|
If eaten in excess, sugar quickly gives rise to fermentation in the stomach and bowels; but so do the starches and the fats, if over-indulged in. Its real value as a food may be judged from the fact that the German army has made it a part of its field ration in the shape of cakes of chocolate, and that the United States Government buys pure candy by the ton, for the use of its soldiers.
FOOTNOTES:
[7] On this account, they are often spoken of as carbohydrates, or "carbon-water stuffs."
[8] See page 11.
CHAPTER VI
THE COAL FOODS (Continued)
ANIMAL FATS
The Digestibility of Fats. We have now come to the last group of the real Coal foods, namely, the fats. Fats are the "hottest" and most concentrated fuel that we possess, and might be described as the "anthracites," or "hard coals" of our Coal foods. They are, also, as might be expected from their "strength" or concentration, among the slowest to digest of all our foods, so that, as a rule, we can eat them only in very moderate amounts, seldom exceeding one-tenth to one-sixth of our total food-fuel. It is not, however, quite correct to say that fats are hard to digest, because, although from their solid, oily character, they take a longer time to become digested and absorbed by the body than most other foods, yet they are as perfectly and as completely digested, with the healthy person, as any other kind of food. Indeed, it is this slowness of digestion which gives them their well-known staying-power as a food.
Their Place in our Diet. The wholesomeness of fats is well shown by our appetite for them, which is very keen for small amounts of them—witness, for instance, how quickly we notice and how keenly we object to the absence of butter on our bread or potatoes. To have our "bread well-buttered" is a well known expression for comfort and good fortune; yet a very little excess will turn our enjoyment into disgust. Fat, and particularly the cold fat of meat, "gags" us if we try to eat too much of it.
Fortunately, most of these fat-foods are quite expensive, pound for pound, and hence we are not often tempted to eat them in excess. Within proper limits, then, fats are an exceedingly important and useful food—a valuable member of the great family of Coal foods.
The Advantages of Fat as a Ration. The high fuel value and the small bulk of fats give them a very great practical advantage whenever supplies of food have to be carried for long distances, or for considerable lengths of time, as in sea voyages and hunting and exploring trips. So that in provisioning ships for a long voyage, or fitting out an expedition for the Arctic regions, fats, in the shape of bacon or pork, pemmican,[9] or the richer dried fishes, like salmon, mackerel, and herring, will be found to play an important part. Fats also have the great advantage, like the starches, of keeping well for long periods, especially after they have been melted and sterilized by boiling, or "rendering," as in the case of lard, or have had moderate amounts of salt added to them, as in butter.
If you were obliged to pick out a ration which would keep you alive, give you working power, and fit into the smallest possible bulk, you would take a protein, a sugar, and a fat in about equal amounts. Indeed, the German emergency field-ration, intended to keep soldiers in the field for three or four days without their baggage-wagons, or cook-trains, is made up of bacon, pea-meal, and chocolate. A small packet of these, which weighs only a little over two pounds, and which can be slipped into the knapsack, will, with plenty of water, keep a soldier in fighting trim for three days.
Butter. The most useful and wholesome single fat is the one which is in greatest demand—butter. This, as we have seen, is the churned and concentrated fat of milk, to which a little salt has been added to keep the milk-acid (lactic acid) which cannot be entirely washed out of it, from "turning it sour" or rancid. The rancid, offensive taste of bad or "strong" butter is due to the formation of another acid call butyric ("buttery") acid.
Butter is the best and most wholesome of our common fats because it is most easily digested, most readily absorbed, and least likely to give rise to this butyric acid fermentation. We should be particularly careful, even more so almost than with other foods, to see that it is perfectly sweet and good, because when we swallow rancid butter, we are simply swallowing a ready-made attack of indigestion. Most people's stomachs are strong enough to deal with small amounts of rancid butter without discomfort; but it is a strain on them that ought to be avoided, especially when good butter is simply a matter of strict cleanliness and care in handling and churning the cream, and of keeping the butter cool after it has been made.
Plenty of sweet butter is one of the most important and necessary elements in our diet, especially in childhood. And if children are allowed to eat pretty nearly as much as they want of it on their bread or potatoes, and plenty of its liquid form, cream, on their berries and puddings, it will save the necessity of many a dose of cod-liver oil, or bitter physic. Cream is far superior to either cod-liver or castor oil for keeping us in health.
Oleomargarine. On account of the expensiveness of butter, there are a number of substitutes sold, which go under the name of oleomargarine. These are made of the fat, or suet, of beef or mutton, mixed with a certain amount of cream and real butter, to give them an agreeable flavor. They are wholesome and useful fats, and for cooking purposes may very largely be substituted for butter. Owing to the fact that their fat is freer from the milk acids, they keep better than butter; and sweet, sound oleomargarine is to be preferred to rank, rancid butter. But it is not so readily digestible as butter is; is more liable to give rise to the butyric acid fermentations in the stomach; is not nearly so appetizing; and its sale as, and under the name of, butter is a fraud which the law rightly forbids and punishes.
Lard. The next most useful and generally used pure fat is lard—the rendered, or boiled-down, fat of pork. It is a useful substitute for butter in cooking, where butter is scarce. But, even in pastry or cakes, it has neither the flavor nor the digestibility of butter, and the latter should always be used when it can be had.
Bacon and Ham. The most useful and digestible fat meats are bacon and ham, as the dried, salted, and usually smoked, meat of the pig is called. Like all other fats, they can be eaten only in moderate amounts; but thus eaten, they are both appetizing, digestible, and very nutritious. One good slice of breakfast bacon, for instance, contains as much fuel value as two large saucers of mush or breakfast food, or two eggs, or two large slices of bread, or three oranges, or two small glasses of milk, or a quart of berries.
NUTS
How Nuts should be Used. Another form of fat is the "meat" of different nuts—walnuts, pecans, almonds, etc. These are quite rich in fats, and also contain a fair amount of proteins, and are, in small quantities, like other fats, appetizing and useful articles of food. But they should not be depended upon to furnish more than a small amount of the whole food supply, or even of its necessary fat, because nearly all nuts contain pungent or bitter aromatic oils and ferments, which give them their flavors, but which are likely to upset the digestion. This is particularly true of the peanut, which is not a true nut at all, but is, as its name indicates, a kind of pea grown underground. Peanuts, on account of their large amount of these irritating substances, are among the most indigestible and undesirable articles of diet in common use. A certain amount of these irritating substances present in nuts may be destroyed by careful roasting and salting; but this must be most carefully done, and it shrinks them in bulk so that the finished product is far more expensive than butter or fat meat of the same nutritive value. Good salted almonds, for instance, cost fifty to eighty cents a pound.
The proper place for nuts is where they usually come on our tables—at the end of a meal. Those who attempt to cure themselves of dyspepsia by a nut diet are simply making permanent their disease.
FOOTNOTES:
[9] Pemmican is a sort of "canned beef" made originally out of the best parts of venison and buffalo-meat. This is boiled, and packed into skin bags; then melted fat is poured in, so as to fill up all the chinks and form a thick layer over the surface. It is now made of beef packed in canvas bags, and is much used by polar expeditions and Alaskan miners.
CHAPTER VII
KINDLING AND PAPER FOODS—FRUITS AND VEGETABLES
The Special Uses of Fruits and Vegetables. We come now to the very much larger but much less important class of foods—the Kindling foods, which help the Coal foods to burn, and supply certain stuffs and elements which the body needs and which the coal foods do not contain. These are the vegetables—other than potatoes and dried peas and beans—and fruits.
Fruits and vegetables contain certain mineral elements, which are not present in sufficient proportions in the meats, starches, and fats. Furthermore, the products of their digestion and burning in the body help to neutralize, or render harmless, the waste products from meats, starches, and fats. Thirdly, they have a very beneficial effect upon the blood, the kidneys, and the skin. In fact, the reputation of fruits and fresh vegetables for "purifying the blood" and "clearing the complexion" is really well deserved. The keenness of our liking for fruit at all times, and our special longing for greens and sour things in the spring, after their scarcity in our diet all winter, is a true sign of their wholesomeness.
Not the least of their advantages is that they contain a very large proportion of water; and this, though diminishing their fuel value, supplies the body with a naturally filtered and often distilled supply of this necessary element of life. One of the best ways of avoiding that burning summer thirst, which leads you to flood your unfortunate stomach with melted icebergs, in the form of ice water, ice cold lemonade, or soda water, is to take an abundance of fresh fruits and green vegetables.
Many of the vegetables contain small amounts of starch, but few of them enough to count upon as fuel, except potatoes, which we have already classed with the Coal foods. Most fruits contain a certain amount of sugar—how much can usually be estimated from their taste, and how little can be gathered from the statement that even the sweetest of fruits, like ripe pears or ripe peaches, contain only about eight per cent of sugar. They are all chiefly useful as flavors for the less interesting staple foods, particularly the starches. In fact, our instinctive use of them to help down bread and butter, or rice, or puddings of various sorts, is a natural and proper one. Like the vegetables, they contain various salts which are useful in neutralizing certain acid substances formed in the body. Soldiers in war, or sailors upon long voyages, who are fed upon a diet consisting chiefly of salted or preserved meat, with bread or hard biscuit and sugar, but without either fruits or fresh vegetables, are likely to develop a disease called scurvy. Little more than a century ago, hundreds of deaths occurred every year in the British and French navies from this disease, and the crews of many a long exploring voyage—like Captain Cook's—or of searchers for the North Pole, have been completely disabled or even destroyed entirely by scurvy. It was discovered that by adding to the diet fruit, or fresh vegetables like cabbage or potatoes, scurvy could be entirely prevented, or cured.[10]
Their Low Fuel Value. How little real fuel value fruits and vegetables have, may be easily seen from the following table. In order to get the nourishment contained in a pound loaf of bread, or a pound of roast beef, you would have to eat: 12 large apples or pears (5 lbs.); 4-1/2 qts. of strawberries; a dozen bananas (3-1/2 lbs.); 7 lbs. of onions; 2 doz. large cucumbers (18 lbs.); 10 lbs. of cabbage; 1/2 bushel of lettuce or celery.
Apples, the most Wholesome Fruit. Head and shoulders above all the other fruits stands that delight of our childhood days, apples. Well ripened, or properly cooked, they are readily digested by the average stomach; though some delicate digestions have difficulty with them. They contain a fair amount of acids, and from five to seven per cent of sugar. Their general wholesomeness and permanent usefulness may be gathered from the fact that they are one of the few fruits which you can eat almost daily the year round, or at very frequent intervals, without getting tired of them. Food that you don't get tired of is usually food which is good for you.
Dried apples are much inferior to the fresh fruit, because they become toughened in drying, and because growers sometimes smoke them with fumes of sulphur in the process, in order to bleach or whiten them; and this turns them into a sort of vegetable leather.
Other Fruits—their Advantages and Drawbacks. Next in usefulness probably come pears, though these have the disadvantage of containing a woody fibre, which is rather hard to digest, and they are, of course, poorer "keepers" than apples. Then come peaches, which have one of the most delicious flavors of all fruits, but which tend to set up fermentation and irritation in delicate stomachs, though in the average stomach, when eaten in moderation, they are wholesome and good. Then come the berries—strawberries, raspberries, blackberries,—all excellent and wholesome, when fresh in their season, or canned or preserved.
One warning, however, should be given about these most delicious, fragrant berries; and as it happens to apply also to several of our most attractive foods, it is well to mention it here. While perfectly wholesome and good for the majority of people, strawberries, for instance, are to a few—perhaps one in twenty—so irritating and indigestible as to be mildly poisonous. The other foods which may play this kind of trick with the stomachs of certain persons are oranges, bananas, melons, clams, lobsters, oysters, cheese, sage, and parsley, and occasionally, but very rarely, eggs and mutton. This is a matter which each of you can readily find out by experiment. If strawberries, melons, and other fruits agree with you, then eat freely of them, in due moderation. But if, after three or four trials, you find that they do not agree with you, but make your stomach burn, and perhaps give you an attack of nettle-rash or hives, or a headache, then let them alone.
The banana is of some food value because it contains not only sugar, but considerable quantities of starch—about the same amount as potatoes. But, if bananas are not fully ripe, both their starch and sugar are highly indigestible; while, if over-ripe, they have developed in them irritating substances, which are likely to upset the digestion and cause hives or eczema, especially in children. Bananas should therefore be regarded rather as a luxury and an agreeable variety than as a substantial part of the diet.
Food Values of the Different Vegetables. The vegetables depend for their value almost solely upon the alkaline salts and the water in them, and upon their flavor, which gives an agreeable variety to the diet. Parsnips, beets, and carrots are among the most nutritious, as they contain some starch and sugar; but they so quickly pall upon the taste that they can be used only in small amounts.
Turnips and cabbages possess the merit of being cheap and very easily grown. They contain valuable earthy salts, plenty of pure water, and a trace of starch. But these advantages are offset by their large amount of tough, woody vegetable fibre; this is incapable of digestion, and though in moderate amounts it is valuable in helping to regulate the movements of the bowels, in excess it soon becomes irritating. Both of them, particularly cabbages, contain, also, certain flavoring extracts, very rich in sulphur and exceedingly irritating to the stomach, which cause them to disagree with some persons. If these are got rid of by brisk boiling in at least two waters, then cabbage is a fairly wholesome and digestible dish for the average stomach. And because of its cheapness and "keeping" power, it is often the only vegetable that can be secured at a reasonable cost at certain seasons of the year.
Onions, especially the milder and larger ones, are an excellent and wholesome vegetable, containing small amounts of starch, although their pungent flavor, due to an aromatic oil, makes them so irritating to some stomachs as to be quite indigestible.
Sweet corn, whether fresh or dried, is wholesome, and has a fair degree of nutritive value, as it contains fair amounts of both starch and sugar. It should, however, be very thoroughly chewed and eaten moderately, on account of the thick, firm indigestible husk which surrounds the kernel.
Tomatoes are an exceedingly valuable, though rather recent addition to our dietary. Their fresh, pungent acid is, like the fruit acids, wholesome and beneficial; and they can be preserved or canned without losing any of their flavor. They were at one time denounced as being indigestible, and even as the cause of cancer; but these charges were due to ignorance and distrust of anything new.
Lighter Vegetables, or Paper Foods. The lighter vegetables such as lettuce, celery, spinach, cucumbers, and parsley have, in a previous chapter, been classed with the paper foods. They are all agreeable additions to the diet on account of their fresh taste and pleasant flavor, though they contain little or no nutritive matter.
The Advantages of a Vegetable Garden. Notwithstanding their slight fuel value, there are few more valuable and wholesome elements in the diet than an abundant supply of fresh green vegetables. Everyone who is so situated that he can possibly arrange for it, should have a garden, if only the tiniest patch, and grow them for his own use, both on account of their greater wholesomeness and freshness when so grown, and because of the valuable exercise in the open air, and the enjoyment and interest afforded by their care.
FOOTNOTES:
[10] As vegetables and fruit are bulky and likely to spoil, on the long voyages of sailing vessels before steamships were invented bottles of the juice of limes (a small kind of lemon) were added, instead, to the hard-tack and "salt-horse" of the ship's stores. Because of this custom, the long-voyage merchantmen who carried cargoes round the Horn or the Cape were for years nicknamed "Lime-juicers."
CHAPTER VIII
COOKING
Why We Cook our Food. While some of all classes of food may be eaten raw, yet we have gradually come to submit most of our foods to the heat of a fire, in various ways; this process is known as cooking. While cooking usually wastes a little, and sometimes a good deal, of the fuel value of the food and, if carelessly or stupidly done, may make it less digestible, in the main it makes it both more digestible and safer, though much more expensive. This it does in three ways: by making it taste better; by softening it so as to make it more easily masticated; and by sterilizing it, or destroying any germs or animal parasites which may be in it.
Cooking Improves the Taste of Food. It may seem almost absurd to regard changing the taste of a food as of sufficient importance to justify the expense and trouble of a long process like cooking. Yet this was probably one of the main reasons why cooking came into use in the first place; and it is still one of the most important reasons for continuing it. No one would feel attracted by a plate of slabs of raw meat, with a handful of flour, a raw potato or two, and some green apples; but cook these and you immediately have an appetizing and attractive meal. Any food, to be a thoroughly good food, must "taste good"; otherwise, part of it will fail to be digested, and will sooner or later upset the stomach and clog the appetite.
Cooking Makes Food Easier to Chew and Digest. The second important use of cooking is that it makes food both easier to masticate and easier to digest. As we have seen, it bursts the little coverings of the starchy grains, and makes the tough fibres of grains and roots crisp and brittle, as is well illustrated in the soft, mealy texture of a baked potato, and in the crispness of parched wheat or corn. It coagulates, or curdles, the jelly-like pulp of meat, and the gummy white of the egg, and the sticky gluten of wheat flour, so that they can be ground into tiny pieces between the teeth.
We could hardly eat the different kinds of grains and meals and flours in proper amounts at all, unless they were cooked; indeed they require much longer and more thorough baking, or boiling, than meats. The amount of cooking required should always be borne in mind when counting the cost of a diet, as the fuel, time, and labor consumed in cooking vegetable articles of diet often bring up their expense much more nearly to that of meats than the cost of the raw material in the shops would lead us to expect.
Cooking Sterilizes Food. A third, and probably on the whole, the most valuable and important service rendered by cooking is, that it sterilizes our food and kills any germs, or animal parasites, which may have been in the body of the animal, or in the leaves of the plant, from which it came; or, as is far the commoner and greater danger, may have got on it from dirty or careless handling, or exposure to dust. While it was undoubtedly the great improvement that cooking makes in the taste of food that first led our ancestors—and probably chiefly induces us—to use the process, it is hardly probable that they would have continued to bear the expense, trouble, and numerous discomforts of cooking, had they not noticed this significant fact: that those families and tribes that had the habit of thoroughly cooking their food, suffered least from diseases of the stomach and intestines, and hence lived longer and survived in greater numbers than the "raw fooders." We are perfectly right in spending a good deal of time, care, and thought on cooking, preparing, and serving our food, for we thus lengthen our lives and diminish our sicknesses. Civilized man is far healthier than any known "noble savage," in spite of what poets and story-tellers say to the contrary.
The Three Methods of Cooking. The three[11] chief methods of cooking—baking, or roasting; boiling, or stewing; and frying—have each their advantages as well as disadvantages. No one of them would be suitable for all kinds of food; and no one of them is to be condemned as unwholesome in itself, if intelligently done; although all of them, if carelessly, or stupidly, carried out, will waste food, and render it less digestible instead of more so. In the main, the methods that are in common use for each particular kind of food, or under each special condition, are reasonable and sensible—the result of hundreds of years of experimenting. The only exceptions are that, on account of its ease and quickness, frying is resorted to rather more frequently than is best; while boiling is more popular than it should be, on account of the small amount of thought and care involved in the process.
Roasting, or Baking. Roasting, or baking, is probably the highest form of the art of cooking, developing the finest flavors, causing less waste of food value, and requiring the greatest skill and care. On general principles, we may say that almost anything which can be roasted or baked, should be roasted or baked.
On the other hand, roasting or baking has the disadvantage of taking a great deal of fuel and of time, and of being exceedingly fatiguing and annoying for the cook, making the labor cost high; and it cannot be used where a meal is needed in a hurry. If the process is carelessly done and carried too far, it may also waste a great deal of the food material, either by burning or scorching, or by the commoner and almost equally wasteful process of turning the whole outside of the roast—particularly in the case of meat—into a hard, tough, leathery substance, which it is almost impossible either to chew or to digest.
Boiling. The advantages of boiling are that it is the easiest of all forms of cookery, and within the grasp of the lowest intelligence; that, on account of keeping the food continually surrounded by water, it leads to less waste and is far less likely than either baking or frying to result in destroying part of the food if not carefully watched; and that it can be used in cooking many cheap, coarse foods, such as the mushes, graham meal, corn meal, hominy, potatoes, cabbages, turnips, etc., which furnish the bulk of our food.
On the other hand, from the point of view of fuel used, it is the most expensive of all forms of cooking; and unless a fire is being kept up for other purposes, which allows boiling or stewing to go on on the back of the stove as an "extra," without additional expense, careful experiments have shown that the prolonged boiling needed by many of these cheaper and coarser foods, especially such as are recommended by most diet reformers, brings their total cost up to that of bread, milk, eggs, sugar, and the cheaper cuts of meat,—all of which are more wholesome and more appetizing foods.
The supposed saving in boiling meat, that you get two courses, soup and meat, out of one joint, is imaginary; for, as we have seen, the soup or water in which meat has been boiled contains little, or nothing, of the fuel value, or nourishing part of the meat; and all the flavor that is saved in this is lost by the boiled meat, rendering it not only much less appetizing, but also less digestible. You cannot have the flavor of your food in two places at once. If you save it in the soup, you lose it from the meat.
Frying. The chief advantages of frying are its marked saving of time, of fuel, and of discomfort to the cook; it also develops the appetizing flavors of the food to a very high degree. A wholesome, appetizing meal can be prepared by frying, much more quickly than by either baking or boiling, and with less than half the fuel expense.
The drawbacks of frying come chiefly from unintelligent and careless methods of applying it. It is somewhat wasteful of food material, particularly of meats; although, if the fat which is fried out in the process can be used in other cooking, or turned into a gravy, a good deal of this waste can be avoided. As, in frying, some form of fat has to be used to keep the food from burning, this fat is apt to form a coating over the surface and, if used in excessive amounts, at too low a temperature, may soak deeply into the food, thus coating over every particle of it with a thick, water-proof film, which prevents the juices of the stomach and the upper part of the bowel from attacking and digesting it. This undesirable result, however, can be entirely avoided by having both the pan and the melted fat which it contains, very hot, before the steak, chop, potatoes, or buckwheat cakes are put into the pan. When this is done, the heat of the pan and of the boiling fat instantly sears over the whole surface of the piece of food, and forms a coating which prevents the further penetration of the fat. Quick frying is, as a rule, a safe and wholesome form of cooking. Slow frying, which means stewing in melted grease for twenty or thirty minutes, is one of the most effective ways ever invented of spoiling good food and ruining digestion.
Why Every One should Learn how to Cook. Every boy and every girl ought to know how to cook. Cooking is a most interesting art, and a knowledge of it is a valuable part of a good education. Everybody would find such a knowledge exceedingly useful at some time in his life; and most of us, all our lives long. As a life-saving accomplishment, it is much more valuable than knowing how to swim. Every schoolhouse of more than five rooms should have a kitchen and a lunch room as part of its equipment, and classes should take turns in cooking and serving lunches for the rest of the children.[12]
FOOTNOTES:
[11] For meats a fourth method may be used—broiling, which for flavor and wholesomeness is superior to any other, but requires a special and rather expensive type of clear, hot fire and a high degree of skill.
[12] Whenever lunches are brought by children, or the school-lunch is a problem, if possible equip a spare room with a gas or a coal stove, sink, tables, chairs, necessary dishes, etc., and let classes under direction of teacher take turns in purchasing food supplies for lunch; cooking and serving lunch; planning dietaries with reference to balanced nutrition, digestibility, and cheapness; washing pots, pans, and dishes; cleaning kitchen; protecting and storing foods; finding risks of spoiling, contamination, infection, fly-visiting; and practicing other forms of kitchen hygiene.
CHAPTER IX
OUR DRINK
FILLING THE BOILER OF THE BODY-ENGINE
The Need of Water in the Body-Engine. If you have ever taken a long railway journey, you will remember that, about every two or three hours, you would stop longer than usual at some station, or switch, for the engine to take in water. No matter how briskly the fire burns in the furnace, or how much good coal you may shovel into it, if there be no water in the boiler above it to expand and make steam, the engine will do no work. And an abundant supply of water is just as necessary in our own bodies, although not used in just the same way as in the engine.
The singular thing about water, both in a locomotive and in our own bodies is that, absolutely necessary as it is, it is neither burned up nor broken down in any way, in making the machine go; so that it gives off no energy, as our food does, but simply changes its form slightly. Exactly the same amount of water, to the ounce, or even the teaspoonful, that is poured into the boiler of an engine, is given off through its funnel and escape-pipes in the form of steam; and precisely the same amount of water which we pour into our stomachs will reappear on the surface of the body again in the form of the vapor from the lungs, the perspiration from the skin, and the water from the kidneys. It goes completely through the engine, or the body, enables the one to work and the other to live, and yet comes out unchanged.
Just how water works in the engine we know—the heat from the furnace changes it into steam, which means that heat expands it, or makes it fill more space. This swelling pushes forward the cylinder that starts the wheels of the engine. The next puff gives them another whirl, and in a few minutes the big locomotive is puffing steadily down the track.
Water is Necessary to Life. Just how water works in the body we do not know, as most of it is not even turned into steam or vapor. But this much we do know, that life cannot exist in the absence of water. Odd as it may seem to us at first sight, ninety-five, yes, ninety-nine per cent of our body cells are water-animals, and can live and grow only when literally swimming in water.
The scaly cells on the surface of our skin, our hair, and the tips of our nails are the only parts of us that live in air. In fact, over five-sixths of the weight and bulk of our bodies is made up of water. Some one has quaintly, but truthfully, described the human body as composed of a few pounds of charcoal, a bushel of air, half a peck of lime, and a couple of handfuls of salt dissolved in four buckets of water. The reason why nearly all our foods, as we have seen, contain such large amounts of water is that they, also, are the results of life—the tissues and products of plants or animals.
Water Frees the Body from Waste Substances. Water in the body, then, is necessary to life itself. But another most important use is to wash out all the waste substances from the different organs and tissues and carry them to the liver, the kidneys, the lungs, and the skin, where they can be burned up and got rid of. We must keep our bodies well flushed with water, just as we should keep a free current of water flowing through our drain-pipes and sewers.
It Keeps the Body from Getting Over-heated. In summer time, or in hot climates the year round, an abundant supply of water is of great importance in keeping the body from becoming overheated, by pouring itself out on the skin in the form of perspiration, and cooling us by evaporation, as we shall see in the chapter on the skin.
The Meaning of Thirst. None of us who has ever been a mile or more away from a well, or brook, on a hot summer's day needs to be told how necessary water is, for comfort as well as for health. The appetite which we have developed for it—thirst, as we call it—is the most tremendous and powerful craving that we can feel, and the results of water starvation are as serious and as quick in coming as is the keenness of our thirst. Men in fairly good condition, if they are at rest, and not exposed to hardship, and have plenty of water to drink, can survive without food for from two to four weeks; but if deprived of water, they will perish in agony in from two to three days.
We should Drink Three Pints of Water a Day. Although all our foods, either as we find them in the state of nature, or as they come on the table cooked and prepared for eating, contain large quantities of water, this is not enough for the needs of the body; to keep in good health we must also drink in some form about three pints, or six glassfuls, of water in the course of the day. Part of this goes, as you will remember (p. 16), to dissolve the food so that it can be readily absorbed by our body cells in the process of digestion.
WHERE OUR DRINKING WATER COMES FROM
Water Contained in our Food is Pure. Seeing that five-sixths of our food is water, it is clearly of the greatest importance that that water should be pure. That part of our water supply which we get in and with our foods is fortunately, for the most part, almost perfectly pure, having been specially filtered by the plants or animals which originally drank it, or having been boiled in the process of cooking.
Water is Always in Motion. The part of our water supply which we take directly, in the form of drinking water, is, however, unfortunately anything but free from danger of impurities. The greatest difficulty with water is that it will not "stay put"—it is continually on the move. The same perpetual circulation, with change of form, but without loss of substance, which is taking place in the engine and in our bodies, is taking place in the world around us. The water from the ocean, the lakes, and the rivers is continually evaporating under the heat of the sun and rising in the form of vapor, or invisible steam, into the air. There it becomes cooler, and forms the clouds; and when these are cooled a little more, the vapor changes into drops of water and pours down as rain, or, if the droplets freeze, as snow or hail. The rain falls upon the leaves of the trees and the spears of the grass, or the thirsty plowed ground, soaks down into the soil and "seeps" or drains gradually into the streams and rivers, and down these into the lakes and oceans, to be again pumped up by the sun. All we can do is to catch what we need of it, "on the run," somewhere in the earthy part of its circuit.
Why our Drinking Water is Likely to be Impure. Every drop of water that we drink or use, fell somewhere on the surface of the earth, in the form of rain or snow; and if we wish to find out whether it is pure and safe, we must trace its course through the soil, or the streams, from the point where it fell. Our drinking water has literally washed "all outdoors" before it reaches us, and what it may have picked up in that washing makes the possibilities of its danger.
As it falls from the skies, it is perfectly pure—except in large cities or manufacturing centres, where rain water contains small amounts of soot, smoke-acids, and dust, but even these are in such small amounts as to be practically harmless. But the moment it reaches the ground, it begins to soak up something out of everything that it touches; and here our dangers begin.
Risks from Leaf Mould. Practically the whole surface of the earth is covered with some form of vegetation—grass, trees, or other green plants. These dying down and decaying year after year, form a layer of vegetable mould such as you can readily scratch up on the surface of the ground in a forest or old meadow; this is known as leaf mould, or humus. As the water soaks through this mould, it becomes loaded with decaying vegetable matter, which it carries with it down into the soil. Most of this, fortunately, is comparatively harmless to the human digestion. But some of this vegetable matter, such as we find in the water from bogs or swamps, or even heavy forests, will sometimes upset the digestion; hence, the natural dislike that we have for water with a marshy, or "weedy," taste.
Nature's Filter-Bed. When, however, this peaty water soaks on down through the grass, roots, and leaf mold, into the soil, it comes in contact with Nature's great filter-bed—the second place in the circuit where the water is again made perfectly pure. This filter-bed consists of a layer of more or less spongy, porous soil, or earth, swarming with millions of tiny vegetable germs known as bacteria. These eagerly pick out all the decaying vegetable substances of the water and feed upon them, changing them into harmless carbon dioxid water, and small amounts of ammonia. Not only will this filter-bed, or spongy mat of bacteria, burn up and remove all traces of vegetable decay, but if the rain happens to have soaked through the decaying body of a bird or animal or insect, the bacteria will just as eagerly feed upon these animal substances and change them into harmless gases and salts.[13]
By the time the rain water has reached the deeper layers of the soil, it is again perfectly pure and has also, in seeping through the soil, picked up certain mineral salts (such as calcium, sodium, and magnesium) which are of use in the body; so that in an open or thinly settled country, the water in streams, rivers, and lakes is usually fairly pure and quite wholesome. That is why, in ancient times, the great majority of villages and towns and camps were situated on the bank of some stream, where a supply of water could easily be obtained.
CAUSES AND DANGERS OF POLLUTED WATER
Wells—the Oldest Method of Supplying Water. It was long ago discovered that, by digging pits or holes in the ground, the rain water, in its steady flow toward the streams and lakes, could be caught or trapped, and that if the pit were made deep enough, a sufficient amount would accumulate during the winter or spring to last well on into the summer, unless the season were unusually dry. These pits, or water traps, are our familiar wells, from which most of our water supply, except in the large cities, is still taken. These wells were naturally dug, or sunk, as near as might be to the house, so as to shorten the distance that the water had to be carried; and from this arose their chief and greatest source of danger.
The Danger to Wells from Household Waste. Every house has, like our bodies, a certain amount of waste, which must be got rid of. Some of this material can, of course, be fed to pigs and chickens, and in that way disposed of. But the simplest and easiest thing to do with the watery parts of the household waste is to take them to the back door and throw them out on the ground, while table-scraps and other garbage are thrown into the long grass, or bushes—a method which is still, unfortunately, pursued in a great many houses in the country and the suburbs of towns. If the area over which they are thrown is large enough, and particularly if the soil is porous and well covered with vegetation, nature's filter-bed—the soil, the bacteria, and the roots of the grass and other plants combined—will purify a surprising amount of waste; but there is always the danger, particularly in the wet weather of spring and of late fall, that the soil will become charged with more of these waste matters than the bacteria can destroy, and that these waste poisons will be washed down in the rain water right into the pit, or trap, which has been dug for it—the well.
The Danger from Outbuildings. This danger is further increased by the fact that for the same reason—the vital need of plenty of water for all living creatures—the hen coop, the pig pen, the cow stable, and the horse barn are all likely to be built clustering around this same well. If the fertilizer from these places is, as it should be in all intelligent farming, protected from the rain so as not to have all its strength washed out of it, and removed and spread on the soil at frequent intervals, the well may even yet escape contamination; but the chances are very strongly against it. If you will figure out that a well drains the surface soil in every direction for a distance from ten to thirty times its own depth, and that the average well is about twenty-five feet deep, you can readily see what a risk of contaminating the well is caused by every barn, outhouse, or pen within from sixty to a hundred and fifty yards from its mouth.
Every well from which drinking water is taken should be at least fifty, and better, a hundred and fifty, yards away from any stable, outhouse, or barn; or set well up-hill from it, so that all drainage runs away from its basin. This, of course, is possible only in the country, or in villages or small towns, where houses have plenty of ground about them. Consequently, the health laws of most cities and states forbid the use of shallow wells for drinking purposes in cities of over 10,000 population.
Causes which Produce Pure Well Water. Occasionally a well will be driven through a layer of rock or hard water-proof clay, before the water-bearing layer of soil, or sand, is struck, so that its water will be drawn, not from the rain that falls on the surface of the ground immediately about it, but from that which has fallen somewhere at a considerable distance and filtered down through the soil. This water, on account of the many, many layers of soil through which it has filtered, and the long distance it has come, is usually fairly pure, so far as animal or vegetable impurities are concerned, though it is apt to have become too strong in certain salty and mineral substances, which give it a taste of salt, or iron, or sulphur. If, however, it is free from these salty substances, it makes a very pure and wholesome drinking water; and if the upper part of the well shaft be lined with bricks and cement, so that the surface water cannot leak into it, it may be used with safety for drinking purposes even in the heart of a city.
The Greatest Single Danger to Well Water. The greatest single danger to the purity of well water is the privy vault. This is doubly dangerous, first, because it is dug below the level at which the bacteria in the soil are most abundant and active, so that they cannot attack and break up its contents; and the impurities, therefore, are gradually washed down by the rain water into the soil, unchanged, and seep directly into the well. The other reason is that its contents may contain the germs of serious diseases, particularly typhoid fever and other bowel troubles. These germs and their poisons would usually be destroyed by the bacteria of the soil, if not poured out in too large quantities; but in the privy vault they escape their attack, and so are carried on with the slow leakage of water into the well; then those who use that water are very liable to have typhoid fever and other serious diseases.
Early Methods of Prevention. On account of these filth-dangers, it began, a century or so ago, to be the custom in cleanly and thoughtful households to provide, first, ditches, and then, lines of pipes, made out of hollow wood or baked clay, and later of iron, called drains, through which all the watery parts of household wastes could be carried away and poured out at some distance from the house. Then toilets, or flush-closets, were built, and this kind of waste was carried completely away from the house, and beyond danger of contaminating the wells.
How Streams were Contaminated. For a time this seemed to end the danger, as the waste was soaked up by the soil, and eaten by its hungry bacteria and drunk up again by the roots of plants. But when ten or a dozen houses began to combine and run their drain-pipes together into a large drain called a sewer, then this could not open upon the surface of the ground, but had to be run into some stream, or brook, in order to be carried away. As cities and towns, which had been obliged to give up their wells, were beginning to collect the water from these same brooks and streams in reservoirs and deliver it in pipes to all their houses, it can be easily seen that we had simply exchanged one danger for another.
The Loss of Life from Typhoid Fever. For a time, indeed, it looked as if the new danger were the greater of the two, because, when the typhoid germs were washed into a well, they poisoned or infected only one, or at most two or three, families who used the water from that well. But when they were carried into a stream which was dammed to form a reservoir to supply a town with water, then the whole population of the town might become infected. A great many epidemics of typhoid fever occurred in just this way, before people realized how great this danger was. Simply from the pouring of the wastes from one or two typhoid fever cases into the streams leading into the water reservoir used by a town, five hundred, a thousand, or even three or four thousand cases of typhoid have developed within a few weeks, with from one hundred to five hundred deaths.
In fact, even to-day, when these dangers are better understood, and while most of our big cities are getting fairly clear of typhoid, so ignorant and careless are the smaller towns, villages, and private houses all over the United States, that over 35,000 deaths[14] from typhoid fever occur every year in a country which prides itself upon its cleanliness and its intelligence. This means, too, that there are at least half a million people sick of the disease, and in bed or utterly prevented from working, for from five to fifteen weeks each. All of which frightful loss of human life and human labor, to say nothing of the grief, bereavement, and anxiety of the two million or more families and relatives of these typhoid victims, is due to eating dirt and drinking filth. Dirt is surely the most expensive thing there is, instead of the cheapest.
METHODS OF OBTAINING PURE WATER
Wise Planning and Spending of Money is Necessary. If our city wells are defiled by manure heaps and vault-privies, and our streams by sewage, where are we to turn for pure water? All that is required is foresight and a little intelligent planning and wise spending of money. Of course the community must take hold of the problem, through a Board of Health, or Health Officer, appointed for the purpose; and this is why questions of health are coming to play such an important part in legislation, and even in politics. No matter how fast a city is growing or how much money its inhabitants are making, if it has an impure water supply or a bad sewage system, there will be disease and death, suffering and unhappiness among its people, which no amount of money can make up for. Cleanliness is not only next to godliness, but one of the most useful forms of it; and a city can afford to spend money liberally to secure it—in fact, it is the best investment a city can make.
Artesian and Deep Wells. The earliest, and still the most eagerly sought-for, source of pure water supply is springs or deep wells, such as we have referred to. Both of these are fed by rain water which has fallen somewhere upon the surface of the earth. As the layers of earth or rock, of which the crust of the earth is made up, do not run level, or horizontal, but are tilted and tipped in all directions, this rain water soaks down until it reaches one of these sloping layers that is so hard, or tough, as to be waterproof, and then runs along over its surface in a sort of underground stream. If anywhere in the course of this stream a very deep well shaft is driven right down through the soil until it strikes the surface of this sloping layer of rock, then the water will rise in this shaft to the level of the highest point from which it is running.
If this highest point of the waterproof layer be many miles away, up in the hills above the surface of the ground where the well is dug, then the water will rise to the surface and sometimes even spout twenty, thirty, or fifty feet above it. This forms what is known as a gushing, or artesian, well (from Artois, a province in France, in which such wells were first commonly used) and furnishes a very pure and valuable source of water supply. If it rises only twenty, thirty, or fifty feet in the well-shaft, but keeps flowing in at a sufficient rate, then we get what is known as a "living," or permanent well, and this also is a very valuable and pure source of water supply.
Springs. Springs are formed on the same plan as the deep well, but with the difference that the waterproof layer on top of which the water is running either crops out on the surface again, lower down the mountain, or folds upon itself and comes up again to the surface some distance away from the mountain chain, out on the level. This is why springs are usually found in or near mountainous or hilly regions. If the water of a spring has gone deep enough into, or far enough through, the layers of the earth, it may, like water of some of the artesian wells, contain certain salts and minerals, particularly soda, sulphur, and iron. Such springs are often highly valued as mineral water, healing springs, or baths, partly because of these salts, partly on account of their peculiar taste. Most of the virtues ascribed to mineral waters or springs are due, however, to their pure water, and its cleansing effects internally and externally when freely used.
Springs are among the most highly prized sources of water supply, because they have gone underground sufficiently deep to become well filtered and cooled to a low temperature, and usually not far enough to become too heavily loaded with salts or minerals like the waters of the deep wells. It must, however, be remembered that they also come from rain-water, and that in hilly or broken regions the source of that rain water may be the surface of the ground only a few hundred yards up the hill or mountain, and impurities there may affect it. Much of the delightful sparkle of spring water is due, as in the case of the popular soda water, to the presence of carbon dioxid, only in spring water it is produced by the decomposition of vegetable matter in it. As springs usually break out in a hollow or at the foot of a hill, unless carefully closed in they are quite liable to contamination from rain water from the surrounding surface of the ground. Where springs of a sufficient size can be reached, or a sufficiently "live" series of deep wells can be bored, these furnish a safe source of water supply for cities. But of course not more than one city in five or ten is so favored.
Mountain Reservoirs. Two other methods of securing a water supply are now generally adopted. One is to pick out some stream up in the hills or mountains, within fifteen miles or so of the city, and put in a dam, thus making a reservoir, or to enlarge some lake which already exists there. At the same time, the entire valley, or slope of the mountain, which this stream or lake drains of its surface water, is bought up by the Government, or turned into a forest reserve, so that no houses can be built or settlement of any kind permitted upon it. It can still be used for lumber supply, for pastures, and, within reasonable limits, for a great public hunting and fishing reserve and camping resort.
Almost every intelligent and farsighted town, which has not springs or deep wells, is looking toward the acquirement of some such area as this for its source of pure water. Many great cities go from thirty to fifty miles, and some even a hundred and fifty miles, in order to reach such a source, carrying the water into the city in a huge water-pipe, or aqueduct. These cities find that the millions of dollars saved by the prevention of death and disease amount to many times the cost of such a system, while the water rents gladly paid by both private houses and manufacturing establishments give good interest on the investment. Any town can afford to go a mile for every thousand of its population for such a source of water supply as this; and secure, gratis, a valuable forest preserve, public park, and beauty spot.[15]
Filtration. The other method, which has to be adopted by cities situated on level plains, or at the mouths of great rivers, is to take the water of some lake, or river, as far out in the former, or as high up the latter, as possible, and purify it by filtration. This can be done at a moderate expense by preparing great settling-basins and filter-beds. The first are great pools or small lakes, into which the water is run and held until most of the mud and coarser dirt has settled or sunk. Then this clear water above the sediment is run on to great beds, first of gravel, then of coarse sand, then of fine sand; and if these beds are large enough, and frequently changed and cleaned, so that they do not become clogged, and the process is carried out slowly, the water, when it comes through the last bed, is pure enough to drink safely.[16]
One of these sources of a safe and wholesome water-supply—the deep flowing well, or spring; the water shut up in the mountains in its lake or reservoir; or the slow filter-bed—should be used by every intelligent and progressive town of more than a thousand inhabitants.
Sewage and its Disposal. At the same time, while seeking a source of water-supply far removed from any possibility of contagion, we must not neglect the other end of the problem, the protecting of our rivers and lakes from pollution so far as possible; for the water from these must necessarily be used by thousands of people along their banks, either directly, or in the form of shallow wells, sunk not far from the water's edge. Moreover, so foul are many of our rivers and streams becoming in thickly settled regions that fish can no longer live in them, and it is hardly safe to bathe in them.[17] Fortunately, however, a great deal of the worst contamination can be prevented by using modern methods of disposing of sewage, such as filter-beds and sewage farms. All of these methods use the bacteria of the soil, or crops growing in it, to eat up the waste and thus purify the sewage.
HOME METHODS OF PURIFYING WATER
Boiling. Where the water that you are obliged to drink is not known to be pure, then it can be made quite safe for drinking purposes by the simple process of boiling it for about ten or fifteen minutes. But this, except in travelling or in emergencies, is a lazy, slipshod substitute for pure water, and extremely unsatisfactory as well; for the boiling drives off all its air and other gases, and throws down most of the salts, so that boiled water has a flat, insipid taste. These salts, although sometimes regarded as impurities, are not such in any true sense; for the lime and soda especially are of considerable value in the body, so that boiled or sterilized water is neither a pleasant nor a wholesome permanent drink. Instead of boiling the water, get to work to protect your own well from filth of all sorts, if you drink well water; or, if not, to help the Board of Health to agitate, and keep on agitating, until something is done to compel your selectmen or City Council to secure a pure supply.
Domestic Filters. Much the same must be said of private or domestic filters. These are, at best, temporary substitutes, and should not be depended upon for permanent use. Many of them are made to sell rather than to purify, and will remove only the larger or mechanical impurities from the water. Others, while they work well at first, are exceedingly likely to become clogged, when the tendency is to punch at them to make them work faster, thus either poking a hole through them or cracking the filter-shell, so that a stream of water flows steadily through, just as impure as when it entered. Private filters, like boiling water, are only temporary ways of meeting conditions which ought not to be allowed to exist at all in civilized communities, or in your own homes.
A score of court decisions in all parts of the world have now held that the water company is legally responsible for all avoidable pollution of public water-supplies, and nine tenths of pollutions are avoidable.
FOOTNOTES:
[13] These gases and salts are eagerly sucked up by the roots of plants, so that the soil bacteria are our best friends, changing poisonous decaying things into harmless plant-foods. They are the chief secret of the fertility of a soil; and the more there are of them the richer a soil is.
[14] This makes fourteen times as many deaths from typhoid in proportion to the population as occur in Germany.
[15] New York City, for instance, goes forty miles up into the hills to the great Croton reservoir for its water supply; and as this is proving insufficient, is preparing to go ninety-five miles up into the Ramapo Hills to secure control of a whole country-side for a permanent source of supply. Portland, Oregon, nearly twenty years ago, with then a population of some 75,000, built an aqueduct sixty miles up into the mountains to a lake on the side of Mt. Hood, and has reaped the advantages of its foresight ever since, in a low death rate and a rapid growth (200,000 in 1910), as well as a financial profit on its investment. Los Angeles, California, is preparing to build an aqueduct a hundred and thirty miles, and tunnel two mountain ranges in order to reach an inexhaustible supply of water.
[16] Of late, currents of electricity are passed through the water (setting free oxygen or ozone) which make the purifying of it much more rapid and complete.
It is, however, often considered safer to pass the water through still another filter bed, consisting of layers of charcoal, which has the power of gathering oxygen in its pores, to attack and oxidize, or burn up, the remaining impurities in the water. A sort of scum forms over the surface of the last and finest bed of sand or charcoal, and if this scum is not too frequently removed, though it makes the filtering slower, the water comes out purer. On examining this scum, we find it to consist of a thick mat of our old friends, the purifying bacteria of the soil. So that the last step of our artificial filtration is simply an imitation of nature's great filter-bed.
[17] Several streams emptying into the Ohio River from a thickly settled region are said to be actually pumped out into waterworks systems, used for drinking, washing, and manufacturing, and run back into the river again through sewers by the different cities along its banks, at such frequent intervals that every drop of water in them passes through waterworks systems and sewers three times before it reaches the mouth of the stream.
CHAPTER X
BEVERAGES, ALCOHOL, AND TOBACCO
The Popularity of Beverages. For some curious reason, the habit has grown up of taking a large part of the six glasses of water that we require daily in the form of mixtures known as beverages. These beverages are always much more expensive than pure water; are often quite troublesome to secure and prepare; have little, or no, food value; are of doubtful value even in small amounts; and injurious in large ones. Why they should ever have come into such universal use, in all races and in all ages of the world, is one of the standing puzzles of human nature. They practically all consist of from ninety to ninety-eight per cent of water, the food elements that may be added to them being in such trifling amounts as to be practically of no value. They serve no known useful purpose in the body, save as a means of introducing the water which they contain; and yet mankind has used them ever since the dawn of history.
We Have no Natural Appetite for Beverages. It is a most striking fact that, although these beverages have been drunk by the race for centuries, we have never developed an instinct or natural appetite for them! No child ever yet was born with an appetite or natural liking for beer or whiskey; and very few children really like the taste of tea or coffee the first time, although they soon learn to drink them on account of the sugar and cream in them. Thus, nature has clearly marked them off from all the real foods on our tables, showing that they are not essential to either life or health; and that they are absolutely unnecessary, and almost always harmful in childhood and during the period of growth. If no child ever drank alcohol until he really craved it, as he craves milk, sugar, and bread and butter, there would be no drunkards in the world. Our other food-instincts have shown themselves worthy to be trusted—why not trust this one, and let these beverages, especially alcohol, absolutely alone?
Statistics from the alcoholic wards of our great hospitals show that of those who become drunkards, nearly ninety per cent begin to drink before they are twenty years old. Of that ninety per cent, over two-thirds took their first drink, not because they felt any craving for it, or even thought it would taste good, but because they saw others doing it; or thought it would be a "manly" thing to do; or were afraid that they would be laughed at if they didn't! Whatever vices and bad habits our natural appetites, and so-called "animal instincts," may lead us into, drunkenness is not one of them.
This striking hint on the part of nature, that alcoholic beverages are unnecessary, is fully confirmed by the overwhelming majority of hundreds of tests which have been made in the laboratory, showing clearly that, while these beverages may give off trifling amounts of energy in the body, their real effects and the sole reason for their use are their stimulating, or their discomfort-deadening (narcotic) effect. And the more carefully we study them, the heavier we find the price that has to be paid for any temporary relief or enjoyment which they may seem to give.
Tea, Coffee, and Cocoa. The "weakest" and most commonly used of these beverages or amusement foods, are tea, coffee, and cocoa. These have an agreeable taste, mildly stimulate the nervous system, and, when used in moderation by adults, seldom do much harm. To a small percentage of individuals, who are specially sensitive to their effects, they seem to act as mild poison-foods, much in the same way as strawberries, cheese, or lobsters do to others.
Tea is made from the green leaves of a shrub growing in hilly districts in China, Japan, and Southern India. The finer and more delicately flavored brands are from the young leaves, shoots, and flowers of the plant; while the coarser and cheaper are from the old leaves, stalks, and even twigs—the latter containing the most tannin, which, as we shall see, is the most injurious element in tea.
Coffee is made from the seeds of a cherry-like berry growing upon a shrub, or low tree, on tropical hillsides. The bulk of our supply comes from South America, and is known as "Rio" coffee, from Rio Janeiro, the port in Brazil from which most of it is shipped. That from the East Indies is known as Java, and that from Arabia as Mocha; though these last two are now but little more than trade-names for certain finer varieties of coffee, no matter where grown.
Cocoa and chocolate are made from the bean-like seeds of a small tree growing in the tropics and, in cake, or solid, form, contain considerable amounts of fat, and usually sugar and vanilla, which have been added to them to improve their flavor. As, however, only a teaspoonful or so of the powdered cocoa, or chocolate, goes to make a cupful, the actual food value of cocoa or chocolate, unless made with milk, is not much greater than that of tea or coffee with cream and sugar. They contain less caffein than either tea or coffee, but are liable to clog rather than to increase the appetite for other foods.
Effects of Tea, Coffee, and Cocoa. Though the flavors of tea, coffee, and cocoa are so different, they all depend for their effect upon a spicy-tasting substance, called caffein from its having been first separated out of coffee. The caffein of tea is sometimes called thein, and that of cocoa theobromin; but they are all practically the same substance. Part of the taste of these beverages is due to the caffein, but the special flavor of each is given by spicy oils and other substances which it contains. Caffein acts as a mild stimulant both to the nervous system and brain, and to the heart; as is shown by the way in which tea or coffee will wake us up or refresh us when tired, or, if drunk too late at night, keep us from going to sleep. If used in large amounts, especially if taken as a substitute for food, tea and coffee upset the nervous system and disturb the heart, and produce an unwholesome craving for more.
Their chief value lies in the hot water they contain, which has been sterilized by boiling, while its heat assists the process of digestion; and in the fact that their agreeable taste sometimes gives us an appetite and enables us to eat more of less highly flavored foods, like bread, crackers, potatoes, or rice, than we would without them. They are, also, usually taken with cream, or milk, or sugar, which are real foods and bring their fuel value up to about half that of skimmed milk. So far as they stimulate the appetite and increase the amount of food eaten, they are beneficial; but when taken as a substitute for real food, they are most injurious. A cup of coffee, for instance, makes a very poor breakfast to start the day on; for although it gives you a comforting sense of having eaten something warm and satisfying, it contains very little real food, and soon leaves you feeling empty and tired; just as an engine would give out if you put a handful of shavings into its fire-box, and expected it to do four hours' work on them.
The most disturbing effects of tea and coffee upon the digestion are due to the tannin which they contain if boiled too long, especially in the case of tea. This tannin, fortunately, will not dissolve in water except by prolonged boiling or steeping; so that if tea is made by pouring boiling water over the tea leaves and pouring it off again as soon as it has reached the desired strength and flavor, and coffee by being just brought to a boil and then not allowed to stand more than ten or fifteen minutes before use, no injurious amounts of tannin will be found in them. Tea, made by prolonged stewing on the back of the stove, owes its bitter, puckery taste to tannin, and is better suited for tanning leather than for putting into the human stomach.
Boys and girls up to fifteen or sixteen years of age are much better off without tea, coffee, or cocoa; for they need no artificial stimulants to their appetites, while at the same time their nervous systems are more liable to injury from the harmful effects of over-stimulation. If the beverages are taken at all, they should be taken very weak, and with plenty of milk and cream as well as sugar.
ALCOHOL
How Alcohol is Made. The most dangerous addition that man has ever made to the water which he drinks is alcohol. It is made by the action of the yeast plant on wet sugar or starch—a process called fermentation. Usually the sugar or starch is in the form of the juice of fruits; or is a pulp, or mash, made from crushed grains like barley, corn, or rye. As the spores of this yeast plant are floating about almost everywhere in the air, all that is usually necessary is to let some fruit juice or grain pulp stand at moderate warmth, exposed to the air, when it will begin to "sour," or ferment.
Wine. When the yeast plant is set to work in a tub or vat of grape juice, it attacks the fruit sugar contained in the juice, and splits it up into alcohol and carbon dioxid, so that the juice becomes bubbly and frothy from the gas. When from seven to fifteen per cent of alcohol has been produced, the liquid is called wine. It contains, besides alcohol, some unchanged fruit sugar, fruit acids, and some other products of fermentation (known as ethers and aldehydes), which give each kind of wine its special flavor.
Beer, Ale, and Cider. If the yeast germ be set to work in a pulp or mash of crushed barley or wheat, the starch of which has been partly turned into sugar by malting, it breaks up the sugar into alcohol and carbon dioxid. When it has brewed enough of the starch to produce somewhere from four to eight per cent of alcohol, then the liquid, which still contains about three or four per cent of a starch-sugar called maltose, is called beer, or ale. It is usually flavored with hops to give it a bitter taste and make it keep better. If the same process be carried out in apple juice, we get the well known hard cider with its biting taste.
Whiskey, Brandy, and Rum. When left to itself, the process of fermentation in most of these sugary or starchy liquids will come to a standstill after a while, because the alcohol, when it reaches a certain strength in the liquid, is, like all other toxins, or poisons produced by germs, a poison also to the germ that produces it. The yeast-bacteria probably produce alcohol as a poison to kill off other germs which compete with them for their share of the sugar or starch. So even the origin of this curious drug-food shows its harmful character. We should hardly pick out the poison produced by one germ to kill another germ as likely to make a useful and wholesome food.
If man had been content to leave this fermentation process to nature, it is probable that many of the worst effects of alcohol would never have been heard of. But these lighter forms of alcoholic drinks did not satisfy the unnatural cravings which they had themselves created. Some people never can leave even bad-enough alone. So man, with an ingenuity which might have been much better used, sought a way of getting a liquor which would contain more alcohol than nature, unaided, could be made to brew in it. A little experimenting showed that the alcohol in fermenting juices was lighter than water; so that by gently heating the fermenting mass, the alcohol would evaporate and pass off as vapor, with a little of the steam from the water. Then, by catching this vapor in a closed vessel and pouring cold water over the outside of the vessel, it could be condensed again in the form of a clear, brownish fluid of burning taste, containing nearly fifty per cent of alcohol, instead of the original five or six.
This evaporated or distilled mixture of alcohol and water, if made from a mash of corn, wheat, rye, or potatoes, is called whiskey; if from fruit-juice, brandy. A similar liquor, made out of fermented rice, is known as arrack in India, or sake in Japan; and the liquor made from fermented molasses is called rum.
Alcohol not a True Food, but a Drug. The much disputed question as to whether alcohol is a food or not, is really of little or no practical importance. It is quite true, as might be expected, from its close relation to sugar and the readiness, for instance, with which it will burn in an alcohol lamp or stove, that alcohol, in small amounts, is capable of being burned in the body, thus giving it energy. This may give it a certain limited value in some forms of sickness, as, for instance, in certain fevers and infections, when the stomach does not seem to be able to digest food. But here it acts as a medicine rather than as a true food and, like all other medicines, should be used only under skilled medical advice and control. For practical purposes, any trifling food value it may have is more than offset by its later poisonous and disturbing effects and, secondly, by its enormous expensiveness.
The greatest amount of alcohol that could be consumed in the body at all safely would barely supply one-tenth of the total fuel value needed; and if any one were to attempt to supply the body with energy by the use of alcohol, he would be blind drunk before he had taken one-third of the amount required. From the point of view of expense alone, to take alcohol for food is like killing buffalos for their tongues and letting the rest of the carcass go to waste, as the Indians and pioneer hunters of the plains used to do. It never has more than a fraction of the food value of the grain or fruit out of which it was made; and the amount of nutriment that it contains costs ten times as much as it would in any of the staple foods.
Moreover, when it is taken with an ordinary supply of food, it is found that, for every ounce of alcohol burned in the body, a similar amount of the other food is prevented from being consumed, and probably goes to waste, owing to the harmful effects of alcohol upon digestion. Therefore, to talk of alcohol as a food is really absurd.
The Effect of Alcohol on Digestion. It has been urged by some that alcohol increases the appetite, and enables one to digest larger amounts of food. The early experiments seemed to support this claim by showing that alcohol, well diluted, and in moderate amounts, increased appetite and the flow of the gastric juice. When the experiments were carried a little further, however, it was clearly shown that its presence in the stomach and intestines, in such amounts as would result from a glass of beer, or one or two glasses of claret-wine with a meal, interfered with the later stages of digestion, so that the later harmful effects overbalanced any earlier good effects.
Its Effect on the Temperature of the Body. Another claim urged in its favor was that it warmed the body and protected it against cold. It ought to have been easy for any one with a sense of humor to judge the value of this claim by the fact that it was equally highly commended by its users as a means of keeping them cool in hot weather. Its supposed effects in the case of both heat and cold were due to the same fact: it deadened the nerves for a time to whatever sense of discomfort one might then be suffering from, but made no change whatever in the condition of the body that caused the discomfort. Any drug which has this deadening effect on the nerves is called a narcotic; and it is in this class that alcohol belongs, together with the stronger narcotics, opium, chloroform, ether, and chloral.
In fact, it was quickly found in the bitter school of experience that alcohol, though producing an apparent glow of warmth for the time, instead of increasing our power to resist cold, rapidly and markedly lessens it; so that those who drink heavily are much more likely to die from cold and exposure than those who let alcohol alone. Nowadays, Arctic explorers, explorers in the tropics, officers of armies upon forced marches, and those who have to train themselves for the most severe strains on their powers of endurance, all bear testimony to the fact that the use of alcohol is harmful instead of helpful under these conditions, and that it is not for a moment to be compared to real foods, like meat, sugar, or fat.
Its Effects on Working Power. Then it was claimed that alcohol increased the working power of the body; that more work and better work would be done by men at hard labor, if a little beer, or wine, was taken with their meals. Indeed, most of those who take alcohol believe that they work faster and better, and with less effort with it than without it. But the moment that this feeling of increased power and strength was submitted to careful tests in the laboratory and in the workshop, it was found that instead of more being accomplished when alcohol was taken, even in very moderate amounts, less was accomplished by from six to twelve per cent. The false sense of increased vigor and power was due to the narcotic power of alcohol to deaden the sensations of fatigue and discomfort.
It was discovered long ago, almost as soon as men began to put themselves into training for athletic feats or contests, that alcohol was not only useless, but very injurious. Any champion who, on the eve of a contest, "breaks training" by "taking a drink," knows that he is endangering his record and giving his competitors an advantage over him.
Its Deadening Effect. In short, we must conclude that the so-called stimulating effects of alcohol are really due to its power of deadening us to sensations of discomfort or fatigue. Its boasted power of making men more "sociable" by loosening their tongues is due to precisely the same effect: it takes off the balance-wheels of custom, reserve, and propriety—too often of decency, as well. This is where the greatest and most serious danger of alcohol comes in, that even in the smallest doses, it begins to deaden us both mentally and morally, and thus lessens our power of control. This loss of control steadily increases with each successive drink until finally the man, completely under the influence of liquor, reaches a stage when he can neither think rationally nor speak intelligently, nor even walk straight or stand upright—making the most humiliating and disgusting spectacle which humanity can present.
Harmful Effects on the Body. All doctors and scientists and thoughtful men are now practically agreed: First, that alcohol in excess is exceedingly dangerous and injurious, and one of the most serious enemies that modern civilization has to face.
Second, that even in the smallest doses, as a deadener of the sense of discomfort, it blinds the man who takes it to the harm it is doing and, as soon as its temporary comforting effects begin to pass off, naturally leads its victim to resort to it again in increasing doses. In fact, unlike a true food which quickly satisfies, the use of alcohol too often creates an appetite that grows by what it feeds on, and is never satisfied. For every natural appetite or instinct, nature provides a check; but she provides none for tastes that must be acquired. The last man to find out that he is taking too much is the drinker himself. Taken first to relieve discomfort, its own poisonous after-effects create a new and permanent demand for it.
The third point on which agreement is almost unanimous among scientists and physicians is that, as will be seen in later chapters, there are a considerable number of diseases of the liver, of the heart and blood vessels, of the kidneys, and of the nervous system, which are produced by, or almost always associated with, alcohol. There are, for instance, three different kinds of alcoholic insanity. It is true that these disease-changes most commonly occur in the tissues of those who use alcohol to excess; and it is also probably true that what the alcoholic poison is doing in these cases, is picking out the weak spots in the body and the weaker individuals in the community. Even the strongest and best of us have our little weaknesses of digestion, of nerves, and of disposition that we know of, as well as others that we are not acquainted with. And what is the use of running the risk of having these picked out and made worse in this dangerous and unpleasant manner, just for the sake of a little temporary indulgence?
Moreover, while it is admitted that most of these harmful effects of alcohol are produced by its use in excess, it is daily becoming a more and more difficult matter to decide just how much is "excess." It certainly differs widely in different individuals, and in different organs and parts in the same body. An amount of alcohol which one man might possibly take without harm may greatly injure another; and its frequent use, though it does not produce the slightest sign of intoxication, or even of discomfort, or headache, may be slowly and fatally damaging the cells of the liver or kidney. In fact, the conviction is growing among scientists that alcohol does the greatest harm in this slow, insidious way without its user's realizing it in any way until too late to break the fearful habit.
It may even be perfectly true that alcohol seriously injures not more than ten or fifteen per cent of those who take it in small quantities; but how can you tell whether you, or your liver, or kidney, or nerve cells, belong in the ten per cent or the ninety per cent class? On general principles, it would hardly seem worth while making the test simply for the sake of finding out. You never can quite tell what alcohol has done to you, until the post mortem (after death) examination—and then the question will not interest you very much.
Its Effect upon Character. Just as alcohol deadens the body and the senses, especially the higher ones—so it has a terrible effect upon the mental and moral sides of our natures. The results of the use of alcohol are so well known that it is unnecessary here to either describe or picture them. All that is needed is to keep our eyes open upon the street, and read the police reports. What good effects upon man's better nature has alcohol to show as an offset for this dreadful tendency to bring out the worst and lowest in man?
Increasing Knowledge of the Bad Effects of Alcohol is Decreasing its Use. It is most impressive that almost everything we have found out about alcohol in the short time that we have been studying it carefully has been to its discredit. Fifty years ago beer and wine, all over the civilized world, were commonly regarded as foods. Now they are not considered true foods, but harmful beverages. Fifty years ago alcohol was believed to improve the digestion and increase the appetite. Now we know that it does neither. It was believed to increase working power, and has now been clearly shown to diminish it. It was supposed to increase the thinking power and stimulate the imagination, and now we know that it dulls and muddles both.
Fifty years ago it was freely used as medicine for all sorts of illnesses, both by doctor and patient; it was supposed to stimulate the heart, to sustain the strength, to increase the power of the body to resist disease, and to sustain and support life in emergencies. Now we know that practically all these claims are unfounded, and that such value as it has in medicine is chiefly as a narcotic, as a deadener of the sense of discomfort. As a result, it is already used in medicine only about one-fourth as much as it was fifty years ago, and its use is still steadily decreasing.
Fifty years ago, in this country, in England, and on the continent of Europe, farm laborers and servants living in the house, expected so many pints or quarts of ale or beer a day, as part of their regular food rations, just as they now would expect milk or tea or coffee. It was only a few years ago that the great steamship companies stopped issuing grog, or raw spirits, to the sailors in their employ, as part of their daily ration, because they at last came to realize how harmful were its effects. And a score of similar instances could be mentioned, showing that the unthinking and general use of alcohol as a beverage at our tables is steadily and constantly diminishing. Great temperance societies are springing up in this and other civilized countries and are having a powerful influence in showing the harm of the use of alcohol and in inducing people to abstain from using it. |
|