at the time of the pyramid-builders, and in Babylonia at the same epoch, the people had developed systems of writing that enabled them not merely to present a limited range of ideas pictorially, but to express in full elaboration and with finer shades of meaning all the ideas that pertain to highly cultured existence. The man of that time made records of military achievements, recorded the transactions of every-day business life, and gave expression to his moral and spiritual aspirations in a way strangely comparable to the manner of our own time. He had perfected highly elaborate systems of writing.

EGYPTIAN WRITING

Of the two ancient systems of writing just referred to as being in vogue at the so-called dawnings of history, the more picturesque and suggestive was the hieroglyphic system of the Egyptians. This is a curiously conglomerate system of writing, made up in part of symbols reminiscent of the crudest stages of picture-writing, in part of symbols having the phonetic value of syllables, and in part of true alphabetical letters. In a word, the Egyptian writing represents in itself the elements of the various stages through which the art of writing has developed.(4) We must conceive that new features were from time to time added to it, while the old features, curiously enough, were not given up.

Here, for example, in the midst of unintelligible lines and pot-hooks, are various pictures that are instantly recognizable as representations of hawks, lions, ibises, and the like. It can hardly be questioned that when these pictures were first used calligraphically they were meant to represent the idea of a bird or animal. In other words, the first stage of picture-writing did not go beyond the mere representation of an eagle by the picture of an eagle. But this, obviously, would confine the presentation of ideas within very narrow limits. In due course some inventive genius conceived the thought of symbolizing a picture. To him the outline of an eagle might represent not merely an actual bird, but the thought of strength, of courage, or of swift progress. Such a use of symbols obviously extends the range of utility of a nascent art of writing. Then in due course some wonderful psychologist—or perhaps the joint efforts of many generations of psychologists—made the astounding discovery that the human voice, which seems to flow on in an unbroken stream of endlessly varied modulations and intonations, may really be analyzed into a comparatively limited number of component sounds—into a few hundreds of syllables. That wonderful idea conceived, it was only a matter of time until it would occur to some other enterprising genius that by selecting an arbitrary symbol to represent each one of these elementary sounds it would be possible to make a written record of the words of human speech which could be reproduced—rephonated—by some one who had never heard the words and did not know in advance what this written record contained. This, of course, is what every child learns to do now in the primer class, but we may feel assured that such an idea never occurred to any human being until the peculiar forms of pictographic writing just referred to had been practised for many centuries. Yet, as we have said, some genius of prehistoric Egypt conceived the idea and put it into practical execution, and the hieroglyphic writing of which the Egyptians were in full possession at the very beginning of what we term the historical period made use of this phonetic system along with the ideographic system already described.

So fond were the Egyptians of their pictorial symbols used ideographically that they clung to them persistently throughout the entire period of Egyptian history. They used symbols as phonetic equivalents very frequently, but they never learned to depend upon them exclusively. The scribe always interspersed his phonetic signs with some other signs intended as graphic aids. After spelling a word out in full, he added a picture, sometimes even two or three pictures, representative of the individual thing, or at least of the type of thing to which the word belongs. Two or three illustrations will make this clear.

Thus qeften, monkey, is spelled out in full, but the picture of a monkey is added as a determinative; second, qenu, cavalry, after being spelled, is made unequivocal by the introduction of a picture of a horse; third, temati, wings, though spelled elaborately, has pictures of wings added; and fourth, tatu, quadrupeds, after being spelled, has a picture of a quadruped, and then the picture of a hide, which is the usual determinative of a quadruped, followed by three dashes to indicate the plural number.

It must not be supposed, however, that it was a mere whim which led the Egyptians to the use of this system of determinatives. There was sound reason back of it. It amounted to no more than the expedient we adopt when we spell "to," "two," or "too," in indication of a single sound with three different meanings. The Egyptian language abounds in words having more than one meaning, and in writing these it is obvious that some means of distinction is desirable. The same thing occurs even more frequently in the Chinese language, which is monosyllabic. The Chinese adopt a more clumsy expedient, supplying a different symbol for each of the meanings of a syllable; so that while the actual word-sounds of their speech are only a few hundreds in number, the characters of their written language mount high into the thousands.

BABYLONIAN WRITING

While the civilization of the Nile Valley was developing this extraordinary system of hieroglyphics, the inhabitants of Babylonia were practising the art of writing along somewhat different lines. It is certain that they began with picture-making, and that in due course they advanced to the development of the syllabary; but, unlike their Egyptian cousins, the men of Babylonia saw fit to discard the old system when they had perfected a better one.(5) So at a very early day their writing—as revealed to us now through the recent excavations—had ceased to have that pictorial aspect which distinguishes the Egyptian script. What had originally been pictures of objects—fish, houses, and the like—had come to be represented by mere aggregations of wedge-shaped marks. As the writing of the Babvlonians was chiefly inscribed on soft clay, the adaptation of this wedge-shaped mark in lieu of an ordinary line was probably a mere matter of convenience, since the sharp-cornered implement used in making the inscription naturally made a wedge-shaped impression in the clay. That, however, is a detail. The essential thing is that the Babylonian had so fully analyzed the speech-sounds that he felt entire confidence in them, and having selected a sufficient number of conventional characters—each made up of wedge-shaped lines—to represent all the phonetic sounds of his language, spelled the words out in syllables and to some extent dispensed with the determinative signs which, as we have seen, played so prominent a part in the Egyptian writing. His cousins the Assyrians used habitually a system of writing the foundation of which was an elaborate phonetic syllabary; a system, therefore, far removed from the old crude pictograph, and in some respects much more developed than the complicated Egyptian method; yet, after all, a system that stopped short of perfection by the wide gap that separates the syllabary from the true alphabet.

A brief analysis of speech sounds will aid us in understanding the real nature of the syllabary. Let us take for consideration the consonantal sound represented by the letter b. A moment's consideration will make it clear that this sound enters into a large number of syllables. There are, for example, at least twenty vowel sounds in the English language, not to speak of certain digraphs; that is to say, each of the important vowels has from two to six sounds. Each of these vowel sounds may enter into combination with the b sound alone to form three syllables; as ba, ab, bal, be, eb, bel, etc. Thus there are at least sixty b-sound syllables. But this is not the end, for other consonantal sounds may be associated in the syllables in such combinations as bad, bed, bar, bark, cab, etc. As each of the other twenty odd consonantal sounds may enter into similar combinations, it is obvious that there are several hundreds of fundamental syllables to be taken into account in any syllabic system of writing. For each of these syllables a symbol must be set aside and held in reserve as the representative of that particular sound. A perfect syllabary, then, would require some hundred or more of symbols to represent b sounds alone; and since the sounds for c, d, f, and the rest are equally varied, the entire syllabary would run into thousands of characters, almost rivalling in complexity the Chinese system. But in practice the most perfect syllabary, Such as that of the Babylonians, fell short of this degree of precision through ignoring the minor shades of sound; just as our own alphabet is content to represent some thirty vowel sounds by five letters, ignoring the fact that a, for example, has really half a dozen distinct phonetic values. By such slurring of sounds the syllabary is reduced far below its ideal limits; yet even so it retains three or four hundred characters.

In point of fact, such a work as Professor Delitzsch's Assyrian Grammar(6) presents signs for three hundred and thirty-four syllables, together with sundry alternative signs and determinatives to tax the memory of the would-be reader of Assyrian. Let us take for example a few of the b sounds. It has been explained that the basis of the Assyrian written character is a simple wedge-shaped or arrow-head mark. Variously repeated and grouped, these marks make up the syllabic characters.

To learn some four hundred such signs as these was the task set, as an equivalent of learning the a b c's, to any primer class in old Assyria in the long generations when that land was the culture Centre of the world. Nor was the task confined to the natives of Babylonia and Assyria alone. About the fifteenth century B.C., and probably for a long time before and after that period, the exceedingly complex syllabary of the Babylonians was the official means of communication throughout western Asia and between Asia and Egypt, as we know from the chance discovery of a collection of letters belonging to the Egyptian king Khun-aten, preserved at Tel-el-Amarna. In the time of Ramses the Great the Babylonian writing was in all probability considered by a majority of the most highly civilized people in the world to be the most perfect script practicable. Doubtless the average scribe of the time did not in the least realize the waste of energy involved in his labors, or ever suspect that there could be any better way of writing.

Yet the analysis of any one of these hundreds of syllables into its component phonetic elements—had any one been genius enough to make such analysis—would have given the key to simpler and better things. But such an analysis was very hard to make, as the sequel shows. Nor is the utility of such an analysis self-evident, as the experience of the Egyptians proved. The vowel sound is so intimately linked with the consonant—the con-sonant, implying this intimate relation in its very name—that it seemed extremely difficult to give it individual recognition. To set off the mere labial beginning of the sound by itself, and to recognize it as an all-essential element of phonation, was the feat at which human intelligence so long balked. The germ of great things lay in that analysis. It was a process of simplification, and all art development is from the complex to the simple. Unfortunately, however, it did not seem a simplification, but rather quite the reverse. We may well suppose that the idea of wresting from the syllabary its secret of consonants and vowels, and giving to each consonantal sound a distinct sign, seemed a most cumbersome and embarrassing complication to the ancient scholars—that is to say, after the time arrived when any one gave such an idea expression. We can imagine them saying: "You will oblige us to use four signs instead of one to write such an elementary syllable as 'bard,' for example. Out upon such endless perplexity!" Nor is such a suggestion purely gratuitous, for it is an historical fact that the old syllabary continued to be used in Babylon hundreds of years after the alphabetical system had been introduced.(7) Custom is everything in establishing our prejudices. The Japanese to-day rebel against the introduction of an alphabet, thinking it ambiguous.

Yet, in the end, conservatism always yields, and so it was with opposition to the alphabet. Once the idea of the consonant had been firmly grasped, the old syllabary was doomed, though generations of time might be required to complete the obsequies—generations of time and the influence of a new nation. We have now to inquire how and by whom this advance was made.

THE ALPHABET ACHIEVED

We cannot believe that any nation could have vaulted to the final stage of the simple alphabetical writing without tracing the devious and difficult way of the pictograph and the syllabary. It is possible, however, for a cultivated nation to build upon the shoulders of its neighbors, and, profiting by the experience of others, to make sudden leaps upward and onward. And this is seemingly what happened in the final development of the art of writing. For while the Babylonians and Assyrians rested content with their elaborate syllabary, a nation on either side of them, geographically speaking, solved the problem, which they perhaps did not even recognize as a problem; wrested from their syllabary its secret of consonants and vowels, and by adopting an arbitrary sign for each consonantal sound, produced that most wonderful of human inventions, the alphabet.

The two nations credited with this wonderful achievement are the Phoenicians and the Persians. But it is not usually conceded that the two are entitled to anything like equal credit. The Persians, probably in the time of Cyrus the Great, used certain characters of the Babylonian script for the construction of an alphabet; but at this time the Phoenician alphabet had undoubtedly been in use for some centuries, and it is more than probable that the Persian borrowed his idea of an alphabet from a Phoenician source. And that, of course, makes all the difference. Granted the idea of an alphabet, it requires no great reach of constructive genius to supply a set of alphabetical characters; though even here, it may be added parenthetically, a study of the development of alphabets will show that mankind has all along had a characteristic propensity to copy rather than to invent.

Regarding the Persian alphabet-maker, then, as a copyist rather than a true inventor, it remains to turn attention to the Phoenician source whence, as is commonly believed, the original alphabet which became "the mother of all existing alphabets" came into being. It must be admitted at the outset that evidence for the Phoenician origin of this alphabet is traditional rather than demonstrative. The Phoenicians were the great traders of antiquity; undoubtedly they were largely responsible for the transmission of the alphabet from one part of the world to another, once it had been invented. Too much credit cannot be given them for this; and as the world always honors him who makes an idea fertile rather than the originator of the idea, there can be little injustice in continuing to speak of the Phoenicians as the inventors of the alphabet. But the actual facts of the case will probably never be known. For aught we know, it may have been some dreamy-eyed Israelite, some Babylonian philosopher, some Egyptian mystic, perhaps even some obscure Cretan, who gave to the hard-headed Phoenician trader this conception of a dismembered syllable with its all-essential, elemental, wonder-working consonant. But it is futile now to attempt even to surmise on such unfathomable details as these. Suffice it that the analysis was made; that one sign and no more was adopted for each consonantal sound of the Semitic tongue, and that the entire cumbersome mechanism of the Egyptian and Babylonian writing systems was rendered obsolescent. These systems did not yield at once, to be sure; all human experience would have been set at naught had they done so. They held their own, and much more than held their own, for many centuries. After the Phoenicians as a nation had ceased to have importance; after their original script had been endlessly modified by many alien nations; after the original alphabet had made the conquest of all civilized Europe and of far outlying portions of the Orient—the Egyptian and Babylonian scribes continued to indite their missives in the same old pictographs and syllables.

The inventive thinker must have been struck with amazement when, after making the fullest analysis of speech-sounds of which he was capable, he found himself supplied with only a score or so of symbols. Yet as regards the consonantal sounds he had exhausted the resources of the Semitic tongue. As to vowels, he scarcely considered them at all. It seemed to him sufficient to use one symbol for each consonantal sound. This reduced the hitherto complex mechanism of writing to so simple a system that the inventor must have regarded it with sheer delight. On the other hand, the conservative scholar doubtless thought it distinctly ambiguous. In truth, it must be admitted that the system was imperfect. It was a vast improvement on the old syllabary, but it had its drawbacks. Perhaps it had been made a bit too simple; certainly it should have had symbols for the vowel sounds as well as for the consonants. Nevertheless, the vowel-lacking alphabet seems to have taken the popular fancy, and to this day Semitic people have never supplied its deficiencies save with certain dots and points.

Peoples using the Aryan speech soon saw the defect, and the Greeks supplied symbols for several new sounds at a very early day.(8) But there the matter rested, and the alphabet has remained imperfect. For the purposes of the English language there should certainly have been added a dozen or more new characters. It is clear, for example, that, in the interest of explicitness, we should have a separate symbol for the vowel sound in each of the following syllables: bar, bay, bann, ball, to cite a single illustration.

There is, to be sure, a seemingly valid reason for not extending our alphabet, in the fact that in multiplying syllables it would be difficult to select characters at once easy to make and unambiguous. Moreover, the conservatives might point out, with telling effect, that the present alphabet has proved admirably effective for about three thousand years. Yet the fact that our dictionaries supply diacritical marks for some thirty vowels sounds to indicate the pronunciation of the words of our every-day speech, shows how we let memory and guessing do the work that might reasonably be demanded of a really complete alphabet. But, whatever its defects, the existing alphabet is a marvellous piece of mechanism, the result of thousands of years of intellectual effort. It is, perhaps without exception, the most stupendous invention of the human intellect within historical times—an achievement taking rank with such great prehistoric discoveries as the use of articulate speech, the making of a fire, and the invention of stone implements, of the wheel and axle, and of picture-writing. It made possible for the first time that education of the masses upon which all later progress of civilization was so largely to depend.



V. THE BEGINNINGS OF GREEK SCIENCE

Herodotus, the Father of History, tells us that once upon a time—which time, as the modern computator shows us, was about the year 590 B.C.—a war had risen between the Lydians and the Medes and continued five years. "In these years the Medes often discomfited the Lydians and the Lydians often discomfited the Medes (and among other things they fought a battle by night); and yet they still carried on the war with equally balanced fortitude. In the sixth year a battle took place in which it happened, when the fight had begun, that suddenly the day became night. And this change of the day Thales, the Milesian, had foretold to the Ionians, laying down as a limit this very year in which the change took place. The Lydians, however, and the Medes, when they saw that it had become night instead of day, ceased from their fighting and were much more eager, both of them, that peace should be made between them."

This memorable incident occurred while Alyattus, father of Croesus, was king of the Lydians. The modern astronomer, reckoning backward, estimates this eclipse as occurring probably May 25th, 585 B.C. The date is important as fixing a mile-stone in the chronology of ancient history, but it is doubly memorable because it is the first recorded instance of a predicted eclipse. Herodotus, who tells the story, was not born until about one hundred years after the incident occurred, but time had not dimmed the fame of the man who had performed the necromantic feat of prophecy. Thales, the Milesian, thanks in part at least to this accomplishment, had been known in life as first on the list of the Seven Wise Men of Greece, and had passed into history as the father of Greek philosophy. We may add that he had even found wider popular fame through being named by Hippolytus, and then by Father aesop, as the philosopher who, intent on studying the heavens, fell into a well; "whereupon," says Hippolytus, "a maid-servant named Thratta laughed at him and said, 'In his search for things in the sky he does not see what is at his feet.'"

Such citations as these serve to bring vividly to mind the fact that we are entering a new epoch of thought. Hitherto our studies have been impersonal. Among Egyptians and Babylonians alike we have had to deal with classes of scientific records, but we have scarcely come across a single name. Now, however, we shall begin to find records of the work of individual investigators. In general, from now on, we shall be able to trace each great idea, if not to its originator, at least to some one man of genius who was prominent in bringing it before the world. The first of these vitalizers of thought, who stands out at the beginnings of Greek history, is this same Thales, of Miletus. His is not a very sharply defined personality as we look back upon it, and we can by no means be certain that all the discoveries which are ascribed to him are specifically his. Of his individuality as a man we know very little. It is not even quite certain as to where he was born; Miletus is usually accepted as his birthplace, but one tradition makes him by birth a Phenician. It is not at all in question, however, that by blood he was at least in part an Ionian Greek. It will be recalled that in the seventh century B.C., when Thales was born—and for a long time thereafter—the eastern shores of the aegean Sea were quite as prominently the centre of Greek influence as was the peninsula of Greece itself. Not merely Thales, but his followers and disciples, Anaximander and Anaximenes, were born there. So also was Herodotas, the Father of History, not to extend the list. There is nothing anomalous, then, in the fact that Thales, the father of Greek thought, was born and passed his life on soil that was not geographically a part of Greece; but the fact has an important significance of another kind. Thanks to his environment, Thales was necessarily brought more or less in contact with Oriental ideas. There was close commercial contact between the land of his nativity and the great Babylonian capital off to the east, as also with Egypt. Doubtless this association was of influence in shaping the development of Thales's mind. Indeed, it was an accepted tradition throughout classical times that the Milesian philosopher had travelled in Egypt, and had there gained at least the rudiments of his knowledge of geometry. In the fullest sense, then, Thales may be regarded as representing a link in the chain of thought connecting the learning of the old Orient with the nascent scholarship of the new Occident. Occupying this position, it is fitting that the personality of Thales should partake somewhat of mystery; that the scene may not be shifted too suddenly from the vague, impersonal East to the individualism of Europe.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse