p-books.com
A Budget of Paradoxes, Volume I (of II)
by Augustus De Morgan
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

"In the year 1836, at which time Lacomme could neither read nor write, he had constructed a circular reservoir and wished to know the quantity of stone that would be required to pave the bottom, and for this purpose called on a professor of mathematics. On putting his question and giving the diameter, he was surprised at getting the following answer from the Professor: 'Qu'il lui etait impossible de le lui dire au juste, attendu que personne n'avait encore pu trouver d'une maniere exacte le rapport de la circonference au diametre.'[43] From this he was led to attempt the solution of the problem. His first process was purely mechanical, and he was so far convinced he had made the discovery that he took to educating himself, and became an expert arithmetician, and then found that arithmetical results agreed with his mechanical experiments. He appears to have eked out a bare existence for many years by teaching arithmetic, all the time struggling to get a hearing from some of the learned societies, but without success. In the year 1855 he found his way to Paris, where, as if by accident, he made the acquaintance of a young gentleman, son of M. Winter, a commissioner of police, and taught him his peculiar methods of calculation. The young man was so enchanted that he strongly recommended Lacomme to his father, and {47} subsequently through M. Winter he obtained an introduction to the President of the Society of Arts and Sciences of Paris. A committee of the society was appointed to examine and report upon his discovery, and the society at its seance of March 17, 1856, awarded a silver medal of the first class to M. Joseph Lacomme for his discovery of the true ratio of diameter to circumference in a circle. He subsequently received three other medals from other societies. While writing this I have his likeness before me, with his medals on his breast, which stands as a frontispiece to a short biography of this extraordinary man, for which I am indebted to the gentleman who did me the honor to publish a French translation of the pamphlet I distributed at the meeting of the British Association for the Advancement of Science, at Oxford, in 1860."—Correspondent, May 3, 1866.

My inquiries show that the story of the medals is not incredible. There are at Paris little private societies which have not so much claim to be exponents of scientific opinion as our own Mechanics' Institutes. Some of them were intended to give a false lustre: as the "Institut Historique," the members of which are "Membre de l'Institut Historique." That M. Lacomme should have got four medals from societies of this class is very possible: that he should have received one from any society at Paris which has the least claim to give one is as yet simply incredible.



NICOLAUS OF CUSA'S ATTEMPT.

Nicolai de Cusa Opera Omnia. Venice, 1514. 3 vols. folio.

The real title is "Haec accurata recognitio trium voluminum operum clariss. P. Nicolai Cusae ... proxime sequens pagina monstrat."[44] Cardinal Cusa, who died in 1464, is one of the earliest modern attempters. His quadrature is found in the second volume, and is now quite unreadable.

{48} In these early days every quadrator found a geometrical opponent, who finished him. Regimontanus[45] did this office for the Cardinal.



HENRY CORNELIUS AGRIPPA.

De Occulta Philosophia libri III. By Henry Cornelius Agrippa. Lyons, 1550, 8vo.

De incertitudine et vanitate scientiarum. By the same. Cologne, 1531, 8vo.

The first editions of these works were of 1530, as well as I can make out; but the first was in progress in 1510.[46] In the second work Agrippa repents of having wasted time on the magic of the first; but all those who actually deal with demons are destined to eternal fire with Jamnes and Mambres and Simon Magus. This means, as is the fact, that his occult philosophy did not actually enter upon black magic, but confined itself to the power of the stars, of numbers, etc. The fourth book, which appeared after the death of Agrippa, and really concerns dealing with evil spirits, is undoubtedly spurious. It is very difficult to make out what Agrippa really believed on the subject. I have introduced his books as the most marked specimens of treatises on magic, a paradox of our day, though not far from orthodoxy in his; and here I should have ended my notice, if I had not casually found something more interesting to the reader of our day.

{49}



WHICH LEADS TO WALTER SCOTT.

Walter Scott, it is well known, was curious on all matters connected with magic, and has used them very widely. But it is hardly known how much pains he has taken to be correct, and to give the real thing. The most decided detail of a magical process which is found in his writings is that of Dousterswivel in The Antiquary; and it is obvious, by his accuracy of process, that he does not intend the adept for a mere impostor, but for one who had a lurking belief in the efficacy of his own processes, coupled with intent to make a fraudulent use of them. The materials for the process are taken from Agrippa. I first quote Mr. Dousterswivel:

"... I take a silver plate when she [the moon] is in her fifteenth mansion, which mansion is in de head of Libra, and I engrave upon one side de worts Schedbarschemoth Schartachan [ch should be t]—dat is, de Intelligence of de Intelligence of de moon—and I make his picture like a flying serpent with a turkey-cock's head—vary well—Then upon this side I make de table of de moon, which is a square of nine, multiplied into itself, with eighty-one numbers [nine] on every side and diameter nine...."

In the De Occulta Philosophia, p. 290, we find that the fifteenth mansion of the moon incipit capite Librae, and is good pro extrahendis thesauris, the object being to discover hidden treasure. In p. 246, we learn that a silver plate must be used with the moon. In p. 248, we have the words which denote the Intelligence, etc. But, owing to the falling of a number into a wrong line, or the misplacement of a line, one or other—which takes place in all the editions I have examined—Scott has, sad to say, got hold of the wrong words; he has written down the demon of the demons of the moon. Instead of the gibberish above, it should have been Malcha betarsisim hed beruah schenhakim. In p. 253, we have the magic square of the moon, with eighty-one numbers, and the symbol for the Intelligence, which Scott likens to a flying {50} serpent with a turkey-cock's head. He was obliged to say something; but I will stake my character—and so save a woodcut—on the scratches being more like a pair of legs, one shorter than the other, without a body, jumping over a six-barred gate placed side uppermost. Those who thought that Scott forged his own nonsense, will henceforth stand corrected. As to the spirit Peolphan, etc., no doubt Scott got it from the authors he elsewhere mentions, Nicolaus Remigius[47] and Petrus Thyracus; but this last word should be Thyraeus.

The tendency of Scott's mind towards prophecy is very marked, and it is always fulfilled. Hyder, in his disguise, calls out to Tippoo: "Cursed is the prince who barters justice for lust; he shall die in the gate by the sword of the stranger." Tippoo was killed in a gateway at Seringapatam.[48]



FINAEUS ON CIRCLE SQUARING.

Orontii Finaei ... Quadratura Circuli. Paris, 1544, 4to.

Orontius[49] squared the circle out of all comprehension; but he was killed by a feather from his own wing. His {51} former pupil, John Buteo,[50] the same who—I believe for the first time—calculated the question of Noah's ark, as to its power to hold all the animals and stores, unsquared him completely. Orontius was the author of very many works, and died in 1555. Among the laudatory verses which, as was usual, precede this work, there is one of a rare character: a congratulatory ode to the wife of the author. The French now call this writer Oronce Finee; but there is much difficulty about delatinization. Is this more correct than Oronce Fine, which the translator of De Thou uses? Or than Horonce Phine, which older writers give? I cannot understand why M. de Viette[51] should be called Viete, because his Latin name is Vieta. It is difficult to restore Buteo; for not only now is butor a blockhead as well as a bird, but we really cannot know what kind of bird Buteo stood for. We may be sure that Madame Fine was Denise Blanche; for Dionysia Candida can mean nothing else. Let her shade rejoice in the fame which Hubertus Sussannaeus has given her.

I ought to add that the quadrature of Orontius, and solutions of all the other difficulties, were first published in De Rebus Mathematicis Hactenus Desideratis,[52] of which I have not the date.



{52}

DUCHESNE, AND A DISQUISITION ON ETYMOLOGY.

Nicolai Raymari Ursi Dithmarsi Fundamentum Astronomicum, id est, nova doctrina sinuum et triangulorum.... Strasburg, 1588, 4to.[53]

People choose the name of this astronomer for themselves: I take Ursus, because he was a bear. This book gave the quadrature of Simon Duchesne,[54] or a Quercu, which excited Peter Metius,[55] as presently noticed. It also gave that unintelligible reference to Justus Byrgius which has been used in the discussion about the invention of logarithms.[56]

The real name of Duchesne is Van der Eycke. I have met with a tract in Dutch, Letterkundige Aanteekeningen, upon Van Eycke, Van Ceulen,[57] etc., by J. J. Dodt van Flensburg,[58] which I make out to be since 1841 in date. I should {53} much like a translation of this tract to be printed, say in the Phil. Mag. Dutch would be clear English if it were properly spelt. For example, learn-master would be seen at once to be teacher; but they will spell it leermeester. Of these they write as van deze; widow they make weduwe. All this is plain to me, who never saw a Dutch dictionary in my life; but many of their misspellings are quite unconquerable.



FALCO'S RARE TRACT.

Jacobus Falco Valentinus, miles Ordinis Montesiani, hanc circuli quadraturam invenit. Antwerp, 1589, 4to.[59]

The attempt is more than commonly worthless; but as Montucla and others have referred to the verses at the end, and as the tract is of the rarest, I will quote them:

Circulus loquitur. Vocabar ante circulus Eramque curvus undique Ut alta solis orbita Et arcus ille nubium. Eram figura nobilis Carensque sola origine Carensque sola termino. Modo indecora prodeo Novisque foedor angulis. Nec hoc peregit Archytas[60] Neque Icari pater neque Tuus, Iapete, filius. Quis ergo casus aut Deus Meam quadravit aream?

Respondet auctor. Ad alta Turiae ostia Lacumque limpidissimum Sita est beata civitas {54} Parum Saguntus abfuit Abestque Sucro plusculum. Hic est poeta quispiam Libenter astra consulens Sibique semper arrogans Negata doctioribus, Senex ubique cogitans Sui frequenter immemor Nec explicare circinum Nec exarare lineas Sciens ut ipse praedicat. Hic ergo bellus artifex Tuam quadravit aream.[61]

Falco's verses are pretty, if the U-mysteries be correct; but of these things I have forgotten—what I knew. [One mistake has been pointed out to me: it is Archȳtas].

As a specimen of the way in which history is written, I copy the account which Montucla—who is accurate when he writes about what he has seen—gives of these verses. He gives the date 1587; he places the verses at the beginning instead of the end; he says the circle thanks its quadrator affectionately; and he says the good and modest chevalier gives all the glory to the patron saint of his order. All of little consequence, as it happens; but writing at second-hand makes as complete mistakes about more important matters.

{55}



BUNGUS ON THE MYSTERY OF NUMBER.

Petri Bungi Bergomatis Numerorum mysteria. Bergomi [Bergamo], 1591, 4to. Second Edition.

The first edition is said to be of 1585;[62] the third, Paris, 1618. Bungus is not for my purpose on his own score, but those who gave the numbers their mysterious characters: he is but a collector. He quotes or uses 402 authors, as we are informed by his list; this just beats Warburton,[63] whom some eulogist or satirist, I forget which, holds up as having used 400 authors in some one work. Bungus goes through 1, 2, 3, etc., and gives the account of everything remarkable in which each number occurs; his accounts not being always mysterious. The numbers which have nothing to say for themselves are omitted: thus there is a gap between 50 and 60. In treating 666, Bungus, a good Catholic, could not compliment the Pope with it, but he fixes it on Martin Luther with a little forcing. If from A to I represent 1-10, from K to S 10-90, and from T to Z 100-500, we see:

M A R T I N L U T E R A 30 1 80 100 9 40 20 200 100 5 80 1

which gives 666. Again, in Hebrew, Lulter does the same:

[Hebrew: R T L W L] 200 400 30 6 30

And thus two can play at any game. The second is better than the first: to Latinize the surname and not the Christian {56} name is very unscholarlike. The last number mentioned is a thousand millions; all greater numbers are dismissed in half a page. Then follows an accurate distinction between number and multitude—a thing much wanted both in arithmetic and logic.



WHICH LEADS TO A STORY ABOUT THE ROYAL SOCIETY.

What may be the use of such a book as this? The last occasion on which it was used was the following. Fifteen or sixteen years ago the Royal Society determined to restrict the number of yearly admissions to fifteen men of science, and noblemen ad libitum; the men of science being selected and recommended by the Council, with a power, since practically surrendered, to the Society to elect more. This plan appears to me to be directly against the spirit of their charter, the true intent of which is, that all who are fit should be allowed to promote natural knowledge in association, from and after the time at which they are both fit and willing. It is also working more absurdly from year to year; the tariff of fifteen per annum will soon amount to the practical exclusion of many who would be very useful. This begins to be felt already, I suspect. But, as appears above, the body of the Society has the remedy in its own hands. When the alteration was discussed by the Council, my friend the late Mr. Galloway,[64] then one of the body, opposed it strongly, and inquired particularly into the reason why fifteen, of all numbers, was the one to be selected. Was it because fifteen is seven and eight, typifying the Old Testament Sabbath, and the New Testament day of the resurrection following? Was it because Paul strove fifteen days against Peter, proving that he was a doctor both of the Old and New Testament? Was it because the prophet Hosea bought a lady {57} for fifteen pieces of silver? Was it because, according to Micah, seven shepherds and eight chiefs should waste the Assyrians? Was it because Ecclesiastes commands equal reverence to be given to both Testaments—such was the interpretation—in the words "Give a portion to seven, and also to eight"? Was it because the waters of the Deluge rose fifteen cubits above the mountains?—or because they lasted fifteen decades of days? Was it because Ezekiel's temple had fifteen steps? Was it because Jacob's ladder has been supposed to have had fifteen steps? Was it because fifteen years were added to the life of Hezekiah? Was it because the feast of unleavened bread was on the fifteenth day of the month? Was it because the scene of the Ascension was fifteen stadia from Jerusalem? Was it because the stone-masons and porters employed in Solomon's temple amounted to fifteen myriads? etc. The Council were amused and astounded by the volley of fifteens which was fired at them; they knowing nothing about Bungus, of which Mr. Galloway—who did not, as the French say, indicate his sources—possessed the copy now before me. In giving this anecdote I give a specimen of the book, which is exceedingly rare. Should another edition ever appear, which is not very probable, he would be but a bungling Bungus who should forget the fifteen of the Royal Society.



AND ALSO TO A QUESTION OF EVIDENCE.

[I make a remark on the different colors which the same person gives to one story, according to the bias under which he tells it. My friend Galloway told me how he had quizzed the Council of the Royal Society, to my great amusement. Whenever I am struck by the words of any one, I carry away a vivid recollection of position, gestures, tones, etc. I do not know whether this be common or uncommon. I never recall this joke without seeing before me my friend, leaning against his bookcase, with Bungus open in his hand, and a certain half-depreciatory tone which he often used {58} when speaking of himself. Long after his death, an F.R.S. who was present at the discussion, told me the story. I did not say I had heard it, but I watched him, with Galloway at the bookcase before me. I wanted to see whether the two would agree as to the fact of an enormous budget of fifteens having been fired at the Council, and they did agree perfectly. But when the paragraph of the Budget appeared in the Athenaeum, my friend, who seemed rather to object to the showing-up, assured me that the thing was grossly exaggerated; there was indeed a fifteen or two, but nothing like the number I had given. I had, however, taken sharp note of the previous narration.



AND TO ANOTHER QUESTION OF EVIDENCE.

I will give another instance. An Indian officer gave me an account of an elephant, as follows. A detachment was on the march, and one of the gun-carriages got a wheel off the track, so that it was also off the ground, and hanging over a precipice. If the bullocks had moved a step, carriages, bullocks, and all must have been precipitated. No one knew what could be done until some one proposed to bring up an elephant, and let him manage it his own way. The elephant took a moment's survey of the fix, put his trunk under the axle of the free wheel, and waited. The surrounders, who saw what he meant, moved the bullocks gently forward, the elephant followed, supporting the axle, until there was ground under the wheel, when he let it quietly down. From all I had heard of the elephant, this was not too much to believe. But when, years afterwards, I reminded my friend of his story, he assured me that I had misunderstood him, that the elephant was directed to put his trunk under the wheel, and saw in a moment why. This is reasonable sagacity, and very likely the correct account; but I am quite sure that, in the fit of elephant-worship under which the story was first told, it was told as I have first stated it.] {59}



GIORDANO BRUNO AND HIS PARADOXES.

[Jordani Bruni Nolani de Monade, Numero et Figura ... item de Innumerabilibus, Immenso, et Infigurabili ... Frankfort, 1591, 8vo.[65]

I cannot imagine how I came to omit a writer whom I have known so many years, unless the following story will explain it. The officer reproved the boatswain for perpetual swearing; the boatswain answered that he heard the officers swear. "Only in an emergency," said the officer. "That's just it," replied the other; "a boatswain's life is a life of 'mergency." Giordano Bruno was all paradox; and my mind was not alive to his paradoxes, just as my ears might have become dead to the boatswain's oaths. He was, as has been said, a vorticist before Descartes,[66] an optimist before Leibnitz, a Copernican before Galileo. It would be easy to collect a hundred strange opinions of his. He was born about 1550, and was roasted alive at Rome, February 17, 1600, for the maintenance and defence of the holy Church, and the rights and liberties of the same. These last words are from the writ of our own good James I, under which Leggatt[67] was roasted at Smithfield, in March 1612; and if I had a copy of the instrument under which Wightman[68] was roasted at Lichfield, a month afterwards, I daresay I should {60} find something quite as edifying. I extract an account which I gave of Bruno in the Comp. Alm. for 1855:

"He was first a Dominican priest, then a Calvinist; and was roasted alive at Rome, in 1600, for as many heresies of opinion, religious and philosophical, as ever lit one fire. Some defenders of the papal cause have at least worded their accusations so to be understood as imputing to him villainous actions. But it is positively certain that his death was due to opinions alone, and that retractation, even after sentence, would have saved him. There exists a remarkable letter, written from Rome on the very day of the murder, by Scioppius[69] (the celebrated scholar, a waspish convert from Lutheranism, known by his hatred to Protestants and Jesuits) to Rittershusius,[70] a well-known Lutheran writer on civil and canon law, whose works are in the index of prohibited books. This letter has been reprinted by Libri (vol. iv. p. 407). The writer informs his friend (whom he wished to convince that even a Lutheran would have burnt Bruno) that all Rome would tell him that Bruno died for Lutheranism; but this is because the Italians do not know the difference between one heresy and another, in which simplicity (says the writer) may God preserve them. That is to say, they knew the difference between a live heretic and a roasted one by actual inspection, but had no idea of the difference between a Lutheran and a Calvinist. The countrymen of Boccaccio would have smiled at the idea which the German scholar entertained of them. They said Bruno was burnt for Lutheranism, a name under which they classed all Protestants: and they are better witnesses than Schopp, or Scioppius. He then proceeds to describe to his Protestant friend (to whom he would certainly not have omitted any act which both their churches would have condemned) the mass of opinions with which Bruno was charged; as that there {61} are innumerable worlds, that souls migrate, that Moses was a magician, that the Scriptures are a dream, that only the Hebrews descended from Adam and Eve, that the devils would be saved, that Christ was a magician and deservedly put to death, etc. In fact, says he, Bruno has advanced all that was ever brought forward by all heathen philosophers, and by all heretics, ancient and modern. A time for retractation was given, both before sentence and after, which should be noted, as well for the wretched palliation which it may afford, as for the additional proof it gives that opinions, and opinions only, brought him to the stake. In this medley of charges the Scriptures are a dream, while Adam, Eve, devils, and salvation are truths, and the Saviour a deceiver. We have examined no work of Bruno except the De Monade, etc., mentioned in the text. A strong though strange theism runs through the whole, and Moses, Christ, the Fathers, etc., are cited in a manner which excites no remark either way. Among the versions of the cause of Bruno's death is atheism: but this word was very often used to denote rejection of revelation, not merely in the common course of dispute, but by such writers, for instance, as Brucker[71] and Morhof.[72] Thus Morhof says of the De Monade, etc., that it exhibits no manifest signs of atheism. What he means by the word is clear enough, when he thus speaks of a work which acknowledges God in hundreds of places, and rejects opinions as blasphemous in several. The work of Bruno in which his astronomical opinions are contained is De Monade, etc. (Frankfort, 1591, 8vo). He is the most thorough-going Copernican possible, and throws out almost every opinion, true or false, which has ever been discussed by astronomers, from the theory of innumerable inhabited worlds and systems to that {62} of the planetary nature of comets. Libri (vol. iv)[73] has reprinted the most striking part of his expressions of Copernican opinion."



THIS LEADS TO THE CHURCH QUESTION.

The Satanic doctrine that a church may employ force in aid of its dogma is supposed to be obsolete in England, except as an individual paradox; but this is difficult to settle. Opinions are much divided as to what the Roman Church would do in England, if she could: any one who doubts that she claims the right does not deserve an answer. When the hopes of the Tractarian section of the High Church were in bloom, before the most conspicuous intellects among them had transgressed their ministry, that they might go to their own place, I had the curiosity to see how far it could be ascertained whether they held the only doctrine which makes me the personal enemy of a sect. I found in one of their tracts the assumption of a right to persecute, modified by an asserted conviction that force was not efficient. I cannot now say that this tract was one of the celebrated ninety; and on looking at the collection I find it so poorly furnished with contents, etc., that nothing but searching through three thick volumes would decide. In these volumes I find, augmenting as we go on, declarations about the character and power of "the Church" which have a suspicious appearance. The suspicion is increased by that curious piece of sophistry, No. 87, on religious reserve. The queer paradoxes of that tract leave us in doubt as to everything but this, that the church(man) is not bound to give his whole counsel in all things, and not bound to say what the things are in which he does not give it. It is likely enough that some of the "rights and liberties" are but scantily described. There is now no fear; but the time was when, if not fear, there might be a looking for of fear to come; nobody could then be so {63} sure as we now are that the lion was only asleep. There was every appearance of a harder fight at hand than was really found needful.

Among other exquisite quirks of interpretation in the No. 87 above mentioned is the following. God himself employs reserve; he is said to be decked with light as with a garment (the old or prayer-book version of Psalm civ. 2). To an ordinary apprehension this would be a strong image of display, manifestation, revelation; but there is something more. "Does not a garment veil in some measure that which it clothes? Is not that very light concealment?"

This No. 87, admitted into a series, fixes upon the managers of the series, who permitted its introduction, a strong presumption of that underhand intent with which they were charged. At the same time it is honorable to our liberty that this series could be published: though its promoters were greatly shocked when the Essayists and Bishop Colenso[74] took a swing on the other side. When No. 90 was under discussion, Dr. Maitland,[75] the librarian at Lambeth, asked Archbishop Howley[76] a question about No. 89. "I did not so much as know there was a No. 89," was the answer. I am almost sure I have seen this in print, and quite sure that Dr. Maitland told it to me. It is creditable that there was so much freedom; but No. 90 was too bad, and was stopped.

The Tractarian mania has now (October 1866) settled down into a chronic vestment disease, complicated with fits of transubstantiation, which has taken the name of {64} Ritualism. The common sense of our national character will not put up with a continuance of this grotesque folly; millinery in all its branches will at last be advertised only over the proper shops. I am told that the Ritualists give short and practical sermons; if so, they may do good in the end. The English Establishment has always contained those who want an excitement; the New Testament, in its plain meaning, can do little for them. Since the Revolution, Jacobitism, Wesleyanism, Evangelicism, Puseyism,[77] and Ritualism, have come on in turn, and have furnished hot water for those who could not wash without it. If the Ritualists should succeed in substituting short and practical teaching for the high-spiced lectures of the doctrinalists, they will be remembered with praise. John the Baptist would perhaps not have brought all Jerusalem out into the wilderness by his plain and good sermons: it was the camel's hair and the locusts which got him a congregation, and which, perhaps, added force to his precepts. When at school I heard a dialogue, between an usher and the man who cleaned the shoes, about Mr. ——, a minister, a very corporate body with due area of waistcoat. "He is a man of great erudition," said the first. "Ah, yes sir," said Joe; "any one can see that who looks at that silk waistcoat."]



OF THOMAS GEPHYRANDER SALICETUS.

[When I said at the outset that I had only taken books from my own store, I should have added that I did not make any search for information given as part of a work. Had I looked through all my books, I might have made some curious additions. For instance, in Schott's Magia Naturalis[78] {65} (vol. iii. pp. 756-778) is an account of the quadrature of Gephyrauder, as he is misprinted in Montucla. He was Thomas Gephyrander Salicetus; and he published two editions, in 1608 and 1609.[79] I never even heard of a copy of either. His work is of the extreme of absurdity: he makes a distinction between geometrical and arithmetical fractions, and evolves theorems from it. More curious than his quadrature is his name; what are we to make of it? If a German, he is probably a German form of Bridgeman. and Salicetus refers him to Weiden. But Thomas was hardly a German Christian name of his time; of 526 German philosophers, physicians, lawyers, and theologians who were biographed by Melchior Adam,[80] only two are of this name. Of these one is Thomas Erastus,[81] the physician whose theological writings against the Church as a separate power have given the name of Erastians to those who follow his doctrine, whether they have heard of him or not. Erastus is little known; accordingly, some have supposed that he must be Erastus, the friend of St. Paul and Timothy (Acts xix. 22; 2 Tim. iv. 20; Rom. xvi. 23), but what this gentleman did to earn the character is not hinted at. Few words would have done: Gaius (Rom. xvi. 23) has an immortality which many more noted men have missed, given by John Bunyan, out of seven words of St. Paul. I was once told that the Erastians got their name from Blastus, and I could not solve bl = er: at last I remembered that Blastus was a chamberlain[82] as well as Erastus; hence the association which {66} caused the mistake. The real heresiarch was a physician who died in 1583; his heresy was promulgated in a work, published immediately after his death by his widow, De Excommunicatione Ecclesiastica. He denied the power of excommunication on the principle above stated; and was answered by Besa.[83] The work was translated by Dr. R. Lee[84] (Edinb. 1844, 8vo). The other is Thomas Grynaeus,[85] a theologian, nephew of Simon, who first printed Euclid in Greek; of him Adam says that of works he published none, of learned sons four. If Gephyrander were a Frenchman, his name is not so easily guessed at; but he must have been of La Saussaye. The account given by Schott is taken from a certain Father Philip Colbinus, who wrote against him.

In some manuscripts lately given to the Royal Society, David Gregory,[86] who seems to have seen Gephyrander's work, calls him Salicetus Westphalus, which is probably on the title-page. But the only Weiden I can find is in Bavaria. Murhard has both editions in his Catalogue, but had plainly never seen the books: he gives the author as Thomas Gep. Hyandrus, Salicettus Westphalus. Murhard is a very old referee of mine; but who the non nominandus was to see Montucla's Gephyrander in Murhard's Gep. Hyandrus, both writers being usually accurate?]



NAPIER ON REVELATIONS.

A plain discoverie of the whole Revelation of St. John ... whereunto are annexed certain oracles of Sibylla.... Set Foorth by John Napeir L. of Marchiston. London, 1611, 4to.[87]

{67}

The first edition was Edinburgh, 1593,[88] 4to. Napier[89] always believed that his great mission was to upset the Pope, and that logarithms, and such things, were merely episodes and relaxations. It is a pity that so many books have been written about this matter, while Napier, as good as any, is forgotten and unread. He is one of the first who gave us the six thousand years. "There is a sentence of the house of Elias reserved in all ages, bearing these words: The world shall stand six thousand years, and then it shall be consumed by fire: two thousand yeares voide or without lawe, two thousand yeares under the law, and two thousand yeares shall be the daies of the Messias...."

I give Napier's parting salute: it is a killing dilemma:

"In summar conclusion, if thou o Rome aledges thyselfe reformed, and to beleeue true Christianisme, then beleeue Saint John the Disciple, whome Christ loued, publikely here in this Reuelation proclaiming thy wracke, but if thou remain Ethnick in thy priuate thoghts, beleeuing[90] the old Oracles of the Sibyls reuerently keeped somtime in thy Capitol: then doth here this Sibyll proclame also thy wracke. Repent therefore alwayes, in this thy latter breath, as thou louest thine Eternall salvation. Amen."

—Strange that Napier should not have seen that this appeal could not succeed, unless the prophecies of the Apocalypse were no true prophecies at all.

{68}



OF GILBERT'S DE MAGNETE.

De Magnete magneticisque corporibus, et de magno magnete tellure. By William Gilbert. London, 1600, folio.—There is a second edition; and a third, according to Watt.[91]

Of the great work on the magnet there is no need to speak, though it was a paradox in its day. The posthumous work of Gilbert, "De Mundo nostro sublunari philosophia nova" (Amsterdam, 1651, 4to)[92] is, as the title indicates, confined to the physics of the globe and its atmosphere. It has never excited attention: I should hope it would be examined with our present lights.



OF GIOVANNI BATISTA PORTA.

Elementorum Curvilineorium Libri tres. By John Baptista Porta. Rome, 1610, 4to.[93]

This is a ridiculous attempt, which defies description, except that it is all about lunules. Porta was a voluminous writer. His printer announces fourteen works printed, and four to come, besides thirteen plays printed, and eleven waiting. His name is, and will be, current in treatises on physics for more reasons than one.

{69}



CATALDI ON THE QUADRATURE.

Trattato della quadratura del cerchio. Di Pietro Antonio Cataldi. Bologna, 1612, folio.[94]

Rheticus,[95] Vieta, and Cataldi are the three untiring computers of Germany, France, and Italy; Napier in Scotland, and Briggs[96] in England, come just after them. This work claims a place as beginning with the quadrature of Pellegrino Borello[97] of Reggio, who will have the circle to be exactly 3 diameters and 69/484 of a diameter. Cataldi, taking Van Ceulen's approximation, works hard at the finding of integers which nearly represent the ratio. He had not then the continued fraction, a mode of representation which he gave the next year in his work on the square root. He has but twenty of Van Ceulen's thirty places, which he takes from Clavius[98]: and any one might be puzzled to know whence the Italians got the result; Van Ceulen, in 1612, not having been translated from Dutch. But Clavius names his comrade Gruenberger, and attributes the approximation to them {70} jointly; "Lud. a Collen et Chr. Gruenbergerus[99] invenerunt," which he had no right to do, unless, to his private knowledge, Gruenberger had verified Van Ceulen. And Gruenberger only handed over twenty of the places. But here is one instance, out of many, of the polyglot character of the Jesuit body, and its advantages in literature.



OF LANSBERGIUS.

Philippi Lausbergii Cyclometriae Novae Libri Duo. Middleburg, 1616, 4to.[100]

This is one of the legitimate quadratures, on which I shall here only remark that by candlelight it is quadrature under difficulties, for all the diagrams are in red ink.



A TEXT LEADING TO REMARKS ON PRESTER JOHN.

Recherches Curieuses des Mesures du Monde. By S. C. de V. Paris, 1626, 8vo (pp. 48).[101]

It is written by some Count for his son; and if all the French nobility would have given their sons the same kind of instruction about rank, the old French aristocracy would have been as prosperous at this moment as the English peerage and squireage. I sent the tract to Capt. Speke,[102] shortly after his arrival in England, thinking he might like {71} to see the old names of the Ethiopian provinces. But I first made a copy of all that relates to Prester John,[103] himself a paradox. The tract contains, inter alia, an account of the four empires; of the great Turk, the great Tartar, the great Sophy, and the great Prester John. This word great (grand), which was long used in the phrase "the great Turk," is a generic adjunct to an emperor. Of the Tartars it is said that "c'est vne nation prophane et barbaresque, sale et vilaine, qui mangent la chair demie crue, qui boiuent du laict de jument, et qui n'vsent de nappes et seruiettes que pour essuyer leurs bouches et leurs mains."[104] Many persons have heard of Prester John, and have a very indistinct idea of him. I give all that is said about him, since the recent discussions about the Nile may give an interest to the old notions of geography.

"Le grand Prestre Jean qui est le quatriesme en rang, est Empereur d'Ethiopie, et des Abyssins, et se vante d'estre issu de la race de Dauid, comme estant descendu de la Royne de Saba, Royne d'Ethiopie, laquelle estant venue en Hierusalem pour voir la sagesse de Salomon, enuiron l'an du monde 2952, s'en retourna grosse d'vn fils qu'ils nomment Moylech, duquel ils disent estre descendus en ligne directe. Et ainsi il se glorifie d'estre le plus ancien Monarque de la terre, disant que son Empire a dure plus de trois mil ans, ce que nul autre Empire ne peut dire. Aussi met-il en ses tiltres ce qui s'ensuit: Nous, N. Souuerain en mes Royaumes, vniquement ayme de Dieu, colomne de la foy, sorty de la race de Inda, etc. Les limites de cet Empire touchent a la mer Rouge, et aux montagnes d'Azuma vers {72} l'Orient, et du coste de l'Occident, il est borne du fleuue du Nil, qui le separe de la Nubie, vers le Septentrion il a l'AEgypte, et au Midy les Royaumes de Congo, et de Mozambique, sa longueur contenant quarante degre, qui font mille vingt cinq lieues, et ce depuis Congo ou Mozambique qui sont au Midy, iusqu'en AEgypte qui est au Septentrion, et sa largeur contenant depuis le Nil qui est a l'Occident, iusqu'aux montagnes d'Azuma, qui sont a l'Orient, sept cens vingt cinq lieues, qui font vingt neuf degrez. Cet empire a sous soy trente grandes Prouinces, scavoir, Medra, Gaga, Alchy, Cedalon, Mantro, Finazam, Barnaquez, Ambiam, Fungy, Angote, Cigremaon, Gorga, Cafatez, Zastanla, Zeth, Barly, Belangana, Tygra, Gorgany, Barganaza, d'Ancut, Dargaly, Ambiacatina, Caracogly, Amara, Maon (sic), Guegiera, Bally, Dobora et Macheda. Toutes ces Prouinces cy dessus sont situees iustement sous la ligne equinoxiale, entres les Tropiques de Capricorne, et de Cancer. Mais elles s'approchent de nostre Tropique, de deux cens cinquante lieues plus qu'elles ne font de l'autre Tropique. Ce mot de Prestre Jean signifie grand Seigneur, et n'est pas Prestre comme plusieurs pense, il a este tousiours Chrestien, mais souuent Schismatique: maintenant il est Catholique, et reconnaist le Pape pour Souuerain Pontife. I'ay veu quelqu'vn des ses Euesques, estant en Hierusalem, auec lequel i'ay confere souuent par le moyen de nostre trucheman: il estoit d'vn port graue et serieux, succiur (sic) en son parler, mais subtil a merueilles en tout ce qu'il disoit. Il prenoit grand plaisir au recit que je luy faisais de nos belles ceremonies, et de la grauite de nos Prelats en leurs habits Pontificaux, et autres choses que je laisse pour dire, que l'Ethiopien est ioyoux et gaillard, ne ressemblant en rien a la salete du Tartare, ny a l'affreux regard du miserable Arabe, mais ils sont fins et cauteleux, et ne se fient en personne, soupconneux a merueilles, et fort devotieux, ils ne sont du tout noirs comme l'on croit, i'entens parler de ceux qui ne sont pas sous la ligne Equinoxiale, ny trop proches {73} d'icelle, car ceux qui sont dessous sont les Mores que nous voyons."[105]

It will be observed that the author speaks of his conversation with an Ethiopian bishop, about that bishop's sovereign. Something must have passed between the two which satisfied the writer that the bishop acknowledged his own sovereign under some title answering to Prester John.

{74}



CONCERNING A TRACT BY FIENUS.

De Cometa anni 1618 dissertationes Thomae Fieni[106] et Liberti Fromondi[107] ... Equidem Thomae Fieni epistolica quaestio, An verum sit Coelum moveri et Terram quiescere? London, 1670, 8vo.

This tract of Fienus against the motion of the earth is a reprint of one published in 1619.[108] I have given an account of it as a good summary of arguments of the time, in the Companion to the Almanac for 1836.

{75}



ON SNELL'S WORK.

Willebrordi Snellii. R. F. Cyclometricus. Leyden, 1621, 4to.

This is a celebrated work on the approximative quadrature, which, having the suspicious word cyclometricus, must be noticed here for distinction.[109]



ON BACON'S NOVUM ORGANUM.

1620. In this year, Francis Bacon[110] published his Novum Organum,[111] which was long held in England—but not until the last century—to be the work which taught Newton and all his successors how to philosophize. That Newton never mentions Bacon, nor alludes in any way to his works, passed for nothing. Here and there a paradoxer ventured not to find all this teaching in Bacon, but he was pronounced blind. In our day it begins to be seen that, great as Bacon was, and great as his book really is, he is not the philosophical father of modern discovery.

But old prepossession will find reason for anything. A learned friend of mine wrote to me that he had discovered proof that Newton owned Bacon for his master: the proof was that Newton, in some of his earlier writings, used the {76} phrase experimentum crucis, which is Bacon's. Newton may have read some of Bacon, though no proof of it appears. I have a dim idea that I once saw the two words attributed to the alchemists: if so, there is another explanation; for Newton was deeply read in the alchemists.

I subjoin a review which I wrote of the splendid edition of Bacon by Spedding,[112] Ellis,[113] and Heath.[114] All the opinions therein expressed had been formed by me long before: most of the materials were collected for another purpose.



The Works of Francis Bacon. Edited by James Spedding, R. Leslie Ellis, and Douglas D. Heath. 5 vols.[115]

No knowledge of nature without experiment and observation: so said Aristotle, so said Bacon, so acted Copernicus, Tycho Brahe,[116] Gilbert, Kepler, Galileo, Harvey, etc., before Bacon wrote.[117] No derived knowledge until experiment and observation are concluded: so said Bacon, and no one else. We do not mean to say that he laid down his principle in these words, or that he carried it to the utmost extreme: we mean that Bacon's ruling idea was the {77} collection of enormous masses of facts, and then digested processes of arrangement and elimination, so artistically contrived, that a man of common intelligence, without any unusual sagacity, should be able to announce the truth sought for. Let Bacon speak for himself, in his editor's English:

"But the course I propose for the discovery of sciences is such as leaves but little to the acuteness and strength of wits, but places all wits and understandings nearly on a level. For, as in the drawing of a straight line or a perfect circle, much depends on the steadiness and practice of the hand, if it be done by aim of hand only, but if with the aid of rule or compass little or nothing, so it is exactly with my plan.... For my way of discovering sciences goes far to level men's wits, and leaves but little to individual excellence; because it performs everything by the surest rules and demonstrations."

To show that we do not strain Bacon's meaning, we add what is said by Hooke,[118] whom we have already mentioned as his professed disciple, and, we believe, his only disciple of the day of Newton. We must, however, remind the reader that Hooke was very little of a mathematician, and spoke of algebra from his own idea of what others had told him:

"The intellect is not to be suffered to act without its helps, but is continually to be assisted by some method or engine, which shall be as a guide to regulate its actions, so as that it shall not be able to act amiss. Of this engine, no man except the incomparable Verulam hath had any thoughts and he indeed hath promoted it to a very good pitch; but there is yet somewhat more to be added, which he seemed to want time to complete. By this, as by that {78} art of algebra in geometry, 'twill be very easy to proceed in any natural inquiry, regularly and certainly.... For as 'tis very hard for the most acute wit to find out any difficult problem in geometry without the help of algebra ... and altogether as easy for the meanest capacity acting by that method to complete and perfect it, so will it be in the inquiry after natural knowledge."

Bacon did not live to mature the whole of this plan. Are we really to believe that if he had completed the Instauratio we who write this—and who feel ourselves growing bigger as we write it—should have been on a level with Newton in physical discovery? Bacon asks this belief of us, and does not get it. But it may be said, Your business is with what he did leave, and with its consequences. Be it so. Mr. Ellis says: "That his method is impracticable cannot, I think, be denied, if we reflect not only that it never has produced any result, but also that the process by which scientific truths have been established cannot be so presented as even to appear to be in accordance with it." That this is very true is well known to all who have studied the history of discovery: those who deny it are bound to establish either that some great discovery has been made by Bacon's method—we mean by the part peculiar to Bacon—or, better still, to show that some new discovery can be made, by actually making it. No general talk about induction: no reliance upon the mere fact that certain experiments or observations have been made; let us see where Bacon's induction has been actually used or can be used. Mere induction, enumeratio simplex, is spoken of by himself with contempt, as utterly incompetent. For Bacon knew well that a thousand instances may be contradicted by the thousand and first: so that no enumeration of instances, however large, is "sure demonstration," so long any are left.

The immortal Harvey, who was inventing—we use the word in its old sense—the circulation of the blood, while {79} Bacon was in the full flow of thought upon his system, may be trusted to say whether, when the system appeared, he found any likeness in it to his own processes, or what would have been any help to him, if he had waited for the Novum Organum. He said of Bacon, "He writes philosophy like a Lord Chancellor." This has been generally supposed to be only a sneer at the sutor ultra crepidam; but we cannot help suspecting that there was more intended by it. To us, Bacon is eminently the philosopher of error prevented, not of progress facilitated. When we throw off the idea of being led right, and betake ourselves to that of being kept from going wrong, we read his writings with a sense of their usefulness, his genius, and their probable effect upon purely experimental science, which we can be conscious of upon no other supposition. It amuses us to have to add that the part of Aristotle's logic of which he saw the value was the book on refutation of fallacies. Now is this not the notion of things to which the bias of a practised lawyer might lead him? In the case which is before the Court, generally speaking, truth lurks somewhere about the facts, and the elimination of all error will show it in the residuum. The two senses of the word law come in so as to look almost like a play upon words. The judge can apply the law so soon as the facts are settled: the physical philosopher has to deduce the law from the facts. Wait, says the judge, until the facts are determined: did the prisoner take the goods with felonious intent? did the defendant give what amounts to a warranty? or the like. Wait, says Bacon, until all the facts, or all the obtainable facts, are brought in: apply my rules of separation to the facts, and the result shall come out as easily as by ruler and compasses. We think it possible that Harvey might allude to the legal character of Bacon's notions: we can hardly conceive so acute a man, after seeing what manner of writer Bacon was, meaning only that he was a lawyer and had better stick to his business. We do ourselves believe that Bacon's philosophy {80} more resembles the action of mind of a common-law judge—not a Chancellor—than that of the physical inquirers who have been supposed to follow in his steps. It seems to us that Bacon's argument is, there can be nothing of law but what must be either perceptible, or mechanically deducible, when all the results of law, as exhibited in phenomena, are before us. Now the truth is, that the physical philosopher has frequently to conceive law which never was in his previous thought—to educe the unknown, not to choose among the known. Physical discovery would be very easy work if the inquirer could lay down his this, his that, and his t'other, and say, "Now, one of these it must be; let us proceed to try which." Often has he done this, and failed; often has the truth turned out to be neither this, that, nor t'other. Bacon seems to us to think that the philosopher is a judge who has to choose, upon ascertained facts, which of known statutes is to rule the decision: he appears to us more like a person who is to write the statute-book, with no guide except the cases and decisions presented in all their confusion and all their conflict.

Let us take the well-known first aphorism of the Novum Organum:

"Man being the servant and interpreter of nature, can do and understand so much, and so much only, as he has observed in fact or in thought of the course of nature: beyond this he neither knows anything nor can do anything."

This aphorism is placed by Sir John Herschel[119] at the head of his Discourse on the Study of Natural Philosophy: a book containing notions of discovery far beyond any of which Bacon ever dreamed; and this because it was written {81} after discovery, instead of before. Sir John Herschel, in his version, has avoided the translation of re vel mente observaverit, and gives us only "by his observation of the order of nature." In making this the opening of an excellent sermon, he has imitated the theologians, who often employ the whole time of the discourse in stuffing matter into the text, instead of drawing matter out of it. By observation he (Herschel) means the whole course of discovery, observation, hypothesis, deduction, comparison, etc. The type of the Baconian philosopher as it stood in his mind, had been derived from a noble example, his own father, William Herschel,[120] an inquirer whose processes would have been held by Bacon to have been vague, insufficient, compounded of chance work and sagacity, and too meagre of facts to deserve the name of induction. In another work, his treatise on Astronomy,[121] Sir John Herschel, after noting that a popular account can only place the reader on the threshold, proceeds to speak as follows of all the higher departments of science. The italics are his own:

"Admission to its sanctuary, and to the privileges and feelings of a votary, is only to be gained by one means—sound and sufficient knowledge of mathematics, the great instrument of all exact inquiry, without which no man can ever make such advances in this or any other of the higher departments of science as can entitle him to form an independent opinion on any subject of discussion within their range."

How is this? Man can know no more than he gets from observation, and yet mathematics is the great instrument of all exact inquiry. Are the results of mathematical deduction results of observation? We think it likely that {82} Sir John Herschel would reply that Bacon, in coupling together observare re and observare mente, has done what some wags said Newton afterwards did in his study-door—cut a large hole of exit for the large cat, and a little hole for the little cat.[122] But Bacon did no such thing: he never included any deduction under observation. To mathematics he had a dislike. He averred that logic and mathematics should be the handmaids, not the mistresses, of philosophy. He meant that they should play a subordinate and subsequent part in the dressing of the vast mass of facts by which discovery was to be rendered equally accessible to Newton and to us. Bacon himself was very ignorant of all that had been done by mathematics; and, strange to say, he especially objected to astronomy being handed over to the mathematicians. Leverrier and Adams, calculating an unknown planet into visible existence by enormous heaps of algebra, furnish the last comment of note on this specimen of the goodness of Bacon's views. The following account of his knowledge of what had been done in his own day or before it, is Mr. Spedding's collection of casual remarks in Mr. Ellis's several prefaces:

"Though he paid great attention to astronomy, discussed carefully the methods in which it ought to be studied, constructed for the satisfaction of his own mind an elaborate theory of the heavens, and listened eagerly for the news from the stars brought by Galileo's telescope, he appears to have been utterly ignorant of the discoveries which had just been made by Kepler's calculations. Though he complained in 1623 of the want of compendious methods for facilitating arithmetical computations, especially with regard to the doctrine of Series, and fully recognized the importance of them as an aid to physical inquiries—he does not say a word about Napier's Logarithms, which had been published only nine years before and reprinted more than once in the {83} interval. He complained that no considerable advance had made in geometry beyond Euclid, without taking any notice of what had been done by Archimedes and Apollonius. He saw the importance of determining accurately the specific gravity of different substances, and himself attempted to form a table of them by a rude process of his own, without knowing of the more scientific though still imperfect methods previously employed by Archimedes, Ghetaldus,[123] and Porta. He speaks of the [Greek: heureka] of Archimedes in a manner which implies that he did not clearly apprehend either the nature of the problem to be solved or the principles upon which the solution depended. In reviewing the progress of mechanics, he makes no mention of Archimedes himself, or of Stevinus,[124] Galileo, Guldinus,[125] or Ghetaldus. He makes no allusion to the theory of equilibrium. He observes that a ball of one pound weight will fall nearly as fast through the air as a ball of two, without alluding to the theory of the acceleration of falling bodies, which had been made known by Galileo more than thirty years before. He proposes an inquiry with regard to the lever—namely, whether in a balance with arms of different length but equal weight the distance from the fulcrum has any effect upon the inclination,—though the theory of the lever was as well understood in his own time as it is now. In making an experiment {84} of his own to ascertain the cause of the motion of a windmill, he overlooks an obvious circumstance which makes the experiment inconclusive, and an equally obvious variation of the same experiment which would have shown him that his theory was false. He speaks of the poles of the earth as fixed, in a manner which seems to imply that he was not acquainted with the precession of the equinoxes; and in another place, of the north pole being above and the south pole below, as a reason why in our hemisphere the north winds predominate over the south."

Much of this was known before, but such a summary of Bacon's want of knowledge of the science of his own time was never yet collected in one place. We may add, that Bacon seems to have been as ignorant of Wright's[126] memorable addition to the resources of navigation as of Napier's addition to the means of calculation. Mathematics was beginning to be the great instrument of exact inquiry: Bacon threw the science aside, from ignorance, just at the time when his enormous sagacity, applied to knowledge, would have made him see the part it was to play. If Newton had taken Bacon for his master, not he, but somebody else, would have been Newton.[127]



ON METEOROLOGICAL OBSERVATORIES.

There is an attempt at induction going on, which has yielded little or no fruit, the observations made in the meteorological observatories. This attempt is carried on in a manner which would have caused Bacon to dance for joy; for he lived in times when Chancellors did dance. {85} Russia, says M. Biot,[128] is covered by an army of meteorographs, with generals, high officers, subalterns, and privates with fixed and defined duties of observation. Other countries have also their systematic observations. And what has come of it? Nothing, says M. Biot, and nothing will ever come of it; the veteran mathematician and experimental philosopher declares, as does Mr. Ellis, that no single branch of science has ever been fruitfully explored in this way. There is no special object, he says. Any one would suppose that M. Biot's opinion, given to the French Government upon the proposal to construct meteorological observatories in Algeria (Comptes Rendus, vol. xli, Dec. 31, 1855), was written to support the mythical Bacon, modern physics, against the real Bacon of the Novum Organum. There is no special object. In these words lies the difference between the two methods.



[In the report to the Greenwich Board of Visitors for 1867 Mr. Airy,[129] speaking of the increase of meteorological observatories, remarks, "Whether the effect of this movement will be that millions of useless observations will be added to the millions that already exist, or whether something may be expected to result which will lead to a meteorological theory, I cannot hazard a conjecture." This is a conjecture, and a very obvious one: if Mr. Airy would have given 2-3/4d. for the chance of a meteorological theory formed by masses of observations, he would never have said what I have quoted.]



BASIS OF MODERN DISCOVERY.

Modern discoveries have not been made by large collections of facts, with subsequent discussion, separation, and {86} resulting deduction of a truth thus rendered perceptible. A few facts have suggested an hypothesis, which means a supposition, proper to explain them. The necessary results of this supposition are worked out, and then, and not till then, other facts are examined to see if these ulterior results are found in nature. The trial of the hypothesis is the special object: prior to which, hypothesis must have been started, not by rule, but by that sagacity of which no description can be given, precisely because the very owners of it do not act under laws perceptible to themselves.[130] The inventor of hypothesis, if pressed to explain his method, must answer as did Zerah Colburn,[131] when asked for his mode of instantaneous calculation. When the poor boy had been bothered for some time in this manner, he cried out in a huff, "God put it into my head, and I can't put it into yours."[132] {87} Wrong hypotheses, rightly worked from, have produced more useful results than unguided observation. But this is not the Baconian plan. Charles the Second, when informed of the state of navigation, founded a Baconian observatory at Greenwich, to observe, observe, observe away at the moon, until her motions were known sufficiently well to render her useful in guiding the seaman. And no doubt Flamsteed's[133] observations, twenty or thirty of them at least, were of signal use. But how? A somewhat fanciful thinker, one Kepler, had hit upon the approximate orbits of the planets by trying one hypothesis after another: he found the ellipse, which the Platonists, well despised of Bacon, and who would have despised him as heartily if they had known him, had investigated and put ready to hand nearly 2000 years before.[134] The sun in the focus, the motions of the planet more and more rapid as they approach the sun, led Kepler—and Bacon would have reproved him for his rashness—to imagine that a force residing in the sun might move the planets, a force inversely as the distance. Bouillaud,[135] upon a fanciful analogy, rejected the inverse distance, {88} and, rejecting the force altogether, declared that if such a thing there were, it would be as the inverse square of the distance. Newton, ready prepared with the mathematics of the subject, tried the fall of the moon towards the earth, away from her tangent, and found that, as compared with the fall of a stone, the law of the inverse square did hold for the moon. He deduced the ellipse, he proceeded to deduce the effect of the disturbance of the sun upon the moon, upon the assumed theory of universal gravitation. He found result after result of his theory in conformity with observed fact: and, by aid of Flamsteed's observations, which amended what mathematicians call his constants, he constructed his lunar theory. Had it not been for Newton, the whole dynasty of Greenwich astronomers, from Flamsteed of happy memory, to Airy whom Heaven preserve,[136] might have worked away at nightly observation and daily reduction, without any remarkable result: looking forward, as to a millennium, to the time when any man of moderate intelligence was to see the whole explanation. What are large collections of facts for? To make theories from, says Bacon: to try ready-made theories by, says the history of discovery: it's all the same, says the idolater: nonsense, say we!

Time and space run short: how odd it is that of the three leading ideas of mechanics, time, space, and matter, the first two should always fail a reviewer before the third. We might dwell upon many points, especially if we attempted a more descriptive account of the valuable edition before us. No one need imagine that the editors, by their uncompromising attack upon the notion of Bacon's influence common even among mathematicians and experimental philosophers, have lowered the glory of the great man whom it was, many will think, their business to defend through thick and thin. They have given a clearer notion of his {89} excellencies, and a better idea of the power of his mind, than ever we saw given before. Such a correction as theirs must have come, and soon, for as Hallam says—after noting that the Novum Organum was never published separately in England, Bacon has probably been more read in the last thirty years—now forty—than in the two hundred years which preceded. He will now be more read than ever he was. The history of the intellectual world is the history of the worship of one idol after another. No sooner is it clear that a Hercules has appeared among men, than all that imagination can conceive of strength is attributed to him, and his labors are recorded in the heavens. The time arrives when, as in the case of Aristotle, a new deity is found, and the old one is consigned to shame and reproach. A reaction may afterwards take place, and this is now happening in the case of the Greek philosopher. The end of the process is, that the opposing deities take their places, side by side, in a Pantheon dedicated not to gods, but to heroes.



THE REAL VALUE OF BACON'S WORKS.

Passing over the success of Bacon's own endeavors to improve the details of physical science, which was next to nothing, and of his method as a whole, which has never been practised, we might say much of the good influence of his writings. Sound wisdom, set in sparkling wit, must instruct and amuse to the end of time: and, as against error, we repeat that Bacon is soundly wise, so far as he goes. There is hardly a form of human error within his scope which he did not detect, expose, and attach to a satirical metaphor which never ceases to sting. He is largely indebted to a very extensive reading; but the thoughts of others fall into his text with such a close-fitting compactness that he can make even the words of the Sacred Writers pass for his own. A saying of the prophet Daniel, rather a hackneyed quotation in our day, Multi pertransibunt, et augebitur scientia, stands in the title-page of the first edition {90} of Montucla's History of Mathematics as a quotation from Bacon—and it is not the only place in which this mistake occurs. When the truth of the matter, as to Bacon's system, is fully recognized, we have little fear that there will be a reaction against the man. First, because Bacon will always live to speak for himself, for he will not cease to be read: secondly, because those who seek the truth will find it in the best edition of his works, and will be most ably led to know what Bacon was, in the very books which first showed at large what he was not.



THE CONGREGATION OF THE INDEX, ON COPERNICUS.

In this year (1620) appeared the corrections under which the Congregation of the Index—i.e., the Committee of Cardinals which superintended the Index of forbidden books—proposed to allow the work of Copernicus to be read. I insert these conditions in full, because they are often alluded to, and I know of no source of reference accessible to a twentieth part of those who take interest in the question.

By a decree of the Congregation of the Index, dated March 5, 1616, the work of Copernicus, and another of Didacus Astunica,[137] are suspended donec corrigantur, as teaching:

"Falsam illam doctrinam Pythagoricam, divinae que Scripturae omnino adversantem, de mobilitate Terrae et immobilitate Solis."[138]

But a work of the Carmelite Foscarini[139] is:

{91}

"Omnino prohibendum atque damnandum," because "ostendere conatur praefatam doctrinam ... consonam esse veritati et non adversari Sacrae Scripturae."[140]

Works which teach the false doctrine of the earth's motion are to be corrected; those which declare the doctrine conformable to Scripture are to be utterly prohibited.

In a "Monitum ad Nicolai Copernici lectorem, ejusque emendatio, permissio, et correctio," dated 1620 without the month or day, permission is given to reprint the work of Copernicus with certain alterations; and, by implication, to read existing copies after correction in writing. In the preamble the author is called nobilis astrologus; not a compliment to his birth, which was humble, but to his fame. The suspension was because:

"Sacrae Scripturae, ejusque verae et Catholicae interpretationi repugnantia (quod in homine Christiano minime tolerandum) non per hypothesin tractare, sed ut verissima adstruere non dubitat!"[141]

And the corrections relate:

"Locis in quibus non ex hypothesi, sed asserendo de situ et motu Terrae disputat."[142]

That is, the earth's motion may be an hypothesis for elucidation of the heavenly motions, but must not be asserted as a fact.



(In Pref. circa finem.) "Copernicus. Si fortasse erunt [Greek: mataiologoi], qui cum omnium Mathematum ignari sint, tamen de illis judicium sibi summunt, propter aliquem locum scripturae, male ad suum propositum detortum, ausi fuerint meum {92} hoc institutum reprehendere ac insectari: illos nihil moror adeo ut etiam illorum judicium tanquam temerarium contemnam. Non enim obscurum est Lactantium, celebrem alioqui scriptorem, sed Mathematicum parum, admodum pueriliter de forma terrae loqui, cum deridet eos, qui terram globi formam habere prodiderunt. Itaque non debet mirum videri studiosis, si qui tales nos etiam videbunt. Mathemata Mathematicis scribuntur, quibus et hi nostri labores, si me non fallit opinio, videbuntur etiam Reipub. ecclesiasticae conducere aliquid.... Emend. Ibi si fortasse dele omnia, usque ad verbum hi nostri labores et sic accommoda—Coeterum hi nostri labores."[143]

All the allusion to Lactantius, who laughed at the notion of the earth being round, which was afterwards found true, is to be struck out.



(Cap. 5. lib. i. p. 3) "Copernicus. Si tamen attentius rem consideremus, videbitur haec quaestio nondum absoluta, et ideireo minime contemnenda. Emend. Si tamen attentius rem consideremus, nihil refert an Terram in medio Mundi, an extra Medium existere, quoad solvendas coelestium motuum apparentias existimemus."[144]

{93}

We must not say the question is not yet settled, but only that it may be settled either way, so far as mere explanation of the celestial motions is concerned.



(Cap. 8. lib. i.) "Totum hoc caput potest expungi, quia ex professo tractat de veritate motus Terrae, dum solvit veterum rationes probantes ejus quietem. Cum tamen problematice videatur loqui; ut studiosis satisfiat, seriesque et ordo libri integer maneat; emendetur ut infra."[145]

A chapter which seems to assert the motion should perhaps be expunged; but it may perhaps be problematical; and, not to break up the book, must be amended as below.



(p. 6.) "Copernicus. Cur ergo hesitamus adhuc, mobilitatem illi formae suae a natura congruentem concedere, magisquam quod totus labatur mundus, cujus finis ignoratur, scirique nequit, neque fateamur ipsius cotidianae revolutionis in coelo apparentiam esse, et in terra veritatem? Et haec perinde se habere, ac si diceret Virgilianus AEneas: Provehimur portu ... Emend. Cur ergo non possum mobilitatem illi formae suae concedere, magisque quod totus labatur mundus, cujus finis ignoratur scirique nequit, et quae apparent in coelo, perinde se habere ac si ..."[146]

{94}

"Why should we hesitate to allow the earth's motion," must be altered into "I cannot concede the earth's motion."



(p. 7.) "Copernicus. Addo etiam, quod satis absurdum videretur, continenti sive locanti motum adscribi, et non potius contento et locato, quod est terra. Emend. Addo etiam difficilius non esse contento et locato, quod est Terra, motum adscribere, quam continenti."[147]

We must not say it is absurd to refuse motion to the contained and located, and to give it to the containing and locating; say that neither is more difficult than the other.



(p. 7.) "Copernicus. Vides ergo quod ex his omnibus probabilior sit mobilitas Terrae, quam ejus quies, praesertim in cotidiana revolutione, tanquam terrae maxime propria. Emend. Vides ... delendus est usque ad finem capitis."[148]

Strike out the whole of the chapter from this to the end; it says that the motion of the earth is the most probable hypothesis.



(Cap. 9. lib. i. p. 7.) "Copernicus. Cum igitur nihil prohibeat mobilitatem Terrae, videndum nunc arbitror, an etiam plures illi motus conveniant, ut possit una errantium syderum existimari. Emend. Cum igitur Terram moveri assumpserim, videndum nunc arbitror, an etiam illi plures possint convenire motus."[149]

{95}

We must not say that nothing prohibits the motion of the earth, only that having assumed it, we may inquire whether our explanations require several motions.



(Cap. 10. lib. i. p. 9.) "Copernicus. Non pudet nos fateri ... hoc potius in mobilitate terrae verificari. Emend. Non pudet nos assumere ... hoc consequenter in mobilitate verificari."[150]

(Cap. 10. lib. i. p. 10.) "Copernicus. Tanta nimirum est divina haec. Opt. Max. fabrica. Emend. Dele illa verba postrema."[151]

(Cap. ii. lib. i.[152]) "Copernicus. De triplici motu telluris demonstratio. Emend. De hypothesi triplicis motus Terrae, ejusque demonstratione."[153]

(Cap. 10. lib. iv. p. 122.[154]) "Copernicus. De magnitudine horum trium siderum, Solis, Lunae, et Terrae. Emend. Dele verba horum trium siderum, quia terra non est sidus, ut facit eam Copernicus."[155]

We must not say we are not ashamed to acknowledge; assume is the word. We must not call this assumption a Divine work. A chapter must not be headed demonstration, but hypothesis. The earth must not be called a star; the word implies motion.

It will be seen that it does not take much to reduce Copernicus to pure hypothesis. No personal injury being done to the author—who indeed had been 17 years out of {96} reach—the treatment of his book is now an excellent joke. It is obvious that the Cardinals of the Index were a little ashamed of their position, and made a mere excuse of a few corrections. Their mode of dealing with chap. 8, this problematice videtur loqui, ut studiosis satisfiat,[156] is an excuse to avoid corrections. But they struck out the stinging allusion to Lactantius[157] in the preface, little thinking, honest men, for they really believed what they said—that the light of Lactantius would grow dark before the brightness of their own.



THE CONVOCATION AT OXFORD EQUALLY AT FAULT.

1622. I make no reference to the case of Galileo, except this. I have pointed out (Penny Cycl. Suppl. "Galileo"; Engl. Cycl. "Motion of the Earth") that it is clear the absurdity was the act of the Italian Inquisition—for the private and personal pleasure of the Pope, who knew that the course he took would not commit him as Pope—and not of the body which calls itself the Church. Let the dirty proceeding have its right name. The Jesuit Riccioli,[158] the stoutest and most learned Anti-Copernican in Europe, and the Puritan Wilkins, a strong Copernican and Pope-hater, are equally positive that the Roman Church never pronounced any decision: and this in the time immediately following the ridiculous proceeding of the Inquisition. In like manner a decision of the Convocation of Oxford is not a law of the English Church; which is fortunate, for that Convocation, in 1622, came to a decision quite as absurd, and a great deal {97} more wicked than the declaration against the motion of the earth. The second was a foolish mistake; the first was a disgusting surrender of right feeling. The story is told without disapprobation by Anthony Wood, who never exaggerated anything against the university of which he is writing eulogistic history.

In 1622, one William Knight[159] put forward in a sermon preached before the University certain theses which, looking at the state of the times, may have been improper and possibly of seditious intent. One of them was that the bishop might excommunicate the civil magistrate: this proposition the clerical body could not approve, and designated it by the term erronea,[160] the mildest going. But Knight also declared as follows:

"Subditis mere privatis, si Tyrannus tanquam latro aut stuprator in ipsos faciat impetum, et ipsi nec potestatem ordinariam implorare, nec alia ratione effugere periculum possint, in presenti periculo se et suos contra tyrannum, sicut contra privatum grassatorem, defendere licet."[161]

That is, a man may defend his purse or a woman her honor, against the personal attack of a king, as against that of a private person, if no other means of safety can be found. The Convocation sent Knight to prison, declared the proposition "falsa, periculosa, et impia," and enacted that all applicants for degrees should subscribe this censure, and make oath that they would neither hold, teach, nor defend Knight's opinions.

The thesis, in the form given, was unnecessary and improper. Though strong opinions of the king's rights were advanced at the time, yet no one ventured to say that, {98} ministers and advisers apart, the king might personally break the law; and we know that the first and only attempt which his successor made brought on the crisis which cost him his throne and his head. But the declaration that the proposition was false far exceeds in all that is disreputable the decision of the Inquisition against the earth's motion. We do not mention this little matter in England. Knight was a Puritan, and Neal[162] gives a short account of his sermon. From comparison with Wood,[163] I judge that the theses, as given, were not Knight's words, but the digest which it was customary to make in criminal proceedings against opinion. This heightens the joke, for it appears that the qualifiers of the Convocation took pains to present their condemnation of Knight in the terms which would most unequivocally make their censure condemn themselves. This proceeding took place in the interval between the two proceedings against Galileo: it is left undetermined whether we must say pot-kettle-pot or kettle-pot-kettle.



Liberti Fromondi.... Ant-Aristarchus, sive orbis terrae immobilis. Antwerp, 1631, 8vo.[164]

This book contains the evidence of an ardent opponent of Galileo to the fact, that Roman Catholics of the day did not consider the decree of the Index or of the Inquisition as a declaration of their Church. Fromond would have been glad to say as much, and tries to come near it, but confesses he must abstain. See Penny Cyclop. Suppl. "Galileo," and Eng. Cycl. "Motion of the Earth." The author of a celebrated article in the Dublin Review, in defence of the {99} Church of Rome, seeing that Drinkwater Bethune[165] makes use of the authority of Fromondus, but for another purpose, sneers at him for bringing up a "musty old Professor." If he had known Fromondus, and used him he would have helped his own case, which is very meagre for want of knowledge.[166]



Advis a Monseigneur l'eminentissime Cardinal Duc de Richelieu, sur la Proposition faicte par le Sieur Morin pour l'invention des longitudes. Paris, 1634, 8vo.[167]

This is the Official Report of the Commissioners appointed by the Cardinal, of whom Pascal is the one now best known, to consider Morin's plan. See the full account in Delambre, Hist. Astr. Mod. ii. 236, etc.



THE METIUS APPROXIMATION.

Arithmetica et Geometria practica. By Adrian Metius. Leyden, 1640, 4to.[168]

This book contains the celebrated approximation guessed at by his father, Peter Metius,[169] namely that the diameter is {100} to the circumference as 113 to 355. The error is at the rate of about a foot in 2,000 miles. Peter Metius, having his attention called to the subject by the false quadrature of Duchesne, found that the ratio lay between 333/106 and 377/120. He then took the liberty of taking the mean of both numerators and denominators, giving 355/113. He had no right to presume that this mean was better than either of the extremes; nor does it appear positively that he did so. He published nothing; but his son Adrian,[170] when Van Ceulen's work showed how near his father's result came to the truth, first made it known in the work above. (See Eng. Cyclop., art. "Quadrature.")



ON INHABITABLE PLANETS.

A discourse concerning a new world and another planet, in two books. London, 1640, 8vo.[171]

Cosmotheoros: or conjectures concerning the planetary worlds and their inhabitants. Written in Latin, by Christianus Huyghens. This translation was first published in 1698. Glasgow, 1757, 8vo. [The original is also of 1698.][172]

The first work is by Bishop Wilkins, being the third edition, [first in 1638] of the first book, "That the Moon may be a Planet"; and the first edition of the second work, {101} "That the Earth may be a Planet." [See more under the reprint of 1802.] Whether other planets be inhabited or not, that is, crowded with organisations some of them having consciousness, is not for me to decide; but I should be much surprised if, on going to one of them, I should find it otherwise. The whole dispute tacitly assumes that, if the stars and planets be inhabited, it must be by things of which we can form some idea. But for aught we know, what number of such bodies there are, so many organisms may there be, of which we have no way of thinking nor of speaking. This is seldom remembered. In like manner it is usually forgotten that the matter of other planets may be of different chemistry from ours. There may be no oxygen and hydrogen in Jupiter, which may have gens of its own.[173] But this must not be said: it would limit the omniscience of the a priori school of physical inquirers, the larger half of the whole, and would be very unphilosophical. Nine-tenths of my best paradoxers come out from among this larger half, because they are just a little more than of it at their entrance.

There was a discussion on the subject some years ago, which began with

The plurality of worlds: an Essay. London, 1853, 8vo. [By Dr. Wm. Whewell, Master of Trinity College, Cambridge]. A dialogue on the plurality of worlds, being a supplement to the Essay on that subject. [First found in the second edition, 1854; removed to the end in subsequent editions, and separate copies issued.][174]

A work of skeptical character, insisting on analogies which prohibit the positive conclusion that the planets, stars, etc., are what we should call inhabited worlds. It produced {102} several works and a large amount of controversy in reviews. The last predecessor of whom I know was

Plurality of Worlds.... By Alexander Maxwell. Second Edition. London, 1820, 8vo.

This work is directed against the plurality by an author who does not admit modern astronomy. It was occasioned by Dr. Chalmers's[175] celebrated discourses on religion in connection with astronomy. The notes contain many citations on the gravity controversy, from authors now very little read: and this is its present value. I find no mention of Maxwell, not even in Watt.[176] He communicated with mankind without the medium of a publisher; and, from Vieta till now, this method has always been favorable to loss of books.

A correspondent informs me that Alex. Maxwell, who wrote on the plurality of worlds, in 1820, was a law-bookseller and publisher (probably his own publisher) in Bell Yard. He had peculiar notions, which he was fond of discussing with his customers. He was a bit of a Swedenborgian.



INHABITED PLANETS IN FICTION.

There is a class of hypothetical creations which do not belong to my subject, because they are acknowledged to be fictions, as those of Lucian,[177] Rabelais,[178] Swift, Francis {103} Godwin,[179] Voltaire, etc. All who have more positive notions as to either the composition or organization of other worlds, than the reasonable conclusion that our Architect must be quite able to construct millions of other buildings on millions of other plans, ought to rank with the writers just mentioned, in all but self-knowledge. Of every one of their systems I say, as the Irish Bishop said of Gulliver's book,—I don't believe half of it. Huyghens had been preceded by Fontenelle,[180] who attracted more attention. Huyghens is very fanciful and very positive; but he gives a true account of his method. "But since there's no hopes of a Mercury to carry us such a journey, we shall e'en be contented with what's in our power: we shall suppose ourselves there...." And yet he says, "We have proved that they live in societies, have hands and feet...." Kircher[181] had gone to the stars before him, but would not find any life in them, either animal or vegetable.

The question of the inhabitants of a particular planet is one which has truth on one side or the other: either there are some inhabitants, or there are none. Fortunately, it is of no consequence which is true. But there are many cases where the balance is equally one of truth and falsehood, in which the choice is a matter of importance. My work selects, for the most part, sins against demonstration: but the world is full of questions of fact or opinion, in which a struggling minority will become a majority, or else will {104} be gradually annihilated: and each of the cases subdivides into results of good, and results of evil. What is to be done?

"Periculosum est credere et non credere; Hippolitus obiit quia novercae creditum est; Cassandrae quia non creditum ruit Ilium: Ergo exploranda est veritas multum prius Quam stulta prove judicet sententia."[182]



Nova Demonstratio immobilitatis terrae petita ex virtute magnetica. By Jacobus Grandamicus. Flexiae (La Fleche), 1645, 4to.[183]

No magnetic body can move about its poles: the earth is a magnetic body, therefore, etc. The iron and its magnetism are typical of two natures in one person; so it is said, "Si exaltatus fuero a terra, omnia traham ad me ipsum."[184]



A VENETIAN BUDGET OF PARADOXES.

Le glorie degli incogniti, o vero gli huomini illustri dell' accademia de' signori incogniti di Venetia. Venice, 1647, 4to.

This work is somewhat like a part of my own: it is a budget of Venetian nobodies who wished to be somebodies; but paradox is not the only means employed. It is of a serio-comic character, gives genuine portraits in copperplate, and grave lists of works; but satirical accounts. The astrologer Andrew Argoli[185] is there, and his son; both of whom, with some of the others, have place in modern works {105} on biography. Argoli's discovery that logarithms facilitate easy processes, but increase the labor of difficult ones, is worth recording.



Controversiae de vera circuli mensura ... inter ... C. S. Longomontanum et Jo. Pellium.[186] Amsterdam, 1647, 4to.

Longomontanus,[187] a Danish astronomer of merit, squared the circle in 1644: he found out that the diameter 43 gives the square root of 18252 for the circumference; which gives 3.14185... for the ratio. Pell answered him, and being a kind of circulating medium, managed to engage in the controversy names known and unknown, as Roberval, Hobbes, Carcavi, Lord Charles Cavendish, Pallieur, Mersenne, Tassius, Baron Wolzogen, Descartes, Cavalieri and Golius.[188] Among them, of course, Longomontanus was made {106} mincemeat: but he is said to have insisted on the discovery of his epitaph.[189]

{107}



THE CIRCULATING MEDIA OF MATHEMATICS.

The great circulating mediums, who wrote to everybody, heard from everybody, and sent extracts to everybody else, have been Father Mersenne, John Collins, and the late Professor Schumacher: all "late" no doubt, but only the last recent enough to be so styled. If M.C.S. should ever again stand for "Member of the Corresponding Society," it should raise an acrostic thought of the three. There is an allusion to Mersenne's occupation in Hobbes's reply to him. He wanted to give Hobbes, who was very ill at Paris, the Roman Eucharist: but Hobbes said, "I have settled all that long ago; when did you hear from Gassendi?" We are reminded of William's answer to Burnet. John Collins disseminated Newton, among others. Schumacher ought to have been called the postmaster-general of astronomy, as Collins was called the attorney-general of mathematics.[190]

{108}



THE SYMPATHETIC POWDER.

A late discourse ... by Sir Kenelme Digby.... Rendered into English by R. White. London, 1658, 12mo.

On this work see Notes and Queries, 2d series, vii. 231, 299, 445, viii. 190. It contains the celebrated sympathetic powder. I am still in much doubt as to the connection of Digby with this tract.[191] Without entering on the subject here, I observe that in Birch's History of the Royal Society,[192] to which both Digby and White belonged, Digby, though he brought many things before the Society, never mentioned the powder, which is connected only with the names of Evelyn[193] and Sir Gilbert Talbot.[194] The sympathetic powder was that which cured by anointing the weapon with its salve instead of the wound. I have long been convinced that it was efficacious. The directions were to keep the {109} wound clean and cool, and to take care of diet, rubbing the salve on the knife or sword.[195] If we remember the dreadful notions upon drugs which prevailed, both as to quantity and quality, we shall readily see that any way of not dressing the wound would have been useful. If the physicians had taken the hint, had been careful of diet etc., and had poured the little barrels of medicine down the throat of a practicable doll, they would have had their magical cures as well as the surgeons.[196] Matters are much improved now; the quantity of medicine given, even by orthodox physicians, would have been called infinitesimal by their professional ancestors. Accordingly, the College of Physicians has a right to abandon its motto, which is Ars longa, vita brevis, meaning Practice is long, so life is short.



HOBBES AS A MATHEMATICIAN.

Examinatio et emendatio Mathematicae Hodiernae. By Thomas Hobbes. London, 1666, 4to.

In six dialogues: the sixth contains a quadrature of the circle.[197] But there is another edition of this work, without place or date on the title-page, in which the quadrature is omitted. This seems to be connected with the publication {110} of another quadrature, without date, but about 1670, as may be judged from its professing to answer a tract of Wallis, printed in 1669.[198] The title is "Quadratura circuli, cubatio sphaerae, duplicatio cubi," 4to.[199] Hobbes, who began in 1655, was very wrong in his quadrature; but, though not a Gregory St. Vincent,[200] he was not the ignoramus in geometry that he is sometimes supposed. His writings, erroneous as they are in many things, contain acute remarks on points of principle. He is wronged by being coupled with Joseph Scaliger, as the two great instances of men of letters who have come into geometry to help the mathematicians out of their difficulty. I have never seen Scaliger's quadrature,[201] except in the answers of Adrianus Romanus,[202] Vieta and Clavius, and in the extracts of Kastner.[203] Scaliger had no right to such strong opponents: Erasmus or Bentley might just as well have tried the problem, and either would have done much better in any twenty minutes of his life.[204]



AN ESTIMATE OF SCALIGER.

Scaliger inspired some mathematicians with great respect for his geometrical knowledge. Vieta, the first man of his time, who answered him, had such regard for his opponent {111} as made him conceal Scaliger's name. Not that he is very respectful in his manner of proceeding: the following dry quiz on his opponent's logic must have been very cutting, being true. "In grammaticis, dare navibus Austros, et dare naves Austris, sunt aeque significantia. Sed in Geometricis, aliud est adsumpsisse circulum BCD non esse majorem triginta sex segmentis BCDF, aliud circulo BCD non esse majora triginta sex segmenta BCDF. Illa adsumptiuncula vera est, haec falsa."[205] Isaac Casaubon,[206] in one of his letters to De Thou,[207] relates that, he and another paying a visit to Vieta, the conversation fell upon Scaliger, of whom the host said that he believed Scaliger was the only man who perfectly understood mathematical writers, especially the Greek ones: and that he thought more of Scaliger when wrong than of many others when right; "pluris se Scaligerum vel errantem facere quam multos [Greek: katorthountas]."[208] This must have been before Scaliger's quadrature (1594). There is an old story of some one saying, "Mallem cum Scaligero errare, quam cum Clavio recte sapere."[209] This I cannot help suspecting to have been a version of Vieta's speech with Clavius satirically inserted, on account of the great hostility which Vieta showed towards Clavius in the latter years of his life.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse